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2 PRVY ROCNIK, ZIMNY SEMESTER

I. ZOBRAZENIA MEDZI MNOZINAMI

Definicia 1.1. Nech A, B st mnoziny. Zobrazenie z A do B je predpis, ktory
kazdému prvku z A priradi prave jeden prvok z B. Ak tento predpis oznaCime f,
tak hovorime f: A — B. f(a) = b znamen4, Z%e sme priradili prvku a€A — beB.
a je tzv. vzor prvku b. f:a—b. f(A)=obraz zobrazenia f. Im(f) je obraz mnoziny
A pri zobrazeni Im(f) = {yeB JzcA: f(z)=y}

Definicia 1.2. Zobrazenia f : A—»B, g : A—B sa rovnaju (f=g), ak pre Va€A je
fla)=g(a). f,q:N=N; f(x)=a+a; g(v)=2z

Definicia 1.3. Nech f : A—B je zobrazenie a nech A’ C A. Predpis, ktory
kazdému prvku a€A’ priradi f(a) sa nazyva ziZenie zobrazenia f na podmnozinu
A’. Oznatenie: fla: A'—B a f|a(z)=f(x)

Definicia 1.4. f: A—B sa nazyva surjektivne ak f(A)=B. Zobrazenie f : A—»B
je surjektivne <= VyeB Jze€A : f(z)=y.

Definicia 1.5. Zobrazenie f: A— B sa nazyva injektivne ak z toho, Ze
fla)=f(a’) vyplyva, ze a=ad’

Definicia 1.6. Zobrazenie f : A— B sa nazyva bijekcia ak je surjektivne aj injek-
tivne.

Definicia 1.7. Nech f : A—B, g : B—C s dve zobrazenia, potom predpis
z€A — g(f(z)) definuje zobrazenie A—C oznac¢ime ho gof:A—C, gof(z)=g(f(z))
pre Vx€A. Zobrazenie gof : A—C sa nazyva zobrazenie zloZen€ z f a g resp. kom-
pozicia zobrazeni f a g.

Tvrdenie 1.1.
1.y Ak f: A=B, g: B—C su injekcie, tak aj gof : A=C je injekcia.
2. Ak f: A—=B, g: B—C su surjekcie, tak aj gof : A—C je surjekcia.

Dokaz. Predpokladajme, ze gof(a)=gof(a’). Chceme ukazat, ze a=a’.
Ale g(f(a))=g(f(a’)), lebo g je injektivne. Z toho: f(a)=f(a’). Ale aj f je injek-
tivne = a=da'.

O
Tvrdenie 1.2. Ak f: A—B, g: B—C, h: C—D si zobrazenia,
tak ho(gof)=(hog)of. To je tzv. asociativnost skladania zobrazend.
Dokaz. ho(gof)(x) = h((gof)(x))=h(g(f(2)));
(hog)of (x)=(hog) ((z))=h(g(f(x)) : Vze A
O

Veta 1.1 a Definicia 1.8. Nech f: A—B je bijekcia. Potom existuje zobrazenie
B— A, ktoré kazdému prvku bEB priradi len jeding prvok a€A, pre ktory f(a)=b.
Toto je inverzné zobrazenie k f, oznacime ho f='. Teda f~1(b)=a < f(a)=b .
Zobrazenie f~1: B—A je tieZ bijektivne a plati: flof=ida, fof '=idgp.
Dokaz.
1.y f~* je injekcia: nech a=f~1(b)=f"1(b') Potom f(a)=b a f(a)=b' = b=b". f~*
je injekcia.
2.1 je surjekcia: Tubovolné acA, f~'(f(a))=a, f~' je bijekcia.

O
Tvrdenie 1.3. Ak f: A—B, g: B—A st zobrazenia také, Ze gof=ida, tak f je
injekcia a g je surjekcia.
Dokaz.

f j?dingellzcia: Predpokladajme, ze f (a) = f(a') = g(f(a)) = g(f(a")) = (g0 f)(d’) =
=1ida(a’) =a'.
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g je surjekcia: Tubovolné acA = f(a)eB, a=g(f(a)) = f(a) je vzor k prvku a pri
zobrazeni g.

O

Veta 1.2. Zobrazenie f : A—B je bijektivne < ked eristuje g : B—A také, Ze
gof=ida a fog=idp

Dékaz. Predpokladajme, Ze f je bijektivne. Potom vieme, ze 3f ! : B—A s tym, Ze
f~Yof=id4. Predpokladajme, 7e 3g : B—A : gof=ida a fog=idg. Z tvrdenia 1.3
dostavame, Ze f je injektivne aj surjektivne = bijektivne.

O

Binarne operacie.

Definicia 1.9. Bindrna operdcia na mnozine M#( je zobrazenie M xM— M.
Binérne operécie ozna¢ujeme réznymi spdosobmi. Obraz dvojice (a,b)eM xM po-
tom oznacujeme obyc¢ajne a+b= + (a,b) - - -

Definicia 1.10. Nech x : M x M —M je binarna operécia na M. Prvok ee M taky,
ze mxe=m=exm pre YmeM sa nazyva neutrdlny prvok operacie *.

Pozn.. Binarna operacia nemusi mat neutralny prvok.

Tvrdenie 1.4. Ak bindrna operécia * : M xM—M mé neutrdlny prvok, tak ho
ma jediny.
Dokaz. Keby ey, ea€M boli neutrdlne, tak e;=ejxes=e9 = e1=es.

O

Definicia 1.11. Nech * : M xM—M je binidrna operacia a nech mé neutralny
prvok eeM. Ak pre nejaké xeM : dJyecM také, ze xxy=y*xx=e, tak y sa vola
inverzny prvok k x.

Oznacenie. Inverzny prvok k prvku z z predchiddzajicej definicie ozna¢ime 1.

Definicia 1.12. Binarna operéacia je asociativna, ak pre vetky a,b,c€ M méame:
ax(bxc)=(axb)*c

Tvrdenie 1.5. Nech o : M xM—M je asociativna bindrna operdcia a nech e€ M
je neutr. prvok tejto operdcie. Potom ak pre x€M ezistuje inverzny prvok, tak je
jeding.

Dokaz. Nech pre z€M by inverzné prvky boli dva: aeM, beM. Teda: ax=xa=e,

br=xb=e. Chceme ukézat, ze a=b. Takto: a=ae=a(xzb)=(azx)b=eb=b.
0

Definicia 1.13. Nech G#{) je mnoZina a nech * : GxG—G je bindrna operacia na
G s tymito vlastnostami:

1.y binarna operacia * je asociativna

2.y v G existuje neutralny prvok operécie *, oznacime ho e, teda pre kazdé reG:
exT=rke=x

3.) VxeG existuje v G inverzny prvok, vieme uz, Ze to je jediny prvok r~1eq taky,
ze rxx =" lxr=ec.

Potom hovorime, Ze dvojica (G, *) je grupa. (alebo G s operaciou * je grupa). Ak
je operacia * jasnd, niekedy hovorime, ze G je grupa.

Priklad. Nech meN je pevne zvolené. Ozna¢me Z,, mnozinu zvyskov po deleni
celych ¢isel ¢islom m. Teda Z,,={0,1,--- ,m — 1}. Definujme pre =, y€Z,:

@Dy je zvySok po vydeleni z+y ¢islom m. Potom & je bindrna operacia na Z,,.
Je asociativna, neutralny prvok je 0, inverzny prvok k x€Z,, je zvysSok po vydeleni
¢isla m—zx ¢islom m. (Z,,, ®) je grupa.
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Definicia 1.14. Bindrna operacia *:M x M — M na mnozine M#( je komutativna,
ak pre Va,beM : axb=bxa. Ak tato vlastnost nem4 tak je nekomutativna.

Definicia 1.15. Ak (G, «) je grupa a operécia * je komutativna, tak grupa G sa
nazyva komutativna (alebo tiez abelovska).

Priklady.
1y(R\ {0}, ) je komutativna grupa.
2.)G={e}, exe=e to je tzv. trivialna grupa.
33(Z,+), (Zm,®) st komutativne grupy.
4.y Nech M#0 je mnozina. Oznacme Sj;:= mnozinu vsetkych bijekcii M—M.
Skladanie zobrazeni definuje binarnu operaciu * na Sy, t.j. fxg=gof preVf, g€Sus.
Potom (Sys, *) je grupa. Nie je komutativna.
5) Ak M z 4. je M={1,2,--- ,n} €o je vlastne Sp/? Sf12,... n} je vlastne mnozina
permutécii prvkov 1,2, --- ,n mnoZiny {1,2,--- ,n}. Permuticiu
{2, ;n}—={1,2,--- ,n} modzeme prehladne zapisat ako f= (f(ll) f(22) f&))
Napr. pre Sy 233 je (S{1,2,3},*) grupa, ktord méa 6 prvkov.
Napr.:(123> X (123):<123) kym (123) “ (123):<123)_
132 213 231 213 132 312
S{1,273} je komutativna grupa.
Veta 1.3. Nech (G, e) je grupa. Potom:
Ly(z=1) " '=x pre VaeG
2. (voy) =y lex~! pre Va,ycG

Dokaz.

Ly (#71)~! je inverzny prvok k 27!, Ale méme zex~
prvok k 27! je x. Pretoze inverzny prvok je jediny mame: (2~
2.y Ratajme (zey)e(y tex!)=ze(yey ')ex '=zeler =1
Podobne (y~'ex™!)e(zey)=y 'o(z 'ex)oy=y teley=1 = 2.,

l=—z~lex=1 a teda inverzny

R -

Podgrupa.

Definicia 1.16. Nech (G, ) je grupa. Nech U#0 je podmnozina v G s binarnou
operaciou % : UxU—U takou, ze pre kazdé z,ycU plati xxy=zey. Ak (U, x*) je
grupa, tak hovorime, ze (U, x) je podgrupa grupy (G, e). Volnejsie tiez hovorime, ze
grupa U je podgrupou grupy G. Teda ak (U, *) je podgrupou v (G, e) tak zobrazenie
o |uxy: UxU—G je vlastne U teda (trochu nepresne) mozeme povedat, ze v tejto
situacii je bindrna operacia * podgrupy U zUZenim binarnej operacie e grupy G.

Veta 1.4. (kritérium podgrupy). Nech U#Q je podmnoZina mnoZiny G, pricom
nech (G,e) je grupa. Potom U je podgrupou grupy G prdve vtedy, ked plati
ktordkolvek z nasledujicich dvoch ekvivalentnych podmienok:

(I): pre Va,yeU je rey~telU

(II): pre Va,yeU je zoyclU a y~teU.

Dékaz. U je podgrupa potom (I) A (I1)

Najskor ukdzeme, ze (U, x) je podgrupa v (G,e). Oznacme 1y neutrdlny prvok
grupy U, 1 je neutralny prvok grupy G. Mame: 1U*1U:1U:. Vyna-
sobenim rovnosti — zlava prvkom 151 dostdvame: 1y=1. Teraz pre lubovolny
prvok yeU oznacme y;; ! k nemu inverzny prvok v podgrupe (U, *). (y~! je inverzny
prvok k y v grupe (G, e)). Mame: yU*yljl:yon[;l:lU:l:yal*yU:yaloyU. Teda
z toho, ¢o je podciarknuté vidime, Ze k y je v G inverzny prvok yljl. Ale tiez je
to y~1. Kedze inverzny prvok k prvku grupy je prave jeden, dostdvame: y[}l:y’l.
Teda pre x,y€U mame aj x,y 1€U. Pretoze (U, *) je podgrupa, mame

Yy l=xey~1eU. To je prave (I). Analogicky sa dokaze, ze ak (U, ) je podgrupa,
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tak plati (IT).
Teraz predpokladajme, Ze je splnend podmienka (I). Chceme ukazat , Ze potom
(U, *) je podgrupa. Pretoze U#() mame dalej prvok acU. Z (I) potom dosta-
vame, 7e aea '=1€U Dalej, ak ycU je Tubovolné, tak z podmienky (I) vyplyva
ley~l=y~leU. Teraz pre fubovolné z,ycU bude tiez z,y~'cU. Z (I) potom
méme, 7e aj ve(y ') l=reyclU. Ina¢ povedané, predpis x*y=zey pre lubovolné
(x,y)eUxU definuje bindrnu operaciu * : UxU—U. Operacia * je asociativna
(lebo e je taka), neutralny prvok je, inverzny prvok y,'=y !, teda (U, *) je grupa.
Je to podgrupa v (G, e).

U

Homomorfizmy gruap.

Definicia 1.17. Nech (G,e), (H,*) st grupy. Homomorfizmus z (G,e) do (H, %)
je zobrazenie f : G—H také, ze f(xey)=f(z)*f(y) pre vietky z,yeG.

Veta 1.5. Nech f: (G,e) — (H,x*) je homomorfizmus grip. Potom

1 f(1)=1.
2 FlaH)=(f(a))".
Dokaz.

LyLef()=f(1e1)=f(1)+f(1) & fTH{1)xlef ()=f (1) f(1)=f (1) & f(1)=1
2.y Nech z€G je Iubovolné. Potom zsz~'=z~'sxz=1. Pretoze f je homomorfiz-
mus a plati f(1)=1 méme, Ze f(zex~1)=f(x)xf(x~1)=f (2~ )xf(x)=F(1)=1 z ¢oho
(f(@)~t=Ff@™h).

0

Veta 1.6. Nech f : (G,e) — (H,*) je homomorfizmus grip. Ak S#0 je podgrupa
grupy G tak f(S) je podgrupa grupy H.

Dokaz. Pretoze S je podgrupa vieme, ze 1€S. Potom f(1)=1€S, teda f(S)#£0.
Dalej overime (napr.) podmienku (I) z kritéria podgrupy pre f(S). Nech z,y€ f(S)
st Tubovolné . Teda z=f(a) a y=f(b) pre a,beS. Potom y~=(f(b))"1=f(b"1)
z predchadzajicej vety. Z toho zxy~1=f(a)xf(b=1)=f(aeb~1)ef(S) totiz aeb—teS
kedze a,beS a S je podgrupa. Podmienka () je splnend a teda f(S) je podgrupa.

U

Definicia 1.18. Majme zobrazenie f : M—N a nech ACN. Vzor mnoziny A pri
zobrazeni f ozna¢ime f~1(A) pritom f~1(A)={zeM; f(x)eA}

Veta 1.7. Nech f : (G,e)—(H,e) je homomorfizmus grip a nech SCH je podgrupa
grupy H. Potom f=1(S) je podgrupa grupy G.

Dékaz. Vieme, ze f(1)=1 pritom 1€S, lebo S je podgrupa. Teda 1€f~1(S) a preto
f71#0. Teraz pouzijeme kritérium podgrupy. Nech z,y€f~1(S) st Tubovolné.
Chceme ukézaf, ze zvey~lef~1(S). Takto: pretoze z,ycf 1(S) mame f(x)eS,
f(y)€S. Pretoze S je podgrupa, potom aj f(x)e(f(y))~t€S. Pritom vsak vieme,
ze f(y™H)=(f(y))~!. Teda mame f(x)of(y~1)€S = f(rey 1)cS. To znamend, ze
ey~ lef~1(9).

O

Definicia 1.19. Nech f : (G, e)—(H, o) je homomorfizmus griap. Vieme, ze {1}CH
je podgrupa grupy H. Podgrupu f~1({1}) grupy G nazjvame jadro homomorfizmu
f, oznacuje sa Ker(f). Teda Ker(f)={z€G; f(z)=1}

Veta 1.8. Nech [ : (G,e)—(H,e) je homomorfizmus grip. Potom f je injekcia
< Ker(f)={1}

Dokaz.
[=] Nech f je injektivne zobrazenie. Chceme ukéazat, ze Ker(f)={1}. Takto:
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méme f(1)=1, a teda zrejme {1}CKer(f). Ak zeKer(f), tak f(z)=1=f(1). Z in-
jektivnosti f vyplyva, ze x=1. Teda tiez Ker(f)C{1}. Vcelku: Ker(f)={1}.
[<] Predpokladajme, ze Ker(f) = 1. Chceme ukéazat, ze f je injektivne. Takto:
nech f(z) = f(y) pre ddke z, yeG. Potrebujeme ukdzat, ze x = y. Z toho, ze
f(x)=f(y) dostavame f(z)e(f(y))~'=1. Ale vieme, ze f(y~1)=(f(y))~!. Teda
plati: f(z)ef(y~!)=1. Pretoze f je homomorfizmus, z toho dostaneme:
f(zey=1)=1. Teda: wey~'eKer(f)={1}. To znamend, 7e xey '=1. Z toho
dostaneme, ze z=y.

g

Definicia 1.20. Injektivny homomorfizmus griup sa nazyva monomor fizmus.
Surjektivny homomorfizmus grup sa nazyva epimor fizmus. Homomorfizmus grup,
ktory je bijektivny sa vold izomor fizmus. Ak (G,e) a (H,e) st grupy a existuje
izomorfizmus f : (G,e)—(H,e) tak hovorime, Ze grupy G a H su izomorfné. Vtedy
strucne piSeme: f:G = H, alebo G=H.

Veta 1.9. Nech f : (G,e)—(H,e) je izomorfizmus grip. Potom aj inverzné zob-
razenie f~1: (H,e)—(G,e) je izomorfizmus grip.

Dékaz. Vieme, ze f~1 : H—G existuje a Ze je bijekcia. Este treba ukézat, ze f~!
je aj homomorfizmus grap. Takto: nech z,y€H st lubovolné. Potom existujii
jednoznacne uréené a,beG také, ze f(a)=z, f(b)=y. KedZe [ je homomorfizmus
méme f(a)ef(b)=f(asb)=zey; z toho: f~*(zey)=aeb=f""(x)ef ' (y).

O

Veta 1.10. ZloZenie dvoch homomorfizmov grup je znova homomorfizmus grup.
ZloZenie dvoch izomorfizmou grup je znova izomorfizmus.

Dokaz. Nech f: (G,e)—(H,e),t: (T,e)—(S, ) st homomorfizmy grip. Potom pre

Vi, yed je tOf(my)=t(f(l“'y))=t(f(x)°f(y))=t(f($))'t(f(y))=(t0f($))°(t0f(y))m~

Relacie na mnozinach a faktorové grupy komutativnych grup.
Definicia 1.21. Reldcia na mnozine M#( je hocijakd podmnoZina RCM x M.

Definicia 1.22. Reldcia R na mnozine M#(] sa vola reldcia ekvivalencie ak méa
tieto vlastnosti:

Ly(z,z)eR VzeM (reflexivnost reldcie R)

2.y ak (z,y)€R tak aj (y,r)ER (symetrickost)

3.y ak (z,y)eR a (y,2)€R tak aj (z,z)ER (tranzitivnost)

Definicia 1.23. Nech ~ je reldcia ekvivalencie na mnozine M#(). Potom pre
TubovoIné ye M oznacime [y|={xcM;z~y}. [y] sa vola trieda ekvivalencie uréena
(reprezentovand) prvkom y, y sa vold reprezentant triedy ekvivalencie [y].

Veta 1.11. Nech ~ je reldcia ekvivalencie na mnoZine M#0 a nech [y] pre yeM
znamend triedu reprezentovantd prvkom y. Potom:
2. [z]=[y] & z~y Yo,yeM
3 ak (21, tak [z]nly1=0
4.) U [m]:M
reM
Dokaz.
1yy~y a vtedy yeM.
2.,)[ =] Nech z~y. Chceme ukazat, zZe [r|=[y]. Nech a€[z]. Potom a~z, ale x~y,
preto a~y, a teda a€ly]. Teda [x]C[y]. Analogicky sa dokédze [y]C[x], teda [z]=]y].
[= ] Predpokladajme, ze [x]=[y]. Potom z€[z]=[y], teda x€y], preto z~y.
3.) Predpokladajme, Ze [z]N[y]#). Teda existuje ac[z]N[y]. Potom a~z a a~y,
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teda x~y.
4.y Je zrejmé, ze U [x]JcM. Nech teraz z€M. Potom z€x], teda xz€ U [x],
€M zeEM
ukdzali sme tiez, ze M C U []. Teda M= U [x].
zeM zeM

O

Veta 1.12. Nech (G,+) je komutativna grupa a nech H je jej podgrupa. Definu-
jme reldaciu ~ na G takto: pre x,yeG plati x~y < x—yeH. Potom ~ je reldcia
ekvivalencie.

