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I. ZOBRAZENIA MEDZI MNOŽINAMI

Definícia 1.1. Nech A,B sú množiny. Zobrazenie z A do B je predpis, ktorý
každému prvku z A priradí práve jeden prvok z B. Ak tento predpis označíme f ,
tak hovoríme f : A→ B. f(a) = b znamená, že sme priradili prvku a∈A→ b∈B.
a je tzv. vzor prvku b. f : a→b. f(A)=obraz zobrazenia f . Im(f) je obraz množiny
A pri zobrazení Im(f) = {y∈B ∃x∈A : f(x)=y}

Definícia 1.2. Zobrazenia f : A→B, g : A→B sa rovnajú (f=g), ak pre ∀a∈A je
f(a)=g(a). f, g : N→N; f(x)=x+x; g(x)=2x

Definícia 1.3. Nech f : A→B je zobrazenie a nech A′ ⊂ A. Predpis, ktorý
každému prvku a∈A′ priradí f(a) sa nazýva zúženie zobrazenia f na podmnožinu
A′. Označenie: f |A′ : A′→B a f |A′(x)=f(x)

Definícia 1.4. f : A→B sa nazýva surjektívne ak f(A)=B. Zobrazenie f : A→B
je surjektívne ⇐⇒ ∀y∈B ∃x∈A : f(x)=y.

Definícia 1.5. Zobrazenie f : A→B sa nazýva injektívne ak z toho, že
f(a)=f(a′) vyplýva, že a=a′

Definícia 1.6. Zobrazenie f : A→B sa nazýva bijekcia ak je surjektívne aj injek-
tívne.

Definícia 1.7. Nech f : A→B, g : B→C sú dve zobrazenia, potom predpis
x∈A → g(f(x)) definuje zobrazenie A→C označíme ho g◦f :A→C, g◦f(x)=g(f(x))
pre ∀x∈A. Zobrazenie g◦f : A→C sa nazýva zobrazenie zložené z f a g resp. kom-
pozícia zobrazení f a g.

Tvrdenie 1.1.
1.) Ak f : A→B, g : B→C sú injekcie, tak aj g◦f : A→C je injekcia.
2.) Ak f : A→B, g : B→C sú surjekcie, tak aj g◦f : A→C je surjekcia.

Dôkaz. Predpokladajme, že g◦f(a)=g◦f(a′). Chceme ukázať, že a=a′.
Ale g(f(a))=g(f(a′)), lebo g je injektívne. Z toho: f(a)=f(a′). Ale aj f je injek-
tívne ⇒ a=a′.

□
Tvrdenie 1.2. Ak f : A→B, g : B→C, h : C→D sú zobrazenia,
tak h◦(g◦f)=(h◦g)◦f . To je tzv. asociatívnosť skladania zobrazení.

Dôkaz. h◦(g◦f)(x) = h((g◦f)(x))=h(g(f(x)));
(h◦g)◦f(x)=(h◦g)(f(x))=h(g(f(x)) : ∀x∈A

□
Veta 1.1 a Definícia 1.8. Nech f : A→B je bijekcia. Potom existuje zobrazenie
B→A, ktoré každému prvku b∈B priradí len jediný prvok a∈A, pre ktorý f(a)=b.
Toto je inverzné zobrazenie k f , označíme ho f−1. Teda f−1(b)=a ⇔ f(a)=b .
Zobrazenie f−1 : B→A je tiež bijektívne a platí: f−1◦f=idA, f◦f−1=idB.

Dôkaz.
1.)f−1 je injekcia: nech a=f−1(b)=f−1(b′) Potom f(a)=b a f(a)=b′ ⇒ b=b′. f−1

je injekcia.
2.)f−1 je surjekcia: ľubovoľné a∈A, f−1(f(a))=a, f−1 je bijekcia.

□
Tvrdenie 1.3. Ak f : A→B, g : B→A sú zobrazenia také, že g◦f=idA, tak f je
injekcia a g je surjekcia.

Dôkaz.
f je injekcia: Predpokladajme, že f(a) = f(a′)⇒ g(f(a)) = g(f(a′)) = (g◦f)(a′) =
= idA(a′) = a′.
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g je surjekcia: ľubovoľné a∈A ⇒ f(a)∈B, a=g(f(a)) ⇒ f(a) je vzor k prvku a pri
zobrazení g.

□

Veta 1.2. Zobrazenie f : A→B je bijektívne ⇔ keď existuje g : B→A také, že
g◦f=idA a f◦g=idB

Dôkaz. Predpokladajme, že f je bijektívne. Potom vieme, že ∃f−1 : B→A s tým, že
f−1◦f=idA. Predpokladajme, že ∃g : B→A : g◦f=idA a f◦g=idB . Z tvrdenia 1.3
dostávame, že f je injektívne aj surjektívne ⇒ bijektívne.

□

Binárne operácie.

Definícia 1.9. Binárna operácia na množine M ̸=∅ je zobrazenie M×M→M .
Binárne operácie označujeme rôznymi spôsobmi. Obraz dvojice (a, b)∈M×M po-
tom označujeme obyčajne a+b=+ (a, b) · · ·

Definícia 1.10. Nech ∗ :M×M→M je binárna operácia na M . Prvok e∈M taký,
že m∗e=m=e∗m pre ∀m∈M sa nazýva neutrálny prvok operácie ∗.

Pozn.. Binárna operácia nemusí mať neutrálny prvok.

Tvrdenie 1.4. Ak binárna operácia ∗ : M×M→M má neutrálny prvok, tak ho
má jediný.

Dôkaz. Keby e1, e2∈M boli neutrálne, tak e1=e1∗e2=e2 ⇒ e1=e2.
□

Definícia 1.11. Nech ∗ : M×M→M je binárna operácia a nech má neutrálny
prvok e∈M . Ak pre nejaké x∈M : ∃y∈M také, že x∗y=y∗x=e, tak y sa volá
inverzný prvok k x.

Označenie. Inverzný prvok k prvku x z predchádzajúcej definície označíme x−1.

Definícia 1.12. Binárna operácia je asociatívna, ak pre všetky a, b, c∈M máme:
a∗(b∗c)=(a∗b)∗c

Tvrdenie 1.5. Nech • : M×M→M je asociatívna binárna operácia a nech e∈M
je neutr. prvok tejto operácie. Potom ak pre x∈M existuje inverzný prvok, tak je
jediný.

Dôkaz. Nech pre x∈M by inverzné prvky boli dva: a∈M , b∈M . Teda: ax=xa=e,
bx=xb=e. Chceme ukázať, že a=b. Takto: a=ae=a(xb)=(ax)b=eb=b.

□

Definícia 1.13. Nech G̸=∅ je množina a nech ∗ : G×G→G je binárna operácia na
G s týmito vlastnosťami:
1.) binárna operácia ∗ je asociatívna
2.) v G existuje neutrálny prvok operácie ∗, označíme ho e, teda pre každé x∈G:
e∗x=x∗e=x
3.) ∀x∈G existuje v G inverzný prvok, vieme už, že to je jediný prvok x−1∈G taký,
že x∗x−1=x−1∗x=e.
Potom hovoríme, že dvojica (G, ∗) je grupa. (alebo G s operáciou ∗ je grupa). Ak
je operácia ∗ jasná, niekedy hovoríme, že G je grupa.

Príklad. Nech m∈N je pevne zvolené. Označme Zm množinu zvyškov po delení
celých čísel číslom m. Teda Zm={0, 1, · · · ,m− 1}. Definujme pre x, y∈Zm:
x⊕y je zvyšok po vydelení x+y číslom m. Potom ⊕ je binárna operácia na Zm.
Je asociatívna, neutrálny prvok je 0, inverzný prvok k x∈Zm je zvyšok po vydelení
čísla m−x číslom m. (Zm,⊕) je grupa.
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Definícia 1.14. Binárna operácia ∗:M×M→M na množine M ̸=∅ je komutatívna,
ak pre ∀a, b∈M : a∗b=b∗a. Ak túto vlastnosť nemá tak je nekomutatívna.

Definícia 1.15. Ak (G, ∗) je grupa a operácia ∗ je komutatívna, tak grupa G sa
nazýva komutatívna (alebo tiež abelovská).

Príklady.
1.)(R \ {0}, ·) je komutatívna grupa.
2.)G={e}, e∗e=e to je tzv. triviálna grupa.
3.)(Z,+), (Zm,⊕) sú komutatívne grupy.
4.) Nech M ̸=∅ je množina. Označme SM := množinu všetkých bijekcií M→M .
Skladanie zobrazení definuje binárnu operáciu ∗ na SM , t.j. f∗g=g◦f pre ∀f, g∈SM .
Potom (SM , ∗) je grupa. Nie je komutatívna.
5.) Ak M z 4.) je M={1, 2, · · · , n} čo je vlastne SM? S{1,2,··· ,n} je vlastne množina
permutácií prvkov 1, 2, · · · , n množiny {1, 2, · · · , n}. Permutáciu
f : {1, 2, · · · , n}→{1, 2, · · · , n} môžeme prehľadne zapísať ako f=

(
1 2 ... n

f(1) f(2) ... f(n)

)
Napr. pre S{1,2,3} je (S{1,2,3}, ∗) grupa, ktorá má 6 prvkov.
Napr.:

(
1 2 3
1 3 2

)
∗
(
1 2 3
2 1 3

)
=
(
1 2 3
2 3 1

)
kým

(
1 2 3
2 1 3

)
∗
(
1 2 3
1 3 2

)
=
(
1 2 3
3 1 2

)
.

S{1,2,3} je komutatívna grupa.

Veta 1.3. Nech (G, •) je grupa. Potom:
1.)(x−1)−1=x pre ∀x∈G
2.) (x•y)−1=y−1•x−1 pre ∀x, y∈G

Dôkaz.
1.) (x−1)−1 je inverzný prvok k x−1. Ale máme x•x−1=x−1•x=1 a teda inverzný
prvok k x−1 je x. Pretože inverzný prvok je jediný máme: (x−1)−1=x.
2.) Rátajme (x•y)•(y−1•x−1)=x•(y•y−1)•x−1=x•1•x−1=1
Podobne (y−1•x−1)•(x•y)=y−1•(x−1•x)•y=y−1•1•y=1⇒ 2.)

□

Podgrupa.

Definícia 1.16. Nech (G, •) je grupa. Nech U ̸=∅ je podmnožina v G s binárnou
operáciou ∗ : U×U→U takou, že pre každé x, y∈U platí x∗y=x•y. Ak (U, ∗) je
grupa, tak hovoríme, že (U, ∗) je podgrupa grupy (G, •). Voľnejšie tiež hovoríme, že
grupa U je podgrupou grupy G. Teda ak (U, ∗) je podgrupou v (G, •) tak zobrazenie
• |U×U : U×U→G je vlastne U teda (trochu nepresne) môžeme povedať, že v tejto
situácii je binárna operácia ∗ podgrupy U zúžením binárnej operácie • grupy G.

Veta 1.4. (kritérium podgrupy). Nech U ̸=∅ je podmnožina množiny G, pričom
nech (G, •) je grupa. Potom U je podgrupou grupy G práve vtedy, keď platí
ktorákoľvek z nasledujúcich dvoch ekvivalentných podmienok:
(I): pre ∀x, y∈U je x•y−1∈U
(II): pre ∀x, y∈U je x•y∈U a y−1∈U .

Dôkaz. U je podgrupa potom (I) ∧ (II)
Najskôr ukážeme, že (U, ∗) je podgrupa v (G, •). Označme 1U neutrálny prvok
grupy U , 1 je neutrálny prvok grupy G. Máme: 1U∗1U=1U= 1U•1U=1U•1 . Vyná-
sobením rovnosti zľava prvkom 1−1U dostávame: 1U=1. Teraz pre ľubovoľný
prvok y∈U označme y−1U k nemu inverzný prvok v podgrupe (U, ∗). (y−1 je inverzný
prvok k y v grupe (G, •)). Máme: yU∗y−1U =yU•y

−1
U =1U=1=y

−1
U ∗yU=y−1U •yU . Teda

z toho, čo je podčiarknuté vidíme, že k y je v G inverzný prvok y−1U . Ale tiež je
to y−1. Keďže inverzný prvok k prvku grupy je práve jeden, dostávame: y−1U =y

−1.
Teda pre x, y∈U máme aj x, y−1∈U . Pretože (U, ∗) je podgrupa, máme
x∗y−1=x•y−1∈U . To je práve (I). Analogicky sa dokáže, že ak (U, ∗) je podgrupa,
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tak platí (II).
Teraz predpokladajme, že je splnená podmienka (I). Chceme ukázať , že potom
(U, ∗) je podgrupa. Pretože U ̸=∅ máme ďalej prvok a∈U . Z (I) potom dostá-
vame, že a•a−1=1∈U Ďalej, ak y∈U je ľubovoľné, tak z podmienky (I) vyplýva
1•y−1=y−1∈U . Teraz pre ľubovoľné x, y∈U bude tiež x, y−1∈U . Z (I) potom
máme, že aj x•(y−1)−1=x•y∈U . Ináč povedané, predpis x∗y=x•y pre ľubovoľné
(x, y)∈U×U definuje binárnu operáciu ∗ : U×U→U . Operácia ∗ je asociatívna
(lebo • je taká), neutrálny prvok je, inverzný prvok y−1U =y−1, teda (U, ∗) je grupa.
Je to podgrupa v (G, •).

□
Homomorfizmy grúp.

Definícia 1.17. Nech (G, •), (H, ∗) sú grupy. Homomorfizmus z (G, •) do (H, ∗)
je zobrazenie f : G→H také, že f(x•y)=f(x)∗f(y) pre všetky x, y∈G.

Veta 1.5. Nech f : (G, •)→ (H, ∗) je homomorfizmus grúp. Potom
1.) f(1)=1.
2.) f(x−1)=(f(x))−1.

Dôkaz.
1.)1∗f(1)=f(1•1)=f(1)∗f(1)⇔ f−1(1)∗1∗f(1)=f−1(1)∗f(1)∗f(1)⇔ f(1)=1
2.) Nech x∈G je ľubovoľné. Potom x∗x−1=x−1∗x=1. Pretože f je homomorfiz-
mus a platí f(1)=1 máme, že f(x•x−1)=f(x)∗f(x−1)=f(x−1)∗f(x)=f(1)=1 z čoho
(f(x))−1=f(x−1).

□
Veta 1.6. Nech f : (G, •)→ (H, ∗) je homomorfizmus grúp. Ak S ̸=∅ je podgrupa
grupy G tak f(S) je podgrupa grupy H.

Dôkaz. Pretože S je podgrupa vieme, že 1∈S. Potom f(1)=1∈S, teda f(S)̸=∅.
Ďalej overíme (napr.) podmienku (I) z kritéria podgrupy pre f(S). Nech x, y∈f(S)
sú ľubovoľné . Teda x=f(a) a y=f(b) pre a, b∈S. Potom y−1=(f(b))−1=f(b−1)
z predchádzajúcej vety. Z toho x∗y−1=f(a)∗f(b−1)=f(a•b−1)∈f(S) totiž a•b−1∈S
keďže a, b∈S a S je podgrupa. Podmienka (I) je splnená a teda f(S) je podgrupa.

□
Definícia 1.18. Majme zobrazenie f : M→N a nech A⊂N . Vzor množiny A pri
zobrazení f označíme f−1(A) pritom f−1(A)={x∈M ; f(x)∈A}

Veta 1.7. Nech f : (G, •)→(H, •) je homomorfizmus grúp a nech S⊂H je podgrupa
grupy H. Potom f−1(S) je podgrupa grupy G.

Dôkaz. Vieme, že f(1)=1 pritom 1∈S, lebo S je podgrupa. Teda 1∈f−1(S) a preto
f−1 ̸=∅. Teraz použijeme kritérium podgrupy. Nech x, y∈f−1(S) sú ľubovoľné.
Chceme ukázať, že x•y−1∈f−1(S). Takto: pretože x, y∈f−1(S) máme f(x)∈S,
f(y)∈S. Pretože S je podgrupa, potom aj f(x)•(f(y))−1∈S. Pritom však vieme,
že f(y−1)=(f(y))−1. Teda máme f(x)•f(y−1)∈S ⇒ f(x•y−1)∈S. To znamená, že
x•y−1∈f−1(S).

□
Definícia 1.19. Nech f : (G, •)→(H, •) je homomorfizmus grúp. Vieme, že {1}⊂H
je podgrupa grupy H. Podgrupu f−1({1}) grupy G nazývame jadro homomorfizmu
f , označuje sa Ker(f). Teda Ker(f)={x∈G; f(x)=1}

Veta 1.8. Nech f : (G, •)→(H, •) je homomorfizmus grúp. Potom f je injekcia
⇔ Ker(f)={1}

Dôkaz.
⇒ : Nech f je injektívne zobrazenie. Chceme ukázať, že Ker(f)={1}. Takto:
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máme f(1)=1, a teda zrejme {1}⊂Ker(f). Ak x∈Ker(f), tak f(x)=1=f(1). Z in-
jektívnosti f vyplýva, že x=1. Teda tiež Ker(f)⊂{1}. Vcelku: Ker(f)={1}.
⇐ : Predpokladajme, že Ker(f) = 1. Chceme ukázať, že f je injektívne. Takto:
nech f(x) = f(y) pre dáke x, y∈G. Potrebujeme ukázať, že x = y. Z toho, že
f(x)=f(y) dostávame f(x)•(f(y))−1=1. Ale vieme, že f(y−1)=(f(y))−1. Teda
platí: f(x)•f(y−1)=1. Pretože f je homomorfizmus, z toho dostaneme:
f(x•y−1)=1. Teda: x•y−1∈Ker(f)={1}. To znamená, že x•y−1=1. Z toho
dostaneme, že x=y.

□
Definícia 1.20. Injektívny homomorfizmus grúp sa nazýva monomorfizmus.
Surjektívny homomorfizmus grúp sa nazýva epimorfizmus. Homomorfizmus grúp,
ktorý je bijektívny sa volá izomorfizmus. Ak (G, •) a (H, •) sú grupy a existuje
izomorfizmus f : (G, •)→(H, •) tak hovoríme, že grupy G a H sú izomorfné. Vtedy
stručne píšeme: f : G

∼=−→ H, alebo G∼=H.

Veta 1.9. Nech f : (G, •)→(H, •) je izomorfizmus grúp. Potom aj inverzné zob-
razenie f−1 : (H, •)→(G, •) je izomorfizmus grúp.

Dôkaz. Vieme, že f−1 : H→G existuje a že je bijekcia. Ešte treba ukázať, že f−1

je aj homomorfizmus grúp. Takto: nech x, y∈H sú ľubovoľné. Potom existujú
jednoznačne určené a, b∈G také, že f(a)=x, f(b)=y. Keďže f je homomorfizmus
máme f(a)•f(b)=f(a•b)=x•y; z toho: f−1(x•y)=a•b=f−1(x)•f−1(y).

□
Veta 1.10. Zloženie dvoch homomorfizmov grúp je znova homomorfizmus grúp.
Zloženie dvoch izomorfizmov grúp je znova izomorfizmus.

Dôkaz. Nech f : (G, •)→(H, •), t : (T, •)→(S, •) sú homomorfizmy grúp. Potom pre
∀x, y∈G je t◦f(x•y)=t(f(x•y))=t(f(x)•f(y))=t(f(x))•t(f(y))=(t◦f(x))•(t◦f(y)).

□
Relácie na množinách a faktorové grupy komutatívnych grúp.

Definícia 1.21. Relácia na množine M ̸=∅ je hocijaká podmnožina R⊂M×M .

Definícia 1.22. Relácia R na množine M ̸=∅ sa volá relácia ekvivalencie ak má
tieto vlastnosti:
1.)(x, x)∈R ∀x∈M (reflexívnosť relácie R)
2.) ak (x, y)∈R tak aj (y, x)∈R (symetrickosť)
3.) ak (x, y)∈R a (y, z)∈R tak aj (x, z)∈R (tranzitívnosť)

Definícia 1.23. Nech ∼ je relácia ekvivalencie na množine M ̸=∅. Potom pre
ľubovoľné y∈M označíme [y]={x∈M ;x∼y}. [y] sa volá trieda ekvivalencie určená
(reprezentovaná) prvkom y, y sa volá reprezentant triedy ekvivalencie [y].

Veta 1.11. Nech ∼ je relácia ekvivalencie na množine M ̸=∅ a nech [y] pre y∈M
znamená triedu reprezentovanú prvkom y. Potom:
1.)[y] ̸=∅ ∀y∈M
2.)[x]=[y]⇔ x∼y ∀x, y∈M
3.) ak [x] ̸=[y], tak [x]∩[y]=∅
4.)

∪
x∈M

[x]=M

Dôkaz.
1.)y∼y a vtedy y∈M .
2.) ⇐ : Nech x∼y. Chceme ukázať, že [x]=[y]. Nech a∈[x]. Potom a∼x, ale x∼y,
preto a∼y, a teda a∈[y]. Teda [x]⊂[y]. Analogicky sa dokáže [y]⊂[x], teda [x]=[y].
⇒ : Predpokladajme, že [x]=[y]. Potom x∈[x]=[y], teda x∈[y], preto x∼y.
3.) Predpokladajme, že [x]∩[y] ̸=∅. Teda existuje a∈[x]∩[y]. Potom a∼x a a∼y,
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teda x∼y.
4.) Je zrejmé, že

∪
x∈M
[x]⊂M . Nech teraz x∈M . Potom x∈[x], teda x∈

∪
x∈M
[x],

ukázali sme tiež, že M⊂
∪
x∈M

[x]. Teda M=
∪
x∈M

[x].

□

Veta 1.12. Nech (G,+) je komutatívna grupa a nech H je jej podgrupa. Definu-
jme reláciu ∼ na G takto: pre x, y∈G platí x∼y ⇔ x−y∈H. Potom ∼ je relácia
ekvivalencie.

Dôkaz.
Reflexívnosť: x−x=0∈H, teda x∼x ∀x∈G
Symetrickosť: nech x∼y. Potom x−y∈H. Ale H je podgrupa a preto aj −(x−y)∈H
teda y∼x.
Tranzitívnosť: nech x∼y a y∼z. Potom: x−y∈H a y−z∈H. Pretože H je podgrupa
máme, že (x−y)+(y−z)∈H. Teda x∼z.

□

Označenie. Množinu tried ekvivalencie na grupeG vzhľadom na reláciu ekvivalencie
z predchádzajúcej vety označíme G/H.(G podľa H)

Tvrdenie 1.5. Nech pre [x]∈G/H a [y]∈G/H je [x]⊕[y]=[x+y]. Potom
⊕ : G/H×G/H→G/H je dobre definované zobrazenie a teda ⊕ je binárna operácia
na množine G/H.

Dôkaz. Treba ukázať, že [x+y] nezávisí od výberu reprezentant tried [x] resp.
[y]. Nech [x]=[a], [y]=[b]. Chceme ukázať, že [a+b]=[x+y]. Takto: z toho, že
[x]=[a], [y]=[b] vieme, že x∼a, y∼b. Teda x−a∈H, y−b∈H. Pretože H je podgrupa
grupy G, máme tiež (x−a)+(y−b)∈H ⇔ (x+y)−(a+b)∈H. Z toho x+y∼a+b, teda
[x+y]=[a+b].

□

Veta 1.13 a Definícia 1.24. Nech G je komutatívna grupa a H je jej podgrupa.
Na množine G/H definujme binárnu operáciu ⊕ ako v predchádzajúcom tvrdení.
Potom (G/H;⊕) je komutatívna grupa. Táto grupa sa volá faktorová grupa grupy
G podľa podgrupy H.

