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2 PRVY ROCNIK, LETNY SEMESTER

I. AFINNY PRIESTOR (NAD R)

Pozndmka. afinita = spriaznenost

Definicia 11.1. Nech A=(B,V) kde B#0 je mnozina, ktorej prvky budeme oz-
nacovat A, B,---, X a budeme ich nazjvat bodmi, a V je vektorovy priestor nad
R. A sa nazyva afinng priestor, ak body z B a vektory z V st ”spriaznené” podla
nasledujtcich pravidiel:

1° Pre kazda usporiadant dvojicu (X,Y)eBxB existuje jediny vektor z V, ktory
potom oznaéime XY (nazyva sa vektor prislichajici k dvojici (X,Y)eBxB).

2° Pre kazdy XeB a kazdy €V existuje jediny bod Y eB taky, ze 7=X

3° Pre kaidé X, Y, ZeB: XY +Y Z=X

Ak A=(B,V) je afinny priestor a dim(V)=n, tak hovorime, Ze dim(A)=n. (Inac:
A je n-rozmerny afinny priestor.)

Priklady.

1. B={B}, V={0}. A=(B,V) je nularozmerny afinny priestor.

2. B= mnozina bodov Oy, V= vektorovy priestor orientovanych tseciek so za-

diatkom v O. (X,Y)eBxB priradime jediny vektor £eV, ktory dostaneme tak,

Ze orientovani usecku XY posunieme do bodu O. Axiémy afinného priestoru:

1° v 20/ 3 /.

B je bodova, V je vektorova zlozka afinného priestoru.

3. Nech B=R", V=R". 1°: Usporiadanej dvojici (A, B)eBxB, kde A=(ay,--- ,a,),

B=(by,- - ,by,) priradime vektor @:(blfal, <+ bp—ay). 2°: Pre Tubovolny bod

X=(x1, - ,z,)EB a lubovolny d=(ay, - ,a,)€V je Y=(x14a1, - ,xpn+a,)EB

ten jediny bod, pre ktory plati a=XY. 3° X=(x1, - ,2,), Y=(y1, " ,Yn),

Z=(z1, ,2). X Y Z=(g—a1, )=y ) =(21 -2,
yZn—Tn)=X2Z /. Teda A=(R",R") je n-rozmerny afinny priestor.

4.

a1+ +a1,T,=01
Nech (N)q : je rieSitelny nehomogénny systém linearnych

as1T1+ - +asnxn:bs

rovnic nad R. B = mnozina v8etkych rieSeni systému (N). V =vektorovy priestor
vSetkych rieSeni prislusného homogénneho systému. 1°: pre (X,Y)eBxB defi-
nujeme XY =Y —-X€eV je to riesenie prislusného homogénneho systému. 2°: pre
Tubovolny A€B a lubovolny @€V bude A+a=BeB jediny bod taky, ze A

3 XYY Z=Y - X+Z-Y=Z-X=X7

Teda A=(B,V) je afinny priestor dimenzie n—h(matice systému).

Veta 11.1. Nech A=(B,V) je afinng priestor. Potom:
—OE re VXEB

Ak =S tak

)ﬁz: — ﬁ pre lubovolne X, YeB.

—Xz+? —)(z preto X 7
Predpokladajme, ze )ﬁ—ﬁ Potom? —Yk—l—ﬁ 574—% ﬁ—!—ﬁ ﬁ

—

2
3.
Dokaz,
1.
2.
3. XY+Y X=XX=0. Preto XY =Y X.

O

Ina definicia afinného priestoru:
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Definicia 11.1*. Afinnym priestorom rozumieme trojicu: A=(B,V,+), kde B#£D
je mnozina (jej prvky st body) a V je vektorovy priestor nad R (jeho prvky su vek-
tory) a + je zobrazenie z BxV —B, ktoré kazdej usporiadanej dvojici (X, d)eBxV
priradi jediny prvok z B, ktory potom oznac¢ime X+da, pri¢om musia byt splnené
podmienky:

1%: X4(d@+b)=(X+a)+b pre kazdé XeB a kazdé T, jeV.

2*: X+i=X & 7=0.

3*: pre lubovolné Y, X €B existuje jediny deV taky, ze X+ad=Y.

Obidve definicie afinného priestoru su ekvivalentné, t.j. A=(B,V) je afinny
priestor v zmysle def 11.1 & ked A=(B,V,+) (s vhodne definovanym +) je afinny
priestor podla def 11.1x.

Dékaz. Predpokladajme, ze A=(B,V) je afinny priestor podla def 11.1. Potom
pre XeB a @€V podla podmienky 2° z def 11.1(x) existuje jediny Y E€B taky, ze
)ﬁzd’. Polozime: Y=X+d. Tym sme definovali + : BxV—B. Overime 1* 2* 3*.
1*: (X4a@)+b=Y +5=7 podla def.: @=XY, b=Y Z. Potom X +(a+b)=X+(XV+
Y Z)=X+X2=7. Teda naozaj X+(@+b)=X+(@+b) 2*: X+7=X & 7=XX=0
(pouzili sme vetu 11.1). 3*: pre Tubovolny X€B a aeV je Y=X+d ten jediny bod.
Teda A=(B,V,+) je afinny priestor v zmysle def 11.1.
Predpokladajme, ze A=(B,V,+) je afinny priestor v zmysle def 11.1x. Chceme
ukézaf, ze A=(B,V) splha 1°, 2° a 3° z def 11.1.
1°: Pre Tubovolné X, Y €B definujeme XYeV ako ten jediny vektor z V' (podla 3*),
pre ktory X—i—)?}_}:Y.
%Pre kazdy bod XeB a kazdé a€V existuje jediny vektor Y=X+a taky, ze
XY=d.
3% X +()77+ﬁ) L (X +XY )—&—ﬁ:Y—i—Y—Z):Z:X VX7 = XY4+Y2=XZ pre
Tubovolné X,Y, ZeB.

U

Pevne zvolme bod O€B v afinnom priestore A=(8, V). Potom mozeme definovat
zobrazenie h : B—V, h(az):O—Xz

Tvrdenie 11.1. Zobrazenie h je bijekcia.

Doékaz. Definujme g : V=B, g(d)=len jediny AeB, pre ktory d’z@l. Potom
goh=idpg, hog=idy, QOh(X)zg(O_Xk):X a hog(d)=h(A)=a.
U

Definicia 11.2. Nech A=(B,V) je afinny priestor. Afinny podpriestor priestoru A
je afinny priestor A'=(B', V"), taky, ze B'CB, V' je vektorovy podpriestor priestoru
V, a body z B’ st s vektormi z V' spriaznené podla tjch istych pravidiel, ako st
spriaznené body s vektormi v A.

Priklad.

1. A=(B,V) je afinny podpriestor samého seba.

2. Ak A'=(B",V"), A”=(B",V") st afinné podpriestory v A=(B,V), tak A'NA"=
=(B'NB",V'NV") je afinny podpriestor v A’ ,A” aj A.

Definicia 11.3. Nech A,=(B,, V), n€N je n-rozmerny afinny priestor. Potom
1-rozmerny afinny podpriestor v A,, sa nazyva priamka v A,, 2-rozmerny afinny

podpriestor v A,, sa nazyva rovina v A, a (n — 1)-rozmerny afinny podpriestor
v A,, sa vola nadrovina v A,.

Saradnice v afinnom priestore.