Dokaz.
Reflexivnost: x—x=0€H, teda x~x VzeG
Symetrickost: nech x~y. Potom x—ycH. Ale H je podgrupa a preto aj —(x—y)eH
teda y~u.
Tranzitivnost: nech z~y a y~z. Potom: x—yeH a y—z€H. Pretoze H je podgrupa
mame, Ze (x—y)+(y—z)€H. Teda z~z.

O

Oznacenie. Mnozinu tried ekvivalencie na grupe G vzhladom na relaciu ekvivalencie
z predchadzajicej vety ozna¢ime G/H.(G podla H)

Tvrdenie 1.5. Nech pre [z]€G/H a [y|eG/H je [z]®[y]=[z+y]. Potom
@:G/HxG/H—G/H je dobre definované zobrazenie a teda @ je bindrna operdcia
na mnozine G/H.

Dokaz. Treba ukézaf, Ze [x+y] nezdvisi od vyberu reprezentant tried [z] resp.
[y]. Nech [z]=[a],[y]=[b]. Chceme ukazat, Ze [a+b]=[z+y]. Takto: z toho, zZe
[z]=l[a], [y]=[b] vieme, Ze x~a,y~b. Teda x—acH,y—beH. Pretoze H je podgrupa
grupy G, mame tiez (r—a)+(y—b)eH < (x+y)—(a+b)eH. Z toho x+y~a+d, teda
[z+y]=[a+b].

0

Veta 1.13 a Definicia 1.24. Nech G je komutativna grupa a H je jej podgrupa.
Na mnozine G/H definujme bindrnu operdciu @ ako v predchddzajicom turden.
Potom (G/H;®) je komutativna grupa. Tato grupa sa vold faktorovd grupa grupy
G podla podgrupy H.

Dékaz. G/H#D, lebo [0]€G/H.
Asociativnost operdcie ®: [z]®([y]|®[2])=[z+(y+2)|=[(z+y)+2]=[z+y]D[z]=
=([z]@[y])®lz], pre kazdé [2], [y], [2]€G/H.
Ezistencia neutrdlneho prvku: Pre kazdé [x]€G/H mame [z]®[0]=[z+0]=[z]=
=[04x]=[0]®]x], teda [0] je neutrdlny prvok operécie @.
Ezistencia inverzného prvku: Nech [z]€G/H je lubovolné, potom [z|®[—z]=[zx—z]|=
=[0]=[—z]®]z], teda inverzny prvok k [z]eG/H je [—z]eG/H.
(G/H,®) je komutativna grupa: [z]®[y]=|z+y]|=[y+z]|=[y]®[z].

O

Priklad. Nech meN je pevne zvolené. Zoberme G=Z s operaciou scitovania a
H=mZ. Z/mZ={[0],[1],---,[m-1]}, [z]®ly]=lz+y] Vz,y€Z, (Z/mZ,®) je ko-
mutativna grupa.

Tvrdenie 1.6. Nech H#{0} je podgrupa grupy (Z,+). Potom ImeN takeé, Ze
H=mZ.

Dokaz.
k—krat

——~
Nech m je najmensie celé ¢islo patriace do H. Potom aj k-m=m+---+m €H pre
VkeN\ {0}. Pretoze H je podgrupa, mame tiez k-meH pre VkeZ. Teda mZCH.
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Este ukdzeme, ze HCmZ. Nech x€H je lubovolny kladny prvok z H, ukdZzeme, Ze
xemZ (to staci). Vieme, ze x=¢-m+r, pre jednoznacéne urcené ¢, r pric¢om 0<r<m.
Z toho: r=x—qg-meH. Keby r>0, tak by r bolo kladné ¢islo z H, mensie ako
najmensi kladny prvok z H —to je nemozné. Preto r=0, a teda z=¢-m t.j. xeMZ.
Tym sme ukézali, ze aj HCmZ. Vcelku: H=mZ.

d

Veta 1.14. (o faktorovom izomorfizme): Nech (G,+) a (H,+) si komutativne
grupy a nech f: G—H je homomorfizmus grip. Potom G/Ker(f)=Im(f).
Specidlne, ak f je epimorfizmus, tak G/Ker(f)=H.

Dékaz. Predpis, ktory Tubovolnému [z]€G/Ker(f) priradi f(z)eIm(f)=f(G),
dobre definuje zobrazenie f:G/Ker(f)—Im(f). Treba ukazat, ze ak [x]=[a], tak aj
f(z)=f(a). Takto: ak [z]=[a], tak z~a, teda x—acKer(f). Z toho f(r—a)=0€H
t.j. f(x) — f(a) =0, a teda f(z) = f(a). Ukdzali sme, Ze f : G/Ker(f) — Im(f);

f([z]) = f(x) je dobre definované zobrazenie. f je aj homomorﬁzmus grap:

F(l@] + ) = f(l= +y)) = fl@+y) = f(2) + fy) = F([z]) + F(ly]) pre vsetky
[z], [y] € G/Ker(f). f je monomorfizmus grip: Nech f([z]) = f([y]). Potom

f@)=f(y), a teda f(z)—f(y)=0, t.j. flz—y)=0 t.j. z—yeKer(f). Teda z~y,
preto [z]=[y]. f je epimorfizmus grap: pre lubovolné beIm(f) méme z€G : f(z)=b.
Potom f([z])=f(z)=b = f je izomorfizmus grip.

O

Priklad. meN pevne zvolené. Zobrazenie @, : Z—Zyy,. ©m(x)= zvySok po vydeleni
x Cislom m. @, je epimorfizmus z grupy (Z,+) na (Z,, ®).
Ker(om)={x€Z;m|x}=mZ. Z vety o faktorovom izomorfizme: Z/mZ=>Z,,
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II. OKRUH, TELESO,POLE

Definicia 2.1. Nech R je mnozina v ktorej st asponi dva prvky. Nech st na R
definované dve bindrne operacie: + : RxR—R ("s¢itovanie ”) a o : RxR—R
("nasobenie”). Hovorime, Ze (R, +, ®) je okruh, ak:

1y(R, +) je komutativna grupa.

2.y je asociativna: ze(yez)=(zey)ez Vr,y, z€R

3.ye je distributivna vzhladom na sc¢itovanie: ze(y+z)=rey+rez
(v+y)ez=rez+yez Ak e je komutativna, potom (R, +, e) s vlastnostami 1.),2.), 3.,
je komutativny okruh. Ak e ma neutralny prvok, hovorime o okruhus 1, (R, +, e, 1).

Definicia 2.2. Okruh (R, +,e), v ktorom operécia e je komutativna sa vola komu-
tativny okruh.

Definicia 2.3. Nech (R,+,e) je okruh s 1, ak e |z«, kde R*=R \ {0} nadobtda
hodnoty v R, t.j. ak e |r« definuje bindrnu operaciu v R*, a R* s touto operaciou
je grupa, tak (R, +,e,1) sa nazyva teleso. Komutativny okruh, ktory je telesom sa
nazyva pole.

Veta 2.1. Nech (R,+,-) je lubovolny okruh. Potom v riom platia tieto pravidld pre
ratanie:

1,)0-z=2-0 pre Vz€R

2. (=) y=2-(—y)=—(2-y) pre Vo,ycR

3.y Ak R mad 1, tak 15#0.

4.y Ak R je teleso, tak z toho, Ze x-y=0 vyplyva, Ze =0 V y=0.

5.y Ak R je teleso, tak r?’=1 & r=1V2r=—1.

Dokaz.

1.)0-2=(0+0)-z=0-2+0-2 < 0=0-2.

2, (z+(-2))y=0y=0

zy+(—2)y=0 & —(z-y)=(—2)y.

3.y Pretoze R md aspori 2 prvky, existuje z€R, 2#0. Ak R mé 1, tak 2-:0=0 podla
1.y a z-1=1, kedZe #0 = 1#0.

4.y Ak x#0 a y#0, tak treba dokazat x-y#0. Takto: v#0,y#0, tak rcR* a ycR*,
ale R* je grupa ( vzhladom na - |g+) a preto z-y€R* t.j. z-y#0.

5.,[=] Predpokladajme, ze 2?=1. Teda 2%2-1=0, t.j.(z—1)(z+1)=0 4:'§ r+1=0V
z—1=0 & z=—1V z=1.

Pomocou 2.y.

O

Lema 2.1.
Nech p,qeN. Potom mnoZina {p-x+q-y€Z; x,y€Z} je podgrupou v (Z,+), pricom
{p-x+qy€l;x,ycZ}=rZ, kde r je najvicsi spolocny delitel &isel p,q.

Dokaz. {p-x+qyeZ}#D. Kritérium podgrupy: p-x+qy—(p-a'+qy') =p-(x—2')+
+q-(y—y')e{p-x+qy, z,y€Z}. V (Z,+) st vietky podgrupy tvaru: kZ, (pre ne-
jaké keN). Teda {p-xz+qy; x,yeZ}=rZ. Treba este ukizat, ze r je najvicsi
spolo¢ny delitel ¢isel p,q. pe{p-x+qy; z,yeZ}, p=r-k, teda r|p. q€{p-x+qy;
x,y€Z}, q=r-l, teda r|q. Nech c je nejaky spolo¢ny delitel ¢isel p, g. Chceme ukazat,
Ze c|r. Ak c|p a c|q, tak c|p-x+q-y pre Vz,y€Z, a teda c je delitelom kazdého prvku
z {p-x+qy;x, yeZ}=rZ, teda c|r-1 t.j. c|r.

O

Veta 2.2. Nech meN, m>2. Potom (Z/mZ,®,®) je pole < m je prvocislo.

Dokaz.
[=] Predpokladajme, ze Z/mZ je pole. (To znamend, Ze nenulové prvky tvoria
grupu.) Keby m nebolo prvodislo, tak by m=mq-mq, kde m1,mo€N, 1<mi<m
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1<ma<m. Potom [m;]#0, [m2]#0, ale [m1]-[ma]=[m1-ma]=[m]=[0]=0. Je to spor
s tym, ze (Z/mZ)* je grupa.
[<] Predpokladajme, ze m je prvocislo. Chceme ukézat, ze (Z/mZ,®) je grupa.
Na to sta¢i ukazat, ze pre lubovolné nenulové 0#z€Z/mZ existuje v (Z/mZ)* in-
verzny prvok vzhladom na nasobenie. Takto: pre [z]|€(Z/mZ)* mame miz, z toho:
najvacsi spoloény delitel m, x je 1. Potom z Lemy 2.1 vieme, Ze 1=a-x+b-y pre ddke
a,beZ. 7 toho [l|=1=[a-z+b-y|=[a-z]+[b-y]=[a]-[x]+]0] < [1]=[a]®[x] t.j. inverzny
prvok k [z] vzhladom na nésobenie je [a]€(Z/mZ)*.

O



LINEARNA ALGEBRA A GEOMETRIA 11

III. VEKTOROVE PRIESTORY

Definicia 3.1. Nech V#0 je mnozina, jej prvky budeme oznacovat: @, --- ,Z. Nech
R je pole. Nech na V je definovand bindrna operéicia + : VxV—=V (budeme jej
hovorit s¢itovanie prvkov z V) a nech okrem toho je dané zobrazenie RxV—V:
(o, ) = % (hovorime mu nésobenie prvkov z V prvkami z R.) V sa nazjyva
vektorovy priestor nad polom R ak spliia axiémy:

1.y(V, +) je komutativna grupa.

2.ya(Z+y)=ai+ay pre vietky a€R, ¥, yjeV.

3. (a+p)T=ai+py pre Yo, BER a VIcV

4ya(BT)=(af)Z pre Yo, BER, VIEV.

5.)1-7=%, pre VicV.

Ak V je vektorovy priestor, prvky z V sa volaju vektory, prvky z R sa volaja
skaldry.

Pozndmka.
Neutralny prvok vo vektorovom priestore (V,+) sa nazyva nulovy vektor, ozn.: 0.
Ak a€eR, £€V, tak a-F nazyvame a-nasobok vektora eV .

Veta 3.1. Nech V je vektorovy priestor nad polom R. Potom VZeV, Ya€cR:
1.,0-7=0.

2.)(—1)-7i=—2.

3.)a-6:6

Dokaz. .
1., #=1-=(140)7=1Z+0F=7+0F < 07=0.
2.)(14+(~1))#=07=0. 17+(—1)F=7+(—1)7. Teda 7+(—1)7'=0, z éoho —F=(—1).
3. a0=a(i+(—7))=a(13+(-1)7)=a(1+(-1))F=a07=07=0.
O

Definicia 3.2. Nech V je vektorovy priestor nad polom R a nech D#() je pod-
mnozina vo V. D je vektorovy podpriestor priestoru V', ak D je vektorovy priestor
nad R, pricom séitovanie v D a nasobenie prvkov z D skaldrmi z R je z(izenim
sCitovania vo V resp. nasobenia prvkov z V skalarmi z R.

Veta 3.2. (kritérium podpriestoru):

Nech V' je vektorovy priestor nad polom R a nech D#Q, DCV. D je vektorovy
podpriestor priestoru V prdve vtedy, ked je splnend hociktord z tjchto dvoch ekvi-
valentngych podmienok:

(I.) VZ,9y€D : Z+yeD a pre lubovolné a€ R, TED je afeD.

(I1.) VZ,jeD a Vo, BER je af+LyeD.

Dokaz. Predpokladajme, Ze D je vektorovy podpriestor. Potom (I) je splnend
(z definicie vektorového podpriestoru). Teraz predpokladajme, Ze je splnend (I).

+ z V je ziZené na D definuje na D bindrnu operaciu +. Podla (1) : 07=0 patri
do D. 0 je neutralny prvok operacie + na D. Pre ZeD podla (I) tiez (—1)Z=—ZeD.
+ je asociativne, komutativne, vcelku (D, +) je komutativna grupa. Okrem toho
z (I) vyplyva, ze mame definované zobrazenie Rx D—D. Operécia + a nasobenie
prvkov z D prvkami z R maji potrebné vlastnosti (zdedené z V); D je teda vek-

torovy podpriestor priestoru V. Na ukoncenie dokazu vety staci ukazat (I) < (I1).

Nech plati (I), nech o, B€ER a Z,§€D. Potom aZe€D a fyeD (:I>) aZ+pyeD. Teda

(I) = (II). Nech plati (IT). Potom pre VZ, €D méame, ze 1Z+1y=+y€D. Pre
TubovoIné a€R a lubovolné €D, podla (I1) : aZ+0Z=aZeD tj. aj (II) = (I).
0

Veta 3.3. Nech S, T si vektorové podpriestory vektorového priestoru V. nad polom
R. Potom SNT je takisto vektorovy podpriestor priestoru V.
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Dékaz. SNT#0, lebo 0eSNT. Ukézeme, ze SNT spliia podmienku (I7). Nech
a, BER, pre VI, € SNT st lubovolné. Potom aX + g€ Saaf+ pye T =
= aZ + py€ SNT. Cize S aj T splhaji podmienku (I1).

O

Veta 3.4. Nech {S,,acA} (A indexovd mnoZina.) je lubovolny systém vektorovyjch

podpriestorov vektorového priestoru V. nad polom R. Potom m Sa je vektorovy

acA
podpriestor priestoru V.

Dokaz. Podobne ako vo Vete 3.3.
O

Definicia 3.3. Nech V je vektorovy priestor nad polom R a nech A#( je pod-
mnozina vo V. Najmensi vektorovy podpriestor priestoru V' obsahujuci A je vek-
torovy podpriestor S taky, ze:

2.y Ak T je vektorovy podpriestor vo V' taky, ze ACT, tak SCT.

Veta 3.5. Nech V je vektorovy priestor nad polom R a nech A je podmnoZina vo V.
Potom najmensi vektorovy podpriestor vo V' obsahujici A existuje a je jeding.

Dokaz.

Jednoznacénost: Nech by S a T boli najmensie podpriestory obsahujiice A. Potom

TCS a SCT, teda S=T.

Existencia: Nech ¢ je systém vSetkych vektorovych podpriestorov obsahujacich A.

0#0, lebo Vep. Potom ﬂ S je najmensi podpriestor vo V' obsahujici A, lebo:
Sep

VSep mame ACS, a preto AC ﬂ S, t.j. je splnend aj podmienka 2.y z Def 3.3.

Sep
Teda Sa= () S.

Sep
|

Definicia 3.4. Nech 71, -+, T} st vektory z vektorového priestoru V nad polom
R, nech a1, ,ap€R. Potom oy - &1+ - - - +ag - ), sa nazyva linedrna kombindcia
vektorov Zy,---, & s koeficientmi aq, -+ ,ar. Ak ay=---=a;=0, tato linedrna
kombinacia sa nazyva trividlna (a je to 6) Ak niektoré a;#0, tak linedrna kom-
binacia je netrividlna.

Veta 3.6. Nech &1,--- , T st vektory z vektorového priestoru V nad R. Potom
M = {on @1+ - +apZreV, a;€R} je vektorovy podpriestor vo V.

Dokaz. Dand mnozina je neprazdna, lebo 0cM. Dalej kritérium vektorového pod-

priestoru. Nech o, BER, 11+ -+ +aZy, B1Z1+ -+ +8kTk s z tej mnozZiny. Po-
k

k k
tom o - Z ;T4 - Z Biti= Z(Oxai+55i)5i€M, lebo a;+36;€R.
i=1 i=1

i=1

d
Oznadenie. V situécii z predchadzajtcej vety oznacime: [Z1,--- , Zx|={a1Z1+ -+
+apZLeV; OéiER}.
Veta 3.7. Nech ¥y, - , Ty st vektory z vektorového priestoru V nad R a nech TCV

je vektorového podpriestor taky, Ze {¥1, -, }CT. Potom aj [T, - ,Zx]|CT.

Dokaz. Indukcia vzhladom na maximélny pocet nenulovych koeficientov linearnej
kombindcie vektorov Ty, - ,Tx. Ak linedrna kombinacia o171+ - - -+ T méa ma-
ximalny pocet nenulovych koeficientov, tak patri do T, lebo je to bud 0, alebo
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nenulovy nasobok spomedzi &1, , %k, v kazdom pripade tato linedrna kombina-
cia patri do T'. Predpokladajme, Ze kazda linedrna kombinacia vektorov &1, --- , Tk
s maximdlne s — 1 (< k — 1) nenulovymi koeficientmi patri do T'. Nech 8;Z1+
+ - +08:%s je linedrna kombinécia s maximélne s nenulovymi koeficientmi. Potom
B1Z1+ - +BsZs=(B1Z1+ - - - +Bs—1&s—1)+ B €T; T je vektorovy podpriestor.