Dôkaz. G/H ̸=∅, lebo [0]∈G/H.
Asociatívnosť operácie ⊕: [x]⊕([y]⊕[z])=[x+(y+z)]=[(x+y)+z]=[x+y]⊕[z]=
=([x]⊕[y])⊕[z], pre každé [x], [y], [z]∈G/H.
Existencia neutrálneho prvku: Pre každé [x]∈G/H máme [x]⊕[0]=[x+0]=[x]=
=[0+x]=[0]⊕[x], teda [0] je neutrálny prvok operácie ⊕.
Existencia inverzného prvku: Nech [x]∈G/H je ľubovoľné, potom [x]⊕[−x]=[x−x]=
=[0]=[−x]⊕[x], teda inverzný prvok k [x]∈G/H je [−x]∈G/H.
(G/H,⊕) je komutatívna grupa: [x]⊕[y]=[x+y]=[y+x]=[y]⊕[x].

□

Príklad. Nech m∈N je pevne zvolené. Zoberme G=Z s operáciou sčitovania a
H=mZ. Z/mZ={[0], [1], · · · , [m−1]}, [x]⊕[y]=[x+y] ∀x, y∈Z, (Z/mZ,⊕) je ko-
mutatívna grupa.

Tvrdenie 1.6. Nech H ̸={0} je podgrupa grupy (Z,+). Potom ∃m∈N také, že
H=mZ.

Dôkaz.

Nech m je najmenšie celé číslo patriace do H. Potom aj k·m=
k−krát︷ ︸︸ ︷

m+ · · ·+m∈H pre
∀k∈N \ {0}. Pretože H je podgrupa, máme tiež k·m∈H pre ∀k∈Z. Teda mZ⊂H.
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Ešte ukážeme, že H⊂mZ. Nech x∈H je ľubovoľný kladný prvok z H, ukážeme, že
x∈mZ (to stačí). Vieme, že x=q·m+r, pre jednoznačne určené q, r pričom 0≤r<m.
Z toho: r=x−q·m∈H. Keby r>0, tak by r bolo kladné číslo z H, menšie ako
najmenší kladný prvok z H –to je nemožné. Preto r=0, a teda x=q·m t.j. x∈mZ.
Tým sme ukázali, že aj H⊂mZ. Vcelku: H=mZ.

□
Veta 1.14. (o faktorovom izomorfizme): Nech (G,+) a (H,+) sú komutatívne
grupy a nech f : G→H je homomorfizmus grúp. Potom G/Ker(f)∼=Im(f).
Špeciálne, ak f je epimorfizmus, tak G/Ker(f)∼=H.

Dôkaz. Predpis, ktorý ľubovoľnému [x]∈G/Ker(f) priradí f(x)∈Im(f)=f(G),
dobre definuje zobrazenie f̄ :G/Ker(f)→Im(f). Treba ukázať, že ak [x]=[a], tak aj
f(x)=f(a). Takto: ak [x]=[a], tak x∼a, teda x−a∈Ker(f). Z toho f(x−a)=0∈H
t.j. f(x)− f(a) = 0, a teda f(x) = f(a). Ukázali sme, že f̄ : G/Ker(f)→ Im(f);
f̄([x]) = f(x) je dobre definované zobrazenie. f̄ je aj homomorfizmus grúp:
f̄([x] + [y]) = f̄([x+ y]) = f(x+ y) = f(x) + f(y) = f̄([x]) + f̄([y]) pre všetky
[x], [y] ∈ G/Ker(f). f̄ je monomorfizmus grúp: Nech f̄([x]) = f̄([y]). Potom
f(x)=f(y), a teda f(x)−f(y)=0, t.j. f(x−y)=0 t.j. x−y∈Ker(f). Teda x∼y,
preto [x]=[y]. f̄ je epimorfizmus grúp: pre ľubovoľné b∈Im(f) máme x∈G : f(x)=b.
Potom f̄([x])=f(x)=b⇒ f je izomorfizmus grúp.

□
Príklad. m∈N pevne zvolené. Zobrazenie φm : Z→Zm. φm(x)= zvyšok po vydelení
x číslom m. φm je epimorfizmus z grupy (Z,+) na (Zm,⊕).
Ker(φm)={x∈Z;m|x}=mZ. Z vety o faktorovom izomorfizme: Z/mZ∼=Zm.
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II. OKRUH,TELESO,POLE

Definícia 2.1. Nech R je množina v ktorej sú aspoň dva prvky. Nech sú na R
definované dve binárne operácie: + : R×R→R (”sčitovanie ”) a • : R×R→R
(”násobenie”). Hovoríme, že (R,+, •) je okruh, ak:
1.)(R,+) je komutatívna grupa.
2.)• je asociatívna: x•(y•z)=(x•y)•z ∀x, y, z∈R
3.)• je distributívna vzhľadom na sčitovanie: x•(y+z)=x•y+x•z
(x+y)•z=x•z+y•z Ak • je komutatívna, potom (R,+, •) s vlastnosťami 1.), 2.), 3.)
je komutatívny okruh. Ak •má neutrálny prvok, hovoríme o okruhu s 1, (R,+, •, 1).

Definícia 2.2. Okruh (R,+, •), v ktorom operácia • je komutatívna sa volá komu-
tatívny okruh.

Definícia 2.3. Nech (R,+, •) je okruh s 1, ak • |R∗ , kde R∗=R \ {0} nadobúda
hodnoty v R, t.j. ak • |R∗ definuje binárnu operáciu v R∗, a R∗ s touto operáciou
je grupa, tak (R,+, •, 1) sa nazýva teleso. Komutatívny okruh, ktorý je telesom sa
nazýva pole.

Veta 2.1. Nech (R,+, ·) je ľubovoľný okruh. Potom v ňom platia tieto pravidlá pre
rátanie:
1.)0·x=x·0 pre ∀x∈R
2.)(−x)·y=x·(−y)=−(x·y) pre ∀x, y∈R
3.) Ak R má 1, tak 1̸=0.
4.) Ak R je teleso, tak z toho, že x·y=0 vyplýva, že x=0 ∨ y=0.
5.) Ak R je teleso, tak x2=1⇔ x=1 ∨ x=−1.

Dôkaz.
1.)0·x=(0+0)·x=0·x+0·x⇔ 0=0·x.
2.)(x+(−x))·y=0·y=0
x·y+(−x)·y=0⇔ −(x·y)=(−x)·y.
3.) Pretože R má aspoň 2 prvky, existuje x∈R, x̸=0. Ak R má 1, tak x·0=0 podľa
1.) a x·1=1, keďže x ̸=0⇒ 1̸=0.
4.) Ak x ̸=0 a y ̸=0, tak treba dokázať x·y ̸=0. Takto: x̸=0,y ̸=0, tak x∈R∗ a y∈R∗,
ale R∗ je grupa ( vzhľadom na · |R∗) a preto x·y∈R∗ t.j. x·y ̸=0.
5.) ⇒ : Predpokladajme, že x2=1. Teda x2−1=0, t.j.(x−1)(x+1)=0

4.)⇒ x+1=0 ∨
x−1=0⇔ x=−1 ∨ x=1.
⇐ Pomocou 2.).

□

Lema 2.1.
Nech p, q∈N. Potom množina {p·x+q·y∈Z; x, y∈Z} je podgrupou v (Z,+), pričom
{p·x+q·y∈Z;x, y∈Z}=rZ, kde r je najväčší spoločný deliteľ čísel p, q.

Dôkaz. {p·x+q·y∈Z}≠∅. Kritérium podgrupy: p·x+q·y−(p·x′+q·y′) = p·(x−x′)+
+q·(y−y′)∈{p·x+q·y, x, y∈Z}. V (Z,+) sú všetky podgrupy tvaru: kZ, (pre ne-
jaké k∈N). Teda {p·x+q·y; x, y∈Z}=rZ. Treba ešte ukázať, že r je najväčší
spoločný deliteľ čísel p, q. p∈{p·x+q·y; x, y∈Z}, p=r·k, teda r|p. q∈{p·x+q·y;
x, y∈Z}, q=r·l, teda r|q. Nech c je nejaký spoločný deliteľ čísel p, q. Chceme ukázať,
že c|r. Ak c|p a c|q, tak c|p·x+q·y pre ∀x, y∈Z, a teda c je deliteľom každého prvku
z {p·x+q·y;x, y∈Z}=rZ, teda c|r·1 t.j. c|r.

□

Veta 2.2. Nech m∈N, m≥2. Potom (Z/mZ,⊕,⊙) je pole ⇔ m je prvočíslo.

Dôkaz.
⇒ : Predpokladajme, že Z/mZ je pole. (To znamená, že nenulové prvky tvoria
grupu.) Keby m nebolo prvočíslo, tak by m=m1·m2, kde m1,m2∈N, 1<m1<m
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1<m2<m. Potom [m1] ̸=0, [m2] ̸=0, ale [m1]·[m2]=[m1·m2]=[m]=[0]=0. Je to spor
s tým, že (Z/mZ)∗ je grupa.
⇐ : Predpokladajme, že m je prvočíslo. Chceme ukázať, že (Z/mZ,⊙) je grupa.
Na to stačí ukázať, že pre ľubovoľné nenulové 0̸=x∈Z/mZ existuje v (Z/mZ)∗ in-
verzný prvok vzhľadom na násobenie. Takto: pre [x]∈(Z/mZ)∗ máme m∤x, z toho:
najväčší spoločný deliteľm,x je 1. Potom z Lemy 2.1 vieme, že 1=a·x+b·y pre dáke
a, b∈Z. Z toho [1]=1=[a·x+b·y]=[a·x]+[b·y]=[a]·[x]+[0]⇔ [1]=[a]⊙[x] t.j. inverzný
prvok k [x] vzhľadom na násobenie je [a]∈(Z/mZ)∗.

□
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III. VEKTOROVÉ PRIESTORY

Definícia 3.1. Nech V ̸=∅ je množina, jej prvky budeme označovať: a⃗, · · · , x⃗. Nech
R je pole. Nech na V je definovaná binárna operácia + : V×V→V (budeme jej
hovoriť sčitovanie prvkov z V ) a nech okrem toho je dané zobrazenie R×V→V :
(α, x⃗) 7→ α·x⃗ (hovoríme mu násobenie prvkov z V prvkami z R.) V sa nazýva
vektorový priestor nad poľom R ak spĺňa axiómy:
1.)(V,+) je komutatívna grupa.
2.)α(x⃗+y⃗)=αx⃗+αy⃗ pre všetky α∈R, x⃗, y⃗∈V .
3.)(α+β)x⃗=αx⃗+βy⃗ pre ∀α, β∈R a ∀x⃗∈V
4.)α(βx⃗)=(αβ)x⃗ pre ∀α, β∈R, ∀x⃗∈V .
5.)1·x⃗=x⃗, pre ∀x⃗∈V .
Ak V je vektorový priestor, prvky z V sa volajú vektory, prvky z R sa volajú
skaláry.

Poznámka.
Neutrálny prvok vo vektorovom priestore (V,+) sa nazýva nulový vektor, ozn.: 0⃗.
Ak α∈R, x⃗∈V , tak α·x⃗ nazývame α-násobok vektora x⃗∈V .

Veta 3.1. Nech V je vektorový priestor nad poľom R. Potom ∀x⃗∈V, ∀α∈R:
1.)0·x⃗=0⃗.
2.)(−1)·x⃗=−x⃗.
3.)α·0⃗=0⃗

Dôkaz.
1.)x⃗=1·x⃗=(1+0)x⃗=1x⃗+0x⃗=x⃗+0x⃗⇔ 0x⃗=0⃗.
2.)(1+(−1))x⃗=0x⃗=0⃗. 1x⃗+(−1)x⃗=x⃗+(−1)x⃗. Teda x⃗+(−1)x⃗=0⃗, z čoho −x⃗=(−1)x⃗.
3.)α0⃗=α(x⃗+(−x⃗))=α(1x⃗+(−1)x⃗)=α(1+(−1))x⃗=α0x⃗=0x⃗=0⃗.

□

Definícia 3.2. Nech V je vektorový priestor nad poľom R a nech D ̸=∅ je pod-
množina vo V . D je vektorový podpriestor priestoru V , ak D je vektorový priestor
nad R, pričom sčitovanie v D a násobenie prvkov z D skalármi z R je zúžením
sčitovania vo V resp. násobenia prvkov z V skalármi z R.

Veta 3.2. (kritérium podpriestoru):
Nech V je vektorový priestor nad poľom R a nech D ̸=∅, D⊂V . D je vektorový
podpriestor priestoru V práve vtedy, keď je splnená hociktorá z týchto dvoch ekvi-
valentných podmienok:
(I.) ∀x⃗, y⃗∈D : x⃗+y⃗∈D a pre ľubovoľné α∈ R, x⃗∈D je αx⃗∈D.
(II.) ∀x⃗, y⃗∈D a ∀α, β∈R je αx⃗+βy⃗∈D.

Dôkaz. Predpokladajme, že D je vektorový podpriestor. Potom (I) je splnená
(z definície vektorového podpriestoru). Teraz predpokladajme, že je splnená (I).
+ z V je zúžené na D definuje na D binárnu operáciu +. Podľa (I) : 0x⃗=0⃗ patrí
doD. 0⃗ je neutrálny prvok operácie + naD. Pre x⃗∈D podľa (I) tiež (−1)x⃗=−x⃗∈D.
+ je asociatívne, komutatívne, vcelku (D,+) je komutatívna grupa. Okrem toho
z (I) vyplýva, že máme definované zobrazenie R×D→D. Operácia + a násobenie
prvkov z D prvkami z R majú potrebné vlastnosti (zdedené z V ); D je teda vek-
torový podpriestor priestoru V . Na ukončenie dôkazu vety stačí ukázať (I)⇔ (II).
Nech platí (I), nech α, β∈R a x⃗, y⃗∈D. Potom αx⃗∈D a βy⃗∈D (I)⇒ αx⃗+βy⃗∈D. Teda
(I) ⇒ (II). Nech platí (II). Potom pre ∀x⃗, y⃗∈D máme, že 1x⃗+1y⃗=x⃗+y⃗∈D. Pre
ľubovoľné α∈R a ľubovoľné x⃗∈D, podľa (II) : αx⃗+0x⃗=αx⃗∈D tj. aj (II)⇒ (I).

□

Veta 3.3. Nech S, T sú vektorové podpriestory vektorového priestoru V nad poľom
R. Potom S∩T je takisto vektorový podpriestor priestoru V .
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Dôkaz. S∩T ̸=∅, lebo 0⃗∈S∩T . Ukážeme, že S∩T spĺňa podmienku (II). Nech
α, β∈R, pre ∀x⃗, y⃗ ∈ S ∩ T sú ľubovoľné. Potom αx⃗+ βy⃗ ∈ S a αx⃗+ βy⃗ ∈ T ⇒
⇒ αx⃗+ βy⃗ ∈ S ∩ T . Čiže S aj T spĺňajú podmienku (II).

□

Veta 3.4. Nech {Sα, α∈A} (A indexová množina.) je ľubovoľný systém vektorových
podpriestorov vektorového priestoru V nad poľom R. Potom

∩
α∈A

Sα je vektorový

podpriestor priestoru V .

Dôkaz. Podobne ako vo V ete 3.3.
□

Definícia 3.3. Nech V je vektorový priestor nad poľom R a nech A ̸=∅ je pod-
množina vo V . Najmenší vektorový podpriestor priestoru V obsahujúci A je vek-
torový podpriestor S taký, že:
1.)A⊂S.
2.) Ak T je vektorový podpriestor vo V taký, že A⊂T , tak S⊂T .

Veta 3.5. Nech V je vektorový priestor nad poľom R a nech A je podmnožina vo V .
Potom najmenší vektorový podpriestor vo V obsahujúci A existuje a je jediný.

Dôkaz.
Jednoznačnosť: Nech by S a T boli najmenšie podpriestory obsahujúce A. Potom
T⊂S a S⊂T , teda S=T .
Existencia: Nech φ je systém všetkých vektorových podpriestorov obsahujúcich A.
φ ̸=∅, lebo V ∈φ. Potom

∩
S∈φ

S je najmenší podpriestor vo V obsahujúci A, lebo:

∀S∈φ máme A⊂S, a preto A⊂
∩
S∈φ

S, t.j. je splnená aj podmienka 2.) z Def 3.3.

Teda SA=
∩
S∈φ

S.

□

Definícia 3.4. Nech x⃗1, · · · , x⃗k sú vektory z vektorového priestoru V nad poľom
R, nech α1, · · · , αk∈R. Potom α1 · x⃗1+ · · ·+αk · x⃗k sa nazýva lineárna kombinácia
vektorov x⃗1, · · · , x⃗k s koeficientmi α1, · · · , αk. Ak α1= · · ·=αk=0, táto lineárna
kombinácia sa nazýva triviálna (a je to 0⃗). Ak niektoré αi ̸=0, tak lineárna kom-
binácia je netriviálna.

Veta 3.6. Nech x⃗1, · · · , x⃗k sú vektory z vektorového priestoru V nad R. Potom
M = {α1x⃗1+ · · ·+αkx⃗k∈V, αi∈R} je vektorový podpriestor vo V .

Dôkaz. Daná množina je neprázdna, lebo 0⃗∈M . Ďalej kritérium vektorového pod-
priestoru. Nech α, β∈R, α1x⃗1+ · · ·+αkx⃗k, β1x⃗1+ · · ·+βkx⃗k sú z tej množiny. Po-

tom α ·
k∑
i=1

αix⃗i+β ·
k∑
i=1

βix⃗i=
k∑
i=1

(ααi+ββi)x⃗i∈M , lebo ααi+ββi∈R.

□

Označenie. V situácii z predchádzajúcej vety označíme: [x⃗1, · · · , x⃗k]={α1x⃗1+ · · ·+
+αkx⃗k∈V ; αi∈R}.

Veta 3.7. Nech x⃗1, · · · , x⃗k sú vektory z vektorového priestoru V nad R a nech T⊂V
je vektorového podpriestor taký, že {x⃗1, · · · , x⃗k}⊂T . Potom aj [x⃗1, · · · , x⃗k]⊂T .

Dôkaz. Indukcia vzhľadom na maximálny počet nenulových koeficientov lineárnej
kombinácie vektorov x⃗1, · · · , x⃗k. Ak lineárna kombinácia α1x⃗1+ · · ·+αkx⃗k má ma-
ximálny počet nenulových koeficientov, tak patrí do T , lebo je to buď 0⃗, alebo
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nenulový násobok spomedzi x⃗1, · · · , x⃗k, v každom prípade táto lineárna kombiná-
cia patrí do T . Predpokladajme, že každá lineárna kombinácia vektorov x⃗1, · · · , x⃗k
s maximálne s− 1 (≤ k − 1) nenulovými koeficientmi patrí do T . Nech β1x⃗1+
+ · · ·+βsx⃗s je lineárna kombinácia s maximálne s nenulovými koeficientmi. Potom
β1x⃗1+ · · ·+βsx⃗s=(β1x⃗1+ · · ·+βs−1x⃗s−1)+βsx⃗s∈T ; T je vektorový podpriestor.

□
Veta 3.8.
Nech V je vektorový priestor nad R a nech {x⃗1, · · · , x⃗k} je ľubovoľná konečná pod-
množina vo V . Potom najmenší vektorový podpriestor je S{x⃗1,··· ,x⃗k}=[x⃗1, · · · , x⃗k].

Dôkaz. Stačí ukázať, že [x⃗1, · · · , x⃗k] má obidve vlastnosti najmenšieho vektorového
podpriestoru obsahujúceho množinu {x⃗1, · · · , x⃗k}.
1. {x⃗1, · · · , x⃗k}⊂[x⃗1, · · · , x⃗k].
2. Ak T⊂V je ľubovoľný podpriestor vo V obsahujúci {x⃗1, · · · , x⃗k}, tak
[x⃗1, · · · , x⃗k]⊂T platí podľa V ety 3.7. Z jednoznačnej určenosti vlastnosťami 1.), 2.)
vyplýva, že naozaj S{x⃗1,··· ,x⃗k}=[x⃗1, · · · , x⃗k].

□
Definícia 3.5. Nech V je vektorový priestor nad R a nech {x⃗1, · · · , x⃗k}⊂V . Po-
tom vektorový priestor [x⃗1, · · · , x⃗k]⊂V sa nazýva lineárny (vektorový) obal množiny
{x⃗1, · · · , x⃗k}. Vektory x⃗1, · · · , x⃗k sa nazývajú generátory vektorového priestoru
[x⃗1, · · · , x⃗k].

Veta 3.9. Nech V je vektorový priestor nad R a nech [x⃗1, · · · , x⃗k, a⃗]∈V . Po-
tom [x⃗1, · · · , x⃗k, a⃗]=[x⃗1, · · · , x⃗k] práve vtedy, keď a⃗ je lineárna kombinácia vektorov
x⃗1, · · · , x⃗k.

Dôkaz.
⇒ : Predpokladajme, že [x⃗1, · · · , x⃗k] = [x⃗1, · · · , x⃗k, a⃗]. Potom
[x⃗1, · · · , x⃗k, a⃗] ⊂ [x⃗1, · · · , x⃗k] teda a⃗ je lineárna kombinácia vektorov x⃗1, · · · , x⃗k.
⇐ : Predpokladajme, že a⃗ je lineárnou kombináciou x⃗1, · · · , x⃗k. Chceme ukázať,
že [x⃗1, · · · , x⃗k] = [x⃗1, · · · , x⃗k, a⃗]. Je zrejmé, že {x⃗1, · · · , x⃗k} ⊂ [x⃗1, · · · , x⃗k, a⃗] a
[x⃗1, · · · , x⃗k] ⊂ [x⃗1, · · · , x⃗k, a⃗]. Okrem toho, pretože a⃗ je lineárna kombinácia
x⃗1, · · · , x⃗k máme, že {x⃗1, · · · , x⃗k, a⃗}⊂[x⃗1, · · · , x⃗k], teda [x⃗1, · · · , x⃗k, a⃗]⊂[x⃗1, · · · , x⃗k].
Vcelku: [x⃗1, · · · , x⃗k, a⃗]=[x⃗1, · · · , x⃗k].
Z toho vyplýva, že najjednoduchší zápis lineárneho obalu [y⃗1, · · · , y⃗k] dostaneme
postupným vynechávaním tých vektorov, ktoré sú lineárnou kombináciou ostatných.

□
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IV. SYSTÉMY LINEÁRNYCH ROVNÍC

Definícia 4.1. Systém rovníc S:

a11x1 + · · ·+ a1nxn = b1
...

as1x1 + · · ·+ asnxn = bs
(všetky rovnice musia byť splnené súčasne) je systém s lineárnych rovníc s n
neznámymi x1, · · · , xn, ak aij∈R (i∈[1, s], j∈[1, n]) a bi∈R, kde R je dané pole.
Prvky poľa aij sa nazývajú koeficienty, b1, · · · , bn sa nazývajú absolútne členy
systému S.

Definícia 4.2. Usporiadaná n-tica (r1, · · · , rn)∈Rn je riešenie systému S, ak
r1, · · · , rk po dosadení xi=ri vyhovuje všetkým rovniciam S. Vyriešiť systém zna-
mená nájsť všetky jeho riešenia. Ak žiadna n-tica z Rn nie je riešením systému S,
hovoríme, že je neriešiteľný.