Definicia 11.4.
Nech A,,=(B,,,V,,) je afinny priestor. Potom (n+1)-tica (O, ds, - ,dy,), kde O€B,
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je pevne zvoleny bod a (dy,- - ,d,) je pevne zvolena baza priestoru V,,; sa nazyva
stradnicovy systém v A,.

Priklad.

V A,=(R",R") (n+1)-tica ((0,---,0),(1,0,---,0),(0,1,---,0),---,(0,---,0,1))
je stradnicovy systém.

Priradenie suradnic.

Nech (O,dy,- - ,dy) je suradnicovy systém v n-rozmernom afinnom priestore
An,=(B,,V,). Pre lubovolny bod X€B, existuje jediny vektor a;(keVn. Potom
existuje jedind n-tica (xy,---,z,)ER™ takd, ze OX=x1d1+ - - +x,d,. Potom us-
poriadand n-tica (z1,---,x,) je n-tica sdradnic bodu X vzhladom na stradni-
covy systém (O,dy, - ,d,). OX sa nazyva aj polohovy vektor bodu X. Teda
vlastne stradnice bodu st stradnice jeho polohového vektora vzhladom na bazu
(d1,---,d,). Strucne piSeme X=(xi1,---,x,). Pre vektor bev, jeho saradnice
vzhladom na stradnicovy systém (O, d,- -+ ,d,) st jeho stradnice vzhladom na
bézu (@1, -+ ,dp). b=bid@1+ - - +bpdn, b= (b1, ,by).

Tvrdenie 11.2. Nech (O,ds,--- ,d,) je stradnicovy systém v afinnom priestore
An=B,, V). Ak X = (z1,-+ ,2), Y = (Y1, ,yn) tak vektorﬁ md suradnice:
X E(yl_xla"' 7yn_xn)

Dokaz. Mame Cﬁ:xlc_il—i- o Ty, O?zyﬁiﬁ- e Yy, ﬁ = X*é + 0‘1} =
OY —OX 7 i
=0Y -0OX=(y1—x1)d1+ - (Yn—2n)an.
O
Priklad. Pre Ay=(R? ,R?) stradnicovy systém ((0,0), (1,0),(0,1)). X=(z1,z2).
0] :(I1,12)1$151+I2€2. X = (56171’2).

Afinné zobrazenie.

Definicia 11.5.

Nech A=(B,V) a A'=(B’,V’) st afinné priestory. Potom afinné zobrazenie z A do
A’ je dvojica (f, ), kde f : BB a ¢ : V=V’ s1 linedrne zobrazenia a okrem toho
gp(ﬁ):f(X)f(Y . [ je tzv. bodova zlozka, ¢ je tzv. linedrna zlozka afinného
zobrazenia (f, ) : A—A'.

Pozndmka. Nech A=(B,V,+) je afinny priestor v zmysle def 11.1x. Potom vieme,
Ze pre lubovolnt (X,Y)eBxB existuje jediny €V taky, ze X+2=Y. Potom oz-
. . ‘? . ey Ay
nac¢me ¥=Y —-X=XY. Potom podmienku cp(XY):f(X)f(Y; z def 11.5 mozeme

napisat p(Y—-X)=f(Y)—f(X).

Priklad. V afinnom priestore A, =(B,,, V,,) zvolme pevne stiradnicovy systém
(07 617 U 75:77.) Deﬁnujme f : Bn%RTz f(X):(xlv e 7x’n)7 kde (1.17 o ,"En) st

sturadnice bodu X. Podobne definujme ¢ : V,,—R", ga(l;):(bl, -+, by), kde (b,
-, b,) st stradnice vektora b. Potom (f,¢) : (Bn, Vs)—(R™,R") je afinné zob-

razenie.

Definicia 11.6. Afinné zobrazenie (f, @) : (B,V)—=(B',V’) je afinng izomorfizmus,
ak f je bijekcia.

Veta 11.2. Afinné zobrazenie (f,p) : (B,V)—=(B',V’) je afinng izomorfizmus <
ked ¢ je linedrny izomorfizmus.

Dokaz.
[=] Pevne zvolme bod PeB. Oznatme P'=f(P). Predpokladajme, ze (f,)

je afinny izomorfizmus. Chceme ukéazat, ze ¢ : V—V' je linearny izomorfizmus.
Staci ukézat, ze ¢ je bijektivne. Surjektivnost: Nech beV'. Potom b=P'B pre
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jednozna¢ne uréeny bod B. KedZe f je bijekcia, existuje jediny bod YeB taky,
7e f(Y)=B, teda b=f(P)f(Y :@(IT}}). Teda b mé vzor PYEV. Injektivnost:
Nech o(a@)=¢(b). Chceme ukazat, ze d= l_; Méme a:P—/i, b=PB pre jednoznacéne
uréené PeB. Teda o(PA)= P_B> )< f(P)f(A)=f(P)f(B). Z toho f(A)=f(B) je

bljekaa, preto A=B. Vcelku a=b.
: Predpokladajme, ze ¢ : V—V" je linedrny izomorfizmus. Chceme ukézat, ze

f je bijekcia. Sur]ektwnost Nech YeB' je lubovolny. Potom P’ Y ma4 jediny vzor,
povedzme (@)= P’Y Pritom: @ = PA pre jediné AeB. P'f(A) = f(P)f(A) =
:<p(P—/>l):]TY> z toho: Y=f(A). Injektivnost: Predpokladajme, ze f(A ) f(B).
Cheeme ukézat, ze A=B. o(PA) = f(P)f(A) = P'f(A) = P'f(B) = f(P)f(B} =
:Lp(P_B)) a preto A=B.

O

Pozndmka. Afinné zobrazenie (f, ) uréené zavedenim siradnicového systému
(O,ay1,- - ,dpn) v An=(B,,V,) ma bijektivne f, a preto je to aj afinny izomorfizmus
z A, na (R",R™).

Definicia 11.7. Ak existuje afinny izomorfizmus (f, ) : A—.A’" tak hovorime, Ze
afinny priestor A je afinne izomorfny s afinnym priestorom A’. Ak A je afinne
izomorfny s A’, tak tiez je A’ afinne izomorfny s A. V takom pripade moZeme
povedat, ze A a A’ st navzdjom izomorfné.

Priklad.

Zavedenim sturadnicového systému (O, dy,- -+ ,d,) v n-rozmernom afinnom pries-
tore A,=(By, V,) vlastne definujeme afinny izomorfizmus z (B,,V,,) na (R",R"™).
Teda kazdy n-rozmerny afinny priestor je afinne izomorfny s afinnym priestorom
(R™, R™).

Veta 11.3. Nech (f,¢) : (R¥,RF)—(R™ R"™) je afinné zobrazenie. Potom pre
(z1,-+ ,25)ERF mdme f(z1, - ,2x) = (x1,-+ ,2%) - My + f(0,---,0). Pritom

v (R* R¥) mdme stiradnicovy systém ((0,---,0),€1,---, &) v (R, R"?) siradnicovy
systém: ((0,---,0),€1,-+- ,€n).
Dékaz. Vieme, Ze p(z1,- -+ ,x5) = (21, ,x)) - M, pre kazdé (z1,--- ,x))ER":

(21, 25)=(0,---,0) (21, - - - ,ij’ (21, 21) Mu=p((0, - ,0)(x1, - -- 7”5):

_f( )f(xl, 75ij. f(xlf" 7xk)_f(07"' 70):(x1ﬂ"' 7xk)'M<,0'
Teda f(xl, cap)=(z1, -+, x) My+£(0,---,0).