O
Veta 3.8.
Nech V' je vektorovy priestor nad R a nech {Z1,--- ,Zx} je lubovolnd koneénd pod-
mnozina vo V. Potom najmensi vektorovy podpriestor je Siz, ... z1=[T1, - ,Tx].
Doékaz. Staci ukazaf, Ze [T, -+ , &%) mé obidve vlastnosti najmensieho vektorového
podpriestoru obsahujiiceho mnozinu {71, - -, Zx }.
1. {fl, s ,fk}C[fl, s 7fk]
2. Ak TCV je lubovolny podpriestor vo V obsahujtci {1, -+, Zx}, tak
[#1,- -+, 2] CT plati podla Vety 3.7. Z jednoznacnej urcenosti vlastnostami 1.),2.)
vyplyva, ze naozaj S¢z, ... 7} =[T1,* , Tk

O
Definicia 3.5. Nech V je vektorovy priestor nad R a nech {Z#,--- ,Z;}CV. Po-
tom vektorovy priestor [Z7, - - , Z;]CV sa nazyva linedrny (vektorovy) obal mnoZiny
{#1, -+ ,Zr}. Vektory Zy,---,Z) sa nazyvaju generdtory vektorového priestoru
(@1, g
Veta 3.9. Nech V' je vektorovy priestor nad R a nech [Z1,--- ,Zk,d|€V. Po-
tom [Ty, , Tk, d|=[T1, -, Tk] prdve vtedy, ked d je linedrna kombindcia vektorov
T, T
Dokaz.
[= ] Predpokladajme, ze |71, -- ,%}] = [#1,- -+ , Tk, d]. Potom
(&1, , &y, d] C [T, ,Tk] teda @ je linedrna kombinécia vektorov &y, - - - , Tj.
[<] Predpokladajme, Ze @ je linedrnou kombindciou #,--- , ;. Chceme ukézat,
ze [Ty, @) = [T1, -, Tk, d]. Je zrejmé, ze {Z1, - , Tk} C [¥1, - , Ty, d] &
(@1, , @] C [T1, -+, Tk, d]. Okrem toho, pretoze @ je linedrna kombindcia
Xy, , T mame, ze {T1, - , T, d}C[T1, -+, Tk), teda [Ty, -+ , Tk, dC[T1, -+, Tp)-
Veelku: (&, , &g, d=[Z1, -, Tp].
Z toho vyplyva, ze najjednoduchsi zépis linedrneho obalu [¢y, -, §x] dostaneme

postupnym vynechdvanim tych vektorov, ktoré st linearnou kombinaciou ostatnych.
O
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IV. SYSTEMY LINEARNYCH ROVNIC
Definicia 4.1. Systém rovnic S:

a1121 + -+ a1pTp = by

As1T1 + -+ + AspTp = bs

(v8etky rovnice musia byt splnené sicasne) je systém s linedrnych rovnic s n
nezndmymi 1,--- ,&,, ak a;;€R (i€[l,s],j€[l,n]) a b,eR, kde R je dané pole.
Prvky pola a;; sa nazyvaju koeficienty, bi,--- ,b, sa nazyvaju absolitne cleny
systému S.

Definicia 4.2. Usporiadana n-tica (rq,--- ,7,)ER" je riesenie systému S, ak

r1,- -+ ,7t po dosadeni z;=r; vyhovuje vSetkym rovniciam S. Vyriesit systém zna-
mend najst vietky jeho rieSenia. Ak ziadna n-tica z R™ nie je rieSenim systému S,
hovorime, Ze je neriesitelny.

Definicia 4.3. Dva systémy linearnych rovnic st ekvivalentné ak maju tu ista
mnozinu rieSeni. Vyrie$it dany linedrny systém potom znamend vyriesit hocijaky
s nim ekvivalentny systém.

Definicia 4.4. Ekvivalentné upravy su také, ktoré nemenia mnozinu rieSeni.

Veta 4.1. Nasledujice upravy su ekvivalentné:
1.y Vzdjomnd vymena dvoch rovnic systému.
2.) Vyndsobenie lubovolnej rovnice v S prokom a#0, acR.
3.y Pripocitanie lubovolnej rovnici v S inej rovnici v S.
Dokaz. trividlny.
O

Zamer pri rieSent systému S. :
Pomocou ekvivalentnych tprav ho prevedieme na jednoduchy ekvivalentny systém,
ktory uz nie je problém vyriesit.
Gaussova eliminaéna metéda.

Predpokladajme, Ze niektory z koeficientov pri z; v S je nenulovy. MéZeme
priamo predpokladat, ze a1;7#0.

1. krok. Pomocou prvej rovnice vylicime x1 z druhej --- , s-tej rovnice. Takto:
k druhej rovnici priratame —(aﬁlagl)-ndsobok prvej rovnice, --- atd, aZ k s-tej
rovnici prirdtame — (a7 as1 )-ndsobok prvej rovnice. Dostaneme ekvivalentnyj systém
S* tvaru:

a11x1+a1222+ - - +a1nTr=b

Q22%2+ - - - +A2nTp=b2

Qs2To+ - -+ +asnxn:bn
V' 8* moézu byt rovnice s lavou aj pravou stranou nulovou, tie vynechdme. V S* sa
moze vyskytnut rovnica s lavou stranou nulovou, kiym jej pravd strana je nenulovd.
Ak sa stane takéto nieco, potom systém S* a teda aj S je neriesitelny.
Po konecnom pocte opakovani prvého kroku dostaneme systém V' tvaru:
c11yi1tceiayet - HeikYrt - HeinYn=di
Co2Yat - FCokYrt -+ FConYn=d2

CrEYkT - FCrnYn=dk
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kde y1,- -+ ,yn vznikli (prip. viacndsobngm) premenovanim nezndmych x1,- -+ , Tp,

pritom k<s a k<n. Navyse c117#0, - ,c;;7#0,- -, cxx#0.
Ak k=n, tak V wvyzerd takto:

cryi+ - Feinyn=dx
C21Y2t -+ +C2nYn=d2
Cnfl,nflynfl+Cn71,nyn:dnfl
Cnnyn:dn

a teda vyrdtame z poslednej rovnice y,=d,c,,}, dosadime do predposlednej, z nej

vyrdtame yn_1,--- atd, aZ napokon y1. Viedy V md prdve jedno riesenie. Spditnym
premenovanim dostaneme ti jedninid n-ticu v R, ktord je rieSenim systému S.
Ak k<n, takyy,- - ,yr su viazan€ rovnicami systému V', kym nezndme yYpi1,- - , Yn

povaZujeme za tzv. wvolné nezndme (parametre), nadobidaji lubovolné hodnoty
z R. Zo systemu V potom postupne, pocnic od poslednej rovnice, vyrdtame
Yk, Yk—1," " » Y1 POMOCOU Parametrov Yg+1,- - ,Yn. lakto dostaneme vseobecné vy-
jadrenie rieSenia systému V pomocou parametrov yxi1, - ,Yn. Spatnygm premen-
ovanim neznamych dostaneme z toho vieobecné vyjadrenie rieSenia systému S po-
mocou n—k parametrov.
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V. LINEARNA ZAVISLOST A NEZAVISLOST VEKTOROV

Definicia 5.1. Nech V je vektorovy priestor nad R a nech &y, - ,Zx€V st dané
vektory. Hovorime, Ze Z1,--- , Ty st linedrne zdvislé, ak 0 sa d4 vyjadrit ako netriv-
idlna linearna kombinécia vektorov Zy,---,Zx. Vektory Zy,---,Zr sa nazyvaja

linedrne nezavislé ak nie su linedrne zavislé.

Veta 5.1. Nech 1, -+ ,Zj st navzdajom rozne nenulové vektory vektorového pries-
toru V nad R, nech k > 2. Potom plati: Ty, - , T st linedrne zdvislé < niektory
z nich je linedrna kombindcia ostatnych.

Dokaz.
Predpokladajme, Ze &y, - - , Zx st linedrne zavislé. Teda existuji ay,--- , ax€R nie
k
vSetky nulové, také, ze 0 = E «;-T;. Povedzme, Ze a; # 0, teda a1+ - - - +au %+
i=1
+ - 4+apTr=0. Z toho: o;¥;=—a1Z1— - —ai,lfi,l—aHlle— - — Ty, tedas
k
——a; Y
Ti=—0Q; ;5.
J=1.#i
Opacne: Predpokladajme, ze napr. Z; je linedrnou kombinéciou ostatnych.
k
Teda = Y B;&; = A1+ +Bi1Zi1—Bidi+BiaTipa+ - +Ppdr=0.
J=1.5#i
Teda &y, --- , T st linedrne zavislé.

O

Veta 5.2. Nech V je vektorovy priestor nad R, nech {Zy, - - ,fk}CV—{ﬁ}. Potom
T1,- -+, T} st linedrne zdvislé prdve vtedy, ked niektory z tijchto vektorov je linedrnou
kombindciou tych, ¢o su napisané pred nim.

Dokaz.
Predpokladajme, Ze &1, - - - , Tk su linedrne zavislé. Teda existuju aq,- -+, ax€R nie
k

vSetky nulové také, Ze 622%@'- Nech j je najvyssi index taky, ze a;7#0. Teda
i=1

J
0= Zai@. pricom «a;7#0. Potom j>2, lebo keby j=1, tak by sme mali a111=0,
i=1
170, teda #;=0 —spor.
Opacne: Nech niektory z &1, - , ¥k je linedrnou kombinaciou tych, ¢o st napisané
pred nim. Potom je linedrnou kombinaciou aj ostatnych, lebo staci tie, ¢o s za
nim zobrat s koeficientom 0. Z Vety 5.1 st linearne zavislé.

Il
Dosledok. Nech V' je vektorovy priestor nad R, nech {Z,--- ,Z,}CV — {0}. Po-
tom Ty, , Tk su linedrne zdvislé prave vtedy, ked existuje j€{1,2, -k}, Ze
[fh e 7fk]:['fl7 e 7fj—17fj+15 e a'fk]

Dokaz. Zrejmy.
O

Poznamka. Z dosledku vyplyva ndvod na hladanie najkratSieho zépisu linedrneho
obalu. Ak Zp,---, &} st linedrne nezéavislé, tak zapis [Z1, - , Tk je najkratsi. Ak
X1, , Tk su linedrne zavislé, tak niektory z nich je linedrnou kombindciou ostat-
nych, ten vynechdme, pricom linedrny obal zvyS$nych: [Z7,---, %], ak tie zvy$né
vektory su linearne nezavislé, tak sme skonéili; ak st linearne zavislé tak opakujeme
predchadzajtci krok. Po koneénom pocéte krokov dostaneme vyjadrenie [Zy, - - - , Tg]
pomocou linedrne nezavislej podmnoziny mnoziny {1, - , Zx}.
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Steinitzova veta. Nech vektorovy priestor V # {0}, V = [#1,--- ,Z)]. Nech

{t#h, -+, ¥;}CV je linedrne nezdvisld podmnozina. Potom platia:

1° i<k

2° Spomedzi T, - - - , Tk existuje k—j vektorov, ktoré spolu s 41, - ,J; generuju cely
priestor V.

Dokaz. Indukcia vzhladom na j.
1° Pre j=1: ¢ je linedrne nezdvisly prave vtedy, ked #1#0, pretoze V#{0},

méame j=1<k. Teda 1° plati. Mame V=[Z1, -, Tk, ale g1€V tj. 71 je linedrna
kombindcia Zy,--- ,Z, teda mnozina {y), T, -, T} je linedrne zavisla. Potom
V=[Zy, -, Zk)=[th, &1, -+ , k). Vektory #1,&1, -+, & si linedrne zavislé, teda
niektory z nich je linedrna kombinacia tych, ¢o st napisané pred nim. ¢; to nemoéze
byt, teda je to niektory spomedzi Z1,---, 7. Povedzme, Ze to je Tr. Potom
V=[#1, -, Zk|=[01, %1, , Tr—1]. Tym sme overili, ze plati 2°.

2° Predpokladajme, 7ze veta plati pre j=s—1. Nech teraz {71, -- ,¥s} je lubovolna
linedrne nezavisla podmnozina vo V. Chceme ukazaf, Ze veta plati aj pre j=s.
Aj mnozina {¢, -+ ,¥s—1} je linedrne nezavisld. Podla indukéného predpokladu
1° plati: s—1<k a 2° ¢1,--- ,¢s—1 sa daju k—(s—1) vektormi spomedzi Z1,--- , T
doplnit tak, Zze spolu generuju cely priestor V. Povedzme, ze tie ”dopliiujice”
vektory s &, ,Tp_s11. Teda V=[Z1, -, Tk]=[h, ", ¥s—1,T1,"  , Th—st1]-
Chceme ukéazat, ze s<k. UkdZzeme, ze s—1<k. Keby s—1=k tak by sme mali, Ze
V=[Z1, -, Zk)=[th, - ,Ys—1]- Ale §€V, teda by mal byt linedrnou kombinéciou
vektorov 4, - -, ¥s—1, tO je spor s tym, Ze ¥, - - , ¥, su linedrne nezavislé. Dalej:
V=[#1, -, Zk|=[01, -, ¥s, L1, , Th—st1]. Teraz §,€V, teda 7, je linedrna kom-
binacia vektorov 1, ,¥s—1,%1, ", Th—st1. Leda 1, -, ¥s, L1, , Thst1 SU
linearne zavislé. Z vety vieme, Ze niektory z nich je linedrna kombinacia tych, ¢o st
pred nim. NemoZe to byt Ziadny spomedzi 41, - , s, lebo s linedrne nezavislé a
teda je to miektory spomedzi 1, - - -, Ti_s4+1, povedzme, Ze to je posledny Zj_g41.
Ten mozeme vynechat a podla vety 5.2: V=[g1, - ,¥s,Z1, - ,Tp—s]. Teda aj 2°
je pre yi,- -+ ,Ys v poriadku.

O

Baza a dimenzia.
V=[Z,---,Z%]. Da sa kazdy vektorovy priestor napisat ako linedrny obal konec-
nej mnoziny vektorov? (tj. dé sa generovat kone¢nou mnozinou)

Odpoved: NIE.

Priklad. R]t] vSetky polynémy. p(t)= Z a;t' iba konecne vela a; je nenulovy. R[t] je
i=0

oo
vektorovy priestor nad R. Stupen Z a;it’ je s, ak s7£0, ale asp1,- - st nuly. Keby
i=0
existovali polynémy ¢ (t),--- ,qx(t)€R[t] také, ze R[t]=[q1(¢), - ,qx(t)], tak po-
tom pre n>max{deg(q1(t)), - ,deg(qr(t))} by polyném t"¢R[t]. Teda vektorovy
priestor R[] sa neda generovat koneénou mnozinou.

Definicia 5.2. Vektorovy priestor V' sa nazyva konecne generovany ak existuje
koneéna mnozina {Z1, -, & }CV takd, ze V=[Z1, - ,Zk]. Ak V nie je konecne
generovany, hovorime, Ze je nekoneCne generovany.

Definicia 5.3. Nech V#{0} je kone¢ne generovany vektorovy priestor nad R. Po-

tom usporiadand mnoZina (@y,- - ,dy) vektorov z V sa nazyva bdza priestoru V,
ak:

0. 1 = S

1°: V—[al, s ,ak].

2°: dq,--- ,dy su linedrne nezévislé.
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Veta 5.3. KazZdy konecne generovany vektorovy priestor V#{a} nad R md bazu.

Dékaz. Kedze V je koneéne generovany, existuje koneénd mnozina {Z1,--- ,Z,}CV,
pre ktora [Z4,---,Zp]=V. Ak &,---,&, su linedrne nezavislé, tak tvoria bazu.
Ak nie, tak niektory z nich je linedrna kombinacia zvySnych, potom linedrny obal
zvy$nych =V. Ak tie zvysné su linearne nezavislé, tak tieto tvoria bazu priestoru
V', ak st linedrne zévislé, tak zas zopakujeme predchédzajicu itvahu. Po kone¢nom
pocte krokov dostaneme podmnozinu mnoziny {Z1,--- ,Z,}, ktord uz je linedrne
nezavisla a jej lineadrny obal je celé V. T4 je baza priestoru V.

O

Priklad.
R™ mé bazu: [(1,0,---,0),(0,1,---,0),---,(0,0,---,1)] = [€1,€2,---,€,]. To je
tzv. Standardné baza v R"™.

Veta 5.4. Vsetky bdzy nenulového konecne generovaného vektorového priestoru
maju rovnaky pocet prvkov.

Dékaz. Nech (dy,--- ,ds), (51, e ,l;q) st dve bazy takého vektorového priestoru.
Potom zo Steinitzovej vety: s<q a q<s a teda s=q.
U

Definicia 5.4. Pocet prvkov (lubovolnej) bazy kone¢ne generovaného nenulového
vektorového priestoru V nad R sa nazyva dimenzia priestoru V nad polom R, ozn:
dimg (V) (alebo dim(V') ak je R jasné z kontextu).

Dimenzia nulového priestoru je 0. dim({0})=0
Dimenzia priestoru, ktory je nekoneéne generovany je oo. dim(V)=ooc.

Priklady.

1. dimcC=1
2. dimg C=2
3. dimR"=n

4. dimR[t]=00

Veta 5.5. KazZdu linedrne nezdvisli mnoZinu nenulového konecne generovaného
vektorového priestoru mozZeme doplnit na jeho bdzu.

Dékaz. Nech V je taky priestor, nech {#1,---,7;}CV je linedrne nezavisla. Kedze
V je kone¢ne generovany, existuju 1,--- ,Zr€V. (Z1, - ,Tx) je baza vo V. Zo
Steinitzovej vety : j<k,#1,--- ,y; sa daji doplnit k—j vektormi spomedzi Z1,-- -,

Ty tak, Ze tychto k vektorov generuje celé V. Tieto vektory vSak musia byt aj
linedrne nezavislé. (Keby boli linedrne zavislé, tak by V' mal bazu s nanajvys k—1
prvkami. Spor s dimenziou.) Teda %, - ,¢; spolu s tymi, dopliujicimi vektormi
tvoria bazu priestoru V.

O

Veta 5.6. Ak dim(V)=n, tak n+1 vektorov z V je vidy linedrne zdvislych.

Doékaz. dim(V')=n, teda vo V existuje n—prvkova baza (di,- - ,d,). Keby lubovol-
né n-+1-prvkova mnozina linedrne nezavisla, tak podla Steinitzovej vety by bolo
n+1<n, ¢o je spor.

O
Veta 5.7. Nech dim(V)=n. Potom:
1. usporiadand mnozina (dy,- - ,dn) n vektorov z'V je bdzou vo V' prdve vtedy, ked
{@1, - ,dn} je linedrne nezdvisld.
2. (@1, ,0y) je bdzouw vo V prdve vtedy, ked V=[ay, - ,dy].
Dokaz.

1.=: jasné.
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<: Predpokladajme, ze {d;,---,d,} je linedrne nezavisld. Podla vety 5.5 tito
mnozinu moéZzeme doplnit n—n=0 vektormi z V' na bazu vo V. t.j.uz (a1, - ,ady) je
béza.

2.=: jasné

<: Predpokladajme, ze V=[dy,---,d,]. Chceme ukdzat, Ze di,---,d, si aj

linearne nezavislé. Keby boli linedrne zavislé, postupnym vynechavanim tych, ktoré
su linearnou kombinaciou zvysnych by sme dostali bazu, ktord by mala nanajvys
n—1 prvkov. Spor s tym, Ze dim(V)=n. Teda vSetky bazy maji n prvkov.