Definícia 4.3. Dva systémy lineárnych rovníc sú ekvivalentné ak majú tú istú
množinu riešení. Vyriešiť daný lineárny systém potom znamená vyriešiť hocijaký
s ním ekvivalentný systém.

Definícia 4.4. Ekvivalentné úpravy sú také, ktoré nemenia množinu riešení.

Veta 4.1. Nasledujúce úpravy sú ekvivalentné:
1.) Vzájomná výmena dvoch rovníc systému.
2.) Vynásobenie ľubovoľnej rovnice v S prvkom α ̸=0, α∈R.
3.) Pripočítanie ľubovoľnej rovnici v S inej rovnici v S.

Dôkaz. triviálny.
□

Zámer pri riešení systému S. :
Pomocou ekvivalentných úprav ho prevedieme na jednoduchý ekvivalentný systém,
ktorý už nie je problém vyriešiť.

Gaussova eliminačná metóda.
Predpokladajme, že niektorý z koeficientov pri x1 v S je nenulový. Môžeme

priamo predpokladať, že a11 ̸=0.
1. krok. Pomocou prvej rovnice vylúčime x1 z druhej · · · , s-tej rovnice. Takto:
k druhej rovnici prirátame −(a−111 a21)-násobok prvej rovnice, · · · atď, až k s-tej
rovnici prirátame −(a−111 as1)-násobok prvej rovnice. Dostaneme ekvivalentný systém
S∗ tvaru:

a11x1+a12x2+ · · ·+a1nxn=b1
ā22x2+ · · ·+ā2nxn=b2

...

ās2x2+ · · ·+āsnxn=bn
V S∗ môžu byť rovnice s ľavou aj pravou stranou nulovou, tie vynecháme. V S∗ sa
môže vyskytnúť rovnica s ľavou stranou nulovou, kým jej pravá strana je nenulová.
Ak sa stane takéto niečo, potom systém S∗ a teda aj S je neriešiteľný.
Po konečnom počte opakovaní prvého kroku dostaneme systém V tvaru:

c11y1+c12y2+ · · ·+c1kyk+ · · ·+c1nyn=d1
c22y2+ · · ·+c2kyk+ · · ·+c2nyn=d2

...

ckkyk+ · · ·+cknyn=dk
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kde y1, · · · , yn vznikli (príp. viacnásobným) premenovaním neznámych x1, · · · , xn,
pritom k≤s a k≤n. Navyše c11 ̸=0, · · · , cii ̸=0, · · · , ckk ̸=0.
Ak k=n, tak V vyzerá takto:

c11y1+ · · ·+c1nyn=d1
c21y2+ · · ·+c2nyn=d2

...

cn−1,n−1yn−1+cn−1,nyn=dn−1
cnnyn=dn

a teda vyrátame z poslednej rovnice yn=dnc−1nn, dosadíme do predposlednej, z nej
vyrátame yn−1, · · · atď, až napokon y1. Vtedy V má práve jedno riešenie. Spätným
premenovaním dostaneme tú jedninú n-ticu v R, ktorá je riešením systému S.
Ak k<n, tak y1, · · · , yk sú viazané rovnicami systému V , kým neznáme yk+1, · · · , yn
považujeme za tzv. voľné neznáme (parametre), nadobúdajú ľubovoľné hodnoty
z R. Zo systému V potom postupne, počnúc od poslednej rovnice, vyrátame
yk, yk−1, · · · , y1 pomocou parametrov yk+1, · · · , yn. Takto dostaneme všeobecné vy-
jadrenie riešenia systému V pomocou parametrov yk+1, · · · , yn. Spätným premen-
ovaním neznámych dostaneme z toho všeobecné vyjadrenie riešenia systému S po-
mocou n−k parametrov.
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V. LINEÁRNA ZÁVISLOSŤ A NEZÁVISLOSŤ VEKTOROV

Definícia 5.1. Nech V je vektorový priestor nad R a nech x⃗1, · · · , x⃗k∈V sú dané
vektory. Hovoríme, že x⃗1, · · · , x⃗k sú lineárne závislé, ak 0⃗ sa dá vyjadriť ako netriv-
iálna lineárna kombinácia vektorov x⃗1, · · · , x⃗k. Vektory x⃗1, · · · , x⃗k sa nazývajú
lineárne nezávislé ak nie sú lineárne závislé.

Veta 5.1. Nech x⃗1, · · · , x⃗k sú navzájom rôzne nenulové vektory vektorového pries-
toru V nad R, nech k ≥ 2. Potom platí: x⃗1, · · · , x⃗k sú lineárne závislé ⇔ niektorý
z nich je lineárna kombinácia ostatných.

Dôkaz.
Predpokladajme, že x⃗1, · · · , x⃗k sú lineárne závislé. Teda existujú α1, · · · , αk∈R nie

všetky nulové, také, že 0⃗ =
k∑
i=1

αi·x⃗i. Povedzme, že αi ̸= 0, teda α1x⃗1+ · · ·+αix⃗i+

+ · · ·+αkx⃗k=0⃗. Z toho: αix⃗i=−α1x⃗1− · · ·−αi−1x⃗i−1−αi+1x⃗i+1− · · ·−αkx⃗k, teda:

xi=−α−1
i ·

k∑
j=1,j ̸=i

αj x⃗j .

Opačne: Predpokladajme, že napr. x⃗i je lineárnou kombináciou ostatných.

Teda x⃗i=
k∑

j=1,j ̸=i

βj x⃗j ⇒ β1x⃗1+ · · ·+βi−1x⃗i−1−βix⃗i+βi+1x⃗i+1+ · · ·+βkx⃗k=0⃗.

Teda x⃗1, · · · , x⃗k sú lineárne závislé.
□

Veta 5.2. Nech V je vektorový priestor nad R, nech {x⃗1, · · · , x⃗k}⊂V−{0⃗}. Potom
x⃗1, · · · , x⃗k sú lineárne závislé práve vtedy, keď niektorý z týchto vektorov je lineárnou
kombináciou tých, čo sú napísané pred ním.

Dôkaz.
Predpokladajme, že x⃗1, · · · , x⃗k sú lineárne závislé. Teda existujú α1, · · · , αk∈R nie

všetky nulové také, že 0⃗=
k∑
i=1

αix⃗i. Nech j je najvyšší index taký, že αj ̸=0. Teda

0⃗=
j∑
i=1

αix⃗i. pričom αj ̸=0. Potom j≥2, lebo keby j=1, tak by sme mali α1x⃗1=0⃗,

α1 ̸=0, teda x⃗1=0⃗ –spor.
Opačne: Nech niektorý z x⃗1, · · · , x⃗k je lineárnou kombináciou tých, čo sú napísané
pred ním. Potom je lineárnou kombináciou aj ostatných, lebo stačí tie, čo sú za
ním zobrať s koeficientom 0. Z V ety 5.1 sú lineárne závislé.

□

Dôsledok. Nech V je vektorový priestor nad R, nech {x⃗1, · · · , x⃗k}⊂V − {0⃗}. Po-
tom x⃗1, · · · , x⃗k sú lineárne závislé práve vtedy, keď existuje j∈{1, 2, · · · , k}, že
[x⃗1, · · · , x⃗k]=[x⃗1, · · · , x⃗j−1, x⃗j+1, · · · , x⃗k].

Dôkaz. Zrejmý.
□

Poznámka. Z dôsledku vyplýva návod na hľadanie najkratšieho zápisu lineárneho
obalu. Ak x⃗1, · · · , x⃗k sú lineárne nezávislé, tak zápis [x⃗1, · · · , x⃗k] je najkratší. Ak
x⃗1, · · · , x⃗k sú lineárne závislé, tak niektorý z nich je lineárnou kombináciou ostat-
ných, ten vynecháme, pričom lineárny obal zvyšných: [x⃗1, · · · , x⃗k], ak tie zvyšné
vektory sú lineárne nezávislé, tak sme skončili; ak sú lineárne závislé tak opakujeme
predchádzajúci krok. Po konečnom počte krokov dostaneme vyjadrenie [x⃗1, · · · , x⃗k]
pomocou lineárne nezávislej podmnožiny množiny {x⃗1, · · · , x⃗k}.
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Steinitzova veta. Nech vektorový priestor V ̸= {0⃗}, V = [x⃗1, · · · , x⃗k]. Nech
{y⃗1, · · · , y⃗j}⊂V je lineárne nezávislá podmnožina. Potom platia:
1◦ j≤k
2◦ Spomedzi x⃗1, · · · , x⃗k existuje k−j vektorov, ktoré spolu s y⃗1, · · · , y⃗j generujú celý
priestor V .

Dôkaz. Indukcia vzhľadom na j.
1◦ Pre j=1: y⃗1 je lineárne nezávislý práve vtedy, keď y⃗1 ̸=0⃗, pretože V ̸={0⃗},
máme j=1≤k. Teda 1◦ platí. Máme V=[x⃗1, · · · , x⃗k], ale y⃗1∈V tj. y⃗1 je lineárna
kombinácia x⃗1, · · · , x⃗k, teda množina {y⃗1, x⃗1, · · · , x⃗k} je lineárne závislá. Potom
V=[x⃗1, · · · , x⃗k]=[y⃗1, x⃗1, · · · , x⃗k]. Vektory y⃗1, x⃗1, · · · , x⃗k sú lineárne závislé, teda
niektorý z nich je lineárna kombinácia tých, čo sú napísané pred ním. y⃗1 to nemôže
byť, teda je to niektorý spomedzi x⃗1, · · · , x⃗k. Povedzme, že to je x⃗k. Potom
V=[x⃗1, · · · , x⃗k]=[y⃗1, x⃗1, · · · , x⃗k−1]. Tým sme overili, že platí 2◦.
2◦ Predpokladajme, že veta platí pre j=s−1. Nech teraz {y⃗1, · · · , y⃗s} je ľubovoľná
lineárne nezávislá podmnožina vo V . Chceme ukázať, že veta platí aj pre j=s.
Aj množina {y⃗1, · · · , y⃗s−1} je lineárne nezávislá. Podľa indukčného predpokladu
1◦ platí: s−1≤k a 2◦ y⃗1, · · · , y⃗s−1 sa dajú k−(s−1) vektormi spomedzi x⃗1, · · · , x⃗k
doplniť tak, že spolu generujú celý priestor V . Povedzme, že tie ”doplňujúce”
vektory sú x⃗1, · · · , x⃗k−s+1. Teda V=[x⃗1, · · · , x⃗k]=[y⃗1, · · · , y⃗s−1, x⃗1, · · · , x⃗k−s+1].
Chceme ukázať, že s≤k. Ukážeme, že s−1<k. Keby s−1=k tak by sme mali, že
V=[x⃗1, · · · , x⃗k]=[y⃗1, · · · , y⃗s−1]. Ale y⃗s∈V , teda by mal byť lineárnou kombináciou
vektorov y⃗1, · · · , y⃗s−1, to je spor s tým, že y⃗1, · · · , y⃗s sú lineárne nezávislé. Ďalej:
V=[x⃗1, · · · , x⃗k]=[y⃗1, · · · , y⃗s, x⃗1, · · · , x⃗k−s+1]. Teraz y⃗s∈V , teda y⃗s je lineárna kom-
binácia vektorov y⃗1, · · · , y⃗s−1, x⃗1, · · · , x⃗k−s+1. Teda y⃗1, · · · , y⃗s, x⃗1, · · · , x⃗k−s+1 sú
lineárne závislé. Z vety vieme, že niektorý z nich je lineárna kombinácia tých, čo sú
pred ním. Nemôže to byť žiadny spomedzi y⃗1, · · · , y⃗s, lebo sú lineárne nezávislé a
teda je to miektorý spomedzi x⃗1, · · · , x⃗k−s+1, povedzme, že to je posledný x⃗k−s+1.
Ten môžeme vynechať a podľa vety 5.2: V=[y⃗1, · · · , y⃗s, x⃗1, · · · , x⃗k−s]. Teda aj 2◦
je pre y⃗1, · · · , y⃗s v poriadku.

□

Báza a dimenzia.
V=[x⃗1, · · · , x⃗k]. Dá sa každý vektorový priestor napísať ako lineárny obal koneč-

nej množiny vektorov? (tj. dá sa generovať konečnou množinou)
Odpoveď: NIE.

Príklad. R[t] všetky polynómy. p(t)=
∞∑
i=0

ait
i iba konečne veľa ai je nenulový. R[t] je

vektorový priestor nad R. Stupeň
∞∑
i=0

ait
i je s, ak s ̸=0, ale as+1, · · · sú nuly. Keby

existovali polynómy q1(t), · · · , qk(t)∈R[t] také, že R[t]=[q1(t), · · · , qk(t)], tak po-
tom pre n>max{deg(q1(t)), · · · ,deg(qk(t))} by polynóm tn /∈R[t]. Teda vektorový
priestor R[t] sa nedá generovať konečnou množinou.

Definícia 5.2. Vektorový priestor V sa nazýva konečne generovaný ak existuje
konečná množina {x⃗1, · · · , x⃗k}⊂V taká, že V=[x⃗1, · · · , x⃗k]. Ak V nie je konečne
generovaný, hovoríme, že je nekonečne generovaný.

Definícia 5.3. Nech V ̸={0⃗} je konečne generovaný vektorový priestor nad R. Po-
tom usporiadaná množina (⃗a1, · · · , a⃗k) vektorov z V sa nazýva báza priestoru V ,
ak:
1◦: V=[⃗a1, · · · , a⃗k].
2◦: a⃗1, · · · , a⃗k sú lineárne nezávislé.
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Veta 5.3. Každý konečne generovaný vektorový priestor V ̸={0⃗} nad R má bázu.

Dôkaz. Keďže V je konečne generovaný, existuje konečná množina {x⃗1, · · · , x⃗p}⊂V ,
pre ktorú [x⃗1, · · · , x⃗p]=V . Ak x⃗1, · · · , x⃗p sú lineárne nezávislé, tak tvoria bázu.
Ak nie, tak niektorý z nich je lineárna kombinácia zvyšných, potom lineárny obal
zvyšných =V . Ak tie zvyšné sú lineárne nezávislé, tak tieto tvoria bázu priestoru
V , ak sú lineárne závislé, tak zas zopakujeme predchádzajúcu úvahu. Po konečnom
počte krokov dostaneme podmnožinu množiny {x⃗1, · · · , x⃗p}, ktorá už je lineárne
nezávislá a jej lineárny obal je celé V . Tá je báza priestoru V .

□
Príklad.
Rn má bázu: [(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1)] = [e⃗1, e⃗2, · · · , e⃗n]. To je
tzv. štandardná báza v Rn.

Veta 5.4. Všetky bázy nenulového konečne generovaného vektorového priestoru
majú rovnaký počet prvkov.

Dôkaz. Nech (⃗a1, · · · , a⃗s), (⃗b1, · · · , b⃗q) sú dve bázy takého vektorového priestoru.
Potom zo Steinitzovej vety: s≤q a q≤s a teda s=q.

□
Definícia 5.4. Počet prvkov (ľubovoľnej) bázy konečne generovaného nenulového
vektorového priestoru V nad R sa nazýva dimenzia priestoru V nad poľom R, ozn:
dimR(V ) (alebo dim(V ) ak je R jasné z kontextu).

Dimenzia nulového priestoru je 0. dim({0⃗})=0
Dimenzia priestoru, ktorý je nekonečne generovaný je ∞. dim(V )=∞.

Príklady.
1. dimC C=1
2. dimR C=2
3. dimRn=n
4. dimR[t]=∞

Veta 5.5. Každú lineárne nezávislú množinu nenulového konečne generovaného
vektorového priestoru môžeme doplniť na jeho bázu.

Dôkaz. Nech V je taký priestor, nech {y⃗1, · · · , y⃗j}⊂V je lineárne nezávislá. Keďže
V je konečne generovaný, existujú x⃗1, · · · , x⃗k∈V . (x⃗1, · · · , x⃗k) je báza vo V . Zo
Steinitzovej vety : j≤k, y⃗1, · · · , y⃗j sa dajú doplniť k−j vektormi spomedzi x⃗1, · · · ,
x⃗k tak, že týchto k vektorov generuje celé V . Tieto vektory však musia byť aj
lineárne nezávislé. (Keby boli lineárne závislé, tak by V mal bázu s nanajvýš k−1
prvkami. Spor s dimenziou.) Teda y⃗1, · · · , y⃗j spolu s tými, doplňujúcimi vektormi
tvoria bázu priestoru V .

□
Veta 5.6. Ak dim(V )=n, tak n+1 vektorov z V je vždy lineárne závislých.

Dôkaz. dim(V )=n, teda vo V existuje n−prvková báza (⃗a1, · · · , a⃗n). Keby ľubovoľ-
ná n+1-prvková množina lineárne nezávislá, tak podľa Steinitzovej vety by bolo
n+1≤n, čo je spor.

□
Veta 5.7. Nech dim(V )=n. Potom:
1. usporiadaná množina (⃗a1, · · · , a⃗n) n vektorov z V je bázou vo V práve vtedy, keď
{a⃗1, · · · , a⃗n} je lineárne nezávislá.
2. (⃗a1, · · · , a⃗n) je bázou vo V práve vtedy, keď V=[⃗a1, · · · , a⃗n].

Dôkaz.
1.⇒: jasné.
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⇐: Predpokladajme, že {a⃗1, · · · , a⃗n} je lineárne nezávislá. Podľa vety 5.5 túto
množinu môžeme doplniť n−n=0 vektormi z V na bázu vo V . t.j.už (⃗a1, · · · , a⃗n) je
báza.
2.⇒: jasné
⇐: Predpokladajme, že V=[⃗a1, · · · , a⃗n]. Chceme ukázať, že a⃗1, · · · , a⃗n sú aj
lineárne nezávislé. Keby boli lineárne závislé, postupným vynechávaním tých, ktoré
sú lineárnou kombináciou zvyšných by sme dostali bázu, ktorá by mala nanajvýš
n−1 prvkov. Spor s tým, že dim(V )=n. Teda všetky bázy majú n prvkov.

□
Veta 5.8 a Definícia 5.5. Nech V ̸={0⃗} je konečne generovaný vektorový priestor
nad R. Potom množina (⃗a1, · · · , a⃗n) je bázou vo V práve vtedy, keď každý vektor
z V sa dá jediným spôsobom vyjadriť ako lineárna kombinácia vektorov a⃗1, · · · , a⃗n.
Ak (⃗a1, · · · , a⃗n) je báza vo V a pre x⃗∈V máme x⃗=x1a⃗1+ · · ·+xna⃗n. Tak uspo-
riadaná n-tica (x1, · · · , xn)∈Rn sa nazýva n-tica súradníc vektora x⃗ vzhľadom na
bázu (⃗a1, · · · , a⃗n).

Dôkaz.
⇒ : Predpokladajme, že (⃗a1, · · · , a⃗n) je báza v priestore V . Teda V=[⃗a1, · · · , a⃗n]
t.j. pre ľubovoľný vektor x⃗∈V ∃x1, · · · , xn∈R také, že x⃗=x1a⃗1+ · · ·+xna⃗n. Keby
x⃗=x′1a⃗1+ · · ·+x′na⃗n bolo iné také vyjadrenie, tak x1a⃗1+ · · ·+xna⃗n=x′1a⃗1+ · · ·+
+x′na⃗n ⇔ (x1−x′1)⃗a1+ · · ·+(xn−x′n)⃗an=0⃗. Ale a⃗1, · · · , a⃗n tvoria bázu, sú aj lineár-
ne nezávislé, preto x1−x′1=0, · · · , xn−x′n=0⇔ xi=x′i. čsmd.
⇐ : Predpokladajme, že každý vektor z V sa dá jediným spôsobom vyjadriť ako
lineárna kombinácia a⃗1, · · · , a⃗n. Teda V⊂[⃗a1, · · · , a⃗n]. Ešte ukážeme, že a⃗1, · · · , a⃗n
sú lineárne nezávislé. Nech α1a⃗1+ · · ·+αna⃗n=0⃗. Tiež: 0a⃗1+ · · ·+0a⃗n=0⃗, keďže
vyjadrenie 0 ako lineárna kombinácia vektorov a⃗1, · · · , a⃗n je podľa predpokladu
jediné, tak máme: α1= · · ·=αn=0.

□
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VI. LINEÁRNE A DIREKTNÉ SÚČTY
VEKTOROVÝCH PRIESTOROV

Ak S, T sú vektorové podpriestory vektorového priestoru V , tak S∪T nemusí byť
vektorový podpriestor vo V . Aký je najmenší podpriestor vo V , obsahujúci S∪T?

Veta 6.1 a Definícia 6.1. Nech S, T⊂V sú vektorové podpriestory. Potom
{s⃗+t⃗∈V , s⃗∈S, t⃗∈T} je vektorový podpriestor vo V , nazýva sa lineárny súčet S
a T , ozn. S+T .

Dôkaz. 0⃗∈{s⃗+t⃗∈V, s⃗∈S, t⃗∈T}≠∅, lebo 0⃗+0⃗=0⃗. Ak x⃗, y⃗∈{s⃗+t⃗, s⃗∈S, t⃗∈T}, tak
x⃗=s⃗1+t⃗1, y⃗=s⃗2+t⃗2, potom αx⃗+βy⃗=α(s⃗1+t⃗1)+β(s⃗2+t⃗2)= (αs⃗1+βs⃗2)︸ ︷︷ ︸

∈S

+(αt⃗1+βt⃗2)︸ ︷︷ ︸
∈T

,

teda αx⃗+βy⃗∈{s⃗+t⃗, s⃗∈S, t⃗∈T}.
□

Tvrdenie. S+T je najmenší podpriestor obsahujúci S∪T .

Lema 6.1. Ak P je vektorový podpriestor konečne generovaného vektorového
priestoru V , tak aj P je konečne generovaný.

Dôkaz. : dú.
□

Veta 6.2. Predpokladajme, že V je konečne generovaný vektorový priestor nad R,
nech S, T sú jeho podpriestory. Potom dim(S+T )=dim(S)+dim(T )− dim(S∩T ).