Barycentricky stradnicovy systém.
Budeme pouzivat def 11.1x.
Nech A=(B,V) je afinny priestor. Vieme, Ze pre [ubovolné X, Y €8 existuje jediny
Vektor ZeV taky, ze X+2r=Y. Oznacili sme =Y —X. Plati:
L. (A=B)+(B—C)=A—C & BA+CB=CA=A-C.
2 X-X=0 vXeB.
3. (X+7)—(A+§)=(X—A)+7—7
Definicia 11.8. Nech A=(B,V,+) je afinny priestor, nech Ay, Ay, -+, A;€B st
S

Tubovolné body a nech xg,z1,--- ,z,€R také, Ze Z x;=1. Potom definujeme bod
=0
z B: szA A+Zagz (A;—A), kde AeB je lubovolny bod. Bod Zx A; sa
=0 =0 1=0
nazyva barycentrickd kombindcia bodov Ag,--- , Ag s koeficientmi xg, - - - , zs.

Ukazeme, Ze def 11.8 barycentrickej kombinacie bodov je dobré, t.j. Zze nezavisi
od volby A. Takto: Nech B€B je lubovolny bod. Potom vieme, Ze existuje jediny
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FEV taky, ze B=A+i. Potom B+ Y z;(Ai—B)=A+Z+ Y z;((A;i—A)-7)=
=0 =0

=A+2Z+ i X (Ai—A>— zs: T, T=A+ i X (Ai—A>+f— (zsj a)‘z‘) r=
i=0 i=0 i=0 i=0

:A+ ZS: T (Al—A)

i=0

Veta 11.4 a Definicia 11.9. Nech Ay, A1,--- , A, st body n-rozmerného afinného

priestoru A,=(B,,V,). Potom: (Ag, A1—Ag,---,An—Ag) je suradnicovy systém

afinného priestoru A, (v zmysle definicie) prave vtedy, ked kazdy bod X€B,, sa dd
n

jedingm sposobom vyjadrit ako barycentrickd kombindcia X=Z:ciAi. Ak je toto
i=0

splnené, potom (Ao, A1, -+, Ay) sa vold barycentricky siradnicovy systém priestoru
An; (xo, -+ ,x,) U barycentrické siradnice bodu X .
Dokaz.

[=] Predpokladajme, ze (Ao, A1—Aog,---, A,—Ap) je stradnicovy systém. Nech
XeB, je l’ubovol’n}’r bod. Potom existuje jediny vektor Z€V,, taky, ze X=A¢+2.
Kedze (A1—A,-- A —Ap) je baza vo V,, preto existujﬁ jednoznacne urcené

1, ,Tp€ER: T= le (4;—Ap). Z toho: X= A0+le (A;—Ap). Zoberme
=0 1=0

ro=1— Zwl Potom X=Ay+ Zmi(Ai—Ao): leAl Jednoznacnost: Nech by
i=1 i=0 i=0

X= Z x; A= Z 2, AL, Méame vlastne: Ao+ Z x;(Ai—Ag)=Ao+ Z 2 (A;—Ayp).

i=0 i=0 i=0 i=0

7Z toho: Z x;(A;i—Ag)= Z 2 (A;—Ap). Pretoze (A1—Ag, -, Ap,—Ap) je béaza,
i=0,1 i=0,1

musi platit ;=2 pre i=1,--- ,n. Potom tiez zo=1— inzlf Z Th=axy.

i=1
[<] Predpokladajme, Ze kazdy bod z B, sa da Jedlnym sposobom vyjadrit ako

barycentrickd kombindcia bodov Ay, - - , A,,. Chceme ukézaf, ze (Ag, A1—Ag, -,

, Apn—Ap) je stradnicovy systém v A, =(B,,V,,). Sta¢i ukazat, ze (A1—Ag, -,

,An—Ap) je baza vo V,,. PretoZze vieme, ze dim(V,,)=n, sta¢i ukézat, ze A;— Ay,

, Ap—Ap generuju celé V,. Nech beV, je Tubovolny vektor. Z axiém afinného

priestoru vieme, Ze k bodu Ay a vektoru 5existuje jediny bod BeB, taky, ze

5:B—A0 7 nasho predpokladu vyplyva, Ze existuje jediné vyjadrenie B v tvare
n

B:iyi (kde Zyl ) Z toho: b= (Z i Z) _AOZAO+ZyZ.(AZ._AO)_
=0

=0 =0

—Ap= Z yi(A;—Ap). Teda naozaj [A1—Ag, -+, An—Ag]|=Vp.
i=1

d

Veta 11.5. Nech (f,¢) : (B,V)—=(B',V’) je afinné zobrazenie. Potom pre lubovol-

ni barycentricky kombindciu inAi lubovolngch bodov Ay, -, A,€B mdme

=0
f (Z xiAi> => xif(A
i=0 i=0
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Doékaz. Oznacme B:inAi. Body Ag, B urcuju jediny vektor reV taky, Ze
i=0
B=Ap+z, teda £=B—Ay. Potom o(B—Ag)=f(B)—f(Ap). Pritom B—Ay=

=Ao+ Z yi(Ai—Ag) — Ao= Z xi(Ai—Ao).

1=0 z 0

f(B)=f(Ao)=¢(B—A¢)= Z:wA —Ap)= Z i(f(A)—f(Ao)) &

f(inAi):f(B):f(Ao)Jrin(f(Ai)—f(Ao))Zinf(A )
=0 =0 =0
O

Veta 11.6. (o afinngch zobrazeniach):

Nech Ap=(Bn,Vy) je n-rozmerny afinng priestor a nech (Ao, -+, Ayn) je barycent-
ricky sﬁmdnicovy’ systém v riom. Nech Bg,---, B, st lubovolné body afinného
priestoru A, =(B,,,V;"). Potom ezxistuje jediné afinné zobrazenie (f,p) : A=Al
také, ze f(A;)= B pre i=0,--- ,n.

n
Dokaz. Vieme, ze kazdy bod Xe€B,, ma jediné vyjadrenie v tvare X:ZziAl-.
i=0
Ak existuje afinné zobrazenie (f, ®) : A—>A' také, ze f(A;)=B;, i=0,---,n tak

musi byt f(X sz i le f(A Zaszl Teraz definujme zobrazenie
=0
(fy©) : (Bn, Vy)— A prave takto: f(z xiAi):inBi. Treba este ukazat, ze f
i=0 i=0
(a nim uréené ¢ : V—V’) je afinné zobrazenie. Pre X:Z%‘Ai, Y:ZbiAi je
i=0 i=0

n

(YfX)':f(X)ff(Y):Z(x-fb-)Bv Sta¢i ukazat, ze ¢ je linedrne. Lubovolné
dva vektory d,ceV,,, Va BER a= A Ay, =C— AO Potom ¢(aA+6C)=
=p(a(A—Ap)+B8(C—Ap)) ZaZA —Ag)+p8 chA —Ay))
i=0

ZazA —A))+B>_ ci(Ai—Ao)))=0p(@)+Bo(E).
=0

O
Pozndmka. barycenter = fazisko.
V n-rozmernom afinnom priestore A,=(R" , R™) body Ay, -, A,; pricom kazdy
z nich mé jednotlivii hmotnost, predpokladajme, ze A;—Ag,- -, A,—Ag nech st
linedrne nezavislé. Teda (Ao, A1, -, Ay) je barycentricky suradnicovy systém.