O

Veta 5.8 a Definicia 5.5. Nech V;é{ﬁ} je konecne generovany vektorovy priestor
nad R. Potom mnoZina (dy,--- ,d,) je bdzou vo V prdve vtedy, ked kaZdy vektor
2V sa dd jedinym sposobom vyjadrit ako linedrna kombindcia vektorov dy,- -+ ,dy.
Ak (dy,--- ,dp) je bdza vo V a pre TEV mdme T=x1d1+ - +x,d,. Tak uspo-
riadand n-tica (x1,- - ,x,)ER™ sa nazgva n-tica siradnic vektora & vzhladom na
bdzu (d1,- -+ ,dn)-

Dokaz.
[=] Predpokladajme, Ze (dy,--- ,@y) je baza v priestore V. Teda V=[dy, - ,dy]
t.j. pre lubovolny vektor #€V  dxq,--- ,z,€R také, ze T=x1d1+ - - - +T,d,. Keby
T=xd1+ - - - +al,d, bolo iné také vyjadrenie, tak z1d1+ - - +x,dp=aid1+ -+
+ald, & (x1—xh)a@1+ - - +(xp—), )@, =0. Ale @, -- ,d@, tvoria bazu, st aj lineér-
ne nezavislé, preto x1—21=0, -+, z,—z,=0 < z;=z}. &smd.
[<] Predpokladajme, ze kazdy vektor z V' sa da jedingm spésobom vyjadrif ako
linedrna kombindcia @y, - -+ ,a,. Teda VC[dy,- - ,d,]. Este ukdzeme, Ze @y, - ,dy,
st linedrne nezéavislé. Nech o+ ---+and,=0. Tiez: 0T+ -- +0&'n:6, kedze
vyjadrenie 0 ako linedrna kombinacia vektorov di,---,d, je podla predpokladu
jediné, tak mame: a;=---=q,=0.

O
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VI. LINEARNE A DIREKTNE SUCTY
VEKTOROVYCH PRIESTOROV

Ak S, T st vektorové podpriestory vektorového priestoru V, tak SUT nemusi byt
vektorovy podpriestor vo V. Aky je najmensi podpriestor vo V', obsahujtaci SUT?

Veta 6.1 a Definicia 6.1. Nech S,TCV si wvektorové podpriestory. Potom
{5+1€V, 5€S, teT} je vektorovy podpriestor vo V, nazjva sa linedrny siucet S
aT, ozn. S+T.

Dékaz. 0c{5+ieV,5eS, teT}40, lebo 0+0=0. Ak Z, je{5+t,5cS,ieT}, tak
T=51+11, §=52+t2, potom af+py=a(51+t1)+6(52+t2)= (as1+852) + (ati+bt2),

es eT

teda aZ4Byc{s+t, 58, teT}.

Tvrdenie. S+7T je najmensi podpriestor obsahugjici SUT .

Lema 6.1. Ak P je wvektorovy podpriestor konecne generovaného vektorového
priestoru V', tak aj P je konecne generovany.

Dokaz. : du.
O

Veta 6.2. Predpokladajme, ze V je konecne generovany vektorovy priestor nad R,
nech S, T si jeho podpriestory. Potom dim(S+7T)= dim(S)+ dim(7")— dim(SNT).

Dokaz.
1. Predpokladajme, ze SﬂT:{ﬁ}. Nech #1,---,%Zs je badza v S, (41, - ,¥:) je
baza v T. Potom S"‘T:[flv e vfsvgh e 7?7t}~ NaVy§€ (flv T vfsvgh e 7?7t) je

baza v S+T. Sta¢i ukdzat ich linedrna nezévislost. Keby boli linearne zavislé,
potom jeden z nich by bol linedrna kombinaciou tych, ¢o st pred nim. Nemobze
byt ziadny z Z1,---, s, lebo tie tvoria bdzu v S. Teda musi to byt dajaké g;:
Yi=a1T1+ - FasTs+biyi+ - +bi_1Yi—1, z toho ¥;—b1y1— - - - —b;_1¥Yi_1 =1 T1+

iﬁ,ETﬁS:{ﬁ}, spor
+ - tas@s. dim(S+T)=s+t=dim(S)+ dim(T).
2. SNT#{0}: Nech (Zy,--- , %) je baza v SNT. SNT je podpriestor v S aj v T.

Podla Steinitzovej vety dopliime (Z,- - ,2,) na bazu (21, -, 2., &1, -+ ,@s) v .S
resp. na bazu (Z1,--+, 2., 41, ,4) v T. Teda dim(S)=r+s, dim(T)=r+t. Mame
S+T:[217 75valv"' afmgl»"' 337%] Navy§egla"' 727"7517"‘ 7fs,gla"' 7:'77581,1

linearne nezavislé, teda tvoria bazu v .S+T1. Nech by boli linearne zavislé. Teda niek-
tory je linedrna kombinécia tych, ¢o st pred nim. NemoZe to byt Ziadny spomedzi

21,y Zp,T1, -+, Ls lebo tvoria bazu v S. Teda existuje i:

(%) Vi=viZi+ - A tan it o T+ B+ 81l
Z toho §i—Piyi— - —Bici¥i-i =zttt as@s €SNT =

€T €s

= M2t Ao it tasTs = 0121+ 002 & (1—01) 21+ (e
—0p)Zrta1T1+ - - - +asTs=0. Z toho, Ze 2, -+ , 2., &1, -+ , T st linedrne nezdvislé
mame, ze a;=---=a,=0. Teda z (%): ¥;=7121+ -+ 2Z+0191+ - +Bi—1¥i—1
spor s tym7 ze (Zla T 727‘7 1717 e a:'jt) je béza. Teda naozaj (517 e ag’mgl? o 737;&751;

-, @) je badza v S+T. Teda dim(S+T) = r+s+t = dim(S) +r+t—r = dim(S)+
+ dim(7T")— dim(SNT).
U

Definicia 6.2. Ak S,T st vektorové podpriestory priestoru V a SﬂTz{ﬁ}, tak
vektorovy podpriestor S+71 sa nazyva direktny sucet vektorovych podpriestorov S
aT. ozn. S®T.
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Dosledok formuly dimenzie: Ak S, T st podpriestory kone¢ne generovaného vek-
torového priestoru V a SNT={0}, tak dim(S®T)=dim(S)+ dim(7T). Teraz vieme,
Ze ak (&1, ,@s) jebazav S, a (41, ,4,) je baza v T, tak (&1, - ,Zs, U1, ,Ut)
je baza pre (S&T).

Veta 6.3. Nech S, T, P su vektorové podpriestory priestoru V. Potom P je direkt-
nygm sictom S a T (P=S®T) prdve vtedy, ked kaZdy vektor z P sa dd jedingm
sposobom vyjadrit ako sucet vektora z S a vektora z T.

Dokaz.

[= ] Predpokladajme, ze P=S®T. Potom je samozrejme pravda, Ze kazdy vektor
z P je sucet vektora z S a vektora z T. Nech by existovali dve takéto vyjadrenia
TEP : T=5+11=8+1s,51,5:€85,11,1,€T. Potom §—35 =i —12€(SNT)={0} =
§1:§2 a l?i:t_'g

< Predpokladajme, ze kazdy vektor z P ma jediné vyjadrenie v tvare ”vektor

—

z S + vektor z T”. Teda P=S+T. Teraz nech aeSNT. Potomd= d + 0 =

~—
es eT
= 0 +_ad , kedze takéto vyjadrenie je jediné, mame @=0. Dokéazali sme, Ze
~— M~

es . eT
SNT={0}. Vcelku: P=S&T.
g
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VII. MATICE

Definicia 7.1. Matica typu kxs nad polom R je tabulka (obdlznikové), v ktorej
k-s prvkov z R rozmiestiiujeme do k riadkov a s stipcov. Vieobecny zépis:

air - Qg
a1 -+ Q2s
g1 - Qs
ai; €R, i—riadkovy index, j—stipcovy index. Matice oznacujeme: A, B, ---. Strué-

nejsi veobecny zapis: A=(a;;)k,s alebo len A=(a;;) ak k, s je jasné z kontextu. Ak
A=(ai;)i,s kde k=s, tak A sa vola Stvorcova matica stupna k.
Jednotkova matica stupna n:

10 0
0 1 0
L=|. . .
00 1

Definicia 7.2. Dve matice toho istého typu nad tym istym polom sa rovnaji, ak na
vietkych zodpovedajucich miestach maji rovnaké prvky. A=(a;)k,s, B=(buv)m.n
obidve nad R. A=B znamend, ze k=m, s=n, a;;=b;; pre vsetky i=1,--- ,k a
j=1,---s.

Oznacenie. Mnozina vSetkych matic typu kxs nad R oznacime: MMy, ((R).

Definicia 7.3. Ak A, BeMi ;(R), tak definujeme ich stéet ako maticu, ktord ozn.
A +B; je typu kxs; jej prvok i—teho riadku a j—teho stipca je stcet a;;+b;;.

Veta 7.1. (My s, +) je komutativna grupa.

Dokaz. Asociativnost operdcie + vyplyva z asociativnosti operacie + v poli R.
Neutralny prvok je matica, ktorej vSetky prvky st 0€R t.j. tzv. nulovad matica.
Inverzny prvok k matici A=(a,;) je matica —A=(—a;;). Komutativnost vyplyva
z komutativnosti operacie + v poli R .

O

Definicia 7.4. Pre a€R, A=(a;;)eMy, s(R) definujme a-ndsobok matice A ako
maticu, ktort oznac¢ime aA=(aa;;)eMy, s(R)

Veta 7.2. My, (R) s vyssie definovanym séitovanim resp. ndsobenim je vektorovy
priestor nad R. a(AJrB):oz((a”)Jr(b”)):(a(a”))+(a(bm)):a(a”)+oz(bm)

Tvrdenie 7.1. Ak definujeme E,;;€0My o(R) ako maticu, ktord md v i-tom ri-
adku a j-tom stlpci 1 a vsetky ostatné proky nulové, tak My s(R) je generovany
takymito maticami By;j, i=1,--- k j=1,--- ,s. Navyse E;;, i=1,--- k j=1,--- s
st linedrne nezdvislé a teda tvoria bazu priestoru My, s(R). Z toho: dim(My, 4(R))=
=k-s.

ail - Qils
Dokaz. Nech A( >€93"(k75(R). Potom A= Z a;;E;;. Teda E;; ge-

ak1 v Qs 1<i<k
1<55<s
Q11 o Qs 0o -0
neruji My, s(R). Nech ( >= E a;;E;j= (: :> ateda ag1=---=
Qg1 Qs 1<i<k 0 -0
1<j5<s

=g — 0
g
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Definicia 7.5. Nech A=(a;;) je matica typu M ;(R). Riadky matice A chapme
teraz ako prvky z R®. Oznacime S, vektorovy podpriestor R® generovany riadkami
matice A. Sa=[(a11, - ,a15), (a1, , Qks)]-

Definicia 7.6. FElementdrna riadkovd operdcia na matici je kazda z tychto tprav
(ERO):

1. Vzajomna vymena dvoch riadkov v matici.

2. Vynésobenie lubovolného riadku nenulovym skalarom.

3. Priratanie Tubovolného nasobku riadku k inému riadku.

Definicia 7.7. Nech A, BeMy, s(R). Hovorime, ze matica B je riadkovo ekviva-
lentnd s A (piseme A=B) ak B vznikne z A koneénym pocé¢tom ERO.

Veta 7.3. Reldcia riadkovej ekvivalentnosti ~ je reldcia ekvivalencie na My, s(R).

Dokaz.
1. Reflexivnost: A~A trivialne.
2.Symetrickost: Nech AxB. Kazda ERO sa da vratit naspét (mé inverzni). BaA.
3. Tranzitivnost: A~B, B~C = A~C z definicie jasné.
0

Veta 7.4. Nech A,BeM, (R). Ak A~B tak Sy=Sg.

Dokaz. Staci dokazaf pre pripad, Ze matica B vznikla z A vykonanim préve jedinej
ERO.

1.Nech B vznikla z A vzijomnou vymenou i-teho a j-teho riadku (i<j). Riadky
v A oznaéme T, -, k.

Teda SB:[fl, cee wfi—l; fj,fi+1, cee 7fj_1,fi,fj+17 e ,fk] Je jasné, VA4S je to to
isté ako linearny obal [Z1, -+, Zk].

2. Nech B vznikla z A tak, ze sme i-ty riadok #; vynasobili a#0, acR. Teda
Sp=[Z1, - ,af;, - ,Tx]. To je to isté ako [y, -+ , &y, , Tk]=Sa.

3. B vznikla z A pripoc¢itanim a-nasobok prvého riadku k druhému. t.j. a@;+Zs.
Teda SB:[fl,Ozf1+f2,.f3, e ,fk]. Ale [fh Oéfl + fz,f:;, ce ,fk]:[fl, ce ,fk] =

=S4. Naozaj: inkltzia C je zrejma. Majme Iubovolnt linedrnu kombinéciu:
Oélfl-l- cee +akfk:alfl+a2(@—i—ai’l)—aagfl—i—agfg—f— LR +Oékfk:(0[1—04a2)fl+
+a2(fg+afl)+agf3+ o —‘rak{f}cE[fh TotaZy, - ,{f}c}.

O

Otdzka. Plati aj obratené tvrdenie vo vete 7.4 7
Odpoved: Ano.

Definicia 7.8. Hovorime, ze matica A=(a;; )My (R)

je v redukovanom trojuholnikovom tvare, ak:

1. Prvy nenulovy prvok (tzv. vedtci prvok) kazdého nenulového riadku je 1.

2. V stlpci obsahujicom vedtci prvok niektorého riadku st ostatné prvky nulové.
3. Ak a;; a apg s vedice prvky i-teho a p-teho riadku a pritom i<p, tak potom
7<4q.

4. Nulové riadky (ak existuji) st pod vSetkymi nenulovymi.

Priklad. L2341
1. Matica [ 010 0> nie je RTM (redukovand trojuholnikova matica).
0010
1001
2.Matica (0 10 0) je RTM.
0010

Pozndmka. Ak A spliia len podmienky 3.,4. tak je to matica v tzv. trojuhol-
nikovom tvare. Redukovand trojuholnikova matica typu kxk je bud nulové, alebo
ak neobsahuje nulové riadky, tak je jednotkova matica Ij.
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Veta 7.5. Nech AeMy, s(R) je RTM. Potom jej nenulové riadky si linedrne nezd-
vislé. (plati to uZ o trojuholnikovych maticiach,).

Dokaz. Nech A je RTM a nech jej nenulové riadky sa 2y, - - - , Z.€ R®. Veduce prvky

tychto riadkov nech st v stipcoch t;<to<--- <t,. Nech by boli Z1,--- , &, linedrne
zavislé. Teda existuje i€{Z1, - , &} : Ti=a1 @1+ +a;—1T;—1. Ale t;-t4 zlozka
v Z;je 1, kym &y, -+, Z;_1 maja t;-ta zlozku nulovii. Teda m4 platit 1=0 spor.
U
Priklad.
1 2 3 -1 1 2 3 -1 1 2 3 -1
1 1 -1 1 ~|0 -1 —4 2 ~|0 1 4 -2 |=
2 -1 1 0 0 -5 -5 2 0 0 15 -8
1 23 -1 100 3%
~[014 -2 |~(010 2
001 —& 001 —%

Veta 7.6. Kazdd matica je riadkovo ekvivalentnd s nejakou RTM-ou.

Dokaz. Indukcia vzhladom na podet riadkov v matici.

1° Ak A mé jeden riadok, tak ak je nulovy tak OK.

Ked nenulovy: (0,---,0,c¢#0,---)=~(0,---,0,1,---) RTM.

2° Predpokladajme, ze veta plati pre vSetky matice, ktoré maja k riadkov. Nech A
je matica, ktord ma k+1 riadkog. Ak % je nulovéa, tak OK. Nech A#0. Nech jej prvy

Lo 0 - byp
nenulovy stlpec je p-ty. A= 0 - aip,#0 - |. Je jasné, ze AxB= <0 S ) ~
0 ) 0 -
Cl,p+1 Cis
0 - 0 copi1 - Cos c2ptl c2s
~ .. . ) . . =C. Ozn. C'= . Matica C’ m4
Do : .o rs S
0 -+ 0crpg1,p+1 " Ckil,s Tt e

iba k riadkov, kone¢nym poc¢tom ERO sa upravi na RTM ozn. ju D’. Teda:
0 -~ 01 d1 ,p+1 d1 ,p+2 dl,s—l dls
000 dz p+1 ds, pt2 dl2,s—1 d’25

000 0 ds p+2 d .1 d.
D:
0--00 0 0 - dy,y d,
’
0--00 0 0 0 dj.

O

Definicia 7.9. Nech Ae9 ((R). Potom ¢islo dim(S4) sa nazyva hodnost matice
A, ozn. h(A)=dim(S,).

Plati. : h(A) = pocet linedrne nezavislych riadkov matice A.
Tvrdenie 7.2. Ak AxB, tak h(A)=h(B).

Dokaz. Kedze kazdi maticu A moézeme koneénym pocétom ERO upravit na RTM
A’'~A, tak h(A)=h(A’)= pocet nenulovych riadkov v A’.
O

Priklad. Vypocet hodnosti:
123
LAa=(1)~(022) na)=2
123) (123 _
2 B=(323)~(22) nB)=1.
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Veta 7.7. Nech A,BeMy, s(R) si RTM. Ak Ss=Sg, tak A=B.

Doékaz. Méme h(A)=h(B)=r. Nech a1, --- ,d, resp. by, ,l;r st nenulové riadky v
A resp. v B. Nech teraz s;<sy< - - - <s, st stIpcové indexy vediicich prvkov riadkov
@y, ,dy , podobne nech t; <ty < - - - <t, st stipcové indexy vedicich prvkov riadkov
b, by Kedie Sa=Sp, méme [dy,--- ,d,]=[b1, - ,b,]€R®. Kazdé b; mé jediné
vyjadrenie v tvare gj:a1&’1+ -+ +a,d.. Pre Ej nech ¢ je najmensie také, zZe a,#0.
Teda l;j:aq&'q+ -+ 40,d,. b; méa prva nenulova zlozku (t;)-td. Vektor vpravo ma
prvia nenulovi zlozku (=ag) sg-tG. Z rovnosti dostavame, ze 1=qg,t;=s,. Pre
§1<89< -+ <§p, b1 <la< - - - <t mame, Ze kazdé s; sa rovna dakemu ¢,. To je mozné
iba tak, ze s1=tq,- - - , s,=t,.. Teda mame, Ze Ej:aq+aq+1dq+1+ <o ~4apd,.. VRTM
st v stlpci obsahujiicom vedici prvok riadku ostatné prvky 0, preto: lagy1=0=
ag4+1 = 0. Podobne pre ostatné, t.j. agi2="---=a,=0. Teda pre Vq : Eq:d'q. Zéver
A=B.

O

Désledok. KazZda matica je riadkovo ekvivalentnd s jedinou RTM.

Dokaz. Nech A je Iubovolnd matica. Vieme, Ze existuje RTM A’: A~A’. Nech by
aj B’ bola RTM, B’~A. Potom A'~A~B’teda A'’~B’, teda Sy =Sp/. Z pred-
chadzajucej vety vieme, ze A'=B’.

O

Veta 7.8. Nech A,BeMy, s(R) st lubovolné. Potom plati: AxB < Su=Sg.

Dokaz.
=:Veta 7.7
<: Predpokladajme, ze S4=Sp. Nech A’ je RTM tak4, ze A=~A’. Nech B’ je RTM
takd, Ze B~B’. Potom S4=S4=Sp=Sp/. Teda Ss=Sp,. Ale A’,B’ st RTM,
teda z Vety 7.7: A'’=B’. A~A’=B'~B, teda A~B.

O

Tvrdenie 7.4. Nech A,BeMy, ;(R). Potom A~B < A,B sa daji koneénym
poctom ERO upravit na ti istt RTM.

Dokaz.
=: Predpokladajme, Ze A~B. Nech A’ je RTM, B’ je RTM, Ax~A’ a Bx~B'.
Potom S 4 =54=Sp=Sp/. Kedze A’,B’ st RTM, mdme 7e A’'=B’.
<: Predpokladajme, Ze A, B: Ax~A’, Br2A’ kde A’ je RTM. Z toho: A~A'~B &
A~B.

O

Priklad. Rozhodnite, ¢i redlne matice (1 f) a (i 711) su riadkovo ekvivalentné.

12) . (12) (10 1-1) _(1-1\ __(1-1\_ (10 - .
(11)~(01)~(01). (1 L )~(0_2)~(0 L )N(01)‘ Su riadkovo ekviva-

lentné.
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VIII. LINEARNE ZOBRAZENIE

Definicia 8.1.