Dôkaz.
1. Predpokladajme, že S∩T={0⃗}. Nech x⃗1, · · · , x⃗s je báza v S, (y⃗1, · · · , y⃗t) je
báza v T . Potom S+T=[x⃗1, · · · , x⃗s, y⃗1, · · · , y⃗t]. Navyše (x⃗1, · · · , x⃗s, y⃗1, · · · , y⃗t) je
báza v S+T . Stačí ukázať ich lineárna nezávislosť. Keby boli lineárne závislé,
potom jeden z nich by bol lineárna kombináciou tých, čo sú pred ním. Nemôže
byť žiadny z x⃗1, · · · , x⃗s, lebo tie tvoria bázu v S. Teda musí to byť dajaké y⃗i:
y⃗i=a1x⃗1+ · · ·+asx⃗s+b1y⃗1+ · · ·+bi−1y⃗i−1, z toho y⃗i−b1y⃗1− · · ·−bi−1y⃗i−1︸ ︷︷ ︸

̸=0⃗,∈T∩S={0⃗}, spor

=α1x⃗1+

+ · · ·+αsx⃗s. dim(S+T )=s+t=dim(S)+dim(T ).
2. S∩T ̸={0⃗}: Nech (z⃗1, · · · , z⃗r) je báza v S∩T . S∩T je podpriestor v S aj v T .
Podľa Steinitzovej vety doplňme (z⃗1, · · · , z⃗r) na bázu (z⃗1, · · · , z⃗r, x⃗1, · · · , x⃗s) v S
resp. na bázu (z⃗1, · · · , z⃗r, y⃗1, · · · , y⃗t) v T . Teda dim(S)=r+s, dim(T )=r+t. Máme
S+T=[z⃗1, · · · , z⃗r, x⃗1, · · · , x⃗s, y⃗1, · · · , y⃗t]. Navyše z⃗1, · · · , z⃗r, x⃗1, · · · , x⃗s, y⃗1, · · · , y⃗t sú
lineárne nezávislé, teda tvoria bázu v S+T . Nech by boli lineárne závislé. Teda niek-
torý je lineárna kombinácia tých, čo sú pred ním. Nemôže to byť žiadny spomedzi
z⃗1, · · · , z⃗r, x⃗1, · · · , x⃗s lebo tvoria bázu v S. Teda existuje i:

(∗) y⃗i=γiz⃗1+ · · ·+γr z⃗r+α1x⃗1+ · · ·+αsx⃗s+β1y⃗1+ · · ·+βi−1y⃗i−1.
Z toho y⃗i−β1y⃗1− · · ·−βi−1y⃗i−1︸ ︷︷ ︸

∈T

= γ1z⃗1+ · · ·+γr z⃗r+α1x⃗1+ · · ·+αsx⃗s︸ ︷︷ ︸
∈S

∈S∩T ⇒

⇒ γ1z⃗1+ · · ·+γr z⃗r+α1x⃗1+ · · ·+αsx⃗s = δ1z⃗1+ · · ·+δr z⃗r ⇔ (γ1−δ1)z⃗1+ · · ·+(γr−
−δr)z⃗r+α1x⃗1+ · · ·+αsx⃗s=0⃗. Z toho, že z⃗1, · · · , z⃗r, x⃗1, · · · , x⃗s sú lineárne nezávislé
máme, že α1= · · ·=αs=0. Teda z (∗): y⃗i=γ1z⃗1+ · · ·+γr z⃗r+β1y⃗1+ · · ·+βi−1y⃗i−1
spor s tým, že (z⃗1, · · · , z⃗r, y⃗1, · · · , y⃗t) je báza. Teda naozaj (z⃗1, · · · , z⃗r, y⃗1, · · · , y⃗t, x⃗1,
· · · , x⃗s) je báza v S+T . Teda dim(S+T ) = r+s+t = dim(S)+r+t−r = dim(S)+
+dim(T )− dim(S∩T ).

□

Definícia 6.2. Ak S, T sú vektorové podpriestory priestoru V a S∩T={0⃗}, tak
vektorový podpriestor S+T sa nazýva direktný súčet vektorových podpriestorov S
a T . ozn. S⊕T .
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Dôsledok formuly dimenzie: Ak S, T sú podpriestory konečne generovaného vek-
torového priestoru V a S∩T={0⃗}, tak dim(S⊕T )=dim(S)+dim(T ). Teraz vieme,
že ak (x⃗1, · · · , x⃗s) je báza v S, a (y⃗1, · · · , y⃗t) je báza v T , tak (x⃗1, · · · , x⃗s, y⃗1, · · · , y⃗t)
je báza pre (S⊕T ).

Veta 6.3. Nech S, T, P sú vektorové podpriestory priestoru V . Potom P je direkt-
ným súčtom S a T (P=S⊕T ) práve vtedy, keď každý vektor z P sa dá jediným
spôsobom vyjadriť ako súčet vektora z S a vektora z T .

Dôkaz.
⇒ : Predpokladajme, že P=S⊕T . Potom je samozrejme pravda, že každý vektor
z P je súčet vektora z S a vektora z T . Nech by existovali dve takéto vyjadrenia
x⃗∈P : x⃗=s⃗1+t⃗1=s⃗2+t⃗2, s⃗1, s⃗2∈S, t⃗1, t⃗2∈T . Potom s⃗2−s⃗1=t⃗1−t⃗2∈(S∩T )={0⃗} ⇒
s⃗1=s⃗2 a t⃗1=t⃗2.
⇐ : Predpokladajme, že každý vektor z P má jediné vyjadrenie v tvare ”vektor
z S + vektor z T”. Teda P=S+T . Teraz nech a⃗∈S∩T . Potom a⃗= a⃗︸︷︷︸

∈S

+ 0⃗︸︷︷︸
∈T

=

= 0⃗︸︷︷︸
∈S

+ a⃗︸︷︷︸
∈T

, keďže takéto vyjadrenie je jediné, máme a⃗=0⃗. Dokázali sme, že

S∩T={0⃗}. Vcelku: P=S⊕T .
□
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VII. MATICE

Definícia 7.1. Matica typu k×s nad poľom R je tabuľka (obdĺžniková), v ktorej
k·s prvkov z R rozmiestňujeme do k riadkov a s stĺpcov. Všeobecný zápis:

a11 · · · a1s
a21 · · · a2s
...
. . .

...
ak1 · · · aks


aij∈R, i−riadkový index, j−stĺpcový index. Matice označujeme: A,B, · · · . Struč-
nejší všeobecný zápis: A=(aij)k,s alebo len A=(aij) ak k, s je jasné z kontextu. Ak
A=(aij)k,s kde k=s, tak A sa volá štvorcová matica stupňa k.
Jednotková matica stupňa n:

In=


1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1


Definícia 7.2. Dve matice toho istého typu nad tým istým poľom sa rovnajú, ak na
všetkých zodpovedajúcich miestach majú rovnaké prvky. A=(aij)k,s,B=(buv)m,n
obidve nad R. A=B znamená, že k=m, s=n, aij=bij pre všetky i=1, · · · , k a
j=1, · · · , s.

Označenie. Množina všetkých matíc typu k×s nad R označíme: Mk,s(R).

Definícia 7.3. Ak A,B∈Mk,s(R), tak definujeme ich súčet ako maticu, ktorú ozn.
A+B; je typu k×s; jej prvok i−teho riadku a j−teho stĺpca je súčet aij+bij .

Veta 7.1. (Mk,s,+) je komutatívna grupa.

Dôkaz. Asociatívnosť operácie + vyplýva z asociatívnosti operácie + v poli R.
Neutrálny prvok je matica, ktorej všetky prvky sú 0∈R t.j. tzv. nulová matica.
Inverzný prvok k matici A=(aij) je matica −A=(−aij). Komutatívnosť vyplýva
z komutatívnosti operácie + v poli R .

□
Definícia 7.4. Pre α∈R, A=(aij)∈Mk,s(R) definujme α-násobok matice A ako
maticu, ktorú označíme αA=(αaij)∈Mk,s(R)

Veta 7.2. Mk,s(R) s vyššie definovaným sčitovaním resp. násobením je vektorový
priestor nad R. α(A+B)=α((aij)+(bij))=(α(aij))+(α(bij))=α(aij)+α(bij).

Tvrdenie 7.1. Ak definujeme Eij∈Mk,s(R) ako maticu, ktorá má v i-tom ri-
adku a j-tom stĺpci 1 a všetky ostatné prvky nulové, tak Mk,s(R) je generovaný
takýmito maticami Eij , i=1, · · · , k j=1, · · · , s. Navyše Eij , i=1, · · · , k j=1, · · · , s
sú lineárne nezávislé a teda tvoria bázu priestoruMk,s(R). Z toho: dim(Mk,s(R))=
=k·s.

Dôkaz. Nech A=

( a11 ··· a1s
...
. . .
...

ak1 ··· aks

)
∈Mk,s(R). Potom A=

∑
1≤i≤k
1≤j≤s

aijEij . Teda Eij ge-

nerujú Mk,s(R). Nech

( α11 ··· α1s
...
. . .
...

αk1 ··· αks

)
=
∑
1≤i≤k
1≤j≤s

αijEij=

(
0 ··· 0
...
. . .
...

0 ··· 0

)
a teda α11= · · ·=

=αks = 0.
□
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Definícia 7.5. Nech A=(aij) je matica typu Mk,s(R). Riadky matice A chápme
teraz ako prvky z Rs. Označíme SA vektorový podpriestor Rs generovaný riadkami
matice A. SA=[(a11, · · · , a1s), · · · , (ak1, · · · , aks)].

Definícia 7.6. Elementárna riadková operácia na matici je každá z týchto úprav
(ERO):
1. Vzájomná výmena dvoch riadkov v matici.
2. Vynásobenie ľubovoľného riadku nenulovým skalárom.
3. Prirátanie ľubovoľného násobku riadku k inému riadku.

Definícia 7.7. Nech A,B∈Mk,s(R). Hovoríme, že matica B je riadkovo ekviva-
lentná s A (píšeme A≈B) ak B vznikne z A konečným počtom ERO.

Veta 7.3. Relácia riadkovej ekvivalentnosti ≈ je relácia ekvivalencie na Mk,s(R).

Dôkaz.
1.Reflexívnosť: A≈A triviálne.
2.Symetrickosť: Nech A≈B. Každá ERO sa dá vrátiť naspäť (má inverznú). B≈A.
3.Tranzitívnosť: A≈B,B≈C⇒ A≈C z definície jasné.

□

Veta 7.4. Nech A,B∈Mk,s(R). Ak A≈B tak SA=SB.

Dôkaz. Stačí dokázať pre prípad, že matica B vznikla z A vykonaním práve jedinej
ERO.
1.Nech B vznikla z A vzájomnou výmenou i-teho a j-teho riadku (i≤j). Riadky
v A označme x⃗1, · · · , x⃗k.
Teda SB=[x⃗1, · · · , x⃗i−1, x⃗j , x⃗i+1, · · · , x⃗j−1, x⃗i, x⃗j+1, · · · , x⃗k]. Je jasné, že je to to
isté ako lineárny obal [x⃗1, · · · , x⃗k].
2. Nech B vznikla z A tak, že sme i-tý riadok x⃗i vynásobili α ̸=0, α∈R. Teda
SB=[x⃗1, · · · , αx⃗i, · · · , x⃗k]. To je to isté ako [x⃗1, · · · , x⃗i, · · · , x⃗k]=SA.
3. B vznikla z A pripočítaním α-násobok prvého riadku k druhému. t.j. αx⃗1+x⃗2.
Teda SB=[x⃗1, αx⃗1+x⃗2, x⃗3, · · · , x⃗k]. Ale [x⃗1, αx⃗1 + x⃗2, x⃗3, · · · , x⃗k]=[x⃗1, · · · , x⃗k] =
=SA. Naozaj: inklúzia ⊂ je zrejmá. Majme ľubovoľnú lineárnu kombináciu:
α1x⃗1+ · · ·+αkx⃗k=α1x⃗1+α2(x⃗2+αx⃗1)−αα2x⃗1+α3x⃗3+ · · ·+αkx⃗k=(α1−αα2)x⃗1+
+α2(x⃗2+αx⃗1)+α3x⃗3+ · · ·+αkx⃗k∈[x⃗1, x⃗2+αx⃗1, · · · , x⃗k].

□

Otázka. Platí aj obrátené tvrdenie vo vete 7.4 ?
Odpoveď: Áno.

Definícia 7.8. Hovoríme, že matica A=(aij)∈Mk,s(R)
je v redukovanom trojuholníkovom tvare, ak:
1. Prvý nenulový prvok (tzv. vedúci prvok) každého nenulového riadku je 1.
2. V stĺpci obsahujúcom vedúci prvok niektorého riadku sú ostatné prvky nulové.
3. Ak aij a apq sú vedúce prvky i-teho a p-teho riadku a pritom i<p, tak potom
j<q.
4. Nulové riadky (ak existujú) sú pod všetkými nenulovými.

Príklad.

1. Matica

(
1 2 3 1
0 1 0 0
0 0 1 0

)
nie je RTM (redukovaná trojuholníková matica).

2.Matica

(
1 0 0 1
0 1 0 0
0 0 1 0

)
je RTM.

Poznámka. Ak A spĺňa len podmienky 3.,4. tak je to matica v tzv. trojuhol-
níkovom tvare. Redukovaná trojuholníková matica typu k×k je buď nulová, alebo
ak neobsahuje nulové riadky, tak je jednotková matica Ik.
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Veta 7.5. Nech A∈Mk,s(R) je RTM. Potom jej nenulové riadky sú lineárne nezá-
vislé. (platí to už o trojuholníkových maticiach).

Dôkaz. Nech A je RTM a nech jej nenulové riadky sú x⃗1, · · · , x⃗r∈Rs. Vedúce prvky
týchto riadkov nech sú v stĺpcoch t1<t2< · · ·<tr. Nech by boli x⃗1, · · · , x⃗r lineárne
závislé. Teda existuje i∈{x⃗1, · · · , x⃗r} : x⃗i=α1x⃗1+ · · ·+αi−1x⃗i−1. Ale ti-tá zložka
v x⃗i je 1, kým x⃗1, · · · , x⃗i−1 majú ti-tú zložku nulovú. Teda má platiť 1=0 spor.

□

Príklad. 1 2 3 −1
1 1 −1 1
2 −1 1 0

≈

 1 2 3 −1
0 −1 −4 2
0 −5 −5 2

≈

 1 2 3 −1
0 1 4 −2
0 0 15 −8

≈

≈

 1 2 3 −1
0 1 4 −2
0 0 1 − 8

15

≈

 1 0 0 1
3

0 1 0 2
15

0 0 1 − 8
15


Veta 7.6. Každá matica je riadkovo ekvivalentná s nejakou RTM-ou.

Dôkaz. Indukcia vzhľadom na počet riadkov v matici.
1◦ Ak A má jeden riadok, tak ak je nulový tak OK.
Keď nenulový: (0, · · · , 0, c ̸= 0, · · · )≈(0, · · · , 0, 1, · · · ) RTM.
2◦ Predpokladajme, že veta platí pre všetky matice, ktoré majú k riadkov. Nech A
je matica, ktorá má k+1 riadkov. AkA je nulová, tak OK. NechA ̸=0. Nech jej prvý

nenulový stĺpec je p-tý. A=


0 ··· 0 ···
...
. . .

... ···
0 ··· aip ̸=0 ···
...
. . .

... ···
0 ··· · ···

. Je jasné, že A≈B=
( 0 ··· b1p ···

0
. . .
... ···

0 ··· · ···

)
≈

≈


0 ··· 1 c1,p+1 ··· c1s
0 ··· 0 c2,p+1 ··· c2s

...
. . .
...

...
. . .

...
0 ··· 0 ck+1,p+1 ··· ck+1,s

=C. Ozn. C′=

( c2,p+1 ··· c2s

...
. . .

...
ck+1,p+1 ··· ck+1,s

)
. Matica C′ má

iba k riadkov, konečným počtom ERO sa upraví na RTM ozn. ju D′. Teda:

D=


0 ··· 0 1 d1,p+1 d1,p+2 ··· d1,s−1 d1s
0 ··· 0 0 d′2,p+1 d

′
2,p+2 ··· d′2,s−1 d′2s

0 ··· 0 0 0 d′3,p+2 ··· d′3,s−1 d′3s

...
. . .
...
...
...

...
. . .

...
...

0 ··· 0 0 0 0 ··· d′k,s−1 d′ks

0 ··· 0 0 0 0 ··· 0 d′k+1,s

.
□

Definícia 7.9. Nech A∈Mk,s(R). Potom číslo dim(SA) sa nazýva hodnosť matice
A, ozn. h(A)=dim(SA).

Platí. : h(A) = počet lineárne nezávislých riadkov matice A.

Tvrdenie 7.2. Ak A≈B, tak h(A)=h(B).

Dôkaz. Keďže každú maticu A môžeme konečným počtom ERO upraviť na RTM
A′≈A, tak h(A)=h(A′)= počet nenulových riadkov v A′.

□

Príklad. Výpočet hodnosti:

1. A=
(
1 2 3
−1 1 2

)
≈
(
1 2 3
0 3 5

)
h(A)=2.

2. B=
(
1 2 3
2 4 6

)
≈
(
1 2 3
0 0 0

)
h(B)=1.
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Veta 7.7. Nech A,B∈Mk,s(R) sú RTM. Ak SA=SB, tak A=B.

Dôkaz. Máme h(A)=h(B)=r. Nech a⃗1, · · · , a⃗r resp. b⃗1, · · · , b⃗r sú nenulové riadky v
A resp. v B. Nech teraz s1<s2< · · ·<sr sú stĺpcové indexy vedúcich prvkov riadkov
a⃗1, · · · , a⃗r , podobne nech t1<t2< · · ·<tr sú stĺpcové indexy vedúcich prvkov riadkov
b⃗1, · · · , b⃗r. Keďže SA=SB , máme [⃗a1, · · · , a⃗r]=[⃗b1, · · · , b⃗r]∈Rs. Každé bj má jediné
vyjadrenie v tvare b⃗j=α1a⃗1+ · · ·+αra⃗r. Pre b⃗j nech q je najmenšie také, že αq ̸=0.
Teda b⃗j=αqa⃗q+ · · ·+αra⃗r. bj má prvú nenulovú zložku (tj)-tú. Vektor vpravo má
prvú nenulovú zložku (=αq) sq-tú. Z rovnosti dostávame, že 1=αq, tj=sq. Pre
s1<s2< · · ·<sr, t1<t2< · · ·<tr máme, že každé si sa rovná dákemu tv. To je možné
iba tak, že s1=t1, · · · , sr=tr. Teda máme, že b⃗j=aq+αq+1a⃗q+1+ · · ·+αra⃗r. V RTM
sú v stĺpci obsahujúcom vedúci prvok riadku ostatné prvky 0, preto: 1·αq+1 = 0⇒
αq+1 = 0. Podobne pre ostatné, t.j. αq+2= · · ·=αr=0. Teda pre ∀q : b⃗q=a⃗q. Záver
A=B.

□
Dôsledok. Každá matica je riadkovo ekvivalentná s jedinou RTM.

Dôkaz. Nech A je ľubovoľná matica. Vieme, že existuje RTM A′: A≈A′. Nech by
aj B′ bola RTM, B′≈A. Potom A′≈A≈B′,teda A′≈B′, teda SA′=SB′ . Z pred-
chádzajúcej vety vieme, že A′=B′.

□
Veta 7.8. Nech A,B∈Mk,s(R) sú ľubovoľné. Potom platí: A≈B⇔ SA=SB.

Dôkaz.
⇒: V eta 7.7
⇐: Predpokladajme, že SA=SB . Nech A′ je RTM taká, že A≈A′. Nech B′ je RTM
taká, že B≈B′. Potom SA′=SA=SB=SB′ . Teda SA′=SB′ . Ale A′,B′ sú RTM,
teda z V ety 7.7: A′=B′. A≈A′=B′≈B, teda A≈B.

□
Tvrdenie 7.4. Nech A,B∈Mk,s(R). Potom A≈B ⇔ A,B sa dajú konečným
počtom ERO upraviť na tú istú RTM.

Dôkaz.
⇒: Predpokladajme, že A≈B. Nech A′ je RTM, B′ je RTM, A≈A′ a B≈B′.
Potom SA′=SA=SB=SB′ . Keďže A′,B′ sú RTM, máme že A′=B′.
⇐: Predpokladajme, že A,B: A≈A′, B≈A′ kde A′ je RTM. Z toho: A≈A′≈B⇔
A≈B.

□

Príklad. Rozhodnite, či reálne matice
(
1 2
1 1

)
a
(
1 −1
1 1

)
sú riadkovo ekvivalentné.(

1 2
1 1

)
≈
(
1 2
0 1

)
≈
(
1 0
0 1

)
.
(
1 −1
1 1

)
≈
(
1 −1
0 −2

)
≈
(
1 −1
0 1

)
≈
(
1 0
0 1

)
. Sú riadkovo ekviva-

lentné.
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VIII. LINEÁRNE ZOBRAZENIE

Definícia 8.1.
Nech V,W sú vektorové priestory nad poľom R. Potom lineárne zobrazenie z V
do W je zobrazenie f : V→W také, že f(αx⃗+βy⃗)=αf(x⃗)+βf(y⃗) pre ∀α, β∈R a
∀x⃗, y⃗∈V .

Tvrdenie 8.1. Ak f : V→W je lineárne zobrazenie, tak f(0⃗)=0⃗.

Dôkaz. f(0⃗)=f(0⃗+0⃗)=f(0⃗)+f(0⃗) z toho: f(0⃗)=0⃗.
□

Príklady.
1. f : R2→R3, f(a, b)=(2a + b, a + b − 1, a + 2b) nie je lineárne zobrazenie, lebo
f(0⃗)=f(0, 0)=(0,−1, 0) ̸=0⃗.
2. p1 : R3→R, f(x1, x2, x3)=x1 je lineárne zobrazenie. (Nazýva sa projekcia na
prvú zložku). p1(α(x1, x2, x3)+β(y1, y2, y3))=p1(αx1+βy1, αx2+βy2, αx3+βy3)=
=αx1+βy1=αp1(x1, x2, x3)+βp1(y1, y2, y3).
3. O : V→W , O(v⃗)=0⃗∈W pre všetky v⃗∈V je lineárne zobrazenie.
4. idV : V→V , idV (x⃗)=x⃗ je lineárne zobrazenie.
5. g : R2→R2, g(x, y)=(2x, 3x− y) je lineárne zobrazenie.

Veta 8.1. Nech f : V→W je lineárne zobrazenie.
1. Ak S⊂V je vektorový podpriestor, tak f(S)⊂W je vektorový podpriestor vo W .
(Špeciálne: Im(f)=f(V ) je vektorový podpriestor vo W .)
2. Ak P⊂W je vektorový podpriestor vo W , tak jeho vzor pri zobrazení f je vek-
torový podpriestor. t.j.: f−1(P )={a⃗∈V, f (⃗a)∈P}⊂V .
(Špec. f−1({0⃗})={x⃗∈V , f(x⃗)=0⃗}=Ker(f), t.j. jadro lineárneho zobrazenia je vek-
torový podpriestor vo V .)

Dôkaz.
1. f(0⃗)=0⃗∈f(S)⇒ f(S)̸=∅. Kritérium vektorového podpriestoru: Nech a⃗, b⃗∈f(S),
α, β∈R chceme ukázať, že αa⃗+βb⃗∈f(S). Máme a⃗=f(x⃗), b⃗=f(y⃗) pre dáke x⃗, y⃗∈S.
Potom f(αa⃗+βb⃗︸ ︷︷ ︸

∈S

)=αf(x⃗)+βf(y⃗)=αa⃗+βb⃗. A teda αa⃗+βb⃗∈f(S). Ukázali sme, že

f(S) je vektorový podpriestor.
2. 0⃗∈P , pričom f(0⃗)=0⃗∈P ⇒ 0⃗∈f−1(P ), preto f−1(P ) ̸=∅. Použijeme kritérium
vektorového podpriestoru: Nech x⃗, y⃗ ∈ f−1(P ), α, β ∈ R. Chceme ukázať, že
αx⃗+βy⃗∈f−1(P ). Rátajme: f(αx⃗+βy⃗)=α f(x⃗)︸︷︷︸

∈P

+β f(y⃗)︸︷︷︸
∈P

, preto αx⃗+βy⃗∈f−1(P ).

□

Veta 8.2. Lineárne zobrazenie f : V→W je injektívne ⇔ Ker(f)={0⃗}. f je
surjektívne ⇔ Im(f)=W .