Bod, ktorého barycentrické stiradnice st (n%rl, e ’%H) je tazisko sustavy hmot-
nych bodov Ay, -, A,. Napriklad pre n=2: %Ao—k%Al:Ao—i—%(Al—Ao).
Definicia 11.10. V afinnom priestore (R™,R™) majme body Ao=(1,0,---,0) az

n—1
An—1=(0,---,0,1). Potom mnozina A":{Z T A Z x;=1;2;>0} sa nazyva
i=0
n-rozmerny simplex. Simplexy sa pouzivaji v topoldgii, geometrii, v optimalizac-
nych metddach.
Parametrické vyjadrenie afinného podpriestoru.

Veta 11.7. V n-rozmernom afinnom priestore A,=(B,,V,) majme pevne zvoleny
stradnicovy systém (O,dy,- -+ ,d,). Nech Ay=(By,Vy) je k-rozmerny afinng pod-
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priestor v A,. Nech A= (a1, -+ ,ay,) je dajaky bod z Ay, nech (b17 ,Ek) je baza

vo Vi pricom by = (bY,--- L), ..., by = (b,--- ,bE). Potom pre lubovolny bod

XeA, plati O—)(2 O—/>1+b1t1+ erktk pre vhodné ti,--- ,tx€R. Obrdtene, ak pre

dajaky vektor X€V,, plati =0 —|—s}b1—|— . —|—skbk pre dajaké s1,-- -, skER, tak T je

polohovy vektor dajakého bodu z Ay. Z toho: bod X = (x1,--- ,x,) patri do Ay
T :a1+b%t1++blftk

prave vtedy, ked (R){ --- , t1, - t€R. Cisla t1,--- ,tg
Ty = ap +bL 4 + b,

sa volaju parametre. Systém R je tzv. parametrické vyjadrenie A

Dékaz. Nech XeA;,. Mame AcA,. K dVOJlCl (A, X)eBk ka patri Jedlny vek-
tor le(keffk Vo Vi mame bazu (b, - ) preto A —t1b1+ +tkbk pre jed-
noznacne urcené tl, tkE]R Aj() z@JrO—AXZ O—)(2 O—/i t1b1+ thkbk 7 toho
O—X>:(ﬁl+t151+ s bk
Obratene: nech f:O +5151+~-~+8k5k € V,,. Chceme ukazat, Ze 5:':0_Y> pre
dajaké YeA,. 7 axiém afinného priestoru existuje jediny bod Y’eBj taky,
— S i = S

de AY'=s1b1+ - +siby, teda F=OA+s1b1+ - - +spby=0A+AY'=0Y". Hladang
bod je bod Y.

O

Pozndmka. V situdcii ako vo vete sa Vi nazyva smerovy priestor afinného pod-
priestoru Ag, a bazové vektory bl, . Ek su smerové vektory afinného podpriestoru
Ai. 7 vety je jasné, Ze afinny podprlestor Ay je tplne jednoznaéne uréeny jednym
bodom A a smerovymi vektormi (b, - - , by).

VsSeobecné (analytické) vyjadrenie afinného podpriestoru.

Nech je dany k-rozmerny afinny podpriestor flk:([;’h Vk) n-rozmerného afinného
podpriestoru An:(lg’n, Vn) s pevne zvolenym stradnicovym systémom. Nech A
je uréeny bodom A = (a1, ,ay) a smerovymi vektormi by = (b, by, ..,
by = (b, -+ ,b¥). Teda parametrické vyjadrenie je:

z1=a1+bit1+ - - bty

&
I

t;€R
Tp=0n+biti+ - +bFty

MaticaB= | : -. : | md k linedrne nezavislych stipcov (lebo 51, e ,Ek st linear-
bl .. bk

ne nezavislé.) Teda h(B)=k z toho B mé& k linedrne nezavislych riadkov, nech st

to riadky s indexmi 41, -- - ,ix€{l,--- ,n}.

biti+ - +bitp=21—ay bl ti+ - b te=xi, —a;,
(P)=1 - & ()
brlltl-i-"'—l—bﬁtk:.ﬁn—an b t1—|— +b tk =X, —a;,
by, - Y
Méame h | : -. : | =k =-. Systém (*) ma jediné rieSenie, vyratame ho z Crame-
bl ... bk
1’k) 'Lk

rovho pravidla:

R det( )
tlz b}l bi?l :fl(xil’... 7xlk)tk:W:€k(l’ll7 7xik)
det Do
b} b’;
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li(ziy, -+ ,x4,) st linedrne funkcie. Teraz dosadime t1,--- ,t; do zvy$nych n—k
rovnic parametrického vyjadrenia. {ji, - ,jn—x} nech je doplnok ku {iy,--- ,ix}
v{l,---,n}. Dostaneme: bjl-lf1(xi1, Cee ) —|—b§1€k(xil, ST ) =T — Gy
bi (@i, wa )+ A0 () =a,_ —ag, . b, systém n—k
linedrnych rovnic s n nezndmymi z1,--- ,z,. Matica tohto systému mé hodnost
n—k. Teda Iubovolny bod X = (1,---,x,) z Ay splia (svojimi suradnicami)

linearny systém tvaru:

cliZi+ - HeipTn=d; c11 o Cin

(V)g --- kdecl-j,djeRah< )zn—k
Cn—k1T1+  FCp—knTn=dn_ Cn—kl 7 Cn—kn
Jedno riesenie je: (ay,--- ,a,). Potom st rieSeniami aj n -tice: (a;+bi,- -+ ,a,+bL),

,(a1+bk, -+ a,+bF). Béza je k linedrne nezavislych rieSeni homogénneho sys-
tému patriaceho k (V): ((b3,---,bL), -, (bt, -+ ,bk)).
(1, xp)=(ar, -+ yan)+s1(bf, - bp)d- - +sk(bY, -+ b )= mnozina bodov
vyhovujtcich (P) t.j. suradnice bodov z Aj.

Veta 11.8. (o0 vseobecnej rovnici nadroviny)

Nech a=(B(a), V(a)) je nadrovina v n-rozmernom afinnom priestore A,=(By, Vy,)
(s pevne zvolenym sumdmcovym systemom vA,.) Ak P = (p1, -+ ,pn) je bod z «
aby = (bl b)), byy = (BPL, oo b7Y) s smerové vektory (teda tvoria
bazu) priestoru V(o). Potom vseobecna rovnica nadroviny « je:

T1—pP1 ° Tpn—Pn
b% ... bl
a = det . ) . =0

Dékaz. Nech X=(z1,---,zy) je lubovolny bod z . Potom (P, X)eB(a)xB(a)

jednoznacne urcuje vektor PX=V(«). Vieme, Ze PX = (x1—p1, s Tn—Dn) j
linedrna kombinacia (b},--- ,bL), -, (b} 1 ... b1,
1i—p1 - Tn—Pn
bl pL
Preto: det . ) n =0
T ) _
b} b 1
Obratene:
Z1—P1 *° Tn—Pn
bi b71L
Nech X€B,,, X = (x1, -+ ,x,) je taky bod, Ze det . . =0. Chceme
b?;l b@'*l
by e by
ukdzat, ze XeB(«). Ekvivalentne mame: det Do =0. Z toho
byt e byt
T1—pP1 0 Tn— :Dn
(x1—p1,- - ,Tn—pn) je linedrna kombinacia (b N 0 FERRI (e ,on1).

Teda vektor P—Xk je linearnou kombinaciou b1, .- bn 1, teda ﬁev . K bodu
PeB(a) a vektoru ]7)?@} ) existuje jediny bod X'eB(«) taky, ze ﬁ PX’
Z toho: X=X'. Teda XEB(a).

O
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Vzajomné polohy afinnych podpriestorov.