Nech V,W st vektorové priestory nad polom R. Potom linedrne zobrazenie z V
do W je zobrazenie f : V=W také, ze f(az+By)=af(Z)+8f(y) pre Vo, BeR a
VZ, yeV.

—

Tvrdenie 8.1. Ak f: V=W je linedrne zobrazenie, tak f(0)=

Dékaz. f(0)=f(0+0)=f(0)+£(0) z toho: f(0)=
g

Priklady.

1. f:R2=R3 f(a,b)=(2a + b,a + b — 1,a + 2b) nie je linedrne zobrazenie, lebo
F(0)=£(0,0)=(0, ~1,0)#0.

2. p1 : R3>SR, f(z1,22,7v3)=21 je linedrne zobrazenie. (Nazjva sa projekcia na
prvi zlozku). pi(a(z1, z2,23)+B8(y1, Y2, ys))=p1(az1+By1, ava+By2, azs+Bys)=
=az1+By1=ap1(v1, v2, 23)+6p1(Y1, Y2, Y3)-

3. O : V=W, O(7)=0eW pre vietky 7€V je linearne zobrazenie.

4. idy : V=V, idy (Z)=Z je linedrne zobrazenie.

5. g:R2=R2?, g(z,y)=(22,3z — y) je linedrne zobrazenie.

Veta 8.1. Nech f : V—W je linedrne zobrazenie.

1. Ak SCV je vektorovy podpriestor, tak f(S)CW je vektorovy podpriestor vo W.
(Specidlne: Im(f)=f(V) je vektorovy podpriestor vo W.)

2. Ak PCW je vektorovy podpriestor vo W, tak jeho vzor pri zobrazeni f je vek-
torovy podpriestor. t.j.: f~Y(P)={acV, f(a)eP}CV.

(Spec. f~1({0})={ZeV, f(#)=0}=Ker(f), t.j. jadro linedrneho zobrazenia je vek-

torovy podpriestor vo V.)

Dokaz.

1. f(0)=0cf(S) = f(S)#0. Kritérium vektorového podpriestoru: Nech @, be f(S),
o, BER cheeme ukézat, e ad+Abef(S). Mame a=f(Z),b=f(§) pre dake Z,FeS.
Potom f(ad+8b)=af(Z)+5f(§)=ad+Bb. A teda ad+Bbef(S). Ukézali sme, ze

es

f(S) je vektorovy podpriestor.

2. 0cP, pricom f(0)=0eP = Ocf (P ) preto f~1(P)#0. Pouzijeme kritérium
vektorového podpriestoru: Nech 7,7 € f~1(P), a, 3 € R. Chceme ukézat, Ze
i+~ (P). Ritajme: f(ait+A7)~a f(2) +A {(7), preto a5~ (P).

EP eP
g

Veta 8.2. Linedrne zobrazenie f : V—W je injektivne < Ker(f)={0}. f je
surjektivne < Im(f)=W.

Dokaz. Podobne ako pre grupy.
O

Definicia 8.2. Linedrne zobrazenie f : V—W sa nazjva linedrny izomorfizmus ak
f je bijektivne. Ak pre dané vektorovy priestory V., W existuje linedrny izomor-
fizmus g : V—W, tak hovorime, Ze vektorovy priestor V je linearne izomorfny
s vektorovym priestorom W. Piseme: V=W

Veta 8.3. Ak f: V=W je linedrny izomorfizmus, tak aj f~! : W—V je linedrny
izomorfizmus.

Dékaz. Vieme, ze f~! : W—V existuje a je bijekcia. Chceme ukizaf, Ze je aj
linedrne. Nech @, beW, «, BER. Nech Z€V je ten jediny, pre ktory f(Z)=d, podobne
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€V jediny, pre ktory f(gj’)zg Potom: f(aZ+8y)=af(Z)+0f(§)=ad+ 8b. Z toho:
fHad+pb)=af~1(@)+8f1(b).

(|
Poznamka. Teda ak V=W, tak aj W=V

Veta 8.4. Ak f: VoW, g: W—S st linedrna zobrazenia, tak aj gof : V—S je
linedrne zobrazenie. Specidlne zloZenie dvoch linedrnych izomorfizmov je linedrny
izomorfizmus.

Dokaz. gof(ai+py)=g(af(Z)+Bf(y))=a-gof(Z)+B-gof(y).
0

Priklad. V =vektorovy priestor orientovanych useciek v O, so zaciatkom v O.
f: V—=R2 f(orient. tisecky)=(1.str. konc.bodu, 2.str.konc. bodu). f: V—R? je
linedrny izomorfizmus.

Nech S je vektorovy podpriestor priestoru V(R). Uz vieme, ze V/S je komu-
tativna grupa, s operdciou + : [Z]+[¢]=[Z+¥]. Definujme zobrazenie RxV/S—V/S,
(o, [Z])—~alZ], kde a[Z]=[aZ]. Je to dobré definicia, lebo ak [Z]=[y], tak vieme, Ze
Z—yeS. Potom, kedze S je vektorovy podpriestor, médme pre VaeR: «a(Z—7y) =
aZ—ayeS. Teda [aZ] = [ay]. Potom V/S je vektorovy podpriestor nad R. (napr.
overme «([Z]+[y])=a[Z+y]=[a(Z+7)]|=[aZ+ay]=[aZ]+|[ay]=a[Z]+aly], podobne
sa overia ostatné axiémy vektorovy podpriestoru.)

Priklady.

1. V/V={0}

2. Nech f : V=W je linedrne zobrazenie. Vieme, ze Ker(f) je vektorovy pod-
priestor vo V, méme priestor V/Ker(f).

Definicia 8.3. Ak V je vektorovy priestor nad R a SCV je vektorovy podpriestor,
tak V/S sa nazyva faktorovy vektorovy priestor.

Veta 8.5. Nech V je konecne generovany vektorovy priestor nad R a nech SCV je
vektorovy podpriestor. Potom dim(V/S)=dim(V)— dim(S).

Dokaz.
Nech (d@y,---,d,) je bdza v S. Dopliime ju na bazu (d,--- 7d’r,5r+1,-~- ,gn)
priestoru V. Potom vektorovy priestor V/S je generovany vektormi [[5T+1], cee
[En]] Pre Tubovolny [Z]€V/S. Mame €V, teda Z=aqd1+ - - - +arir+ﬂT+1gr+1+
+- - +Bubn pre a;, B € R. 7 toho: [7] = [a1d@i]+ - - +layd@r ] +[Bry1bra ]+ +
+[Bubn] = a1[@r] + - + ap[dr] 4 Brrabyea] + -+ Bulbal, teda 0 € V/S, (7] =
=Bri1[br41]+ - - +6n[bn]. Teda V/SC[b,41],-- -, [by]], obratena inklizia je zrejma.
Navyse [byi1],-- - , [bn]€V/S st linedrne nezévislé, lebo nech 8,41 [byiq]+-- -+
+0,[bn]=0€V/S. Potom [0,41bys1+ - - +0,bp]=[0], teda 6ps1bpp1+-- - +0nbn€S.
Potom 5T+1I;T+1—|— e —&—5”5”:71&'14— -+ 4+vpd, z toho: 5r+1gr+1+ e +5n5n—’ylé'1—
— o=@y =0€V. Ale @y, - ,dr,byi1, - , by SUnezZavislé, preto §, 1= - - =6, =0.
Ukazali sme, ze ([by11],-- - , [bn]) je béza vo V/S, teda dim(V/S)=n—r.

O

Veta o faktorovom izomorfizme. Nech f : V=W je surjektivne linedrne zob-
razenie. Potom V/Ker(f)=W.

Dékaz. Definujme ¢ : V/Ker(f)—=W, o([Z])=f(Z). Z vety o faktorovom izomor-
fizme pre grupy vieme, ze ¢ je dobre definovany homomorfizmus abelovskych grap;
tiez ¢ je bijekcia. Aby sme ukézali, Ze ¢ je aj linedrny izomorfizmus, staci ukézat, ze
o(al]) pre acR, [F1EV/Ker(f). Takto: p(ald])=p([07])=f(aF)=af(7)=ap([7]).
Zistili sme, Ze @ je linedrny izomorfizmus medzi V/Ker(f)=W.

O
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Priklad. p; : R® — R, pi(w1,22,23) = 71 je linedrne zobrazenie, je aj surjektivne.
Ker(pr) = {(z1,72,73) € R?, 21 = 0} = {(0, 2, 3), 22,23 € R}. Z vety:
R3/{(0, 22, 73)ER3, x5, z3€R}=R

Veta 8.6. (zdkladnd veta o linedrnych zobrazeniach) Nech V' je koneéne gene-
rovany vektorovy priestor mad polom R a nech W je vektorovy priestor nad R.
Potom ezistuje jediné linedrne zobrazemie f : V—>W take, Ze f zobrazi bdzové
vektory dy,- -+ ,dn pmestoru V' na predpisané obrazy b1, = b nEW, teda také, Ze
f(&l):gl, e ,f(an)f n. Zobrazenie [ funguje takto: ak x:a1&'1+~~+an&n, tak
f(f):all;lJr e +Oéngn

Dokaz.
Jednoznacnost: Ak také f existuje, tak jediné: nech by f,g : V=W boli dve
také linedrne zobrazenia. Teda f(d;)=b1,- -, f(dn)=bn,g(d1)= b1, -, 9(@)=by.

Lubovolny z€V mé jednoznaéné vyjadrenie: f:ald’1+~ -4y, dy,. Z linearnosti f
ag: f(@)=f(ar@r+--- +anc"in):a151+ s +Oén5n a g(T)=g(a1a1+ - - - +a,dn)=
:a151+ . ~'+angn. Teda f=g.

Existencia: Videli sme, ze ak také f existuje, tak pre Vz€V, Z=a1a1+ - - - +a,d,
musi byt f(f):all;l—&— - dapnb,. Teda definujme f : V—W takto: f(") =y b+
4+ —|—anl;n, ak F=od;+ - - +a,a,,. Potom f(&'l)zgl, -+, f(@n)=by; treba uz len
overit linedrnost f : Z,y€V, «, BER, T= a1a1—|— +anan,y Bidi1+ - +Bnd, =
f(aZ+By)=f(a(ardr+ - - +anan)+ﬁ(51bl+ 106 by )= f((aa1+661)_)1+~-~+
+(aon+BBn)dn)= (aa1+651)b1+ (@t BB ) bn=c(arby+ - - - +ombp )+
+B(Brbi+ - - +Bubn)=af (Z)+Bf (7).

Linearne zobrazenia R* — R°, kde R je pole.

Definicia 8.4. Nech f:RF—R® je linedrne zobrazenie. Zo zakladnej vety o li-
nearnych zobrazeniach vieme, Ze f je Uplne urCené obrazmi bézovych vektorov.
Specialne: obrazmi $tandardnych béazov§ch vektorov é&i,---,é,€RF. Ak tieto
obrazy ( t.j. f(é1), -+, f(€,)ER?®) zapiSeme (poradie zachovdme) do matice, tak
dostaneme maticu typu k x s nad polom R. Ozn.:M;. Matica M sa nazyva matica
linedrneho zobrazenia f. f(1,0,---,0)=(a11, - ,a15)ER%,---, f(0,0,--- ,1)=

aiir v Q1s
:(a’kla”' 7ak8) :>Mf: < ) Gmk7S(R)‘

ag1 - aks

, 1,0 21

Priklad. g:R?—R?, g(z1,22)=(221—22, v1+12), M= (?EO,I;) = (_1 1).
Definicia 8.5. Nech je dana matica A€M, s(R). Potom zo zakladnej vety o linear-
nych zobrazeniach vieme, Ze existuje jediné zobrazenie R¥— R* ktoré &, € RF zobrazi
na prvy riadok matice A, atd, €}, na k-ty riadok matice A. Toto linedrne zobrazenie
oznac¢ime f, : R¥— R*; nazjva sa linearne zobrazenie patriace k matici A.

Priklad.
B=(17'2) eMas(R), g : R2RY, g(1,0)=(1,~1,2), gp(0,1)=(1,1,3).

g9B(z1,22)=gB((1,0)21+(0,1)x2)=21(1, -1, 2)422(1, 1, 3)=(x1+x2, —21+72, 221+
+322). Je jasné: My, =

Veta 8.7. Priradenie matice linedrnemu zobrazeniu RF—R® definuje bijektivnu
korespondenciu medzi mnoZinou vietkych linedrnych zobrazeni R*—R* a mnoZinou
matic My s(R).

Dokaz. Jasné!
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Nech f : R2—R?, g : R2—=R3 su linearne zobrazenia. Potom gof : R2—R? je tiez
linedrne zobrazenie. Nech M y= (a“ a2 ) a My= (bu biz bis ) Aky je vzfah medzi

a1 a22 ba1 bao bas
M, na jednej strane a maticami M, My na druhej strane?
Rétame: f(l, 0)=(a11, alg), f(O, 1):(0,21, agg), g(l, O):(bu, [)127 b13), g(O, l)z(bgl,
ba2,ba23), gof(1,0) = g(a11(1,0)+a12(1,0)) = a11(b11, b1z, b13)+ai2(ba1, baz, ba3) =
:(a11b11+a12b217 a11b12+a12b22, a11b13+a12b23), gof(ov 1):g(a21(0, 1)—|—a22(0, 1)):
=---=(a21b11+a22b21, a21b12+a22b22, a21b13+0a22b23), Mgo =M ¢-M,.

Tvrdenie 8.2. Ak f:R¥—R® je linedrne zobrazenie s maticou M y=(a;;) €My, s(R)
ag: R—=R je linedrne zobrazenie s maticou My=(b;;)€M; +(R), tak linedrne zob-
razenie gof : RF— R md maticu Mo €My, +(R), ktorej prvok i-teho riadku a j-teho
stlpca dostaneme ako skaldrny sicin i-teho riadku z My a j-teho stlpca z M,.

Definicia 8.6. Nech Ay, (R), BEM, +(R); potom sucin matic A a B ozn. AB
sa definuje takto: AB=C=(c;;)€M+(R), kde ¢;j=a;1b1;+ - - - +aisbs;.

Tvrdenie 8.3. Ak f : RESR® je linedrne zobrazenie s maticou M; ag: R*—R'
je linedrne zobrazenie s maticou My, tak Mg, r=M¢-M,

Priklad. )
G (3)=0)

Niektoré vlastnosti sﬁéi{lbl m%tic.

o1 .- 0
1. AeMy(R) L,=|... .

€My n(R) = LA=A=AIL kde T,=M, ).
00 - 1

2. A€M, ,, BEM, ;, CEM, . potom (AB)C=A(BC). Dokaz: A=M,, ,B=M,, ,
C=My,.. Potom A(BC)=My, (M, My.)=My,(Mjsor,)=M(scofp)ors=
=Myc(tpofa)=MyporaMyse=(My, My, )My, .
3. distributivita: A(B4+C)=AB+AC, ked to ma zmysel, (A+B)C=AC+BC.

1 2 11 —-13 11 1 2 0 3
1. AB#BA naprs (1) (40) = (S8)ae (11) (43) = (%2):
(M, n(R),+,e,1=I,) je okruh s 1.

Definicia 8.7. Elementdrna matica stupna k patriaca k danej ERO je matica,
ktort z I, dostaneme tak, Ze na I, urobime tito ERO.

Priklad. ERO- priratanie a-nasobku druhého riadku k prvému. Prislusna elemen-

la0
tarna matica stupna 3 je: E = (0 1 0).

001
Veta 8.8. Nech BEMy, s(R) vznikne z A€My, s(R) vykonanim prdve jednej ERO.
Potom ok E je elementdrna matica stupnia k patriaca k tejto ERO, tak B=EA..

Doékaz. Ak CeM, ,(R) je lubovolnd matica, tak -ty riadok matice C sa rovna

C11 = C1p
(0,---,0,1,0,--- ,0)C=¢&,C, (0,---,0,1,0,---,0) - | en e | =(cir,-- ,cin)-

Cal *** Cab
A=(ai;)k,s- Nech napr. ERO spociva v tom, ze a-nésobok j-teho riadku prirdtame
ailtaajr o a1sta s
az1 azs
k prvému. Teda: B = . . . . Elementarna matica E vznikne z I,

a1 Ak s

vykonanim tej iste] ERO. Teda riadky matice E budd é&1+a€j,és,- -, €. Prvy
riadok v EA je €1 (EA):<€1E)A:(€1+Q€J‘)A:€1A+a§jA:(a11, s 7CLlS)-i-Oé(Cle,
<+ ajs)=(a11+aa;i1, - ,a1s+aajs)= prvy riadok v B. Druhy riadok v EA je
é(BEA)=(6;E)A=é;A=(ag1, - - - ,azs)= druhy riadok v B. ... podobne vSetky os-
tatné. Teda B=EA.
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Priklad. A= (_11 1) €My 2(R). K druhému riadku prirdtame prvy.
B-(2) B-(if) ma-(32)

Tvrdenie 8.4. Nech AeMy s(R), nech fa : RE—R* je linedrne zobrazenie mati-

cou A. Potom fa(zyi, -+ ,75)=(x1, - ,z%)-A pre vietky (z1,---,x,)ERF. Pre
linedrne zobrazenie g : RE—R® mdme: g(x1, -+ ,xr)=(x1, -+ ,2%)- My pre vetky
(z1,--+ ,x)ERF.

Dokaz. Zo zakladnej vety o linedrnych zobrazeniach vieme, Ze g je Uplne urcené
obrazmi: €1, -- , €. Predpis h(z1,--- ,zk)=(1, -, zk)-M, definuje linedrne zob-
razenie z RF—R*. h(a(z1, -, 26)+BW1, -+ yk)) Mg=a(z1, - ,z5)- Mg+
+B8(y1,- -+ yk) Mg=ah(z1,- - ,z5)+Bh(y1, - ,yx). ¢(€1)=1. riadok matice M,.
h(€1)=€1-Mg=1.riadok v Mg.
Vseobecne: ¢(€;)=i-ty riadok v M,. h(€;)=€;M, pre i=1,--- , k. Z toho: h=g, a
teda g(xlv T vwk):(xla to 7xk)'M9'

(I

Priklad. f:R*=R?, f(x1, x2)=(—x1+x9, —71), My = (§(170)) - (71 71)’

(0,1) 1 0
(l‘l, 1‘2) (711 :)1) :(—1‘1—1-1‘2, —xl).

Pozndmka. Prvky z R chidpme ako riadky. Ale niekedy sa prvky z R* chépu aj
ako stlpce. Potom pri takom chapani sa matica lineArneho zobrazenia f : RF—R®

definuje ako matica I\A/I/f je typu sxk nad R, ktorej i-ty stipec je f

T 1
g: RF SR, g < ) =g(x1,- - ,xx)=M;y- < )
Tk Tk

Definicia 8.8. A=(a;;)€My s(R) k nej transponovand matica je matica
ATeM, 1 (R) pricom (a5)=a;;. Teda AT dostaneme z A tak, Ze ”vymenime riadky

o = o

za stlpce”.

12
Priklad. A= (;jg) AT— (24>.
35

Tvrdenie 8.5. Ak A=(a;;)€My. 5, B=(b;;)€M; (R), tak (AB)T=BTAT.

Dékaz. Prvok i-teho riadku a j-teho stipca v BTAT je Z b;l;,agj: Z ajpbpi-
p=1 p=1
Prvok z i-teho riadku a j-teho stipca v (AB)T=prvok j-teho riadku a i-teho stipca

v AB, teda Zajpbpi.

p=1
O
Pozndmka. (AT)T=A.
Injektivnost a surjektivnost linearnych zobrazeni.
f: V=W vieme, ze f je injektivne < Ker(f)={0}, f je surjektivne < Im(f)=
—f(V)=W.
Veta 8.9. Nech f : V=W je linedrne zobrazenie a nech (dy,- - ,dy) je bdza vo V.