Dôkaz. Podobne ako pre grupy.
□

Definícia 8.2. Lineárne zobrazenie f : V→W sa nazýva lineárny izomorfizmus ak
f je bijektívne. Ak pre dané vektorový priestory V,W existuje lineárny izomor-
fizmus g : V→W , tak hovoríme, že vektorový priestor V je lineárne izomorfný
s vektorovým priestorom W . Píšeme: V∼=W

Veta 8.3. Ak f : V→W je lineárny izomorfizmus, tak aj f−1 : W→V je lineárny
izomorfizmus.

Dôkaz. Vieme, že f−1 : W→V existuje a je bijekcia. Chceme ukázať, že je aj
lineárne. Nech a⃗, b⃗∈W , α, β∈R. Nech x⃗∈V je ten jediný, pre ktorý f(x⃗)=a⃗, podobne
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y⃗∈V jediný, pre ktorý f(y⃗)=b⃗. Potom: f(αx⃗+βy⃗)=αf(x⃗)+βf(y⃗)=αa⃗+βb⃗. Z toho:
f−1(αa⃗+βb⃗)=αf−1(⃗a)+βf−1(⃗b).

□
Poznámka. Teda ak V∼=W , tak aj W∼=V .

Veta 8.4. Ak f : V→W , g : W→S sú lineárna zobrazenia, tak aj g◦f : V→S je
lineárne zobrazenie. Špeciálne zloženie dvoch lineárnych izomorfizmov je lineárny
izomorfizmus.

Dôkaz. g◦f(αx⃗+βy⃗)=g(αf(x⃗)+βf(y⃗))=α·g◦f(x⃗)+β·g◦f(y⃗).
□

Príklad. V =vektorový priestor orientovaných úsečiek v Oxy so začiatkom v O.
f : V→R2. f(orient. úsečky)=(1.súr. konc.bodu, 2.súr.konc. bodu). f : V→R2 je
lineárny izomorfizmus.
Nech S je vektorový podpriestor priestoru V (R). Už vieme, že V/S je komu-

tatívna grupa, s operáciou + : [x⃗]+[y⃗]=[x⃗+y⃗]. Definujme zobrazenie R×V/S→V/S,
(α, [x⃗])7→α[x⃗], kde α[x⃗]=[αx⃗]. Je to dobrá definícia, lebo ak [x⃗]=[y⃗], tak vieme, že
x⃗−y⃗∈S. Potom, keďže S je vektorový podpriestor, máme pre ∀α∈R: α(x⃗−y⃗) =
αx⃗−αy⃗∈S. Teda [αx⃗] = [αy⃗]. Potom V/S je vektorový podpriestor nad R. (napr.
overme α([x⃗]+[y⃗])=α[x⃗+y⃗]=[α(x⃗+y⃗)]=[αx⃗+αy⃗]=[αx⃗]+[αy⃗]=α[x⃗]+α[y⃗], podobne
sa overia ostatné axiómy vektorový podpriestoru.)

Príklady.
1. V/V={0⃗}
2. Nech f : V→W je lineárne zobrazenie. Vieme, že Ker(f) je vektorový pod-
priestor vo V , máme priestor V/Ker(f).

Definícia 8.3. Ak V je vektorový priestor nad R a S⊂V je vektorový podpriestor,
tak V/S sa nazýva faktorový vektorový priestor.

Veta 8.5. Nech V je konečne generovaný vektorový priestor nad R a nech S⊂V je
vektorový podpriestor. Potom dim(V/S)=dim(V )− dim(S).

Dôkaz.
Nech (⃗a1, · · · , a⃗r) je báza v S. Doplňme ju na bázu (⃗a1, · · · , a⃗r, b⃗r+1, · · · , b⃗n)
priestoru V . Potom vektorový priestor V/S je generovaný vektormi [[⃗br+1], · · · ,
[⃗bn]]. Pre ľubovoľný [x⃗]∈V/S. Máme x⃗∈V , teda x⃗=α1a⃗1+ · · ·+αra⃗r+βr+1⃗br+1+
+ · · ·+βnb⃗n pre αi, βi ∈ R. Z toho: [x⃗] = [α1a⃗1]+ · · ·+[αra⃗r]+[βr+1⃗br+1]+ · · ·+
+[βnb⃗n] = α1 [⃗a1] + · · ·+ αr[a⃗r] + βr+1 [⃗br+1] + · · ·+ βn [⃗bn], teda 0⃗ ∈ V/S, [x⃗] =
=βr+1 [⃗br+1]+ · · ·+βn [⃗bn]. Teda V/S⊂[[⃗br+1], · · · , [⃗bn]], obrátená inklúzia je zrejmá.
Navyše [⃗br+1], · · · , [⃗bn]∈V/S sú lineárne nezávislé, lebo nech δr+1 [⃗br+1]+ · · ·+
+δn [⃗bn]=0⃗∈V/S. Potom [δr+1⃗br+1+ · · ·+δnb⃗n]=[0⃗], teda δr+1⃗br+1+ · · ·+δnb⃗n∈S.
Potom δr+1⃗br+1+ · · ·+δnb⃗n=γ1a⃗1+ · · ·+γra⃗r, z toho: δr+1⃗br+1+ · · ·+δnb⃗n−γ1a⃗1−
− · · ·−γra⃗r=0⃗∈V . Ale a⃗1, · · · , a⃗r, b⃗r+1, · · · , b⃗n sú nezávislé, preto δr+1= · · ·=δn=0.
Ukázali sme, že ([⃗br+1], · · · , [⃗bn]) je báza vo V/S, teda dim(V/S)=n−r.

□
Veta o faktorovom izomorfizme. Nech f : V→W je surjektívne lineárne zob-
razenie. Potom V/Ker(f)∼=W .

Dôkaz. Definujme φ : V/Ker(f)→W , φ([x⃗])=f(x⃗). Z vety o faktorovom izomor-
fizme pre grupy vieme, že φ je dobre definovaný homomorfizmus abelovských grúp;
tiež φ je bijekcia. Aby sme ukázali, že φ je aj lineárny izomorfizmus, stačí ukázať, že
φ(α[x⃗]) pre α∈R, [x⃗]∈V/Ker(f). Takto: φ(α[x⃗])=φ([αx⃗])=f(αx⃗)=αf(x⃗)=αφ([x⃗]).
Zistili sme, že φ je lineárny izomorfizmus medzi V/Ker(f)∼=W .

□
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Príklad. p1 : R3 → R, p1(x1, x2, x3) = x1 je lineárne zobrazenie, je aj surjektívne.
Ker(p1) = {(x1, x2, x3) ∈ R3, x1 = 0} = {(0, x2, x3), x2, x3 ∈ R}. Z vety:
R3/{(0, x2, x3)∈R3, x2, x3∈R}∼=R

Veta 8.6. (základná veta o lineárnych zobrazeniach) Nech V je konečne gene-
rovaný vektorový priestor nad poľom R a nech W je vektorový priestor nad R.
Potom existuje jediné lineárne zobrazenie f : V→W také, že f zobrazí bázové
vektory a⃗1, · · · , a⃗n priestoru V na predpísané obrazy b⃗1, · · · , b⃗n∈W , teda také, že
f (⃗a1)=b⃗1, · · · , f (⃗an)=b⃗n. Zobrazenie f funguje takto: ak x⃗=α1a⃗1+ · · ·+αna⃗n, tak
f(x⃗)=α1⃗b1+ · · ·+αnb⃗n.

Dôkaz.
Jednoznačnosť: Ak také f existuje, tak jediné: nech by f, g : V→W boli dve
také lineárne zobrazenia. Teda f (⃗a1)=b⃗1, · · · , f (⃗an)=b⃗n, g(⃗a1)=b⃗1, · · · , g(⃗an)=b⃗n.
Ľubovoľný x∈V má jednoznačné vyjadrenie: x⃗=α1a⃗1+ · · ·+αna⃗n. Z lineárnosti f
a g: f(x⃗)=f(α1a⃗1+ · · ·+αna⃗n)=α1⃗b1+ · · ·+αnb⃗n a g(x⃗)=g(α1a⃗1+ · · ·+αna⃗n)=
=α1⃗b1+ · · ·+αnb⃗n. Teda f=g.
Existencia: Videli sme, že ak také f existuje, tak pre ∀x∈V , x⃗=α1a⃗1+ · · ·+αna⃗n
musí byť f(x⃗)=α1⃗b1+ · · ·+αnb⃗n. Teda definujme f : V→W takto: f(x⃗)=α1⃗b1+
+ · · ·+αnb⃗n, ak x⃗=α1a⃗1+ · · ·+αna⃗n. Potom f (⃗a1)=b⃗1, · · · , f (⃗an)=b⃗n; treba už len
overiť lineárnosť f : x⃗, y⃗∈V , α, β∈R, x⃗=α1a⃗1+ · · ·+αna⃗n, y⃗=β1a⃗1+ · · ·+βna⃗n ⇒
f(αx⃗+βy⃗)=f(α(α1a⃗1+ · · ·+αna⃗n)+β(β1⃗b1+ · · ·+βnb⃗n)=f((αα1+ββ1)⃗a1+ · · ·+
+(ααn+ββn)⃗an)=(αα1+ββ1)⃗b1+ · · ·+(ααn+ββn)⃗bn=α(α1⃗b1+ · · ·+αnb⃗n)+
+β(β1⃗b1+ · · ·+βnb⃗n)=αf(x⃗)+βf(y⃗).

□

Lineárne zobrazenia Rk → Rs, kde R je pole.

Definícia 8.4. Nech f :Rk→Rs je lineárne zobrazenie. Zo základnej vety o li-
neárnych zobrazeniach vieme, že f je úplne určené obrazmi bázových vektorov.
Špeciálne: obrazmi štandardných bázových vektorov e⃗1, · · · , e⃗k∈Rk. Ak tieto
obrazy ( t.j. f(e⃗1), · · · , f(e⃗n)∈Rs) zapíšeme (poradie zachováme) do matice, tak
dostaneme maticu typu k×s nad poľom R. Ozn.:Mf . MaticaMf sa nazýva matica
lineárneho zobrazenia f . f(1, 0, · · · , 0)=(a11, · · · , a1s)∈Rs, · · · , f(0, 0, · · · , 1)=

=(ak1, · · · , aks)⇒Mf=

( a11 ··· a1s
...
. . .
...

ak1 ··· aks

)
∈Mk,s(R).

Príklad. g : R2→R2, g(x1, x2)=(2x1−x2, x1+x2), Mg=
(
g(1,0)
g(0,1)

)
=
(
2 1
−1 1

)
.

Definícia 8.5. Nech je daná maticaA∈Mk,s(R). Potom zo základnej vety o lineár-
nych zobrazeniach vieme, že existuje jediné zobrazenie Rk→Rs,ktoré e⃗1∈Rk zobrazí
na prvý riadok matice A, atď, e⃗k na k-tý riadok matice A. Toto lineárne zobrazenie
označíme fA : Rk→Rs; nazýva sa lineárne zobrazenie patriace k matici A.

Príklad.
B=

(
1 −1 2
1 1 3

)
∈M2,3(R), gB : R2→R3, gB(1, 0)=(1,−1, 2), gB(0, 1)=(1, 1, 3).

gB(x1, x2)=gB((1, 0)x1+(0, 1)x2)=x1(1,−1, 2)+x2(1, 1, 3)=(x1+x2,−x1+x2, 2x1+
+3x2). Je jasné: MgB=B

Veta 8.7. Priradenie matice lineárnemu zobrazeniu Rk→Rs definuje bijektívnu
korešpondenciu medzi množinou všetkých lineárnych zobrazení Rk→Rs a množinou
matíc Mk,s(R).

Dôkaz. Jasné!
□
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Nech f : R2→R2, g : R2→R3 sú lineárne zobrazenia. Potom g◦f : R2→R3 je tiež
lineárne zobrazenie. NechMf=

( a11 a12
a21 a22

)
a Mg=

(
b11 b12 b13
b21 b22 b23

)
. Aký je vzťah medzi

Mg◦f na jednej strane a maticami Mg,Mf na druhej strane?
Rátame: f(1, 0)=(a11, a12), f(0, 1)=(a21, a22), g(1, 0)=(b11, b12, b13), g(0, 1)=(b21,
b22, b23), g◦f(1, 0) = g(a11(1, 0)+a12(1, 0)) = a11(b11, b12, b13)+a12(b21, b22, b23) =
=(a11b11+a12b21, a11b12+a12b22, a11b13+a12b23), g◦f(0, 1)=g(a21(0, 1)+a22(0, 1))=
= · · ·=(a21b11+a22b21, a21b12+a22b22, a21b13+a22b23), Mg◦f=Mf ·Mg.

Tvrdenie 8.2. Ak f :Rk→Rs je lineárne zobrazenie s maticouMf=(aij)∈Mk,s(R)
a g : Rs→Rt je lineárne zobrazenie s maticouMg=(bij)∈Ms,t(R), tak lineárne zob-
razenie g◦f : Rk→Rt má maticuMg◦f∈Mk,t(R), ktorej prvok i-teho riadku a j-teho
stĺpca dostaneme ako skalárny súčin i-teho riadku z Mf a j-teho stĺpca z Mg.

Definícia 8.6. Nech A∈Mk,s(R), B∈Ms,t(R); potom súčin matíc A a B ozn. AB
sa definuje takto: AB=C=(cij)∈Mk,t(R), kde cij=ai1b1j+ · · ·+aisbsj .

Tvrdenie 8.3. Ak f : Rk→Rs je lineárne zobrazenie s maticou Mf a g : Rs→Rt

je lineárne zobrazenie s maticou Mg, tak Mg◦f=Mf ·Mg

Príklad. (
1 −2 3
1 1 2

)( 1
−1
0

)
=
(
3
0

)
Niektoré vlastnosti súčinu matíc.

1. A∈Mk,s(R) In=

 1 0 ··· 0
0 1 ··· 0
...
...
. . .
...

0 0 ··· 1

∈Mn,n(R)⇒ IkA=A=AIs kde Is=Mid(Rs).

2.A∈Mk,s, B∈Ms,t, C∈Mt,z potom (AB)C=A(BC). Dôkaz: A=MfA ,B=MfB ,
C=MfC . Potom A(BC)=MfA(MfBMfC )=MfA(MfC◦fB )=M(fC◦fB)◦fA=
=MfC(fB◦fA)=MfB◦fAMfC=(MfAMfB )MfC .
3. distributivita: A(B+C)=AB+AC, keď to má zmysel, (A+B)C=AC+BC.

4. AB̸=BA napr.:
(
1 2
−1 1

)(
1 1
−1 1

)
=
(

−1 3
−2 0

)
, ale

(
1 1
−1 1

)(
1 2
−1 1

)
=
(
0 3
−2 −1

)
.

(Mn,n(R),+, •, 1=In) je okruh s 1.

Definícia 8.7. Elementárna matica stupňa k patriaca k danej ERO je matica,
ktorú z Ik dostaneme tak, že na Ik urobíme túto ERO.

Príklad. ERO- prirátanie α-násobku druhého riadku k prvému. Príslušná elemen-

tárna matica stupňa 3 je: E =
(
1 α 0
0 1 0
0 0 1

)
.

Veta 8.8. Nech B∈Mk,s(R) vznikne z A∈Mk,s(R) vykonaním práve jednej ERO.
Potom ak E je elementárna matica stupňa k patriaca k tejto ERO, tak B=EA.

Dôkaz. Ak C∈Ma,b(R) je ľubovoľná matica, tak i-tý riadok matice C sa rovná

(0, · · · , 0, 1, 0, · · · , 0)C=e⃗iC, (0, · · · , 0, 1, 0, · · · , 0) ·


c11 ··· c1b
· ··· ·
ci1 ··· cib
· ··· ·
ca1 ··· cab

=(ci1, · · · , cib).
A=(aij)k,s. Nech napr. ERO spočíva v tom, že α-násobok j-teho riadku prirátame

k prvému. Teda: B =


a11+αaj1 ··· a1s+αjs

a21 ··· a2s
...

. . .
...

ak1 ··· aks

. Elementárna matica E vznikne z Ik
vykonaním tej istej ERO. Teda riadky matice E budú e⃗1+αe⃗j , e⃗2, · · · , e⃗k. Prvý
riadok v EA je e⃗1(EA)=(e⃗1E)A=(e⃗1+αe⃗j)A=e⃗1A+αe⃗jA=(a11, · · · , a1s)+α(aj1,
· · · , ajs)=(a11+αaj1, · · · , a1s+αajs)= prvý riadok v B. Druhý riadok v EA je
e⃗2(EA)=(e⃗2E)A=e⃗2A=(a21, · · · , a2s)= druhý riadok v B. . . . podobne všetky os-
tatné. Teda B=EA.
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□

Príklad. A=
(
1 1
−1 1

)
∈M2,2(R). K druhému riadku prirátame prvý.

B=
(
1 1
0 2

)
E=

(
1 0
1 1

)
EA=

(
1 1
0 2

)
=B.

Tvrdenie 8.4. Nech A∈Mk,s(R), nech fA : Rk→Rs je lineárne zobrazenie mati-
cou A. Potom fA(x1, · · · , xk)=(x1, · · · , xk)·A pre všetky (x1, · · · , xk)∈Rk. Pre
lineárne zobrazenie g : Rk→Rs máme: g(x1, · · · , xk)=(x1, · · · , xk)·Mg pre všetky
(x1, · · · , xk)∈Rk.

Dôkaz. Zo základnej vety o lineárnych zobrazeniach vieme, že g je úplne určené
obrazmi: e⃗1, · · · , e⃗k. Predpis h(x1, · · · , xk)=(x1, · · · , xk)·Mg definuje lineárne zob-
razenie z Rk→Rs. h(α(x1, · · · , xk)+β(y1, · · · , yk))·Mg=α(x1, · · · , xk)·Mg+
+β(y1, · · · , yk)·Mg=αh(x1, · · · , xk)+βh(y1, · · · , yk). g(e⃗1)=1. riadok matice Mg.
h(e⃗1)=e⃗1·Mg=1.riadok v Mg.
Všeobecne: g(e⃗i)=i-tý riadok v Mg. h(e⃗i)=e⃗iMg pre i=1, · · · , k. Z toho: h=g, a
teda g(x1, · · · , xk)=(x1, · · · , xk)·Mg.

□

Príklad. f : R2→R2, f(x1, x2)=(−x1+x2,−x1), Mf =
(
f(1,0)
f(0,1)

)
=
(

−1 −1
1 0

)
,

(x1, x2)
(

−1 −1
1 0

)
=(−x1+x2,−x1).

Poznámka. Prvky z Rk chápme ako riadky. Ale niekedy sa prvky z Rk chápu aj
ako stĺpce. Potom pri takom chápaní sa matica lineárneho zobrazenia f : Rk→Rs

definuje ako matica M̃f je typu s×k nad R, ktorej i-tý stĺpec je f


0
···
0
1
0
···
0

.
g : Rk→Rs, g

( x1
...
xk

)
=g(x1, · · · , xk)=M̃f ·

( x1
...
xk

)
.

Definícia 8.8. A=(aij)∈Mk,s(R) k nej transponovaná matica je matica
AT∈Ms,k(R) pričom (aTij)=aji. TedaA

T dostaneme zA tak, že ”vymeníme riadky
za stĺpce”.

Príklad. A=
(
1 2 3
2 4 5

)
AT=

(
1 2
2 4
3 5

)
.

Tvrdenie 8.5. Ak A=(aij)∈Mk,s, B=(bij)∈Ms,t(R), tak (AB)T=BTAT.

Dôkaz. Prvok i-teho riadku a j-teho stĺpca v BTAT je
s∑
p=1

bTipa
T
pj=

s∑
p=1

ajpbpi.

Prvok z i-teho riadku a j-teho stĺpca v (AB)T=prvok j-teho riadku a i-teho stĺpca

v AB, teda
s∑
p=1

ajpbpi.

□

Poznámka. (AT)T=A.

Injektívnosť a surjektívnosť lineárnych zobrazení.
f : V→W vieme, že f je injektívne ⇔ Ker(f)={0⃗}, f je surjektívne ⇔ Im(f)=

=f(V )=W .

Veta 8.9. Nech f : V→W je lineárne zobrazenie a nech (⃗a1, · · · , a⃗k) je báza vo V .
Potom:
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1. f je injektívne ⇔ f (⃗a1, · · · , f (⃗an) sú lineárne nezávislé.
2. f je surjektívne ⇔ [f (⃗a1), · · · , f (⃗an)]=W .

Dôkaz.
1. ⇒ f : je injektívne. Nech α1f (⃗a1)+ · · ·+αnf (⃗an)=0⃗. Chceme ukázať, že αi=0.
Z toho: f(α1a⃗1+ · · ·+αna⃗n)=f(0⃗). Podľa predpokladu: α1a⃗1+ · · ·+αna⃗n=0⃗, z li-
neárnej nezávislosti a⃗1, · · · , a⃗n ⇒ ∀αi=0.
⇐: Nech ∀f (⃗ai) sú lineárne nezávislé. Nech x⃗∈Ker(f). Teda f(x⃗)=0⃗. Máme jed-
noznačne x⃗=β1a⃗1+ · · ·+βna⃗n. Potom f(x⃗)=β1f (⃗a1)+ · · ·+βna⃗n, keďže: f(x⃗)=0⃗ :
f (⃗a1), · · · , f (⃗an) sú lineárne nezávislé máme, že β1= · · ·βn=0 a teda x⃗=0⃗. Preto
Ker(f)={0⃗}, teda f je injektívne.
2. ⇒: Predpokladajme, že f je surjektívne. Nech y⃗∈W je ľubovoľný. Zo surjek-
tívnosti: existuje x⃗∈V : f(x⃗)=y⃗. Máme, x⃗=α1a⃗1+ · · ·+αna⃗n, teda f(α1a⃗1+ · · ·+
+αna⃗n) = y⃗ ⇒ α1f (⃗a1) + · · ·+ αnf (⃗an). Takže y⃗ ∈ [f (⃗a1), · · · , f (⃗an)] máme
W⊂[f (⃗a1), · · · , f (⃗an)]. Obrátená inklúzia je zrejmá.
⇐: Predpokladajme, že W=[f (⃗a1), · · · , f (⃗an)]. Nech b⃗∈W je ľubovoľný, potom
b⃗=β1f (⃗a1)+ · · ·+βnf (⃗an)=f(β1a⃗1+ · · ·+βna⃗n︸ ︷︷ ︸

∈V

). b⃗ má vzor f je surjektívne.

□
Dôsledok. Ak V a W sú konečne generované vektorový priestory nad R, tak
lineárne zobrazenie f : V→W je lineárny izomorfizmus ⇔ f zobrazuje bázu pries-
toru V na bázu priestoru W .

Poznámka. Ak V∼=W , tak dim(V )=dim(W ).

Dôsledok.
Každý n-rozmerný (n≥1) vektorový priestor nad R je lineárne izomorfný s Rn.

Dôkaz. Nech V ̸={0⃗} má nejakú bázu (⃗a1, · · · , a⃗n). V Rn zoberme štandardnú bázu
(e⃗1, · · · , e⃗n). Zo základnej vety o lineárnych zobrazeniach vieme, že existuje práve
jedno lineárne zobrazenie f : V→Rn také, že f (⃗ai)=e⃗i, i=1, 2, · · · , n. Podľa pred-
chádzajúceho dôsledku f je lineárny izomorfizmus, teda V∼=Rn.

□
Veta 8.10. Nech f : Rk→Rs je lineárne zobrazenie. Potom:
1. f je injektívne ⇔ h(Mf )=k.
2. f je surjektívne ⇔ h(Mf )=s.
3. f je lineárny izomorfizmus ⇔ k=s a h(Mf )=k.