Definicia 11.11. Nech a=(B(a), V(a)) a 8=(B(8),V(8)) su afinné podpriestory
v afinnom priestore A,=(B,, V,,), dim(A,)=n. Potom hovorime, Ze:

1. «a a 8 sa rovnobezné (a || ), ak V(a)CV(B) alebo V(ﬁ)CV(a).

2. a a f st roznobezné, ak B(a)NB(8)#£0 a B(a) € B(a), B(8) € B(«)

3. «a a B st mimobezné, ak B(a)NB(B)=0 a V(a)NV(S ) {0}

Pozndamka. V aspon 4-rozmernom afinnom priestore uvedené tri nie su vSetky
mozné vzajomné polohy afinnych podpriestorov «, .

Priklad. Ay=(By4,Vs), nech V4 ma bazu (dy, da, ds, ds). Zvolme bod A€B,. Vieme,

7ze k bodu A a vektoru d; 3I'BeBy : d1=AB. Zoberme dve roviny «, v Ay

takéto: a je urcené bodom A a smerovymi vektormi ds, ds; 8 je urc¢ené bodom B

a smerovymi vektormi ds,ds. Potom « a ( nie su rovnobezné, lebo V(a)ZV(5)

ani V(8) C V(a); nie si ani mimobezné, lebo {d@s} C V(a)NV(B)#{0}. Nie

sa ani roznobezne lebo aNB=0. Nech by anpf#0. Teda existuje XeanS. Po-

tom A?GV( ) A}—a2a2+a3a3, ﬁEV(ﬁ) ?—63a3+ﬁ4a4 7Z toho:

d1=AX+X —a2a2+(a3+ﬁ3)d’3+ﬁ4d’4 — nemozné, lebo da, ds3, a4, d1 SU linedrne

nezavislé.

V A, pre n>4 st mozné javy, ktoré si nevieme predstavit. Napr. v Ay st

a= { 71=0 8= { #3=0 roviny, ktoré sa pretinaji v jedinom bode: (0,0,0,0).
1172:0 I4:0

Veta 11.9. Nech a = (B(a),V(a)) a 8= (B(8),V(8)) st afinné podpriestory

v An=(Bn, Vn)-

1. Ak dim(a)=dim(B), tak v pripade, Ze o || 8 mdme a=4 alebo aNB=0.

2. Ak dim(«a)#dim(B3), tak v pripade, Ze o || B mdme bud anNB=0 alebo o C B

alebo 5 C a.

Dokaz.
1. Nech dim(a)=dim(8), « | 8. Predpokladajme, ze anB#p. Teda existuje
bod AeB(a)NB(B). Mame V(a)CV(B) alebo V(B)CV(«). Z rovnosti dimenzie
V(a)=V(B). Teda « a § st uréené bodom A a tym istym smerovym priestorom
V(a)=V(p) preto a=p.
2. Povedzme, zZe dim(a)< dim(8). « || B; ak anp#0, tak existuje AeB(a)NB(B).
Z toho, ze a || B a V(a)CV(B). Jasné, ze aCpf.

U

Veta 11.10. Nech o = (B(a),V(«)), B = (B(B),V(8B)) st afinné podpriestory
v Apy=(By, V) nech 2<dim(a)<dim(8). Potom: « || 8 < kaZdd priamka v « je
rovnobeznd s f3.

Doékaz.
[=] Predpokladajme, Ze a | 3. Teda V(a)CV(B). Nech p=(B(p),V(p)) je
TubovoIna priamka v .. Teda B(p)CB(«), V(p)CV(a) potom V(p)CV(S). Z defini-
cie rovnobeznosti: p || 5.
[<= Zoberme Iubovolny vektor aeV (a). Chceme ukazat, ze acV(3). Nech AcB(«)
je lubovolny bod. Potom A a @ uréia priamku ¢=(B(q), V(q)) v a; A€B(q), V(q)=[d].
Podla terajsieho predpokladu kazda priamka v « je rovnobezné s 5. Teda ¢ || 8 t.j.
aeV(q)CV(B) a teda aeV(B). Zistili sme, ze V(a)CV(8), teda a || S.

0

Zmena suradnic pri zmene stradnicového systému.

Vo vektorovom priestore :
Nech (dy,---,dy), (ay,---,d),) sa dve bazy dajakého vektorového priestoru V.
Méme jednoznatné vyjadrenie: d1=p11d@)+- - +p1nd, 8% Apn=pp1di+ - +Pnnd),.
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P11 - Pin
Potom P= ( ) sa nazyva matica prechodu od bazy (dy,--- ,al) k baze
Pr1 - Pan
(A1, ,0n)-
) A NP c g oo P
Obratene mame jednoznacné vyjadrenie: a@j=p},di+---+p},an az a,=p), a1+
/ ’
P11 " Pin
+ o +Phndn. P'=1 1 -. 1 | je matica prechodu od bazy (a1, ,dn) k baze

Pri " Prn
n n n
qoee @), Mame: Gi=S piid, @=S pl.d.. Ztoho: Gi=S pid
ay, ,d,,). Mame: a;= Pijly, 4;= Pjsls- oho: a;= Dij;=

j=1 s=1 j=1

n n n
= g Dij E Pisls= E E PijPjss. Z jednoznacnosti vyjadrenia @; v tvare linear-
j=1 s=1 s=1j=1

—

i kombinacie @ 7. dosté Zn: LAk e PRI
nej kombinacie a@;,--- ,a@, dostdvame, Ze iD= ) eda =I,.
) ! " PijPis 0, ak i#s "

=1
Zistili sme, 7e P je regularna a P'=P~1.

Veta 11.11. Matica prechodu od jednej bdzy k druhej je requldrna, pricom matica
opacného prechodu je k nej inverznd.

Veta 11.12. Nech (a’,--- ,d,) je bdza priestoru V a matica P=(p;;) €M, (R) je

? ’I’L

requldrna. Definujme vektory dy,- -+ ,a, takto: dy=pnaj+- - +p1nd, aZ
p=pn1dy+ - +Pnnd,,. Potom (d1,--- ,dy,) je bdza priestoru V.
Dokaz. Vzhladom na to, Ze vieme dim(V')=n, staci dokazat, ze dy,- - - , @, st linear-

ne nezavislé. Nech aid;+---+a,d,=0. Chceme ukéazaf, Zze Vi : o;=0. Mame:
ai(pn@y+- - +pindy,) + -+ o (Pr1@+ - - - +Pnnd;,)=0. (1pr1+-- - +anpn1)d; +

-+ (a1p1n+ T +anpnn)6;z:0 Ale (5&7 T n) .]e ba'za preto:
aiprit- - +oypr1=0 P11 o Pl
(%)4 - Matica systému je: PT= : ) :
a1Pip+- - +anpnn:0 Pin " Pnn

Pretoze h(PT)=h(P) a P je podla predpokladu reguldrna, je aj PT reguldrna.

Preto (%) ma iba nulové rieSenie, t.j. a;="--=a,=0.
O

Zmena suradnic vektora.

Vo V majme dve bazy (a1, ,dn) a(a, - ,a,). Nech ZeV je lubovolny vektor,
nech & = (z1,---,2,) vzhladom na (&’1, <, dp) a T = (J;’l, ,x,) vzhladom na
(@y,---,a,). Aky je vztah medzi (z1, - ,2zp) a (2}, ,2,)?