Potom:
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1. f je injektivne < f(dy,---, f(@n) su linedrne nezdvisle.
2. f je surjektivne < [f(a ) c f(@n)] =W
Dokaz.

1. = f: je injektivne. Nech aq f(@1)+--- +anf(d'n):6. Chceme ukézat, ze o;=0.
Z toho: f(azdi+--- +an&’n):f(6). Podla predpokladu: ajdi+--- +and’n:6, z li-
nearnej nezavislosti ay, - - - , d, = Va;=0.
«<: Nech Vf(@;) st linearne nezévislé. Nech Ze Ker(f). Teda f(Z)=0. Mame jed-
noznacne £=p01a1+ - -+ +8ndn. Potom f(Z)=p01f(d1)+ - +Pndn, kedze: f(f):_’
f(@1), -+, f(@,) sa linedrne nezdvislé mame, ze S1="---5,=0 a teda #=0. Preto
Ker(f)={0}, teda f je injektivne.
2. =: Predpokladajme, Ze f je surjektivne. Nech /€W je lubovolny. Zo surjek-
tivnosti: existuje Z€V : f(Z)=y. Mame, ¥=a1d1+ - - - +Qnly, teda flagdi+---+
+anln) =§ = arf(d) + -+ o f(dn). Takze § € [f(d1), -+, f(dn)] mdme
Wc(f(a), -, f(d@y)]. Obratena inklizia je zrejma.
<: Predpokladajme, ze W=[f(d1),- -, f(@,)]. Nech beW je Tubovolny, potom
b=B1 f(@1)+ - - - +Bn f(@n)=f (B1d@1+ - - - +Bnin). b mé vzor f je surjektivne.
ev

O
Dosledok. Ak V. a W st konecéne generované vektorovy priestory nad R, tak
linedrne zobrazenie f : V—W je linedrny izomorfizmus < f zobrazuje bdzu pries-
toru V na bazu priestoru W.

Pozndmka. Ak VEW, tak dim(V)=dim(W).

Désledok.
Kazdy n-rozmerny (n>1) vektorovy priestor nad R je linedrne izomorfny s R™.

Dékaz. Nech V#{0} mé nejakt bazu (@y,--- ,@,). V R™ zoberme standardni bazu
(€1, ,€n). Zo zdkladnej vety o linedrnych zobrazeniach vieme, Ze existuje prave
jedno linedrne zobrazenie f : V—R™ také, ze f(d;)=é€;, i=1,2,--- ,n. Podla pred-
chadzajiceho dosledku f je linearny izomorfizmus, teda V=R".

O

Veta 8.10. Nech f : R*—R® je linedrne zobrazenie. Potom:
1. f je injektivne < h(My)=k.

2. f je surjektivne < h(My)=s

3. f je linedrny izomorfizmus < k=s a h(Mjy)=k.

Dokaz. M €My s(R) mé riadky f(€1), -, f(€k). To znamena, ze f : R¥—Im(f)
je surjekcia, teda z vety 8.9 vyplyva, ze priestor Im(f) je generovany Im(f) =
=[f(€1), -, f(€r)]. Teda dim(Im(f))=dim[f(€1),---, f(€k)]=h(My). Z vety

o faktorovom izomorfizme: R¥/Ker(f) =2 Im(f). Teda k — dim(Ker(f)) =

— dim(Im(f)) = h(My).

1. f je injektivne < Ker(f)={0} < dlm{Ker( )}=0 < h(M;)=k.

2. f je surjektivne < Im(f)=R* < [f(€1), -, f(€n)]=R* & dim|[f(ée1), -,
f(€)] = s = h(My).

Lema 8.1.
Nech S je vektorovy podpriestor priestoru V. Potom S=V < dim(S)=dim(V).

Dékaz. =: Ak S=V, tak dim(S)=dim(V)
<: Predpokladajme, ze dim(S)=dim(V’). Nech teraz S#V. Nech (d1,---,dp) je
baza v S. Existuje £&V —S. Potom vektory d,--- ,dp, & st linedrne nezavislé, a
teda dim(V) je asponi p+1, kym dim(S)=p; spor s tym, ze dim(S)=dim(V).

O
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Definicia 8.9. Linearne zobrazenie f : RF—RF sa vola transformdcia priestoru
RF. Linearna transformacia f : RF—RF sa nazyva reguldrna, ak f je linedrny
izomorfizmus.

Veta 8.11. Linedrna transformdcia f : R*—RF je requldrna < h(Mj)=k.

Dokaz. Vyplyva to z vety 8.10

Definicia 8.10. Matica A€My, (R) sa nazyva reguldrna, ak h(A) = k.

Potom Veta 8.11 znie takto: Linearna transforméacia f : R¥—RF je regularna <
jej matica My je reguldrna.

Definicia 8.11. Inverznd matica k danej matici A€My, 1 (R) je takd matica
BeMy, 1 (R), ze plati AB=BA=I,. Pretoze bindrna operacia e na My ,(R) je
asociativna a Iy je neutrdlny prvok vieme, Ze ak takd matica B existuje, tak je
jediny. Oznacime ju A~1.

Pre aké matice A€My, 1 (R) existuje A~1 7
Nutns podmienka: ak A~! existuje, tak AA"'=A"1A=I,. Z toho potom vieme,
ze fan-1:RFSRF, fap—r(a1, - ap)=(21, -, 2p) AAT =((21,- -, 2) A) A =
=fa-1((z1, - ,op)A)=fa-1 fa(zy, - zp)=fa-10fa(rr, - ,2k) = faa—1=
=fa-10fa. Podobne fa-1ia=faofa-1, teda faofa-1 = fa-1ao = f1, =idrx =
= fa-10fa. To znamen4, ze (fa) '=fa-1.

Veta 8.12. K matici AcOMy, ,(R) existuje inverznd < A je reguldrna.

Dokaz.

= uZ mame.

< Predpokladajme, 7e A je regularna. Teda f : R*—RF je regularna linearna
transformaécia, t.j. fa je linedrny izomorfizmus. Potom existuje k nemu inverzny
linedrny izomorfizmus g : RF—RF. Teda gofs=fsog=idgr. Pritom 9=fum,- To
znamend, ze far,0fa=faofy,=idrr. To je to isté ako: fan,=fu,a=f1,. Z ko-
reSpondencie: AM,=M A=I}, teda Mg:Afl. Zaroven mzime:A’le(fA)fl.

Definicia 8.12. Ak matica nie je regularna, tak je singuldrna.
AeMy i (R), A je singuldrna < h(A)<k.

ail - A1k
Nech A€M x(R) je reguldrna matica. Ako vypocitat A=17 A= ( )

Qg1 v Gk

fA(la 0; e 70):(a117 e 7a1k)a e 7fA(O,07 Tty 1):(0’]61; T 7akk)' Treba, néjSﬁ in-
verzné zobrazenie fgl. Pretoze fa : RF¥—=RF je linedrny izomorfizmus ((a1y,--- ,

aik),- -+ (ag1, - ,ark)) je tiez baza v RF. Preto zobrazenie (f;') : RF=R” je
tplne uréené tym, Ze (f3')(a11,- -+ ,a1x)=(1,0,---,0) aZ (f3 ") (ar1, -, arr)=
=(0,---,0,1). Aby sme dostali maticu zobrazenia f;l, potrebujeme vyratat, na

a1x - aig 1 - 0 1 - 0b11 - big
éo fgl zobrazi €1, - , €. Dot oreo i~ et t ). Struéne:

agr - agkr 0 - 1 0 -« 1bgr - bk

(A[Tp)~(T]AT).

= A"1=

[SIEIT

W=
W=
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IX. SYSTEMY LINEARNYCH ROVNIC 2
a1+ a1, =01
Majme systém S s rovnic s n nezndmymi nad R: (5)

as1T1+--- +asnmn:bs
ail - Qin

Matica A= ( : : ) €M, »(R) sa nazyva matica systému (.5). Matica

As1 * Qsn
ail ain b1
A= < > €M n11(R) sa nazyva rozsirend matica systému (5). Oz-
as1 r Ggn bg
b1
nac¢me dalej B= | - ], to je tzv. matica pravych stran. Potom systém (S) mozeme
bs
1 by T1
napisaf takto: A- ( ) = < ) t.j. ak ozna¢ime X=( - | mame: AX=B. Toto
T, be T
je maticovy zapis systému (S). RieSenim systému AX=B je kazdé K=(k1,--- , k,)

také, ze AKT=B. Ak matica A” vznikla z rozsirenej matice A’ systému (5)
kone¢nym poctom ERO, tak systém, ktorého rozsirena matica je A” je ekvivalentna
so systémom (S). AX=B & (AX)T=BT & XTAT=BT & f,:(XT)=BT,
kde far : R"—=R® je linedrne zobrazenie s maticou AT. Teda systém AX=B
je riesitelny < ked BTcIm(far). Mnozina rieeni systému AX=B je vlastne
(fax) " ({(BT}).

Napriklad: { Z“_Lzz;é A=(1h) a=(14y) x=() B=(})

(_11 1) (2) = (é) Riegenia st také (x1,z2)€R?, pre ktoré fa-(z1,22)=(1,0).
Riesenie je napr. (%, %) Iné rieSenie nemodze maft, lebo matica A je regulérna, teda

linedrna transformécia fa : R2—R? je linedrny izomorfizmus.
Homogénne linearne systémy.
a11T1+ - +a1,2,=0
Definicia 9.1. Systém (H){ - sa vola homogénny, jeho ma-

as1T1+ -+ +asnxn:0
ticovy zéapis je AX=0, kde A je matica toho systému.

Veta 9.1. MnoZina vietkych rieseni homogénneho linedrneho systému (H) je vek-
torovy priestor v R™.

Dékaz. Oznaéme S=mnozinu rieseni (H). Potom S#0, lebo (0,---,0)€S. Pouzi-
jeme kritérium vektorového podpriestoru. Nech a,S€R, K, LeS st Tubovolné.
Chceme ukazat, ze a K +BLES. Vieme, ze AKT=0, ALT=0. Potom A(aKT+
+BLT)=aAKT+BALT=00+530=0. Teda naozaj aKT+pLTES.
Iny dokaz: AX=0 < XTAT=0T=0 & for(XT)=0 & XTcKer(far). Teda
S=Ker(far), fat : R"—=R?®. Vieme, ze [Ker(far)] jadro linedrneho zobrazenia je
vektorovy podpriestor.

U

Nech h(A)=r. Vieme, Ze kone¢nym poc¢tom ERO sa t4 matica A upravi na RTM,
ktora ma 7 nenulovych riadkov. Povedzme, ze t4 RTM mé vedice prvky v stipcoch
t1<ta<:--<t,. Premenovanim neznamych y1=x,, - ,y.=2,,y;=2; v ostatnych

Y1+ Clrt1¥Yrp1 + 0+ ClpYn =0

pripadoch, dostaneme linedrny systém (H')

Yr + Crpai1Yre1 + o+ CrplYn = 0
Spitnym preznacenim neznadmych sa od (H’) dostaneme k systému s nezndmymi
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X1, , &y, ktorého vektorovy priestor rieSeni je priestor rieSeni systému (H). Vek-
torovy priestor rieseni systému (H') je linedrne izomorfny s vektorovym priestorom
rieSeni systému (H). (Linedrny izomorfizmus g : S" — S, g(y1, - ,yn) = (T4, -+,
Tty Trgl, 5 Tn).) Teda dim(S")=dim(S). Teda staci uréit dim(S). V (H') méme
viazané nezndme yi1,---,Yr, Kym yr41, - ,Yn si volné (nadobudaju lubovolné
hodnoty z R). Pre y,41=1,yr12="--=y,=0 dostaneme rieSenie systému (H’).
dr+1:(_cl7r+17 oy T Crr s 1,0,--- 70) atd. Pre Yr41=""" =Yn-1=0, yp,=1 dosta-
neme riesenie d,=(—c1pn, ** , —Crn, 0, -+ ,0,1). Takto sme dostali n—r rieSeni sys-
tému (H').

Tvrdenie 9.1. (d,41, - ,dy,) je bdza priestoru (S), ktory je priestorom rieSeni
systému (H'). Teda dim(S") = dim(S) = n—r.

Dokaz. dyy1,- - ,d, st zrejme linedrne nezéavislé. Zostava ukéazat, ze dyy1,--- ,dy,
generuju priestor (S’). Nech s=(s1, -+ ,8,)€S’ je Tubovolné riesenie systému (H’).
Chceme ukazat, Ze s je linedrnou kombinéciou d, 41, - ,d,. Takto: (s1,---,8,)=
=$r41dr41+ - +Spdn. sS1=(—C1r41Sr41— - —C1nSn). l.zlozka vpravo:

—Sp41C1, 41— -+ - —SnC1n. l.zlozka vlavo: —ci,418p41— -+ —C1p8,. Podobne pre
ostatné zlozky.

Dimenzia priestoru rieseni homogénneho linearneho systému = pocet neznamych —
hodnost matice systému.

Il
4301+5932+6$3*3£L’4+3[C5:0
Ty + 2x9 +3x3 +4x4 + 525 =0
Priklad. Nad R vyrieste: 2x1 +3x2 +4x3 + 524+ 25 =0
3x1 +4x9 +5x3+ x4 + 225 =0
$1+312+5$3+12I4+91‘5:0
123 4 5 123 4 5 10-10-15
234 5 1 012 3 9 01 2 0 12
A=|3451 2 |~---~|000-11|. RTM ekvivalentnd s A: 000 1 —1
135129 000 0 0 0000 O
456 —33 000 0 0 0000 O

1‘1—1‘3—15.135:0
Teda dany systém je ekvivalentny s tymto: { xo + 223+ 1225 =0

Ty — Ty — 0
x3,T5 s volné. x3=s€R, zs=te€R. Pomocou nich vyjadrime 1,2, x4 : T4=t,
xo=—28—12t, x1=s+15t. Teda vektorovy priestor vSetkych rieseni je S={(s+15t,
—2s5—12t, s,t,t)}s,teR. Baza priestoru S pre s=1,t=0 : (1,—2,1,0,0), pre s=0,
t=1:(15,-12,0,1,1).
Béza priestoru S je ((1,—2,1,0,0),(15,-12,0,1,1)).

Veta 9.2. Pre lubovolni maticu A€My (R) : h(AT)=h(A).

Doékaz. Nech h(A)=r. Uvazujme o linedrnom systéme AX=0. Vektorovy priestor
rieseni je Ker(far). fat : Rt—=Im(far), Rt/ Ker(far)=Im(far).
t—dim(Ker(far))=dim(Im(far)). t—(t—h(A))=h(AT) & h(A)=h(AT).

Nehomogénny systém linearnych rovnic.
a1171 + -+ 1Ty = by
()
As1%1 + +++ + AQsnTp = bs

Asporn jedno b;#0, tak nehomogénny systém s linedrnych rovnic s n nezndmymi.
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Veta 9.3. (Frobeniova, Kroneckerova — Capelliho)
Nehomogénny systém linedrnych rovnic je riesitelny < hodnost matice systému sa
rovnd hodnosti rozsirenej matice systému.

by z1 ai1 - QAin
Dokaz. Maticovy zapis: B = <> X = () A= ( ) AX=B &

bs o asi v Gsn
XTAT=BT & for(XT)=BT. Z toho je jasné, ze systém (N) je riesitelny <
ked BTcIm(far). Ozna¢me a; i-ty stipec matice A. Potom AT ma riadky
al,---,a¥. Systém (N) je riesitelny ©<BTcIm(far) < BT€[aT, - ,al]=
=[a¥, - ,aX,BT] & dim[a]T, - ,al]=dim[a], - ,aT, BT] < dimenzia priesto-
ru generovaného riadkami matice AT= dimenzia priestoru generovaného riadkami
matice (A|B)T < h(AT)=h((A|B)T) < h(A)=h(A|B).

O

x1+x9=1

Priklad. { 114

nad R nie je riesitelny, lebo h (1 1) =1 ale h (1 ! 1) =2
T +ax0=4 L1
Veta 9.4. Uvazujme o nehomogénnom systéme (N). Nech P je mnoZina vsetkyjch
jeho rieseni. Potom: ak dEP je nejaké rieSenie systému (N), tak kaZdé rieSenie
systému (N) je tvaru d+c pre vhodné ¢ z vektorového priestoru riesend prislusného
homogénneho systému AX=0. Obrdtene, d+c— kde c je riesenim prislusného ho-
mogénneho systému— je riesenim systému (N). Teda ak S je vektorovy priestor
rieSent prislusného homogénneho systému, tak P=d+S
Dékaz. Ak peP je lubovolné, tak p=d+(p—d). (p—d)eS. [ApT=B, AdT=B =
A(p—d)T=A(pT—dT)=ApT-AdT*=B-B=0]. Teda PCd+S. Lubovolné d+S5,
kde s€S, tak d+s€P, lebo A(d+s)T=AdT+AsT=B+0=B. Teda tiez d+SCP.

Vceelku: P=d+S.
O

Iy +5{E2+4(E3+3(E4 =1
Priklad. Systém nad R: 201 —x9 +2x3 — x4 =0
51 4+ 312 +8r3+ x4 =1

1 5 4 3 1 5 4 3 1
2 -1 2 -1 0|~ o 672
5 3 8 1 1 0 0 00 0

Viazané: x1, o, volné: x3=u, x4="0.
) b b

1 14 2 2 6 7
P={(——-— U, — — —u— — R4 R} =
g vt gvg ot o wveRs, woeR}
1 2 14 2 6 7 .
= (ﬁ,ﬁ,o,o)‘i’{(*ﬁU‘i’ﬁv,*ﬁU* HU,U,U)GR y ’I,L,’UER}

14 2 6
kd - — U, ——U — —
A TR TR TR
prislusného homogénneho systému.

v,u,v)ER*  u,vER} je vektorovy priestor rieseni

Pozndmka. Po tprave rozsirenej matice nehomogénneho systému na trojuholnikovy
tvar povazujeme za viazané tie nezname, ktoré zodpoveda vedicim prvkom
nenulovych riadkov rozsirenej matice (v trojuholnikovom tvare). Ostatné st volné.

Determinanty.
{1,2,--- ,n} permuticia tejto mnoZiny je kazda bijekcia ¢ : {1,2,--- ,n} —

1 2 - on
{]-727"' ’n}' $ = (@(1) ©(2) Lp(n))

Napr.: (; i 2) je permutécia mnoziny {1,2,3}.
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Definicia 9.2. Sy 5. 3 = mnozina vSetkych permutdcii mnoziny {1,2,---,n}.

1 2 ... , " .. . . .
Ak o= (@(1) o(2) - @?n)> €S5(1,2,... n},» tak hovorime, ze dvojica (¢(i),®(j)) tvori
inverziu vo @, ak i<j, ale p(1)>p(j).

Priklad. V permutécii (é ? g) su 2 a 1 v inverzii.

Definicia 9.3. Pocet inverzii v permutécii €Sy, ... ,} oznac¢ime s(y). Permutacia
¢ je pdrna, ak (—1)*¥)=1 a ¢ je nepdrna, ak (—1)*¥)= — 1.

Definicia 9.4. Nech AeM,,,,(R), kde R je hocijaké pole. Determinant matice A
je prvok pola R, definovany takto: det(A)= Z (—1)5(“”)(11@(1) © Apgp(n)-
pe{l1,2,--- ,n}

Priklady.