Dôkaz. Mf∈Mk,s(R) má riadky f(e⃗1), · · · , f(e⃗k). To znamená, že f : Rk→Im(f)
je surjekcia, teda z vety 8.9 vyplýva, že priestor Im(f) je generovaný Im(f) =
=[f(e⃗1), · · · , f(e⃗k)]. Teda dim(Im(f))=dim[f(e⃗1), · · · , f(e⃗k)]=h(Mf ). Z vety
o faktorovom izomorfizme: Rk/Ker(f) ∼= Im(f). Teda k − dim(Ker(f)) =
= dim(Im(f)) = h(Mf ).
1. f je injektívne ⇔ Ker(f)={0⃗} ⇔ dim{Ker(f)}=0⇔ h(Mf )=k.
2. f je surjektívne ⇔ Im(f)=Rs ⇔ [f(e⃗1), · · · , f(e⃗n)]=Rs ⇔ dim[f(e⃗1), · · · ,
f(e⃗k)] = s = h(Mf ).

□
Lema 8.1.
Nech S je vektorový podpriestor priestoru V . Potom S=V ⇔ dim(S)=dim(V ).

Dôkaz. ⇒: Ak S=V , tak dim(S)=dim(V )
⇐: Predpokladajme, že dim(S)=dim(V ). Nech teraz S ̸=V . Nech (⃗a1, · · · , a⃗p) je
báza v S. Existuje x⃗∈V−S. Potom vektory a⃗1, · · · , a⃗p, x⃗ sú lineárne nezávislé, a
teda dim(V ) je aspoň p+1, kým dim(S)=p; spor s tým, že dim(S)=dim(V ).

□
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Definícia 8.9. Lineárne zobrazenie f : Rk→Rk sa volá transformácia priestoru
Rk. Lineárna transformácia f : Rk→Rk sa nazýva regulárna, ak f je lineárny
izomorfizmus.

Veta 8.11. Lineárna transformácia f : Rk→Rk je regulárna ⇔ h(Mf )=k.

Dôkaz. Vyplýva to z vety 8.10
□

Definícia 8.10. Matica A∈Mk,k(R) sa nazýva regulárna, ak h(A) = k.

Potom Veta 8.11 znie takto: Lineárna transformácia f : Rk→Rk je regulárna ⇔
jej matica Mf je regulárna.

Definícia 8.11. Inverzná matica k danej matici A∈Mk,k(R) je taká matica
B∈Mk,k(R), že platí AB=BA=Ik. Pretože binárna operácia • na Mk,k(R) je
asociatívna a Ik je neutrálny prvok vieme, že ak taká matica B existuje, tak je
jediný. Označíme ju A−1.

Pre aké matice A∈Mk,k(R) existuje A−1 ?
Nutná podmienka: ak A−1 existuje, tak AA−1=A−1A=Ik. Z toho potom vieme,
že fAA−1 :Rk→Rk, fAA−1(x1, · · · , xk)=(x1, · · · , xk)AA−1=((x1, · · · , xk)A)A−1=
=fA−1((x1, · · · , xk)A)=fA−1fA(x1, · · · , xk)=fA−1◦fA(x1, · · · , xk)⇒ fAA−1=
=fA−1◦fA. Podobne fA−1A=fA◦fA−1 , teda fA◦fA−1 = fA−1A = fIk = idRk =
= fA−1◦fA. To znamená, že (fA)−1=fA−1 .

Veta 8.12. K matici A∈Mk,k(R) existuje inverzná ⇔ A je regulárna.

Dôkaz.
⇒ už máme.
⇐ Predpokladajme, že A je regulárna. Teda fA : Rk→Rk je regulárna lineárna
transformácia, t.j. fA je lineárny izomorfizmus. Potom existuje k nemu inverzný
lineárny izomorfizmus g : Rk→Rk. Teda g◦fA=fA◦g=idRk . Pritom g=fMg . To
znamená, že fMg◦fA=fA◦fMg=idRk . To je to isté ako: fAMg=fMgA=fIk . Z ko-
rešpondencie: AMg=MgA=Ik, teda Mg=A−1. Zároveň máme:A−1=M(fA)−1 .

□
Definícia 8.12. Ak matica nie je regulárna, tak je singulárna.
A∈Mk,k(R), A je singulárna ⇔ h(A)<k.

Nech A∈Mk,k(R) je regulárna matica. Ako vypočítať A−1? A=

( a11 ··· a1k
...
. . .
...

ak1 ··· akk

)
.

fA(1, 0, · · · , 0)=(a11, · · · , a1k), · · · , fA(0, 0, · · · , 1)=(ak1, · · · , akk). Treba nájsť in-
verzné zobrazenie f−1A . Pretože fA : Rk→Rk je lineárny izomorfizmus ((a11, · · · ,
a1k), · · · , (ak1, · · · , akk)) je tiež báza v Rk. Preto zobrazenie (f−1A ) : Rk→Rk je
úplne určené tým, že (f−1A )(a11, · · · , a1k)=(1, 0, · · · , 0) až (f

−1
A )(ak1, · · · , akk)=

=(0, · · · , 0, 1). Aby sme dostali maticu zobrazenia f−1A , potrebujeme vyrátať, na

čo f−1A zobrazí e⃗1, · · · , e⃗k.

( a11 ··· a1k 1 ··· 0
...
. . .
...
...
. . .
...

ak1 ··· akk 0 ··· 1

)
∼

( 1 ··· 0 b11 ··· b1k
...
. . .
...
...
. . .
...

0 ··· 1 bk1 ··· bkk

)
. Stručne:

(A|Ik)∼(Ik|A−1).

Príklad. A−1 =? ak A =
(
1 2
−1 1

)
∈Mk,k(R)(

1 2 1 0
−1 1 0 1

)
∼
(
1 2 1 0
0 3 1 1

)
∼
(
1 2 1 0
0 1 13

1
3

)
∼
(
1 0 13 − 2

3
0 1 13

1
3

)
⇒ A−1=

(
1
3 − 2

3
1
3

1
3

)
.(

1 2
−1 1

)(
1
3 − 2

3
1
3

1
3

)
=
(
1 0
0 1

)
=
(
1
3 − 2

3
1
3

1
3

)(
1 2
−1 1

)
.
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IX. SYSTÉMY LINEÁRNYCH ROVNÍC 2

Majme systém S s rovníc s n neznámymi nad R: (S)


a11x1+ · · ·+a1nxn=b1
· · ·
as1x1+ · · ·+asnxn=bs

.

Matica A=

( a11 ··· a1n
...
. . .
...

as1 ··· asn

)
∈Ms,n(R) sa nazýva matica systému (S). Matica

A′=

( a11 ··· a1n b1
...
. . .
...
...

as1 ··· asn bs

)
∈Ms,n+1(R) sa nazýva rozšírená matica systému (S). Oz-

načme ďalej B=
(
b1
···
bs

)
, to je tzv. matica pravých strán. Potom systém (S) môžeme

napísať takto: A·
(
x1
···
xn

)
=

(
b1
···
bs

)
. t.j. ak označímeX=

(
x1
···
xn

)
máme: AX=B. Toto

je maticový zápis systému (S). Riešením systému AX=B je každé K=(k1, · · · , kn)
také, že AKT=B. Ak matica A′′ vznikla z rozšírenej matice A′ systému (S)
konečným počtom ERO, tak systém, ktorého rozšírená matica jeA′′ je ekvivalentná
so systémom (S). AX=B ⇔ (AX)T=BT ⇔ XTAT=BT ⇔ fAT(XT)=BT,
kde fAT : Rn→Rs je lineárne zobrazenie s maticou AT. Teda systém AX=B
je riešiteľný ⇔ keď BT∈Im(fAT). Množina riešení systému AX=B je vlastne
(fAT)

−1({BT}).

Napríklad:

{
x1 + x2 = 1

x1 − x2 = 0
A=

(
1 1
1 −1

)
A′=

(
1 1 1
1 −1 0

)
X=

( x1
x2

)
B=

(
1
0

)
(
1 1
−1 1

) ( x1
x2

)
=
(
1
0

)
. Riešenia sú také (x1, x2)∈R2, pre ktoré fA·(x1, x2)=(1, 0).

Riešenie je napr. ( 12 ,
1
2 ). Iné riešenie nemôže mať, lebo matica A je regulárna, teda

lineárna transformácia fA : R2→R2 je lineárny izomorfizmus.

Homogénne lineárne systémy.

Definícia 9.1. Systém (H)


a11x1+ · · ·+a1nxn=0
...

as1x1+ · · ·+asnxn=0

sa volá homogénny, jeho ma-

ticový zápis je AX=0, kde A je matica toho systému.

Veta 9.1. Množina všetkých riešení homogénneho lineárneho systému (H) je vek-
torový priestor v Rn.

Dôkaz. Označme S=množinu riešení (H). Potom S ̸=∅, lebo (0, · · · , 0)∈S. Použi-
jeme kritérium vektorového podpriestoru. Nech α, β∈R, K,L∈S sú ľubovoľné.
Chceme ukázať, že αK+βL∈S. Vieme, že AKT=0, ALT=0. Potom A(αKT+
+βLT)=αAKT+βALT=α0+β0=0. Teda naozaj αKT+βLT∈S.
Iný dôkaz: AX=0 ⇔ XTAT=0T=0 ⇔ fAT(XT)=0 ⇔ XT∈Ker(fAT). Teda
S=Ker(fAT), fAT : Rn→Rs. Vieme, že [Ker(fAT)] jadro lineárneho zobrazenia je
vektorový podpriestor.

□

Nech h(A)=r. Vieme, že konečným počtom ERO sa tá maticaA upraví na RTM,
ktorá má r nenulových riadkov. Povedzme, že tá RTM má vedúce prvky v stĺpcoch
t1<t2< · · ·<tr. Premenovaním neznámych y1=xt1 , · · · , yr=xtr , yi=xi v ostatných

prípadoch, dostaneme lineárny systém (H ′)


y1 + c1,r+1yr+1 + · · ·+ c1nyn = 0
...

yr + cr,r+1yr+1 + · · ·+ crnyn = 0

.

Spätným preznačením neznámych sa od (H ′) dostaneme k systému s neznámymi
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x1, · · · , xn, ktorého vektorový priestor riešení je priestor riešení systému (H). Vek-
torový priestor riešení systému (H ′) je lineárne izomorfný s vektorovým priestorom
riešení systému (H). (Lineárny izomorfizmus g : S′ → S, g(y1, · · · , yn) = (xt1 , · · · ,
xtr , xr+1, · · · , xn).) Teda dim(S′)=dim(S). Teda stačí určiť dim(S). V (H ′) máme
viazané neznáme y1, · · · , yr, kým yr+1, · · · , yn sú voľné (nadobúdajú ľubovoľné
hodnoty z R). Pre yr+1=1, yr+2= · · ·=yn=0 dostaneme riešenie systému (H ′).
dr+1=(−c1,r+1, · · · ,−cr,r+1, 1, 0, · · · , 0) atď. Pre yr+1= · · ·=yn−1=0, yn=1 dosta-
neme riešenie dn=(−c1n, · · · ,−crn, 0, · · · , 0, 1). Takto sme dostali n−r riešení sys-
tému (H ′).

Tvrdenie 9.1. (dr+1, · · · , dn) je báza priestoru (S′), ktorý je priestorom riešení
systému (H ′). Teda dim(S′) = dim(S) = n−r.

Dôkaz. dr+1, · · · , dn sú zrejme lineárne nezávislé. Zostáva ukázať, že dr+1, · · · , dn
generujú priestor (S′). Nech s=(s1, · · · , sn)∈S′ je ľubovoľné riešenie systému (H ′).
Chceme ukázať, že s je lineárnou kombináciou dr+1, · · · , dn. Takto: (s1, · · · , sn)=
=sr+1dr+1+ · · ·+sndn. s1=(−c1,r+1sr+1− · · ·−c1nsn). 1.zložka vpravo:
−sr+1c1,r+1− · · ·−snc1n. 1.zložka vľavo: −c1,r+1sr+1− · · ·−c1nsn. Podobne pre
ostatné zložky.
Dimenzia priestoru riešení homogénneho lineárneho systému = počet neznámych −
hodnosť matice systému.

□

Príklad. Nad R vyriešte:



4x1 + 5x2 + 6x3 − 3x4 + 3x5 = 0
x1 + 2x2 + 3x3 + 4x4 + 5x5 = 0

2x1 + 3x2 + 4x3 + 5x4 + x5 = 0

3x1 + 4x2 + 5x3 + x4 + 2x5 = 0

x1 + 3x2 + 5x3 + 12x4 + 9x5 = 0

A=


1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
1 3 5 12 9
4 5 6 −3 3

∼ · · ·∼


1 2 3 4 5
0 1 2 3 9
0 0 0 −1 1
0 0 0 0 0
0 0 0 0 0

. RTM ekvivalentná s A:

1 0 −1 0 −15
0 1 2 0 12
0 0 0 1 −1
0 0 0 0 0
0 0 0 0 0


Teda daný systém je ekvivalentný s týmto:


x1 − x3 − 15x5 = 0
x2 + 2x3 + 12x5 = 0

x4 − x5 = 0
x3, x5 sú voľné. x3=s∈R, x5=t∈R. Pomocou nich vyjadríme x1, x2, x4 : x4=t,
x2=−2s−12t, x1=s+15t. Teda vektorový priestor všetkých riešení je S={(s+15t,
−2s−12t, s, t, t)}s, t∈R. Báza priestoru S pre s=1, t=0 : (1,−2, 1, 0, 0), pre s=0,
t=1 : (15,−12, 0, 1, 1).
Báza priestoru S je ((1,−2, 1, 0, 0), (15,−12, 0, 1, 1)).

Veta 9.2. Pre ľubovoľnú maticu A∈Mk,t(R) : h(AT)=h(A).

Dôkaz. Nech h(A)=r. Uvažujme o lineárnom systéme AX=0. Vektorový priestor
riešení je Ker(fAT). fAT : Rt→Im(fAT), Rt/Ker(fAT)∼=Im(fAT).
t− dim(Ker(fAT))=dim(Im(fAT)). t−(t−h(A))=h(AT)⇔ h(A)=h(AT).

□

Nehomogénny systém lineárnych rovníc.

(N)


a11x1 + · · ·+ a1nxn = b1
...

as1x1 + · · ·+ asnxn = bs

Aspoň jedno bi ̸=0, tak nehomogénny systém s lineárnych rovníc s n neznámymi.
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Veta 9.3. (Frobeniova,Kroneckerova−Capelliho)
Nehomogénny systém lineárnych rovníc je riešiteľný ⇔ hodnosť matice systému sa
rovná hodnosti rozšírenej matice systému.

Dôkaz. Maticový zápis: B =
(
b1
···
bs

)
X =

(
x1
···
xn

)
A =

( a11 ··· a1n
...
. . .
...

as1 ··· asn

)
AX=B ⇔

XTAT=BT ⇔ fAT(XT)=BT. Z toho je jasné, že systém (N) je riešiteľný ⇔
keď BT∈Im(fAT). Označme ai i-tý stĺpec matice A. Potom AT má riadky
aT1 , · · · , aTn . Systém (N) je riešiteľný ⇔BT∈Im(fAT)⇔ BT∈[aT1 , · · · , aTn ]=
=[aT1 , · · · , aTn ,BT] ⇔ dim[aT1 , · · · , aTn ]= dim[aT1 , · · · , aTn ,BT] ⇔ dimenzia priesto-
ru generovaného riadkami matice AT= dimenzia priestoru generovaného riadkami
matice (A|B)T ⇔ h(AT)=h((A|B)T)⇔ h(A)=h(A|B).

□

Príklad.

{
x1 + x2 = 1

x1 + x2 = 4
nad R nie je riešiteľný, lebo h

(
1 1
1 1

)
=1 ale h

(
1 1 1
1 1 4

)
=2

Veta 9.4. Uvažujme o nehomogénnom systéme (N). Nech P je množina všetkých
jeho riešení. Potom: ak d∈P je nejaké riešenie systému (N), tak každé riešenie
systému (N) je tvaru d+c pre vhodné c z vektorového priestoru riešení príslušného
homogénneho systému AX=0. Obrátene, d+c– kde c je riešením príslušného ho-
mogénneho systému– je riešením systému (N). Teda ak S je vektorový priestor
riešení príslušného homogénneho systému, tak P=d+S

Dôkaz. Ak p∈P je ľubovoľné, tak p=d+(p−d). (p−d)∈S. [ApT=B, AdT=B ⇒
A(p−d)T=A(pT−dT)=ApT−AdT=B−B=0]. Teda P⊂d+S. Ľubovoľné d+S,
kde s∈S, tak d+s∈P , lebo A(d+s)T=AdT+AsT=B+0=B. Teda tiež d+S⊂P .
Vcelku: P=d+S.

□

Príklad. Systém nad R:


x1 + 5x2 + 4x3 + 3x4 = 1

2x1 − x2 + 2x3 − x4 = 0

5x1 + 3x2 + 8x3 + x4 = 1

.

 1 5 4 3 1
2 −1 2 −1 0
5 3 8 1 1

∼

 1 5 4 3 1

0 11 6 7 2
0 0 0 0 0


Viazané: x1, x2, voľné: x3=u, x4=v.

P = {( 1
11

− 14
11
u+

2
11
v,
2
11

− 6
11
u− 7
11
v, u, v)∈R4, u, v∈R} =

= (
1
11
,
2
11
, 0, 0) + {(−14

11
u+

2
11
v,− 6
11
u− 7
11
v, u, v)∈R4, u, v∈R}

kde {(−14
11
u +

2
11
v,− 6
11
u − 7

11
v, u, v)∈R4 u, v∈R} je vektorový priestor riešení

príslušného homogénneho systému.

Poznámka. Po úprave rozšírenej matice nehomogénneho systému na trojuholníkový
tvar považujeme za viazané tie neznáme, ktoré zodpovedá vedúcim prvkom
nenulových riadkov rozšírenej matice (v trojuholníkovom tvare). Ostatné sú voľné.

Determinanty.
{1, 2, · · · , n} permutácia tejto množiny je každá bijekcia φ : {1, 2, · · · , n} →

{1, 2, · · · , n}. φ =
(
1 2 ··· n

φ(1) φ(2) ··· φ(n)

)
.

Napr.:
(
1 2 3
2 1 3

)
je permutácia množiny {1, 2, 3}.
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Definícia 9.2. S{1,2,··· ,n} = množina všetkých permutácií množiny {1, 2, · · · , n}.
Ak φ=

(
1 2 ··· n

φ(1) φ(2) ··· φ(n)

)
∈S{1,2,··· ,n}, tak hovoríme, že dvojica (φ(i), φ(j)) tvorí

inverziu vo φ, ak i<j, ale φ(i)>φ(j).

Príklad. V permutácii
(
1 2 3
2 1 3

)
sú 2 a 1 v inverzii.

Definícia 9.3. Počet inverzií v permutácii φ∈S{1,··· ,n} označíme s(φ). Permutácia
φ je párna, ak (−1)s(φ)=1 a φ je nepárna, ak (−1)s(φ)=− 1.

Definícia 9.4. Nech A∈Mnn(R), kde R je hocijaké pole. Determinant matice A
je prvok poľa R, definovaný takto: det(A)=

∑
φ∈{1,2,··· ,n}

(−1)s(φ)a1φ(1) · · · anφ(n).

Príklady.
1. A=(a11)∈M11(R) : det(A)=a11.

2. A=
( a11 a12
a21 a22

)
, det(A) = (−1)s

( 1 2
1 2

)
a11a22 + (−1)

s
( 1 2
2 1

)
a12a21 = a11a22 +

(−1)1a12a21 = a11a22 − a12a21.

3. A=
(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
, potom det(A) = · · · = a11a22a33 + a12a23a31 + a13a21a32−

−a11a23a32 − a12a21a33 − a13a22a31.

Definícia 9.5. Vyňatím prvkov i-teho riadku (i=1, 2, · · · , n) dostaneme

det(A)=ai1 · (súčty súčinov bez ai1)︸ ︷︷ ︸
Ai1

+ · · ·+ain · (súčty súčinov bez ain)︸ ︷︷ ︸
Ain

)

Aij sa nazýva algebraický doplnok k prvku aij .

Uvidíme, že Aij sa dá vyjadriť pomocou determinantu vhodnej matice stupňa
n−1 odvodenej z A.

Lema 9.1. Ak φ,ψ∈S{1,··· ,n} tak platí, že (−1)s(φ◦ψ)=(−1)s(φ)+s(ψ). Z toho
máme, že: (−1)s(φ)=(−1)s(φ−1).

Dôkaz. Pevne zvoľme x1, · · · , xn∈R navzájom rôzne. Označme P =
∏
i<j

(xi − xj).

Pre φ∈S{1,··· ,n} a ľubovoľné k∈Z definujme ((−1)kP )φ=(−1)k
∏

1≤i<j≤n

(xφ(i)−xφ(j))

Je jasné, že (−1)k(−1)s(φ)P = ((−1)kP ). Pre φ,ψ∈S{1,··· ,n} : Pφ◦ψ = (Pφ)ψ =
=((−1)s(φ)P )ψ=(−1)s(φ)(−1)s(ψ)P=(−1)s(φ)+s(ψ)P ⇒ (−1)s(φ◦ψ)=(−1)s(φ)+s(ψ).

□

Vlastnosť 1. Pre každú maticu A∈Mnn(R) máme det(A)=det(AT).

Dôkaz. Prvok i-teho riadku a j-teho stĺpca v AT bude aTij=aji. Podľa definície

determinantu vieme, že det(A) =
∑
φ∈S

(−1)s(φ)a1φ(1)a2φ(2) · · · anφ(n) =

=
∑
φ∈S
(−1)s(φ)aφ−1(1)φ−1(φ−1(1)) · · · aφ−1(n)φ−1(φ−1(n)) =

=
∑
φ∈S

(−1)s(φ)aφ−1(1) · · · aφ−1(n)n =
∑

φ−1∈S

(−1)s(φ)aT1φ−1(1)· · ·a
T
nφ−1(n)=

=
∑

φ−1∈S

(−1)s(φ
−1)aT1φ−1(1)· · ·a

T
nφ−1(n)=det(A

T).

□
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Vlastnosť 2. Ak matica B∈Mnn(R) vznikne z matice A∈Mnn(R) jednou vzájom-
nou výmenou ľubovoľných dvoch riadkov, tak det(B)=− det(A).

Dôkaz. Napr. nech B vznikne z A vzájomnou výmenou prvého a druhého riadku.

Teda, ak A=

 a11 a12 ··· a1n
a21 a22 ··· a2n
...
...
. . .
...

an1 an2 ··· ann

 , tak B=
 a21 a22 ··· a2n

a11 a12 ··· a1n
...
...
. . .
...

an1 an2 ··· ann

. Označme
ψ=

(
1 2 ··· n
2 1 ··· n

)(
1 2 ··· n

φ(1) φ(2) ··· φ(n)

)
=
(
1 2 ··· n

φ(2) φ(1) ··· φ(n)

)
,

(−1)s(ψ)=(−1)

(
1 2 ··· n

φ(2) φ(1) ··· φ(n)

)
(−1)s(φ) = −(−1)s(φ). Z definície determinantu:

det(B)=
∑
φ∈S
(−1)s(φ)b1φ(1)b2φ(2) · · · bnφ(n)=

∑
φ∈S
(−1)s(φ)a2φ(1)a1φ(2) · · · anφ(n) =

=
∑
φ∈S

(−1)s(φ)a1φ(2)a2φ(1) · · · anφ(n) =
∑
ψ∈S

(−1)s(φ)a1ψ(1)a2ψ(2) · · · anψ(n) =

= −
∑
ψ∈S

(−1)s(ψ)a1ψ(1)a2ψ(2) · · · anψ(n)=− det(A).