Nech P=(p;;) Je matica prechodu od (FL’I, -,an) k (al, e dn) Méme vlastne:

= Zxal Zma Vieme, ze d;= Zp” a;. 7Z toho: ZxZZp” a;=
= Zm;c;; & Z (Z xipij> a;= Zx;c'i; Z jednoznac¢nosti vyjadrenia vyplyva,
i=1 j=1 \i=1 =1

ze x}zzgvipij = (2}, - ,2))=(z1, - ,xz,) P. Strucnejsie: X=(z1, - ,2z,) a

i=1
X'=(z}, - ,2!) = X'=XP = X=X'"P1=X'P.

V afinnom priestore: Stradnicovy systém (O, ds, -+ ,@,) v n-rozmernom afin-
nom priestore A,=(B,,V,), kde O€B,, a (d1, - ,dy,) je baza vo V,. Iny strad-
nicovy systém v A,: (O',d},---,d,). Aky je vztah medzi siradnicami vektora
resp. bodu vzhladom na prvy a druhy stradnicovy systém v A,. Pre vektory je
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to jasné: suradnice si v takom vztahu, ako sme to opisali vysSie vo vektorovom

priestore, t.j. ak ZEV,, ¥ = (1, ,%,) v stradnicovom systéme (O, dy, -+ ,dy);
= (ay, - ,x) v (O,d, - ,a,), tak (af,--- ,al)=(z1, -+ ,2n)P, kde P je ma-
tica prechodu od (a’,---,a.,) k (@1, - ,dn)-

Pre body : 1.krok: O=0'. (Zmenia sa len bazy vo V). Stradnice bodu X sa rov-

naju stradnice polohového vektora OX;. Vzfah medzi stradnicami v (O,dy, -,

dy) a v systéme (O, d), -+ ,d,) je uréeny vztahom X'=XP, kde P je matica pre-
chodu od ”¢iarkovanej” k "neciarkovanej”.
2.krok: Zmenime len zadiatok, t.j. od siradnicového systému (O, ds,- - ,d,) prej-
deme k (O, dy,- -+ ,d,). Nech O ma v "novom” stiradnicovom systéme (O, dy, - - ,
dp) stradnice (by,--- ,b,). Teda O'O=byd@1+ - - +bpd,. Bod X=(z1, - ,2p)
v stradnicovom systéme (O,dy,- - ,d,) a X=(z}, - ,z}) v "novom”

n n
(0,1, dn) = OX= 2 Zx;a;:

i=1 =
Aky je vztah medzi (21, ,z,) a (:c17 s ah) ?

n
—
Méme O’ X = Z z,a; =0’ O—J—O—X> = Z xpd;= Z b;d;+ Z Tid;= Z (z;+b;)a;
i=1 i=1

Teda: (27, ,2,)=(x1, -, Tpn)+ (bl,--- L bn). X’ X+B
Vseobecne: spojenim tychto dvoch krokov dostaneme prechod od (O,dy,- - ,dy)
k (O',al,---,d,). Zmena stradnic potom je zloZzenim dvoch éiastkovych zmien.
Nech X=(z1, - ,x,) suradnice bodu z B,, v stradnicovom systéme (O, dy, - ,dyn);
anech X'=(z4, -,z st jeho stradnice v stiradnicovom systéme (O', @, - ,a,).

Nech P je matica prechodu od (a},--- ,d,) k (@1, ,d,). Nech B=(by,--- ,b,) st
stradnice bodu O v (O, d},- - ,d,). Potom plati: X'=XP+B.

Orientdcia redlneho vektorového resp. afinného priestoru.
Orientacia redlneho vektorového priestoru:

Definicia 11.12. Nech U je mnozina vSetkych baz n-rozmerného realneho vek-

torového priestoru V.Potom povieme, ze dve bazy (U, ,0,) a (W, ,W,) st
v relécii ~ zapiSeme (¥, - , Up)~(W1, -+ ,Wy,), ak matica prechodu od (¢4, -, ¥y)
k (@y, - ,wW,) ma kladny determinant.

Tvrdenie 11.3. ~ je reldcia ekvivalencie na U.

Dokaz. Reflexivita: (Vy,--- ,Upn) ~ (U1, -+ ,Vn) pre lubovolni (v, -, v,)€U, lebo
matica prechodu je I, a det(I,,)=1. Symetrickost: nech (U1, -+ ,Up)~ (W1, - ,Wy).
Matica prechodu od (¢4, ,v,) k (W1, -+ ,w,) nech je P. Vieme, ze PeM,,,(R)
je reguldrna, z tohto det(P)>0. Matica prechodu od (W1, -+ ,w,) k (U1, ,Tp)
je P71 Ale det(PP~1)=det(P)det(P~!) = det(P~1)>0. Teda (w1, ,w,) ~
(U1, 17”) Tranzitivnost: Nech (1, ,Ty) R (W, -+ W), (Wi, -, Wp) 2
(Z1,--+, Z,). Chceme ukézat, ze (vl, oo Up) ~ (21, -+, Zn). Nech P=(p;;),
Q=(gi;) €My, (R). Méme w;= Zpijvi pre i=1,--- ,n a Zkzz%ﬂf)i
Jj=1 2
pre k=1,---,n. Z toho: zk—Zq;ﬂprvj Z <Z q;ﬂ-pij> ;. V zéatvorke
j=1 \i=1

je prvok i-teho riadku a j- teho stIpca matlce QP. Teda matica prechodu od

(U1, ,Un) k (21, , Z,) je QP. Potom det(QP)=det(Q) det(P)>0.

U sa rozlozi na triedy ekvivalencie vzhladom na ~. Budd dve triedy ekvivalencie.
a

Definicia 11.13. Vektorovy priestor V' orientujeme tym, Ze jednu z dvoch tried
ekvivalencie Uy ,Us vyhlasime za kladna (privilegovant). Urobime to tak, Ze jednu
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béazu priestoru V vyhlésime za kladnti. Potom kladni triedu baz tvoria prave tie,
ktoré st v ~ s touto kladnou bazou.

Priklad. R™ standardne orientujeme tak, ze za kladnt vyhlasime standardnt bazu:
(gla e 7€7L)'

Veta 11.13. Nech (¢4,---,U,) je bdza redlneho vektorového priestoru V, nech
TES(1,... ny- Potom bdza (Ur(1),- - ,Un(n)) je ekvivalentnd s povodnou bdzou prdve
vtedy, ked je permutdcia pdrna.

Dékaz. Nech napr. 7w= (; f Z) Potom (Tr(1), -, Un(n)) j& (Vo2, V1, , Un).

Mame: 172:0’(71—|—1172+ s —|—0’L7n; 171:11714—0’(724— R —I—O’Un az 17”:01714— cee —|—117n Po-
tom matica prechodu je:

010 --- 0
100 --- 0
0o 01 --- 0
000 --- 1
Matica prechodu od (v, ¥, ,Un) k (Ur(1), Ur(2);* " Ur(n)) Vznikne z I, tak, ze

jej riadky permutujeme podla 7. Potom determinant matice prechodu je (—1)5(”),
kde s(m) je pocet inverzii v w. Teda je kladny prave vtedy, ked m ma parny pocet
inverzii.
O
Orientécia afinného priestoru:

Definicia 11.14. Nech A,=(B,,V,,) je (redlny) afinny priestor. A, orientujeme
tak, Ze orientujeme vektorovy priestor V.

Afinno-euklidovské priestory.

Definicia 11.15. Afinny priestor A=(B,V) sa nazyva afinno-euklidovsky priestor,
ak V (s pevne zvolenym skaldrnym su¢inom) je euklidovsky priestor.

Priklad.
(R™,R™) so standardnym skaldrnym sucinom je afinno-euklidovsky priestor.