1. A:(au)ei)ﬁu(R) : det(A):au.
aii aiz 8(12) 5(12)
2. A=( ), det(A) = (=1)"\12/a1a20 + (=1)"\21/apa21 = anag +

1 a1 a2
(—1)ta12a21 = a11a22 — a12a21.
ail ai2 a3
3. A= a21 a2z a23 |, potom det(A) = - - = aj1a22a33 + a12023a31 + 413021032 —
agzil agz2 ass

—a11023032 — 012021033 — 13022431

Definicia 9.5. Vynatim prvkov i-teho riadku (i=1,2,--- ,n) dostaneme

det(A)=a;; - (stty stfinov bez a;1) + - - - +a;y, - (sGcty siéinov bez a;y))

Ail Ain

A;; sa nazyva algebraicky doplnok k prvku a;;.

Uvidime, Zze A;; sa da vyjadrif pomocou determinantu vhodnej matice stupia
n—1 odvodenej z A.
Lema 9.1. Ak ¢,9€S(,... oy tak plati, Ze (—1)sleo)=(—1)s@)+s() 7 toho

mdme, Ze: (—1)5(%’):(_1)8(90’1)_

Dokaz. Pevne zvolme z1,- -+ ,,€R navzajom roézne. Oznacme P = I_I(xZ —xj).
i<j
Pre ¢€Sy; ... »} alubovolné k€Z definujme ((—1)*P),=(-1)* H (Tp(i)—Tp(j))
1<i<j<n

Je jasné, ze (—1)F(=1)*®) P = ((—1)*P). Pre 0, YES .yt Pooy = (Pp)y =
=((=1)%®) P)y=(— 15 (=1)sW) p=(—1)@)+s() p = (—1)s(po¥)=(—1)s(P)+s(¥),
O

Vlastnost 1. Pre kazdi maticu A€M, (R) mdme det(A)=det(AT).

Dokaz. Prvok i-teho riadku a j-teho stlpca v AT bude agj‘:aﬁ. Podla definicie
determinantu vieme, Ze det(A) = Z(—l)s(q’)aw(l)aw@) “Qpp(n) =

p€eS

= Z ?a eI~ (1) " Ao (n)e~1 (e (n) =

peS
= Z(_l)S(w)%_l(l)...%_l(n)n - Z (—1)8(“0)01271(1)”'aa@fl(n):

peS p-les

-1

= > (=1 al )l = det(AT),

p-les
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Vlastnost 2. Ak matica BEM,,,,(R) vznikne z matice A€M, (R) jednou vzdjom-
nou vymenou lubovolngch dvoch riadkov, tak det(B)=— det(A).

Dokaz. Napr. nech B vznikne z A vzajomnou vymenou prvého a druhého riadku.

a1l ai2 -+ Qin az1 @22 -+ A2n
a1 a22 -+ Q2n ail ai2 v QAin
Teda, ak A= C ytak B=( . . . . |. Oznacme
anl Gn2 - Anpn anl Gn2 - Gnpn
(12 n 1 2 - n _ 1 2 - 0n
V= (2 1. n) (w(l) ©(2) - w(n)> - (@(2) (1) - so(n))’
1 2 - on

(—1)5W=(=1)\#¢@) (1) - () ) (_1)5(¥) = —(-1)5(¥), Z definicie determinantu:
det(B)= ) _ (1) Pb1,1)bap(a) - by = D (1) Pazpnyarp(z) - anpny =

pEeS p€eS
= > (D) Parp@)a200) - anpin = 3 (1) Parumazpe) ) =
pes YeSs
= = > (=1)*Pary)asy2) - - Gnym)=—det(A).
Ppes

O

Vlastnost 3. Nech A=a;;€M,,(R). Potom pre lubovolné r,s€{1,--- ,n} algeb-
raicky doplnok k proku a,s je A,.s=(—1)"t*det(M,;). Kde matica M, je matica
typu r—1xs—1, ktord vznikne vynechanim r-teho riadku a s-teho stlpca z matice A.

a1 a2 ai3

Priklad. A = ((121 aso a23> Aos = (_1)5 det (au a12)

aszl as2
a3zl a3z2 @33

Dokaz. 7 definicie determinantu: det(A)= Z(—l)s(m H Aip(i) =
i=1

peSs
p(1)=1 p(1)#1
= —1)5(®) e _1)5(®) e
= Y (“D)*Wanagee) - anpm+ Y, (=1)*Paipmyasg@) - tnpm)-
@eS pESs
e(1)=1
. - —1)s5(9) - —1)5®) -
Z toho: Ayy= Y (1) Pagy) - angmy= Y (=1)*Pay) -+ tnpm) =
peS Ppes’
a22 azn
= det < > = det(Mll) = (—1)1+1 det(Mn).
An2 *** Gnpn
Teraz ratame A, pre fubovolné r,se{l,--- ,n}:
a1l A1s—1 a1s A1s4+1 QA1n
ar_-11 Ar—1s—1 Ar_1s ar—15+1 Ar_1n
A= ar1 Arg—1 Qrg Ars41 Qrp

Ar411 Ar41s—1 Ar41s Ar41s+1 Ar41n

anl Aps—1 Qps Aps+1 Apn
Vzéajomna vymena r—1 riadkov:

arl Ars—1 Arg Ars+1 Arn

aii A1s—1 a1s A1s4+1 QA1n

B - ar—11 Ar_—1s5—1 Ar_1s ar715+1 Ar_1n
Ar411 Ar41s—1 Ar41s Ar41s+1 Ar41n
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Vzajomna vimena s—1 stlpcov:

Qrs Gr1 e Qrs—1 Qrs+1 e Qrn

QA1s ail A1s—1 A1s+1 QA1in
C= Qr—1s Gr-11 "** Gr-1s—1 Gr—-1s+1 *°° Qr—1n
Ar41s  Qr411 Ar41s—1  OGr41s+1 Qr41n

Ans anl Aps—1 ans+1 (07999

Z toho ¢o sme dokazali vieme, ze det(C)=a,; det(M,s)+¢leny bez a,s. Z 1. a 2.

vlastnosti: (—1)*~1 det(B)[=det(C)]=(—1)*"1-(=1)""1 det(A)=(—1)""* det(A).

det(A)=a,s(—1)""* det(M,,) + (=1)"T% - &leny bez a,s = A,s=(—1)"T% det(M,).
Il

Veta 9.5. (Laplaceova o rozvoji determinantoch)

Pre AeM,.,(R) mdme: det(A)=a;;(—1)Fdet(M;1)+ - - +ai,(—1)7" det(M;,,).
Toto vyjadrenie sa nazyva Laplaceov rozvoj determinantu matice A podla i-teho
riadku. Tiez: det(A)=a1;(—1)" 1 det(My;)+- -+ an;(—1)"" det(M,,;) pre vsetky
je{l,--- ,n} tzv. rozvoj podla j-teho stipca.

Dokaz. Dosledok vlastnosti 3. Mame det(A)=a;1 Aj1+ - - +ainAin. Z vlastnosti
3 dosadime vyjadrenia A;,=(—1)"**det(M;;). S vyuZitim vlastnosti 1 stipcovy
rozvoj. (t.j. det(AT)=det(A).)

O

123
Priklad. det (0 -1 1) =1-det (‘11 ;) +0=— 4.

013
Vlastnost 4. Ak si v matici A€M, (R) dva riadky rovnaké (prip. dva stlpce),
tak det(A)=0.

Doékaz. Indukcia vzhladom na n. Pre n=2: det (Z Z) =ab — ab=0.

Indukény predpoklad: Predpokladajme, Ze tvrdenie plati pre také matice typu
n—1xn—1. Nech Ae9,,(R). Nech r-ty a s-ty riadok (r<s) v A si rovnaké.
Rozvitime determinant matice A podla i-teho riadku, kde i£r, i#s. Potom
det(A)=a;1(—1)" T (M;1)+ - - +ain (—1)""M;,,. M;; st matice stuptia n—1, ktoré
maji dva rovnaké riadky. Potom z indukéného predpokladu: det(A)=0.

O

Vlastnost 5. Nech BEM,,,,(R) vznikne z A€M, (R) prirdtanim lubovolného nd-
sobku lubovolného riadku v A k inému riadku v A. Potom det(A)=det(B).

Dokaz. Nech napriklad B vznikne z A tak, ze k l.riadku priritame a-nasobok
2.riadku. Rozvifime determinant B podla prvého riadku:
det(B)=(a11+aas)(—1)1 T det(My1)+ - - - +(a1n+aag, ) (—1) " det(My,, )=
:au(—l)z det(M11)+ s —|—a1n(—1)1+” det(Mln)+a(a21(—l)2 det(M11)+ R
+ag, (—1)1T" det(My,,))= det(A)+a det(matice, ktord ma rovnaky 1. a 2.riadok)
=det(A).

d

Vlastnost 6. Nech B vznikne z A€EM,,,,(R) tak, Ze i-ty riadok (iba tento) vynd-
sobime a€R — {0}. Potom det(B)=cadet(A).

Dokaz. Rozvinieme determinant matice B podla i-teho riadku:
det(B) = aa;1 (1) det(Mi1) + - - - + ain(—1)" det(M;,,) =
= afa; (=1)F det(M;1) + - -+ + @i (—1)7 " det(M;,,)] = avdet(A).
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Vlastnost 7.

ai ai a

i1 _ ai—1 i1
det avn | = det Py + det 5,
n an an

Dokaz. Rozvoj podla i-teho riadku.

Vlastnost 8. Ak matica A€EM,,,(R) md nulovy riadok, tak det(A)=0.

Dokaz. Priamo z definicie.

Ak maticu AeM,,,,(R) upravime pomocou ERO na trojuholnikovii maticu:

tin tiz - lin

0 taa -+ top
T= . . . .

0 - 0 tn,

tak bud niektory z prvkov t11, - ,tn, je 0 (to je vtedy, ked h(T)<n t.j. ak T
je singuldrna), alebo vSetky t11,-+ ,tn, si nenulové (to je vtedy, ked h(A)=n).
Z Laplaceovej vety o rozvoji determinantu (ale aj priamo z definicie) je jasné, ze
det(T):tll-t22~ . 'fnn.

Priklad. Jedna z metéd vypoétu det(A): A postupne upravujeme na trojuhol-
nikovi maticu, ak zohladnime vplyv jednotlivych ERO na determinant a fakt, ze
determinant trojuholnikovej matice je stuc¢in prvkov hlavnej diagondly, tak Tahko
vyratame det(A).

1 -1 1 1-11 1-1 1 1-11
det<—1 11 >det<0 0 2 >det<0 2 2>4~det(0 1 1)4.

11 -1 02 -2 00 2 00 1
Tvrdenie 9.2. Matica AeM,,,,(R) je reguldrna < det(A)£0.

Dokaz. Vieme, ze A je regularna < je riadkovo ekvivalentné s nejakou trojuhol-
n

nikovou maticou T, pricom t;;#0 Cize H #0. Z toho aky vplyv maja jednotlivé
k=1

ERO na determinant vieme, ze musi existovat a€ R—{0} také, ze det(A)=a- det(T).

Veelku mame, Ze A je reguldrna < det(T)#£0 < det(A)#£0.

O
1 -1 1
Priklad. Realna matica (1 11 ) je regularna, lebo jej determinant je nenulovy.
11 -1
Priklad.
111 1 1 1 1 1
1 01 1 o -1 0 - 0
det [ 1 1 Il =det|0 O —1 - 0 | =(-1)n!
111 --- 0 o o o - -1

Priklad. Vandermondov determinant

1111 1 1 1 1 b d
a b c d 0 b—a c¢c—a d—a 2 a2 5 a2 2 az
det 2,2 2 2 | =det 2 2 2 22 > | =det| s’—a®c’-a’d’-a =
a2 b’ c?d 0b°—a® c"—a” d°—a 3_.3 3_ 3 33 3
03 38 B g3 3 3 b’ —a” c®—a” d°—a

0b3—a® *—a® d®—a®
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b—a c—a d—a 1 1 1
= det ( b?>—ab c*—ac d®*—ad > = (b—a)(c—a)(d—a)-det ( b c d )

b3 —a?b c®—a’c d®—a?d b2+ab c?+ac d?>+ad

111 1 1 1
=(b—a)(c—a)(d—a)- det (bb2 5 ;) =(b—a)(c—a)(d—a)-det (8 65:22 dgl—ll;) =
—(b—a)(c—a)(d—a)- det (62:22 d;ljgz) —(b—a)(c—a)(d—a)(c—b)(d—b)(d—c).

Veta 9.6. Pre lubovolné A, BEM,,,(R) : det(AB)=det(A)det(B).

Dokaz. Ak A, alebo B je singuldrna, tak veta zrejme plati. fap : R"—=R"™ je
linedrny izomorfizmus s maticou AB. Vieme, Ze fap=fBofa. Ak A je sin-
gulérna, tak fa zobrazi nejaky vektor ZeR™, @&#£0 na nulovy. Teda fa (Ei)zﬁ. Potom
fBofa(@)=0=fap(@) a teda AB je singularna, teda det(AB)=0. Podobne ak B
je singularna a A je regularna. Ak A aj B su singuldrne, tak tiez plati.

Dalej: Predpokladajme, Ze A aj B st regularne. KedZe A je reguldrna, da sa
ti1 - tin

kone¢nym poctom ERO upravit na trojuholnikovii maticu T= ( ot tin >, pricom
0 tun

t;;7#0. Kazda ERO sa dé realizovat tak, Ze danti maticu zlava vyndsobime takzvanou

elementarnou maticou, ktora prislicha k tej ERO. Teda: E;-Es---E;-A=T, kde

E; st elementarne matice prislichajice k pouzitym ERO. Pretoze A je regularna,

na jej upravu na T stadi pouzit iba prirdtavanie nasobkov riadkov k inym riadkom.

Teda det(A)=det(EzA)=det(Ex_1E A)=---=det(E;---E;A)=T. Analogicky

ako ERO sa definujt aj ESO, k nim prislichaji elementarne matice (takd matica

vznikne z jednotkovej tak, Ze na nej urobime ti ESO). Matica B sa koneénym

poc¢tom ESO (zas vysta¢ime iba s prirdtavanim nasobkov stipcov k inym stipcom,
thy o thy

kedze B je regularna) upravi na trojuholnikovii maticu T'= | @ -. pri¢om
0 -ty

H t:,#0. Urobit nejaké ESO je to isté, ako danii maticu sprava vynésobit prislus-

nou elementérnou maticou. Teda: BF; ---F,=T’, kde F; st prislu$né elementarne

matice. Pritom Fi,---F, zodpovedajt iba prirdtavanim nasobku stIpca k inému

stlpcu. Potom: det(B)=det(BF;)="--=det(BF; - F,)=det(T’). Teraz
tin tiz -+ ty thy o Uy
0 tor -+ ton 0 tyy -+

det(TT’)=det S . o . =

0 0 - iy 0 O

ton
t11ty,
0 t22t’22 -
—det : : . : =t11thy tanthn=t11 - tantiy - thn=
0 0 sttt

=det(T)-det(T’). Potom det(A-B) = det(E;---EzA -B) =
=det(E; ---E;zA - BF; - - - F,)=det(TT')=det(T) det(T’)=det(A) det(B).
O
Inverznd matica pomocou determinantu.
Nech A=(a;;)€M,,,,(R) je regularna. Vieme, Ze existuje inverzna matica A~1.
Definujme tzv. adjungovant maticu k A ako maticu:

All A21 e Anl

. A12 A22 e An2
adj(A)= ) . .

Aln A2n o Ann

Nech A;; je algebraicky doplnok k prvku a;;. Teda A;;=(—1)""7 det(M;;).
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dj (A
Veta 9.7. Ak A=(a;;)eM,,(R) je reguldrna, tak A‘lzm.
dj(A 1
Dokaz. Ratajme C:A.ZeiEAg < I,. Matica det(A)-A-adj(A) mé na hlavnej
1
diagonale prvky: cii:m(aﬂflﬂ—i— -+ +a;nAin)=1 a mimo hlavnej diagonaly

det(A)

(anAj+ -+ +ainAjn)=0. Teda C=L,.

prvky (tj. pre i#j) Cij:det(A)

Pritlad. A= (37)  adi(a)=(17?) At =3-(17)

Systémy n rovnic s n neznamymi.

Fredholmova alternativa.

Nech AX=B je systém n linedrnych rovnic s n nezndmymi. Potom si dve
moznosti:
1. Systém AX=B m4 jediné rieSenie bez ohladu na to, akd je pravé strana B
(to nastane vtedy, ked h(A)=n, t.j. vtedy, ked det(A)#0) a zaroven prislusny
homogénny systém AX=0 m4 iba trividlne riesenie.
2. Nehomogénny systém AX=B je rieitelny uz nie pre vsetky B, ale iba pre také,
pre ktoré h(A | B)=h(A), to sa stane vtedy, ked h(A)<n t.j. det(A)=0, a zéroven
prislusny homogénny linedrny systém mé aspon jedno trividlne rieSenie.

Cramerovo pravidlo. Majme nehomogénny linedrny systém n rovnic s n neznd-

ail ot Qin T b1
mymi nad R: AX=B, kdeA—( ) X—(f) B—(;).
an1 = Gnp Ty, by,

Predpokladajme, Ze A je reqularna. Potom systéem AX=B md jediné riesenie:
X=A"'B.

T 1 All Anl bl 1

= . : teda z;=————< (A1;:b1+ - - - +Anibn)=
() det(A)( : .o )()7 ceda r det(A)< 1301+ + )

Tn Aip - Apn bn

by
1
= M det(matice, ktora vznikne tak, Ze i-ty stipec nahradime < : )

bn
ayr - ari—1 by ali41 v Qln
Oznacme A; = oo oot ]) tak potom jediné rieSenie systému
An1 * Qpi—1 bn Gnit1 0 Qnn
det(A det(A
AX =B je ( 1);..-; (An)
det(A) det(A)

Priklad. Linearny systém nad Zs:

3r1+4x =1 3 4 0 T 1
$1+£IJ2+2ZL’3:1 1 1 2 T2 = 1
3r1 +4x9 +23=0 3 41 T3 0

det(A)=4, det(A1)=4, det(A2)=3, det(A3)=1. Jediné riesenie systému daného je:
(4471,3-471,1.471) = (1,2, 4)€Zs.

Priklad. Vyuzitim Cramerovho pravidla rieste:

{x1+5x2+4x3+3x41 det<1 5>
201 —x9 +2x3 — x4 =0 1
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Rovnice st linedrne nezavislé, x1, zo budl viazané xs3, r4 budl volné nezndme.

1+ bx9 =1 —4u — 3v
{ e — —1414u—2v

~. det(A) = <l4u3v 5 )
201 —x9 = —2u+v

—2u+v -1

1 1-4u—-3
det(Az) = (2 _25_1_””) =—-2+6u+Tv

Potom vSeobecné riesenie daného systému je:

Lo 2 2 6 T
TR TR SR SR TR ¥ Rkt
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X. EUKLIDOVSKY VEKTOROVY PRIESTOR

Definicia 10.1. Nech V je vektorovy priestor nad R. Potom skaldrny stéin na V'
je zobrazenie g : VxV —R pre ktoré platia tieto podmienky:

1. g(Z+ ¢, 2)=g(Z, 2) + g(¥, Z) pre VZ,y, ZEV.

2. g(y,%)=g(Z,y) pre VT, yeV.

3. g(aZ, §)=ag(Z, ) pre VZ,yeV, acR.

4. Ak 7#0, tak g(Z,7)>0.

Ak g je nejaky skalarny sucin na V', tak V sa nazyva euklidovsky vektorovy priestor
(presnejsie je to euklidovsky vektorovy priestor (V,g)).

Pozndmka. Ak g je skaldrny sucin na V, tak namiesto g(Z, ) sa ¢asto pise (Z, 7).
} : VXV —R. Potom vlastnosti skaldrneho sicinu sa prepisu takto:

+ ¥, 2)=(Z, Z) + (¢, 2).

D=7, 9.

(aZ, 37)204(;1'0_’: 7).