□

Vlastnosť 3. Nech A=aij∈Mnn(R). Potom pre ľubovoľné r, s∈{1, · · · , n} algeb-
raický doplnok k prvku ars je Ars=(−1)r+s det(Mrs). Kde matica Mrs je matica
typu r−1×s−1, ktorá vznikne vynechaním r-teho riadku a s-teho stĺpca z matice A.

Príklad. A =
(
a11 a12 a13
a21 a22 a23
a31 a32 a33

)
A23 = (−1)5 det

( a11 a12
a31 a32

)
Dôkaz. Z definície determinantu: det(A)=

∑
φ∈S

(−1)s(φ)
n∏
i=1

aiφ(i) =

=
φ(1)=1∑
φ∈S

(−1)s(φ)a11a2φ(2) · · · anφ(n)+
φ(1) ̸=1∑
φ∈s

(−1)s(φ)a1φ(1)a2φ(2) · · · anφ(n).

Z toho: A11=
φ(1)=1∑
φ∈S

(−1)s(φ)a2φ(2) · · · anφ(n)=
∑
ψ∈S′

(−1)s(ψ)a2ψ(2) · · · anψ(n) =

= det

( a22 ··· a2n
...
. . .
...

an2 ··· ann

)
= det(M11) = (−1)1+1 det(M11).

Teraz rátame Ars pre ľubovoľné r, s∈{1, · · · , n} :

A =



a11 · · · a1s−1 a1s a1s+1 · · · a1n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar−11 · · · ar−1s−1 ar−1s ar−1s+1 · · · ar−1n
ar1 · · · ars−1 ars ars+1 · · · arn
ar+11 · · · ar+1s−1 ar+1s ar+1s+1 · · · ar+1n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1 · · · ans−1 ans ans+1 · · · ann


Vzájomná výmena r−1 riadkov:

B =



ar1 · · · ars−1 ars ars+1 · · · arn
a11 · · · a1s−1 a1s a1s+1 · · · a1n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar−11 · · · ar−1s−1 ar−1s ar−1s+1 · · · ar−1n
ar+11 · · · ar+1s−1 ar+1s ar+1s+1 · · · ar+1n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1 · · · ans−1 ans ans+1 · · · ann


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Vzájomná výmena s−1 stĺpcov:

C =



ars ar1 · · · ars−1 ars+1 · · · arn
a1s a11 · · · a1s−1 a1s+1 · · · a1n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar−1s ar−11 · · · ar−1s−1 ar−1s+1 · · · ar−1n
ar+1s ar+11 · · · ar+1s−1 ar+1s+1 · · · ar+1n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ans an1 · · · ans−1 ans+1 · · · ann


Z toho čo sme dokázali vieme, že det(C)=ars det(Mrs)+členy bez ars. Z 1. a 2.
vlastnosti: (−1)s−1 det(B)[=det(C)]=(−1)s−1·(−1)r−1 det(A)=(−1)r+s det(A).
det(A)=ars(−1)r+s det(Mrs) + (−1)r+s · členy bez ars ⇒ Ars=(−1)r+s det(Mrs).

□
Veta 9.5. (Laplaceova o rozvoji determinantoch)
Pre A∈Mnn(R) máme: det(A)=ai1(−1)i+1 det(Mi1)+ · · ·+ain(−1)i+n det(Min).
Toto vyjadrenie sa nazýva Laplaceov rozvoj determinantu matice A podľa i-teho
riadku. Tiež: det(A)=a1j(−1)j+1 det(M1j)+ · · ·+anj(−1)n+j det(Mnj) pre všetky
j∈{1, · · · , n} tzv. rozvoj podľa j-teho stĺpca.

Dôkaz. Dôsledok vlastnosti 3. Máme det(A)=ai1Ai1+ · · ·+ainAin. Z vlastnosti
3 dosadíme vyjadrenia Aik=(−1)i+k det(Mik). S využitím vlastnosti 1 stĺpcový
rozvoj. (t.j. det(AT)=det(A).)

□

Príklad. det

(
1 2 3
0 −1 1
0 1 3

)
=1· det

(
−1 1
1 3

)
+0=− 4.

Vlastnosť 4. Ak sú v matici A∈Mnn(R) dva riadky rovnaké (príp. dva stĺpce),
tak det(A)=0.

Dôkaz. Indukcia vzhľadom na n. Pre n=2: det
(
a b

a b

)
=ab− ab=0.

Indukčný predpoklad: Predpokladajme, že tvrdenie platí pre také matice typu
n−1×n−1. Nech A∈Mnn(R). Nech r-tý a s-tý riadok (r<s) v A sú rovnaké.
Rozviňme determinant matice A podľa i-teho riadku, kde i̸=r, i̸=s. Potom
det(A)=ai1(−1)i+1(Mi1)+ · · ·+ain(−1)i+nMin. Mij sú matice stupňa n−1, ktoré
majú dva rovnaké riadky. Potom z indukčného predpokladu: det(A)=0.

□
Vlastnosť 5. Nech B∈Mnn(R) vznikne z A∈Mnn(R) prirátaním ľubovoľného ná-
sobku ľubovoľného riadku v A k inému riadku v A. Potom det(A)=det(B).

Dôkaz. Nech napríklad B vznikne z A tak, že k 1.riadku prirátame α-násobok
2.riadku. Rozviňme determinant B podľa prvého riadku:
det(B)=(a11+αa21)(−1)1+1 det(M11)+ · · ·+(a1n+αa2n)(−1)1+n det(M1n)=
=a11(−1)2 det(M11)+ · · ·+a1n(−1)1+n det(M1n)+α(a21(−1)2 det(M11)+ · · ·+
+a2n(−1)1+n det(M1n))=det(A)+α det(matice, ktorá má rovnaký 1. a 2.riadok)
=det(A).

□
Vlastnosť 6. Nech B vznikne z A∈Mnn(R) tak, že i-tý riadok (iba tento) vyná-
sobíme α∈R− {0}. Potom det(B)=α det(A).

Dôkaz. Rozvinieme determinant matice B podľa i-teho riadku:
det(B) = αai1(−1)i+1 det(Mi1) + · · ·+ αain(−1)i+n det(Min) =
= α[ai1(−1)i+1 det(Mi1) + · · ·+ ain(−1)i+n det(Min)] = α det(A).

□
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Vlastnosť 7.

det


a⃗1
···
a⃗i−1
a⃗i+b⃗i
···
a⃗n

=det


a⃗1
···
a⃗i−1
a⃗i
···
a⃗n

+det


a⃗1
···
a⃗i−1
b⃗i
···
a⃗n


Dôkaz. Rozvoj podľa i-teho riadku.

□
Vlastnosť 8. Ak matica A∈Mnn(R) má nulový riadok, tak det(A)=0.

Dôkaz. Priamo z definície.
□

Ak maticu A∈Mnn(R) upravíme pomocou ERO na trojuholníkovú maticu:

T=


t11 t12 · · · t1n
0 t22 · · · t2n
...

...
. . .

...
0 · · · 0 tnn


tak buď niektorý z prvkov t11, · · · , tnn je 0 (to je vtedy, keď h(T)<n t.j. ak T
je singulárna), alebo všetky t11, · · · , tnn sú nenulové (to je vtedy, keď h(A)=n).
Z Laplaceovej vety o rozvoji determinantu (ale aj priamo z definície) je jasné, že
det(T)=t11·t22· · ·tnn.

Príklad. Jedna z metód výpočtu det(A): A postupne upravujeme na trojuhol-
níkovú maticu, ak zohľadníme vplyv jednotlivých ERO na determinant a fakt, že
determinant trojuholníkovej matice je súčin prvkov hlavnej diagonály, tak ľahko
vyrátame det(A).

det

(
1 −1 1
−1 1 1
1 1 −1

)
=det

(
1 −1 1
0 0 2
0 2 −2

)
=− det

(
1 −1 1
0 2 −2
0 0 2

)
=− 4· det

(
1 −1 1
0 1 −1
0 0 1

)
=− 4.

Tvrdenie 9.2. Matica A∈Mnn(R) je regulárna ⇔ det(A)̸=0.

Dôkaz. Vieme, že A je regulárna ⇔ je riadkovo ekvivalentná s nejakou trojuhol-

níkovou maticou T, pričom tii ̸=0 čiže
n∏
k=1

̸=0. Z toho aký vplyv majú jednotlivé

ERO na determinant vieme, že musí existovať α∈R−{0} také, že det(A)=α·det(T).
Vcelku máme, že A je regulárna ⇔ det(T)̸=0⇔ det(A) ̸=0.

□

Príklad. Reálna matica

(
1 −1 1
−1 1 1
1 1 −1

)
je regulárna, lebo jej determinant je nenulový.

Príklad.

det


1 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...
...
...
. . .

...
1 1 1 · · · 0

 = det

1 1 1 · · · 1
0 −1 0 · · · 0
0 0 −1 · · · 0
...
...

...
. . .

...
0 0 0 · · · −1

 = (−1)n−1

Príklad. Vandermondov determinant

det

( 1 1 1 1
a b c d

a2 b2 c2 d2

a3 b3 c3 d3

)
= det

( 1 1 1 1
0 b−a c−a d−a
0 b2−a2 c2−a2 d2−a2

0 b3−a3 c3−a3 d3−a3

)
= det

(
b−a c−a d−a
b2−a2 c2−a2 d2−a2

b3−a3 c3−a3 d3−a3

)
=
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= det

(
b−a c−a d−a
b2−ab c2−ac d2−ad
b3−a2b c3−a2c d3−a2d

)
= (b−a)(c−a)(d−a)· det

(
1 1 1
b c d

b2+ab c2+ac d2+ad

)
=

=(b−a)(c−a)(d−a)· det
(
1 1 1
b c d

b2 c2 d2

)
=(b−a)(c−a)(d−a)· det

(
1 1 1
0 c−b d−b
0 c2−b2 d2−b2

)
=

=(b−a)(c−a)(d−a)· det
(

c−b d−b
c2−b2 d2−b2

)
=(b−a)(c−a)(d−a)(c−b)(d−b)(d−c).

Veta 9.6. Pre ľubovoľné A,B∈Mnn(R) : det(AB)=det(A) det(B).

Dôkaz. Ak A, alebo B je singulárna, tak veta zrejme platí. fAB : Rn→Rn je
lineárny izomorfizmus s maticou AB. Vieme, že fAB=fB◦fA. Ak A je sin-
gulárna, tak fA zobrazí nejaký vektor a⃗∈Rn, a̸⃗=0⃗ na nulový. Teda fA(⃗a)=0⃗. Potom
fB◦fA(⃗a)=0⃗=fAB(⃗a) a teda AB je singulárna, teda det(AB)=0. Podobne ak B
je singulárna a A je regulárna. Ak A aj B sú singulárne, tak tiež platí.
Ďalej: Predpokladajme, že A aj B sú regulárne. Keďže A je regulárna, dá sa

konečným počtom ERO upraviť na trojuholníkovú maticu T=
(
t11 ··· t1n
··· tii tin
0 ··· tnn

)
, pričom

tii ̸=0. Každá ERO sa dá realizovať tak, že danú maticu zľava vynásobíme takzvanou
elementárnou maticou, ktorá prislúcha k tej ERO. Teda: E1·E2 · · ·Ek·A=T, kde
Ei sú elementárne matice prislúchajúce k použitým ERO. Pretože A je regulárna,
na jej úpravu na T stačí použiť iba prirátavanie násobkov riadkov k iným riadkom.
Teda det(A)=det(EkA)=det(Ek−1EkA)= · · ·=det(E1 · · ·EkA)=T. Analogicky
ako ERO sa definujú aj ESO, k nim prislúchajú elementárne matice (taká matica
vznikne z jednotkovej tak, že na nej urobíme tú ESO). Matica B sa konečným
počtom ESO (zas vystačíme iba s prirátavaním násobkov stĺpcov k iným stĺpcom,

keďže B je regulárna) upraví na trojuholníkovú maticu T′=

 t′11 ··· t′1n
...
. . .
...

0 ··· t′nn

 pričom∏
t′ii ̸=0. Urobiť nejaké ESO je to isté, ako danú maticu sprava vynásobiť prísluš-

nou elementárnou maticou. Teda: BF1 · · ·Fp=T′, kde Fi sú príslušné elementárne
matice. Pritom F1, · · ·Fp zodpovedajú iba prirátavaním násobku stĺpca k inému
stĺpcu. Potom: det(B)=det(BF1)= · · ·=det(BF1 · · ·Fp)=det(T′). Teraz

det(TT′)=det



t11 t12 · · · t1n
0 t21 · · · t2n
...

...
. . .

...
0 0 · · · tnn



t′11 t′12 · · · t′1n
0 t′22 · · · t′2n
...

...
. . .

...
0 0 · · · t′nn


=

=det


t11t

′
11 · · · · · · · · ·
0 t22t

′
22 · · · · · ·

...
...

. . .
...

0 0 · · · tnnt
′
nn

=t11t′11 · · · tnnt′nn=t11 · · · tnnt′11 · · · t′nn=
=det(T)· det(T′). Potom det(A·B) = det(E1 · · ·EkA ·B) =
=det(E1 · · ·EkA ·BF1 · · ·Fp)=det(TT′)=det(T) det(T′)=det(A) det(B).

□
Inverzná matica pomocou determinantu.
Nech A=(aij)∈Mnn(R) je regulárna. Vieme, že existuje inverzná matica A−1.

Definujme tzv. adjungovanú maticu k A ako maticu:

adj(A)=


A11 A21 · · · An1
A12 A22 · · · An2
...

...
. . .

...
A1n A2n · · · Ann


Nech Aij je algebraický doplnok k prvku aij . Teda Aij=(−1)i+j det(Mij).
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Veta 9.7. Ak A=(aij)∈Mnn(R) je regulárna, tak A−1=
adj(A)
det(A)

.

Dôkaz. Rátajme C=A·adj(A)
det(A)

?
= In. Matica

1
det(A)

·A·adj(A) má na hlavnej

diagonále prvky: cii=
1

det(A)
·(ai1Ai1+ · · ·+ainAin︸ ︷︷ ︸

det(A)

)=1 a mimo hlavnej diagonály

prvky (tj. pre i ̸=j) cij=
1

det(A)
(ai1Aj1+ · · ·+ainAjn)=0. Teda C=In.

□

Príklad. A =
(
1 2
−1 1

)
adj(A) =

(
1 −2
1 1

)
A−1 = 1

3 ·
(
1 −2
1 1

)
Systémy n rovníc s n neznámymi.

Fredholmova alternatíva.
Nech AX=B je systém n lineárnych rovníc s n neznámymi. Potom sú dve

možnosti:
1. Systém AX=B má jediné riešenie bez ohľadu na to, aká je pravá strana B
(to nastane vtedy, keď h(A)=n, t.j. vtedy, keď det(A) ̸=0) a zároveň príslušný
homogénny systém AX=0 má iba triviálne riešenie.
2. Nehomogénny systém AX=B je riešiteľný už nie pre všetky B, ale iba pre také,
pre ktoré h(A | B)=h(A), to sa stane vtedy, keď h(A)<n t.j. det(A)=0, a zároveň
príslušný homogénny lineárny systém má aspoň jedno triviálne riešenie.

Cramerovo pravidlo. Majme nehomogénny lineárny systém n rovníc s n nezná-

mymi nad R: AX=B, kde A=

( a11 ··· a1n
...
...
...

an1 ··· ann

)
X =

( x1
...
xn

)
B =

( b1
...
bn

)
.

Predpokladajme, že A je regulárna. Potom systém AX=B má jediné riešenie:
X=A−1B.( x1

...
xn

)
=

1
det(A)

( A11 ··· An1

...
. . .
...

A1n ··· Ann

)( b1
...
bn

)
, teda xi=

1
det(A)

(A1ib1+ · · ·+Anibn)=

=
1

det(A)
det(matice, ktorá vznikne tak, že i-tý stĺpec nahradíme

(
b1
...
bn

)
.

Označme Ai =

 a11 ··· a1i−1 b1 a1i+1 ··· a1n

...
. . .

...
...
...
. . .
...

an1 ··· ani−1 bn ani+1 ··· ann

, tak potom jediné riešenie systému
AX = B je

(
det(A1)
det(A)

; · · · ; det(An)
det(A)

)
.

Príklad. Lineárny systém nad Z5:
3x1 + 4x2 = 1

x1 + x2 + 2x3 = 1

3x1 + 4x2 + x3 = 0

 3 4 01 1 2
3 4 1

x1
x2
x3

 =
 11
0


det(A)=4, det(A1)=4, det(A2)=3, det(A3)=1. Jediné riešenie systému daného je:
(4·4−1, 3·4−1, 1·4−1) = (1, 2, 4)∈Z5.

Príklad. Využitím Cramerovho pravidla riešte:{
x1 + 5x2 + 4x3 + 3x4 = 1

2x1 − x2 + 2x3 − x4 = 0
det

(
1 5
2 −1

)
= −11 ̸= 0
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Rovnice sú lineárne nezávislé, x1, x2 budú viazané x3, x4 budú voľné neznáme.{
x1 + 5x2 = 1− 4u− 3v
2x1 − x2 = −2u+ v

⇒ det(A) =
(
1−4u−3v 5
−2u+v −1

)
=− 1+14u−2v

det(A2) =
(
1 1− 4u− 3v
2 −2u+ v

)
= −2 + 6u+ 7v

Potom všeobecné riešenie daného systému je:(
1
11

− 14
11
u+

2
11
v;
2
11

− 6
11
u− 7
11
v;u; v

)
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X. EUKLIDOVSKÝ VEKTOROVÝ PRIESTOR

Definícia 10.1. Nech V je vektorový priestor nad R. Potom skalárny súčin na V
je zobrazenie g : V×V→R pre ktoré platia tieto podmienky:
1. g(x⃗+ y⃗, z⃗)=g(x⃗, z⃗) + g(y⃗, z⃗) pre ∀x⃗, y⃗, z⃗∈V .
2. g(y⃗, x⃗)=g(x⃗, y⃗) pre ∀x⃗, y⃗∈V .
3. g(αx⃗, y⃗)=αg(x⃗, y⃗) pre ∀x⃗, y⃗∈V, α∈R.
4. Ak x̸⃗=0⃗, tak g(x⃗, x⃗)>0.
Ak g je nejaký skalárny súčin na V , tak V sa nazýva euklidovský vektorový priestor
(presnejšie je to euklidovský vektorový priestor (V, g)).

Poznámka. Ak g je skalárny súčin na V , tak namiesto g(x⃗, y⃗) sa často píše ⟨x⃗, y⃗⟩.
⟨ , ⟩ : V×V→R. Potom vlastnosti skalárneho súčinu sa prepíšu takto:
1. ⟨x⃗+ y⃗, z⃗⟩=⟨x⃗, z⃗⟩+ ⟨y⃗, z⃗⟩.
2. ⟨y⃗, x⃗⟩=⟨x⃗, y⃗⟩.
3. ⟨αx⃗, y⃗⟩=α⟨x⃗, y⃗⟩.
4. Ak x⃗∈V−{0⃗}, tak ⟨x⃗, x⃗⟩>0.

Príklad. Pre Rn zoberme zobrazenie ⟨ , ⟩ : Rn×Rn→R,
⟨(x1, · · · , xn), (y1, · · · , yn)⟩=x1y1+ · · ·+xnyn.
1. ⟨(x1, · · · , xn)+(z1, · · · , zn), (y1, · · · , yn)⟩=⟨(x1+z1, · · · , xn+zn), (y1, · · · , yn)⟩ =
= (x1+z1)y1+ · · ·+(xn+zn)yn=⟨(x1, · · · , xn), (y1, · · · , yn)⟩+⟨(z1, · · · , zn),
(y1, · · · , yn)⟩=⟨x⃗, y⃗⟩+⟨z⃗, y⃗⟩. Zistili sme, že vyššie definované zobrazenie ⟨ , ⟩ :
Rn×Rn→R, ⟨(x1, · · · , xn), (y1, · · · , yn)⟩=x1y1+ · · ·+xnyn je tzv. štandardný ska-
lárny súčin na Rn. (Existujú aj iné skalárne súčiny.)

Príklad. Euklidovský priestor nemusí byť konečne generovaný. V=C(⟨0, 1⟩)= pries-
tor spojitých funkcií na ⟨0, 1⟩. Definujme zobrazenie: ⟨ , ⟩ :V×V→R takto:
⟨f, g⟩=

∫ 1
0 f(x)g(x)dx. (C⟨0, 1⟩, ⟨ , ⟩) je euklidovský vektorový priestor nie konečne

generovaný.

Poznámka. Nech V je vektorový priestor nad C. Skalárny súčin na V je zobrazenie
⟨ , ⟩ : V×V→C, ktoré spĺňa:
1. ⟨x⃗+ y⃗, z⃗⟩=⟨x⃗, z⃗⟩+⟨y⃗, z⃗⟩.
2. ⟨y⃗, x⃗⟩=⟨x⃗, y⃗⟩. (komplexne združené)
3. ⟨αx⃗, y⃗⟩=α⟨x⃗, y⃗⟩.
4. Ak x⃗∈V−{0⃗}, tak ⟨x⃗, x⃗⟩>0.

Príklad. V=Cn (n≤1). Definujme: ⟨ , ⟩ : Cn×Cn→C
⟨(x1, · · · , zn), (w1, · · · , wn)⟩=z1w̄1+ · · ·+znw̄n. Ak V je vektorový priestor nad C a
⟨ , ⟩ : V×V→C je skalárny súčin, tak (V, ⟨ , ⟩) sa volá unitárny (alebo hermitovský)
priestor.
V ďalšom už iba reálne euklidovské priestory uvažujeme!

Definícia 10.2. Nech (V, ⟨ , ⟩) je euklidovský vektorový priestor. Potom dĺžka
ľubovoľného vektora x⃗∈V sa definuje ako reálne číslo: |x⃗|=

√
⟨x⃗, x⃗⟩.

Príklad. V R3 so štandardným skalárnym súčinom: |(1, 1, 1)|=
√
12+12+12=

√
3.

Veta 10.1. Nech (V, ⟨ , ⟩) je euklidovský priestor. Potom:
1. |α · x⃗|=|α| · |x⃗| pre ∀α∈R, ∀x⃗∈V .
2. |x⃗|=0⇔ x⃗=0⃗.
3. |⟨x⃗, y⃗⟩|≤|x⃗||y⃗|. (Cauchyho-Schwarzova-Bunjakovského nerovnosť).
4. |x⃗+y⃗|≤|x⃗|+ |y⃗| pre ľubovoľné x⃗, y⃗∈V (trojuholníková nerovnosť).

Dôkaz.
1. |αx⃗|=

√
⟨αx⃗, αx⃗⟩=

√
α2⟨x⃗, x⃗⟩=|α|

√
⟨x⃗, x⃗⟩=|α||x⃗|.