Definicia 11.16. Nech A=(B, V) je afinno-euklidovsky priestor, pri¢om nech (, )
je skaldrny st¢in na V. Ak A, BEB,, st dva body, tak ich vzdialenost (oznacime ju

p(A, B)) definujeme ako p(A, B):|ﬁ|:\/ </@, /@)

Veta 11.14. Nech A=(B,V) je afinno-euklidovsky priestor, potom p(A, B)>0 pre
vsetky A, BEB.

1. p(A,B)=p(B, A).

2. p(A, B)=0 & A=B.

3. p(A,B)+p(B,C)>p(A,C). (trojuholnikovd nerovnost)

Dokaz p(A, B)>0 jasné.

p(A, B)=|AB|=| - BA|=|BA|=p(B, 4).

p(A,B)=0 < |AB|=0 < A=B.
)=l

(A, C)=|AC|=| AB+BC|<|AB|+|BC|=p(A, B)+p(B, C).

d

Pozndamka. Definovanim vzdialenosti medzi bodmi v afinno-euklidovskom priestore
A=(B,V) sme vlastne definovali zobrazenie p : BxB—R s vlastnostami z pred-
chadzajicej vety. p je tzv. metrika na B; B je teda metricky priestor.

V dalSom budeme uvaZzovat o n-rozmernom afinno-euklidovskom priestore s pev-
ne zvolenym stradnicovym systémom: (O, €1, ,&,), kde O je bod toho priestoru



14 PRVY ROCNIK, LETNY SEMESTER

a (€1, ,€,) je pevne zvolend ortonormdlna baza vektorovej zlozky tohto priesto-
ru. Tento afinno-euklidovsky priestor budeme oznacovat E™. Stradnicovy systém
(0,8é1,- - ,€,) taky, ze (€1, ,€,) je ortonormalna baza sa nazjva kartezidnsky.
Pretoze baza vo V,, je ortonormalna, pre vektory ¥=x1€1+ - +x,€, a y=y1€1+
+ - +yné, ich skaldrny stéin je x1y1+ - - +TpYn. T=(21, - ,2n) a §=(y1, " ,
Yn)- (T, y)=T1y1+ - +TnYn.

Veta 11.15. Nech A, B st dva body v E" pricom A md siradnice (ay,- - ,an), B
md suradnice (by,- -+ ,by). Potom p(A, B)=+/(a1—b1)%+ - +(an,—by)2.

Dékaz. AB = (bi—a1,--- bp—an). AB = (bi—a1)é + -~ + (bn—an)@n, kde
(€1, ,€n) je ortonormélna baza. (AB, AB)=(b;—ay)*+ - +(bp—an)?,

p(A, B)=|AB|=\/ (AB, AB)=\/(bi—a1)?+ - +(ba—an -

Kolmost vektora na afinng podpriestor.

Definicia 11.17. Nech E"=(5,,,V,,). Hovorime, 7e vektor G€E"™ je kolmy na a-
finny podpriestor a=(B(«), V(«)) priestoru E™ ak d_LZ pre vietky €V (a). (teda
acv(a)t).

Veta 11.16 a Definicia 11.18. Nech a=a 21+ - - +a,2,=0 je nadrovina v E™.
Potom vektor ii=(ay,-- - ,a,) je kolmy na a. Vektor fi sa nazyva normdlovy vektor
nadroviny a.

Doékaz. Nech £V (a) je lubovolny vektor. Nech X=(x1,--- ,x,) je Tubovolny bod
z . Vieme, Ze existuje jediny bod Y=(y1, - ,yn)E€cx taky, ze ¥=XY. Pritom
sturadnice )W:(ylfml, coo  Yn—Ty). Mame, kedZze X, Yea: a1z1+ - +anx,=0 a
a1y1+ - - +anyn=0. Potom a;(y1—2x1) + -+ + an(yn—z,) = 0. Teda (7, W>:
=(f1, #)=0 t.j. 7 je kolmy na Iubovolny vektor z V(c). Pre Iubovolné c€R méme
(crt, ZYy=c(7t, ©)=0.

O

Veta 11.17. Rowvnica nadroviny o€E™ obsahujicej bod B=(by,--- ,b,) a majice
normdlovy vektor i=(c1,--- ,¢n) je a = c1(x1—b1)+ -« - +cn (2, —by)=0.

Dokaz. Nech X=(z1, - ,x,)EE™ je lubovolny bod z a. Potom ﬁzeV(a). Pritom:
71BX teda (7, E)?):o. n=(c1, - ,cn), E;(}E(xl—bl,-n , Tn—by). Teda musi
platit ¢; (£1—b1)+ - - - +¢, (b —xy,)=0. Vieme, Ze nadrovina je urc¢end jednou linedr-
nou rovnicou, teda ¢i(x1—b1)+ - - - +¢p (2, —b,)=0 je rovnica nadroviny a.

O

Kolmost afinnigjch podpriestorov.

Definicia 11.19. Nech a=(B(«), V(«)), 8=(B(8), V(5)) st dva afinné podpriesto-
ry v E". Hovorime, %e podpriestor « je kolmy na 3, ak V(a)CV(3)*. (teda kazdy
smerovy vektor podpriestoru « je kolmy na kazdy smerovy vektor podpriestoru S.)
Ak je tdto podmienka splnend, napiSeme oL f3.

Tvrdenie 11.4. Ak alf, tak fLla. (MoZeme povedat, e o a B si navzdjom
kolmé. )

Dékaz. Nech al 8. Teda V(a)CV(B)L. Ale potom (V(B8)1)LcV(a)t &
& V(B)CV(a)t & BLa. Roviny Oy, O, v E? nie sti na seba kolmé v zmysle nasej
definicie. Totiz V (a)ZV (8)*, lebo dim(V (a))=2, dim(V (8)+)=1. Teda podla nasej
definicie: Oy nie je kolmy na O,..

O
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Veta 11.18. Nech a=(B(«),V(a)), B
v E™. Ak alp, tak dim(a)+ dim(8)<n.

Dékaz. Nech alfB, teda V(a)CV(B)*:. V(B)aV(B):=V(n); kde E"=(B,,V,).

Mbézeme predpokladat, ze dim(a)<dim(8). V(a)®V(8)CV(8) @ V(B)t=V(n) =
dim(V(a)®V (B))=dim(a)+ dim(3)< dim(V(n))=n.

=(B(B),V(8)) si dva afinné podpriestory

d

Tvrdenie 11.5. Nech a=(B(«), V(x)), 8=(B(8),V(B)) st dva afinné podpriestory
vE". Ak anB#D a ol B, tak aNB pozostdva z jediného bodu.
Dékaz. Nech a L. Teda V(a)CV(B)Lt. Nech anp=B(a)NB(8)#0. Nech P,Q
st dva body z B(a)NB(5). Potom @EV(O&)QV(B)CV(ﬂ)mV(ﬂ)l:{(—j}. Z &oho:
@:6 a preto P=Q.

O
Veta 11.19. Nech a=(B(«a),V(«a)) je k-rozmernyg (k<n) afinng podpriestor v E™.
Potom pre lubovolny dany bod AEE™ existuje jeding (n—k)-rozmerny afinng pod-
priestor v E™ kolmy na o obsahujici bod A. Tento podpriestor oznacime IT-(A), a
nazyva sa kolmopremietact afinny podpriestor bodu A do «.