. Ak ZeV—{0}, tak (&, Z)>0.

Priklad. Pre R™ zoberme zobrazenie ( , ) : R"xR"—R,

(@1, 20), (Y1, yn))=T1y1+ -+ +T0Yn-

1. <({E1, to 7xn)+(21a to 7zn)» (y17 T 7yn)>:<($1+2’1, T axn'i_zn)a (ylv T 7yn)> =
= (v1t2z0)y1+ - H(@nt20)yn=((T1, -, Zn), (Y1, s yn))H (21, 5 20),

(Y1, yn))=(Z, 9)+(Z, 7). Zistili sme, Ze vysSie definované zobrazenie ( , ) :
R"xR"=R, ((z1, - y&n), (Y1, Yn))=T1y1+ - - +XnYyp je tzv. Standardny ska-
larny sucin na R™. (Existuja aj iné skaldrne si¢iny.)

Z
Y,

Priklad. Euklidovsky priestor nemusi byt kone¢ne generovany. V=C((0, 1))= pries-
tor spojitych funkcii na (0,1). Definujme zobrazenie: ( , ) :VxV—R takto:
(fy9)= fol f(x)g(z)dz. (C(0,1),(, ) je euklidovsky vektorovy priestor nie kone¢ne
generovany.

Pozndmka. Nech V je vektorovy priestor nad C. Skaldrny st¢in na V' je zobrazenie
(,):VxV—C, ktoré spliia:

L (% +4,2)=(7, 2)+(7, 2).

2. (¢, Z)=(Z, 7). (komplexne zdruzené)

3. (aZ, @za(fig}.

4. Ak eV —{0}, tak (Z, Z)>0.

Priklad. V=C" (n<1). Definujme: (, ): C"xC"—C
(X1, y2n), (W1, ,wp))=21W1+ - - - +2,Wy,. Ak V je vektorovy priestor nad C a
(, ) : VxV—=C je skalarny sudin, tak (V, (, )) sa vold unitdrny (alebo hermitovsky)
priestor.

V dalSom uz iba redlne euklidovské priestory uvazujeme!

Definicia 10.2. Nech (V,( , )) je euklidovsky vektorovy priestor. Potom dizka
TubovoIného vektora Z€V sa definuje ako redlne ¢islo: |Z|=+/(Z, Z).

Priklad. V R? so §tandardnym skaldrnym stéinom: |(1,1,1)|=v12+124+12=/3.
Veta 10.1. Nech (V,(, )) je euklidovsky priestor. Potom:

1. |a- Z|=|a| - |Z| pre VaeR, VZEV.

2. |#=0 & #=0.

3. (&2, 9 |<|Z||Y). (Cauchyho-Schwarzova-Bunjakovského nerovnost).

4. |Z4+y|<|Z| + |§] pre lwbovolné &, §eV (trojuholnikovd nerovnost).

Dokaz.
L. |ad|=\/(aZ, aZ)=/a?(Z, ©)=|al\/(Z, T)=|a||Z|.

2. Ak #=0, tak |Z|=|0 - #|=0 - |&|=0; ak by 0, tak by sme mali |Z|=/(Z, £)>0
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—spor s predpokladom.

3. &, 1 lubovolné pevne zvolené. Pre lubovolné a€R utvorme vektor af — g. Potom
(aZ—7, aZ—1)>0 = (aZ, aZ)— (7, aF)— (aZ, ) + (7, ) =a?(F, T) — (¥, T) — T, §) +
+(if, iy =a? (&, T)— 2T, )+ (¥, ) >0.

Zistili sme, ze pre vietky a€R je (7, ¥)a® —2a(Z, T)+(7, ij) >0 kvadraticky ¢len v pre-
mennej . Graf tohto trojélena lezi v nezédpornej polrovine (22>0) pri¢om nepretina
os x1. Teda tento trojclen nema dva rozne redlne korene. Preto diskriminant
D=A(%,9)*~A(Z, %) - (§,4)<0. Z toho: 4-(Z,4)*<4(Z, ) - (7. 9) t.j. (Z,9|<|Z]-[9].
Loy |GG (TG, FG) =, 2@, )G, )+ (7. §) = (7. )+ 207, )+ 7, 7) =
=[T*+2(Z, §)+[91> <|Z]*+2|2|-|g]+|71*=(|Z|+]g])?. Z toho |T+g]<|Z|+|7].

&

7 3.vlastnosti z vety 10.1. méme: ak Z£0%£7, tak —1< <l1.

(7,
|7
Definicia 10.3. Ak (V,(, )) je euklidovsky vektorovy priestor a &, 7€V —{0}, tak

GNP
|Z]-|g]

<y

uhol vektorov Z, ¢ definujeme ako také ac€(0,7) pre ktoré cosa=

alebo §=0, tak definujeme uhol vektorov 7,7 ako 5"

Definicia 10.4. Nech (V,{, )) je euklidovsky vektorovy priestor. Hovorime, Ze
Z,yeV su na seba kolmé, ak £(Z, 37)25 (ortogondlne).
Tvrdenie 10.1. Ak (V,(, )) je euklidovsky vektorovy priestor, tak Z(Z, gj’):g =
(Z, 7)=0.
Dokaz. /(Z, gj’):g & 7=0 alebo §=0 alebo Z, 7€V —0 a (Z, 9)=0.

O

Priklady.

1. Nech R? je euklidovsky vektorovy priestor so standardnym skaldrnym stéinom.
Potom ¢1=(1,0,0), e2=(0,1,0), &3=(0,0,1) st navzijom ortogonalne.

2. V R? so standardnym skaldrnym st¢inom. Na (a, b)E€R? je vektor (—b, a) kolmy.

Veta 10.2. Nech (V,(, )) je euklidovsky vektorovy priestor a nech vektory
ay, -+ 0y st nenulové a navzdjom kolmé vektory. Potom su aj linedrne nezdvisle.

e

Doékaz. Nech aydi+ - - - +apd,=0. Chceme ukdzat, Ze a1 = -+ =, =
<d’1,a1&'1 +-- '+anan> = <61,61> “+a <dl,52> +- - ta, <51,5n> =0= < ,51> =
~—— N—— ~——
>0 =0 =0
= a1=0. Podobne vSeobecne 0=(a1G1+ - - - +0nan, @;)=;|a@;|? = a;=0.
O

Dosledok. Ak (V,( , )) je n-rozmerny euklidovsky vektorovy priestor a vektory
a1, ,EinEV—{(_j} st navzajom kolmé, tak (@y,--- ,dy,) je bdza priestoru V.
Definicia 10.5. Ak (dy,---,d,) je baza euklidovského vektorového priestoru V

taka, ze d; L d; pre Vi#j, tak t4 baza sa nazyva ortogondlna bdza. Ak naviac
|@;|=1 pre i=1,--- ,n, tak t4 baza sa nazyva ortonormdlna.

Priklad. (€1,&5,¢€3) je ortogondlna a ortonormélna baza euklidovského vektorového
priestoru (R3, (, )).

Veta 10.3. Nech (V,(, )) je lubovolny euklidovsky vektorovy priestor a nech S je
lubovolny jeho vektorovy podpriestor (nenulovy). Ak V je koneéne generovany, tak
v S existuje ortonormdlna bdza.

Dokaz. Nech dim(V)=n, nech (#1,---,Zx) (k<n) je dajakd baza v S. Veta bude
dokdzand, ak dokdzeme, Ze existuju nenulové vektory i, - - ,§x €S také, Ze pre ne
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plati: §1 = Z1, to = To+P1T1, Y3 = T3+651T1+ 83282, -, Y = T+ BTt -+
+PBrk—1TK—1, pricom g; L ¥; pre i#j. Je jasné, ze potom i, -, %, sa v S si
linedrne nezévislé. Kedze dim(S)=k, tak (91, - ,Jx) je baza, a je ortogondlna.

Potom ortonormaélna baza v S bude takato: <Zi1, cee Zik>
|Z/1| |yk|

Ui Yj 1 I . . . . . .

(r REA = Al |<yz, ¥;)=0. Existenciu vektorov ¥; dokdZeme indukciou:

Yil Y5 YillYj

—

Ak k=1: S ma bazu (&), ortonormalna bude: <$1 . Predpokladajme, Ze veta

|Z1]
plati pre k=s—1. A teraz nech S ma bdzu (¥, --,%s). Teda méme systém
N=T1, * ,Ys_1=TFs+ - +Bs_1s_2Ts_2. Podla indukéného predpokladu mame
vektory 41, ,%s_1 potrebného tvaru. Treba uz len ukizat, ako vyratat vektor

17:#0 potrebného tvaru a taky, Ze (7, 7;)=0 pre vietky i<s—1. Hladajme ¢, v tvare:
375 = fs""dsl?jl"’ e +6ss—1375—1- M4 byﬁ 0= <?73,?71> = <fsafl>+6sl<flafl>+

Lo L S L T, T
F0s2 (G2, T1) + - F0ss—1 (Ys—1,T1) = (Ts, T1)+0:1(T1,71)=0 = d1=— <_,g _,1>-
. , Nl (T1,71)
=0 =0
Z toho, 7e (¥s, j2)=0 vyratame o atd.
Il

Pozndmka. Metéda dokazu je konstruktivna; ukazuje induktivny postup na hlada-
nie ortogonalnej, ortonormalnej bazy. Je to tzv. Gramov — Schmidtov ortogonali-
zalny proces.

Priklad. Nech S je podpriestor v R* so $tandardnym skaldrnym st¢inom. Treba
najst ortonormélnu bazu podpriestoru S.

S=[#1, ¥2, ¥3]=[(1,-1,0,-1),(0,1,0,2),(0,0,1,—2)]. Najskor ortogondlnu bazu:
371 =T = (1, —-1,0, —1), g2 =25+ Oégl; <27171172> =0=a=1, g2:(1,0,0, 1);
53:(0, 0,1, 2)+(51(1, —-1,0, —1)-‘1-(52(1, 0,0, 1). Potom: <g'37 :Ijl>:0 A <1le, :Ij1>:0 =
0:<(51—|—52, —d1,1, —2—51+52), (1, —-1,0, —1)>:51+52+51+2+51—52:0 e =

2 2 12 1
= 01=— 3, 6=1=§=(0,0,1,2)~5(1,~1,0,~1)+(1,0,0, 1)=(

=, 201,-20).
3a37a 3)

U NS DN WPUNI NSV P
\/g’ \/g’ ) \/g ) \/57 b ) \/§ ) \/5 3 b 3 b ) 3 .
Definicia 10.6. Nech (V,(, )) je euklidovsky vektorovy priestor a nech MCV,
M#Q. (M nemusi byt podpriestor). Potom ortogondlny doplnok (komplement)
mnoziny M vo V je mnozina M+ : ={F€V; (¥ m)=0 VFc M}

Veta 10.4. Nech (V,(, )) je euklidovsky vektorovy priestor. Potom:

1. M#D, MCV = M~ je vektorovij podpriestor priestoru V.

9. Ak M,N#4) M,NCV a MCN tak N-CM-> .
3. Ak S,T si vektorové podpriestory vo V, tak (S+T)*+=S+NT+.

Dokaz.

1. M+#0, lebo 0cM~L. Kritérium vektorového podpriestoru: pre V&, je M=,

Va, BER. Potom pre Tubovolné meM: (aZ+py, m)=a (Z,m)+pL (y,m)=0. Teda
S~—— ~——

Ortonormaélna baza: ((

=0 =0
aZ+pyeM*. Z toho M+ je vektorovy podpriestor vo V.
2. MCN. Ak ZEN*, tak (¥, 7)=0 pre vietky 7€N a teda tiez (&, m)=0 pre vietky
meM. Teda TeM*.
3. Nech Z€(S+T)*t. Teda (Z, 5+)=0 pre vietky 5, #T. Specidlne (F, 5+0)=
= (#,0) = 0 pre lubovolny § € S. Takisto (Z,) = 0 pre Vi € T. To znamené, 7e
FeStNT+. Teda mame: (S+T)*+CS+NT+.
Obratene: nech #€S+NT+. Potom (Z,5)=0 pre vietky 5€S; (Z,1)=0 pre vietky
teT; potom (T, §+t)=0 pre vietky 5€S,i€T. Teda Fc(S+T)*
tj. STNTLC(S+T)*. Veelku: SEAT-=(S+T)".
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d

Veta 10.5. Nech (V,(, )) je euklidovsky vektorovy priestor, nech SCV je vektorovy
podpriestor. (V je koneéne generovany). Potom kaZdy vektor z V sa dd jedingm
sposobom vyjadrit ako sicet vektora z S a vektora z S*. To znamend, e V=S®S+.

Dokaz.

Ezistencia vyjadrenia: Pre S = {0} jasné. Predpokladajme, ze S # {0}. Nech
(@1, ,dx) je ortonorméalna baza v S (taka existuje — proces Gramov-Schmidtov).
Dopliime ju na bazu (d, - - - a,k;7bk;+17 e b n) priestoru V. Gramovym-Schmidto-
vym procesom prejdeme k ortonormalnej béze (@1, ,dk,dgt1," " ,an) priestoru

€s €S+
V. Potom Tubovolny vektor ZEV m4 jediné vyjadrenie v tvare:
r=x1d1+ - -+, + Th41Ap+1+ - - - +2Tpdy. Oznacme x1d1+ - - - +rrdp==g,

€S es+
:Ek+1C_L'k+1+ +xn5n—fsl Méme = fs+fSL
Jednoznaénost vy]adrema Nech by tiez ¥= a+b pricom a€s, beSL. Chceme uké-
zat, Ze d=Ts a b= Zg1i. Mame $S+$SL—a+b z éoho Ty—a=b— Zg1. Ratajme:

€S cst
0§<fs - C_i, b— fSL> = <fs, b> - <5, b> - <fs, fSL> + <Ei, fSL>. Teda 0 = <fs—(i,
N N N — N——
=0 =0 =0 =0
b—Tg \=(Tg—a, i5—a)=(b—Tgr,b—Tgs). Potom Zg—a=0 A b—T g =0 = TFg=a A
:st

O

Veta 10.6. Nech (V,(, )) je konecne generovany euklidovsky vektorovy priestor.
Potom:

1. Ak SCV je vektorovy podpriestor, tak (S+)+=S.

2. Ak S, TCV st vektorovy podriestory, tak (SNT)*+=S++T+.

Dokaz.
1. Pre fubovolné #€S mame (7, #)=0 pre fubovolny y€S+. Teda c(S+)*L. Zistili
sme, ze SC(S*)*. Z vety 8.24. vieme, ze V=S®S*+ a V=(5+) @ (S+)*. Z toho:
dim(V)=dim(S)+ dim(S+)=dim(S+)+ dim((S+)*). Teda dim(S)=dim((S*+)"*).
Kedze aj SC((S1)*),mame S=(S+)+.
2. ((SHH+TH)L)E=(SH+TH)=((SH)*n(T+)H)t=(SnT)*+

d
Definicia 10.7. Nech (V,(, )) je euklidovsky vektorovy priestor a {0}£SCV je
vektorovy podpriestor. Potom kazdy vektor €V mé jediné vyjadrenie v tvare
F=Fg+Tqr, kde Zs€S a g1 €SL. Teda predpis, ktory kazdému #€V priradi #g
definuje zobrazenie p : V=V p(Z¥)==Zg. Potom p sa nazyva zobrazenie ortogondinej
projekcie na podpriestor S.

Tvrdenie 10.3. Ak Z€S, tak p(Z)=

—

Dékaz. Jediné také vyiadrenie je: 7= 0 . Teda p(7)=7.
okaz. Jedine take vyjadrenie je: T r + eap(m) T
es €St

Tvrdenie 10.4. p(V) = S.

Tvrdenie 10.5. pop =p.

Dékaz. Pre Tubovolny & € S: p o p(Z) = p(p(¥)) = p(Z).
—~—
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Tvrdenie 10.6. p: V=V je linedrne zobrazenie.

Dokaz. Tubovolné T, 5€V, a, BER. Potom vieme, ze T=Fs+Tg1 a j=ys+igqL s
jediné vyjadrenia svojho druhu. Potom aZ+8y= a(Zs+¥s) + 8(ZsL+7g1) je jediné
—_— — ——
€S €S+
vyjadrenie vektora aZ'+3i ako stcet vektora z S a vektora z S+. Podla definicie
8.24.: p(ad+py)=c(Ts+ys)=aZs+Bis=ap(L)+Lp(i).
O

Priklad. Treba najst zobrazenie ortogonalnej projekcie na podpriestor S.
S=[(1,1,-1),(1,-1,0)]CR? so standardnym skaldrnym st¢inom. Doplnime orto-
gonélnu bizu ((1,1,-1),(1,—1,0)) podpriestoru S na ortogondlnu bazu priestoru
R3. Najdeme vektor (ki, ko, k3)ER? taky, ze ((ki, ko, k3), (1,1, —1))=0 a tiez:

((k1, k2, k3),(1,-1,0))=0. Z toho: kij+ka—k3=0 a k1 —ko=0. VyrieSime, zoberieme
napriklad (-1,—1,-2). Teda ((1,1,-1),(1,-1,0),(—1,—1,—2)) je ortogonalna

€es €S+
béaza v R3.
at+b—c=1;
R® 3 (21,29, 23)=a(1,1, =1)4+b(1,—=1,0) + c¢(—1, —1,-2) = { a—b—c=mxy
es cst —a — 2c=x3

VyrieSime: c:—%(x1+x2+2x3), b:—%(xl—xg), a:%(xl—kxg—xg). Teda pre Tubo-
volny (w1, z2, 23)ER? plati:
T1+2xo—23

—x2 _ Ty Fxe42r3

T1
o, T3)= (1,1, -1+ 2721, 21,0 1,-1,-2
(0,03, )= DT g g ) T g g g TR )
€S est
Teda plar, vz, v5)= 203 (1,1, ~1)+ 22,11, —1,0);
521—2—2%3 —x145Ta—20s —T1—
p(r1, 22, 73)=( o :r62 1’3; nt gQ IS; o §2+x3). Matica zobrazenia p:
5 _1 _1
6 6 3
My=|-% 5 -1 M,, je symetricka. Sucet na diagonale: dim(S).
i 11
3 73 3

Definicia 10.8. Nech (V,(, )) a (W,(, )) su euklidovské vektorové priestory.
Euklidovsky izomorfizmus z V' na W je linedrny izomorfizmus f : V—W taky, ze
(£(2), f(4))=(Z,¥) pre vSetky Z,jeV.

Veta 10.7. Nech (V,{ , )) je n-rozmerny euklidovsky vektorovy priestor. Potom
ezistuje euklidovsky izomorfizmus z V. na R™ so standardnym skaldrnym sucinom.

Dokaz. Nech (1, - ,7,) je nejakd ortonormélna béza vo V. Nech (é€31,---,¢&,) je
standardnd baza v R™ (t4 je tiez ortonormalna). Zo zdkladnej vety o linedrnych zo-
brazeniach vieme, Ze existuje jediné linearne zobrazenie f : V—R™ také, ze f(v;)=¢;,
i=1,--- ,n. 7Z inej vety vieme, zZe f je linedrny izomorfizmus. f je aj euklidovsky
izomorfizmus, lebo: (f(z1014 - +x,0n), f(101+ - +ynTn))=
=(@1 f(01)+ - Fzn f(Un), y1 f(01)+ - +yn f(Tn))=(T1€1+ - - - +T0 €0, y1E1+
+e +yn€n>:$1y1+ c Ty, Ale aj <$161+ co T Uy Y U1 +yn17n>:
=21Y1 (U1, 01)+ - - +20Yn (On, Un) =191+ - - +T0Yn-

O

Priklad. R™, euklidovsky izomorfizmus: f : R™—R" je napr. fa : R"—R", kde
AeM,.(R) a AAT=I,.