2. Ak x⃗=0⃗, tak |x⃗|=|0 · x⃗|=0 · |x⃗|=0; ak by x̸⃗=0⃗, tak by sme mali |x⃗|=
√
⟨x⃗, x⃗⟩>0
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–spor s predpokladom.
3. x⃗, y⃗ ľubovoľné pevne zvolené. Pre ľubovoľné α∈R utvorme vektor αx⃗− y⃗. Potom
⟨αx⃗−y⃗, αx⃗−y⃗⟩≥0⇒ ⟨αx⃗, αx⃗⟩−⟨y⃗, αx⃗⟩−⟨αx⃗, y⃗⟩+⟨y⃗, y⃗⟩=α2⟨x⃗, x⃗⟩−α⟨y⃗, x⃗⟩−α⟨x⃗, y⃗⟩+
+⟨y⃗, y⃗⟩=α2⟨x⃗, x⃗⟩−2α⟨x⃗, y⃗⟩+⟨y⃗, y⃗⟩≥0.
Zistili sme, že pre všetky α∈R je ⟨x⃗, x⃗⟩α2−2α⟨x⃗, x⃗⟩+⟨y⃗, y⃗⟩≥0 kvadratický člen v pre-
mennej α. Graf tohto trojčlena leží v nezápornej polrovine (x2≥0) pričom nepretína
os x1. Teda tento trojčlen nemá dva rôzne reálne korene. Preto diskriminant
D=4⟨x⃗, y⃗⟩2−4⟨x⃗, x⃗⟩ · ⟨y⃗, y⃗⟩≤0. Z toho: 4 · ⟨x⃗, y⃗⟩2≤4⟨x⃗, x⃗⟩ · ⟨y⃗, y⃗⟩ t.j. |⟨x⃗, y⃗⟩|≤|x⃗| · |y⃗|.
4.) |x⃗+y⃗|2=⟨x⃗+y⃗, x⃗+y⃗⟩=⟨x⃗, x⃗⟩+⟨x⃗, y⃗⟩+⟨y⃗, x⃗⟩+⟨y⃗, y⃗⟩=⟨x⃗, x⃗⟩+2⟨x⃗, y⃗⟩+⟨y⃗, y⃗⟩=
=|x⃗|2+2⟨x⃗, y⃗⟩+|y⃗|2≤|x⃗|2+2|x⃗|·|y⃗|+|y⃗|2=(|x⃗|+|y⃗|)2. Z toho |x⃗+y⃗|≤|x⃗|+|y⃗|.

□

Z 3.vlastnosti z vety 10.1. máme: ak x̸⃗=0⃗ ̸=y⃗, tak −1≤ ⟨x⃗, y⃗⟩
|x⃗|·|y⃗|

≤1.

Definícia 10.3. Ak (V, ⟨ , ⟩) je euklidovský vektorový priestor a x⃗, y⃗∈V−{0⃗}, tak

uhol vektorov x⃗, y⃗ definujeme ako také α∈⟨0, π⟩ pre ktoré cosα= ⟨x⃗, y⃗⟩
|x⃗|·|y⃗|

. Ak x⃗=0⃗,

alebo y⃗=0⃗, tak definujeme uhol vektorov x⃗, y⃗ ako
π

2
.

Definícia 10.4. Nech (V, ⟨ , ⟩) je euklidovský vektorový priestor. Hovoríme, že
x⃗, y⃗∈V sú na seba kolmé, ak ∡(x⃗, y⃗)=π

2
. (ortogonálne).

Tvrdenie 10.1. Ak (V, ⟨ , ⟩) je euklidovský vektorový priestor, tak ∠(x⃗, y⃗)=π
2
⇔

⟨x⃗, y⃗⟩=0.

Dôkaz. ∠(x⃗, y⃗)=π
2
⇔ x⃗=0⃗ alebo y⃗=0⃗ alebo x⃗, y⃗∈V−0⃗ a ⟨x⃗, y⃗⟩=0.

□
Príklady.
1. Nech R3 je euklidovský vektorový priestor so štandardným skalárnym súčinom.
Potom e⃗1=(1, 0, 0), e⃗2=(0, 1, 0), e⃗3=(0, 0, 1) sú navzájom ortogonálne.
2. V R2 so štandardným skalárnym súčinom. Na (a, b)∈R2 je vektor (−b, a) kolmý.

Veta 10.2. Nech (V, ⟨ , ⟩) je euklidovský vektorový priestor a nech vektory
a⃗1, · · · , a⃗n sú nenulové a navzájom kolmé vektory. Potom sú aj lineárne nezávislé.

Dôkaz. Nech α1a⃗1+ · · ·+αna⃗n=0⃗. Chceme ukázať, že α1 = · · · = αn = 0.
⟨⃗a1, α1a⃗1+ · · ·+αna⃗n⟩ = α1 ⟨⃗a1, a⃗1⟩︸ ︷︷ ︸

>0

+α2 ⟨⃗a1, a⃗2⟩︸ ︷︷ ︸
=0

+ · · ·+αn ⟨⃗a1, a⃗n⟩︸ ︷︷ ︸
=0

= 0 = ⟨0⃗, a⃗1⟩ ⇒

⇒ α1=0. Podobne všeobecne 0=⟨α1a⃗1+ · · ·+αna⃗n, a⃗i⟩=αi |⃗ai|2 ⇒ αi=0.
□

Dôsledok. Ak (V, ⟨ , ⟩) je n-rozmerný euklidovský vektorový priestor a vektory
a⃗1, · · · , a⃗n∈V−{0⃗} sú navzájom kolmé, tak (⃗a1, · · · , a⃗n) je báza priestoru V .

Definícia 10.5. Ak (⃗a1, · · · , a⃗n) je báza euklidovského vektorového priestoru V
taká, že a⃗i ⊥ a⃗j pre ∀i̸=j, tak tá báza sa nazýva ortogonálna báza. Ak naviac
|⃗ai|=1 pre i=1, · · · , n, tak tá báza sa nazýva ortonormálna.

Príklad. (e⃗1, e⃗2, e⃗3) je ortogonálna a ortonormálna báza euklidovského vektorového
priestoru (R3, ⟨ , ⟩).

Veta 10.3. Nech (V, ⟨ , ⟩) je ľubovoľný euklidovský vektorový priestor a nech S je
ľubovoľný jeho vektorový podpriestor (nenulový). Ak V je konečne generovaný, tak
v S existuje ortonormálna báza.

Dôkaz. Nech dim(V )=n, nech (x⃗1, · · · , x⃗k) (k≤n) je dajaká báza v S. Veta bude
dokázaná, ak dokážeme, že existujú nenulové vektory y⃗1, · · · , y⃗k∈S také, že pre ne
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platí: y⃗1 = x⃗1, y⃗2 = x⃗2+β21x⃗1, y⃗3 = x⃗3+β31x⃗1+β32x⃗2, · · · , y⃗k = x⃗k+βk1x⃗1+ · · ·+
+βkk−1x⃗k−1, pričom y⃗i ⊥ y⃗j pre i̸=j. Je jasné, že potom y⃗1, · · · , y⃗k sú v S sú
lineárne nezávislé. Keďže dim(S)=k, tak (y⃗1, · · · , y⃗k) je báza, a je ortogonálna.

Potom ortonormálna báza v S bude takáto:

(
y⃗1
|y⃗1|

, · · · , y⃗k
|y⃗k|

)
.

⟨ y⃗i
|y⃗i|

,
y⃗j
|y⃗j |

⟩= 1
|y⃗i||y⃗j |

·⟨y⃗i, y⃗j⟩=0. Existenciu vektorov y⃗i dokážeme indukciou:

Ak k=1: S má bázu (x⃗1), ortonormálna bude:

(
x⃗1
|x⃗1|

)
. Predpokladajme, že veta

platí pre k=s−1. A teraz nech S má bázu (x⃗1, · · · , x⃗s). Teda máme systém
y⃗1=x⃗1, · · · , y⃗s−1=x⃗s+ · · ·+βs−1s−2x⃗s−2. Podľa indukčného predpokladu máme
vektory y⃗1, · · · , y⃗s−1 potrebného tvaru. Treba už len ukázať, ako vyrátať vektor
y⃗s ̸=0⃗ potrebného tvaru a taký, že ⟨y⃗s, y⃗i⟩=0 pre všetky i≤s−1. Hľadajme y⃗s v tvare:
y⃗s = x⃗s+δs1y⃗1+ · · ·+δss−1y⃗s−1. Má byť: 0 = ⟨y⃗s, y⃗1⟩ = ⟨x⃗s, x⃗1⟩+δs1⟨x⃗1, x⃗1⟩+

+δs2 ⟨y⃗2, x⃗1⟩︸ ︷︷ ︸
=0

+ · · ·+δss−1 ⟨y⃗s−1, x⃗1⟩︸ ︷︷ ︸
=0

⇒ ⟨x⃗s, x⃗1⟩+δs1⟨x⃗1, x⃗1⟩=0 ⇒ δs1=−
⟨x⃗s, x⃗1⟩
⟨x⃗1, x⃗1⟩

.

Z toho, že ⟨y⃗s, y⃗2⟩=0 vyrátame δs2 atď.
□

Poznámka. Metóda dôkazu je konštruktívna; ukazuje induktívny postup na hľada-
nie ortogonálnej, ortonormálnej bázy. Je to tzv. Gramov − Schmidtov ortogonali-
začný proces.

Príklad. Nech S je podpriestor v R4 so štandardným skalárnym súčinom. Treba
nájsť ortonormálnu bázu podpriestoru S.
S=[x⃗1, x⃗2, x⃗3]=[(1,−1, 0,−1), (0, 1, 0, 2), (0, 0, 1,−2)]. Najskôr ortogonálnu bázu:
y⃗1 = x⃗1 = (1,−1, 0,−1), y⃗2 = x⃗2 + αy⃗1; ⟨y⃗1, y⃗2⟩ = 0⇒ α = 1, y⃗2=(1, 0, 0, 1);
y⃗3=(0, 0, 1, 2)+δ1(1,−1, 0,−1)+δ2(1, 0, 0, 1). Potom: ⟨y⃗3, y⃗1⟩=0 ∧ ⟨y⃗2, y⃗1⟩=0 ⇒
0=⟨(δ1+δ2,−δ1, 1,−2−δ1+δ2), (1,−1, 0,−1)⟩=δ1+δ2+δ1+2+δ1−δ2=0 · · · ⇒
⇒ δ1=− 2

3
, δ2=1⇒ y⃗3=(0, 0, 1, 2)−

2
3
(1,−1, 0,−1)+(1, 0, 0, 1)=(1

3
,
2
3
, 1,−1

3
).

Ortonormálna báza:

(
(
1√
3
,− 1√

3
, 0,− 1√

3
), (
1√
2
, 0, 0,

1√
2
),

√
3√
5
(
1
3
,
2
3
, 1,−1

3
)

)
.

Definícia 10.6. Nech (V, ⟨ , ⟩) je euklidovský vektorový priestor a nech M⊂V ,
M ̸=∅. (M nemusí byť podpriestor). Potom ortogonálny doplnok (komplement)
množiny M vo V je množina M⊥ : ={x⃗∈V ; ⟨x⃗, m⃗⟩=0 ∀x⃗∈M}
Veta 10.4. Nech (V, ⟨ , ⟩) je euklidovský vektorový priestor. Potom:
1. M ̸=∅, M⊂V ⇒M⊥ je vektorový podpriestor priestoru V .
2. Ak M,N ̸=∅ M,N⊂V a M⊂N tak N⊥⊂M⊥.
3. Ak S, T sú vektorové podpriestory vo V , tak (S+T )⊥=S⊥∩T⊥.

Dôkaz.
1. M⊥ ̸=∅, lebo 0⃗∈M⊥. Kritérium vektorového podpriestoru: pre ∀x⃗, y⃗∈M⊥,
∀α, β∈R. Potom pre ľubovoľné m⃗∈M : ⟨αx⃗+βy⃗, m⃗⟩=α ⟨x⃗, m⃗⟩︸ ︷︷ ︸

=0

+β ⟨y⃗, m⃗⟩︸ ︷︷ ︸
=0

=0. Teda

αx⃗+βy⃗∈M⊥. Z toho M⊥ je vektorový podpriestor vo V .
2. M⊂N . Ak x⃗∈N⊥, tak ⟨x⃗, n⃗⟩=0 pre všetky n⃗∈N a teda tiež ⟨x⃗, m⃗⟩=0 pre všetky
m⃗∈M . Teda x⃗∈M⊥.
3. Nech x⃗∈(S+T )⊥. Teda ⟨x⃗, s⃗+t⃗⟩=0 pre všetky s⃗∈S, t⃗∈T . Špeciálne ⟨x⃗, s⃗+0⃗⟩=
= ⟨x⃗, 0⃗⟩ = 0 pre ľubovoľný s⃗ ∈ S. Takisto ⟨x⃗, t⃗⟩ = 0 pre ∀t⃗ ∈ T . To znamená, že
x⃗∈S⊥∩T⊥. Teda máme: (S+T )⊥⊂S⊥∩T⊥.
Obrátene: nech x⃗∈S⊥∩T⊥. Potom ⟨x⃗, s⃗⟩=0 pre všetky s⃗∈S; ⟨x⃗, t⃗⟩=0 pre všetky
t∈T ; potom ⟨x⃗, s⃗+t⃗⟩=0 pre všetky s⃗∈S, t⃗∈T . Teda x⃗∈(S+T )⊥
t.j. S⊥∩T⊥⊂(S+T )⊥. Vcelku: S⊥∩T⊥=(S+T )⊥.
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□
Veta 10.5. Nech (V, ⟨ , ⟩) je euklidovský vektorový priestor, nech S⊂V je vektorový
podpriestor. (V je konečne generovaný). Potom každý vektor z V sa dá jediným
spôsobom vyjadriť ako súčet vektora z S a vektora z S⊥. To znamená, že V=S⊕S⊥.

Dôkaz.
Existencia vyjadrenia: Pre S = {0⃗} jasné. Predpokladajme, že S ̸= {0⃗}. Nech
(⃗a1, · · · , a⃗k) je ortonormálna báza v S (taká existuje – proces Gramov-Schmidtov).
Doplňme ju na bázu (⃗a1, · · · , a⃗k, b⃗k+1, · · · , b⃗n) priestoru V . Gramovým-Schmidto-
vým procesom prejdeme k ortonormálnej báze (⃗a1, · · · , a⃗k︸ ︷︷ ︸

∈S

, a⃗k+1, · · · , a⃗n︸ ︷︷ ︸
∈S⊥

) priestoru

V . Potom ľubovoľný vektor x⃗∈V má jediné vyjadrenie v tvare:
x⃗=x1a⃗1+ · · ·+xka⃗k︸ ︷︷ ︸

∈S

+xk+1a⃗k+1+ · · ·+xna⃗n︸ ︷︷ ︸
∈S⊥

. Označme x1a⃗1+ · · ·+xka⃗k=x⃗S ,

xk+1a⃗k+1+ · · ·+xna⃗n=x⃗S⊥ . Máme x⃗=x⃗S+x⃗S⊥ .
Jednoznačnosť vyjadrenia: Nech by tiež x⃗=a⃗+b⃗, pričom a⃗∈S, b⃗∈S⊥. Chceme uká-
zať, že a⃗=x⃗S a b⃗=x⃗S⊥ . Máme x⃗S+x⃗S⊥=a⃗+b⃗, z čoho x⃗s−a⃗︸ ︷︷ ︸

∈S

= b⃗−x⃗S⊥︸ ︷︷ ︸
∈S⊥

. Rátajme:

0≤⟨x⃗S − a⃗, b⃗− x⃗S⊥⟩ = ⟨x⃗S , b⃗⟩︸ ︷︷ ︸
=0

− ⟨⃗a, b⃗⟩︸ ︷︷ ︸
=0

−⟨x⃗S , x⃗S⊥⟩︸ ︷︷ ︸
=0

+ ⟨⃗a, x⃗S⊥⟩︸ ︷︷ ︸
=0

. Teda 0 = ⟨x⃗S−a⃗,

b⃗−x⃗S⊥⟩=⟨x⃗S−a⃗, x⃗S−a⃗⟩=⟨⃗b−x⃗S⊥ , b⃗−x⃗S⊥⟩. Potom x⃗S−a⃗=0⃗ ∧ b⃗−x⃗S⊥=0⃗⇒ x⃗S=a⃗ ∧
b⃗=x⃗S⊥ .

□
Veta 10.6. Nech (V, ⟨ , ⟩) je konečne generovaný euklidovský vektorový priestor.
Potom:
1. Ak S⊂V je vektorový podpriestor, tak (S⊥)⊥=S.
2. Ak S, T⊂V sú vektorový podriestory, tak (S∩T )⊥=S⊥+T⊥.

Dôkaz.
1. Pre ľubovoľné x⃗∈S máme ⟨x⃗, y⃗⟩=0 pre ľubovoľný y⃗∈S⊥. Teda x⃗∈(S⊥)⊥. Zistili
sme, že S⊂(S⊥)⊥. Z vety 8.24. vieme, že V=S⊕S⊥ a V=(S⊥) ⊕ (S⊥)⊥. Z toho:
dim(V )=dim(S)+dim(S⊥)=dim(S⊥)+dim((S⊥)⊥). Teda dim(S)=dim((S⊥)⊥).
Keďže aj S⊂((S⊥)⊥),máme S=(S⊥)⊥.
2. ((S⊥+T⊥)⊥)⊥=(S⊥+T⊥)=((S⊥)⊥∩(T⊥)⊥)⊥=(S∩T )⊥.

□
Definícia 10.7. Nech (V, ⟨ , ⟩) je euklidovský vektorový priestor a {0⃗}≠S⊂V je
vektorový podpriestor. Potom každý vektor x⃗∈V má jediné vyjadrenie v tvare
x⃗=x⃗S+x⃗S⊥ , kde x⃗S∈S a x⃗S⊥∈S⊥. Teda predpis, ktorý každému x⃗∈V priradí x⃗S
definuje zobrazenie p : V→V , p(x⃗)=x⃗S . Potom p sa nazýva zobrazenie ortogonálnej
projekcie na podpriestor S.

Tvrdenie 10.3. Ak x⃗∈S, tak p(x⃗)=x⃗.

Dôkaz. Jediné také vyjadrenie je: x⃗= x⃗︸︷︷︸
∈S

+ 0⃗︸︷︷︸
∈S⊥

. Teda p(x⃗)=x⃗.

□
Tvrdenie 10.4. p(V ) = S.

Tvrdenie 10.5. p ◦ p = p.

Dôkaz. Pre ľubovoľný x⃗ ∈ S: p ◦ p(x⃗) = p(p(x⃗)︸︷︷︸
∈S

) = p(x⃗).

□
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Tvrdenie 10.6. p : V→V je lineárne zobrazenie.

Dôkaz. Ľubovoľné x⃗, y⃗∈V , α, β∈R. Potom vieme, že x⃗=x⃗S+x⃗S⊥ a y⃗=y⃗S+y⃗S⊥ sú
jediné vyjadrenia svojho druhu. Potom αx⃗+βy⃗=α(x⃗S+y⃗S)︸ ︷︷ ︸

∈S

+β(x⃗S⊥+y⃗S⊥)︸ ︷︷ ︸
∈S⊥

je jediné

vyjadrenie vektora αx⃗+βy⃗ ako súčet vektora z S a vektora z S⊥. Podľa definície
8.24.: p(αx⃗+βy⃗)=α(x⃗S+y⃗S)=αx⃗S+βy⃗S=αp(x⃗)+βp(y⃗).

□
Príklad. Treba nájsť zobrazenie ortogonálnej projekcie na podpriestor S.
S=[(1, 1,−1), (1,−1, 0)]⊂R3 so štandardným skalárnym súčinom. Doplníme orto-
gonálnu bázu ((1, 1,−1), (1,−1, 0)) podpriestoru S na ortogonálnu bázu priestoru
R3. Nájdeme vektor (k1, k2, k3)∈R3 taký, že ⟨(k1, k2, k3), (1, 1,−1)⟩=0 a tiež:
⟨(k1, k2, k3), (1,−1, 0)⟩=0. Z toho: k1+k2−k3=0 a k1−k2=0. Vyriešime, zoberieme
napríklad (−1,−1,−2). Teda ((1, 1,−1), (1,−1, 0)︸ ︷︷ ︸

∈S

, (−1,−1,−2)︸ ︷︷ ︸
∈S⊥

) je ortogonálna

báza v R3.

R3 ∋ (x1, x2, x3)= a(1, 1,−1)+b(1,−1, 0)︸ ︷︷ ︸
∈S

+ c(−1,−1,−2)︸ ︷︷ ︸
∈S⊥

⇒


a+b−c=x1
a−b−c=x2
−a− 2c=x3

Vyriešime: c=−16 (x1+x2+2x3), b=−
1
2 (x1−x2), a=

1
3 (x1+x2−x3). Teda pre ľubo-

voľný (x1, x2, x3)∈R3 platí:

(x1, x2, x3)=
x1+x2−x3

3
·(1, 1,−1)+x1−x2

2
·(1,−1, 0)︸ ︷︷ ︸

∈S

− x1+x2+2x3
6

·(−1,−1,−2)︸ ︷︷ ︸
∈S⊥

Teda p(x1, x2, x3)=
x1+x2−x3

3
·(1, 1,−1)+x1−x2

2
·(1,−1, 0);

p(x1, x2, x3)=(
5x1−x2−2x3

6
;
−x1+5x2−2x3

6
;
−x1−x2+x3

3
). Matica zobrazenia p:

Mp=

 5
6 − 16 −13

− 16
5
6 −13

− 13 − 13
1
3

 Mp je symetrická. Súčet na diagonále: dim(S).

Definícia 10.8. Nech (V, ⟨ , ⟩) a (W, ⟨ , ⟩) sú euklidovské vektorové priestory.
Euklidovský izomorfizmus z V na W je lineárny izomorfizmus f : V→W taký, že
⟨f(x⃗), f(y⃗)⟩=⟨x⃗, y⃗⟩ pre všetky x⃗, y⃗∈V .

Veta 10.7. Nech (V, ⟨ , ⟩) je n-rozmerný euklidovský vektorový priestor. Potom
existuje euklidovský izomorfizmus z V na Rn so štandardným skalárnym súčinom.

Dôkaz. Nech (v⃗1, · · · , v⃗n) je nejaká ortonormálna báza vo V . Nech (e⃗1, · · · , e⃗n) je
štandardná báza v Rn (tá je tiež ortonormálna). Zo základnej vety o lineárnych zo-
brazeniach vieme, že existuje jediné lineárne zobrazenie f : V→Rn také, že f(v⃗i)=e⃗i,
i=1, · · · , n. Z inej vety vieme, že f je lineárny izomorfizmus. f je aj euklidovský
izomorfizmus, lebo: ⟨f(x1v⃗1+ · · ·+xnv⃗n), f(y1v⃗1+ · · ·+ynv⃗n)⟩=
=⟨x1f(v⃗1)+ · · ·+xnf(v⃗n), y1f(v⃗1)+ · · ·+ynf(v⃗n)⟩=⟨x1e⃗1+ · · ·+xne⃗n, y1e⃗1+
+ · · ·+yne⃗n⟩=x1y1+ · · ·+xnyn. Ale aj ⟨x1v⃗1+ · · ·+xnv⃗n; y1v⃗1+ · · ·+ynv⃗n⟩=
=x1y1⟨v⃗1, v⃗1⟩+ · · ·+xnyn⟨v⃗n, v⃗n⟩=x1y1+ · · ·+xnyn.

□
Príklad. Rn, euklidovský izomorfizmus: f : Rn→Rn je napr. fA : Rn→Rn, kde
A∈Mnn(R) a AAT=In.