Dékaz. Nech A=(ay,--- ,a,) a vo V(a)t zvolme bazu (W, - , W, 1), kde =
=(wl, - wh) az W, _p=(w", - ,wﬁf’“) Potom podpriestor
T1=a1+wit;+ - +w” LT
y=< --- ma dimenziu n—k a je kolmy na «.
Tp=an+witi+ - +wFt, 4
(V(y)=[wy, -, Wn_r]=V(a)*). Tym sme ukézali existenciu takého podpriestoru

ako sa tvrdi vo vete. Jednoznaénost: Nech d=(B(5),V(9)) je (iny) (n—k)-rozmerny
afinny podpriestor v E", kolmy na a obsahujtici bod A. Potom V(§)CV (a)t. Ale
dim(V (8))=n—k, dim(V (a)*)=n—k. Teda musi: V(§)=V(a)*. T.j. V(§)=V (7).
Pretoze AcB(0), AeB(vy) musi byt d=n~.

0

Veta 11.20. Nech a=(B(«),V(«)) je k-rozmerny afinng podpriestor v E™. Potom
1L (A)Na pozostdva z jediného bodu, oznacime ho A+ a nazjvame ho kolmy priemet
bodu A do afinného podpriestoru .

Doékaz. A=(ay,--- ,an); nech (¢1,---,7,) je ortonormalna béza priestoru V(«a),
pricom o =(vi, - ,v}) az Gp=(vF, -+ ,vF). Vieme, ze V(IIZ(A))=V(a)t. Nech
(Z1,-+ y Zn—k) je ortonormélna baza priestoru V(a)*, pricom zj=(z1,---,z}) az
Znp=(207", -+, 20 %), Nech Bellt(A), B=(bs,--- ,b,). Potom
ri=a;+vit;+- - 4okt T1=bi+2ls1+ 420 s,y
a={ .- mi(a)={ -
Tp=an+vity+ - +okt, Tp=bp+zisi+---+2" " Fs, g

Bod X=(w1,- -, 2, )€} (A)Na spliia:

ar+vity+ - doft=by+zisi+ - —|—z’f_ksn_k

an+viti+ - okt =b,+2ls - 42 R,

pre dajaké t;,s,€R. Teda (t1,--- ,t,,51, " ,5,_%) splha:
viti ol — =20 s, =bi—ay

(%)

viti - +vﬁtk—z}lsl— e —zﬁ_ksn_k:bn—an
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Teda Xcanlli(A) < systém (*) je rieSitelny. Matica systému ma n linedrne
nezévislych riadkov, teda jej hodnost je n. Teda (*) mé prave jedno rieSenie.
0

Vzdialenost afinngjch podpriestorov.
Definicia 11.20. Nech «, 8 st dva afinné podpriestory v E"*. Vzdialenost o od
definujeme ako nezdporné redlne ¢islo p(a, §):=inf{p(X,Y); X€A,YeB}.
Veta 11.21. Nech A€E" je bod a nech a=(B(«a), V() je afinng podpriestor v E™.
Potom p(A,a)=p(A, AL).

Dokaz. p(A,a)=inf{p(A, X), X€a} a p(A, AL)e{p(A, X), X€a}, teda p(A,a)<
<p(A, A+). Ukézeme, ze p(A, A*) je dolnym ohrani¢enim mnoziny {p(4, X); X€a}
Z toho: p(A, A1)<p(A, a)=inf{p(4, X), X€a} kedze inf je najviicsie dolné ohra-
SR _ Sty
nifenie. Rétajme: ,o(A,ALf:\AAHQ;p(A, X)2:|AY|2:\AAL—i—ALX|2 =
=(AAT+AL X AATH AL X)) = (AAL AAD)412(AAL AL X)) H(AL X, AL X)) =
=p(AAL)2+2:0+p(A+X)2. Z toho: p(A, X)?>p(A, AL) preto p(A, X)>p(A, AL).
Teda naozaj p(A, A1) je dolnym ohrani¢enim.

O
Vzdialenost rovnobeZnich afinngch podpriestorov.

Veta 11.22. Nech a=(B(«a),V(a)), 8=(B(8),V(8)) si rovnobezné afinné podpri-
estory v E". Nech dim(a)<dim(B3). Potom p(a, B)=p(A, B)=p(A, AL).
Dékaz. 7 definicie p(a, B)=inf{p(X,Y); X€a,YEB}. p(A, AL)e{p(X,Y), X€a,
Y€B}, a preto p(a, B)<p(A, AL). Aby sme dokazali obratenti nerovnost ukazeme,
7e p(A, A1) je tiez dolnym ohrani¢enim mnoziny {p(X,Y)}. Z toho potom dosta-
neme p(A, A+)=p(a, B). Pre Tubovolny X €« existuje jediny vektor A?EV(O(). Ale
a || B apreto AX€EV(B). Pretoze A+ € B(B) a BGV(B) existuje jediny bod Zep:
B Gt NS A i R i
AX=ALZ. AAL=AX+X AL, Ale AX=ALZ. 7 toho: AAL=ALZ1 X AL=
e e
—X AL} AL Z=X 7V (B)L=TT}(X). Mame Z€BNIT(X)={X}. Preto Z=X" a
teda AA+=X X" pre lubovolny bod X€a. p(A4, AY)=p(X, X )=p(X,3)<p(X,Y)
pre Tubovolné Y€B, Xea. p(A, AL)<p(X,Y) ,teda p(A, A*) je dolnym ohranice-
nim mnoziny {p(X,Y), X€a,YES}.

g

Priklad. Uréte vzdialenost bodu P=(p1,- - ,pn) v E" od nadroviny o = ajx1 +

o+ apTy, +ao =0.

Riesenie: II-(P) je priamka, jej smerovy vektor je vlastne normalovy vektor nadro-
T =p1 +ail

viny «, t.j. i = (a1, ,a,). IE(P) =

Tp = Pn + Gnt
Uréime jeding bod P+ = IIX(P)Na. ai(p1+ait)+ -+ +an(pntant)+ao=0 <

4.0 +
& agtaipi+ - +appat+t(a?+-- - +a2)=0. Z toho: t= — ai1p1 _ -anpzn o
a1+...+an
aipi+---+anpntao aipi+---+anpntao
p(PaO‘):|PPJ_|:‘(7a1 D) - Qn P R €7} D) = Qn )|:
a1+...+an a1+...+an

(a1p1+ - +anpntao)” _laipi+ - - +anpataol

= .a2+...+a%
¢ @y V@

Teda: p(P,a)= la1p1+ - - +anpntao| '

,/a%.'.....'.a%
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Vzdialenost rovnobeznijch nadrovin.

Veta 11.23. Nech a=aiz1+ - - - +apr,+a9=0 a f=a1x1+ - - +a,x,+bg=0 su dve
|bo—ao|

1/0]%_‘_..._’_&%'
Dokaz. Z vety 11.22 mame: p(a, 5)=p(P, 5), kde P=(p1,--+ ,pn) je lubovolny bod
la1pi+ -+ +anpatbo| _ [—ao+bo|

Val+-+a2  Jdi+ a2

Vzdialenost dvoch mimobeZnyjch afinngjch podpriestorov.
Veta 11.24. Nech a=(B(a),V(«a)), 8=(B(8),V(B)) si mimobezné afinné podpri-
estory v E*. Teda B(a)NB(8)=0 a V(a)NV(8)={0}. Potom ezistuje bod PEa a
Qep take, Ze ]@GV(Q)J—QV(@J— a plati: p(a, B)=p(P, Q). (Priamka uréend bodmi
P,Q je tzv. stredné prie¢ka afinngch podpriestorov a, f5.)

Dékaz. Nech Xeo,Yep st Tubovolné. Potom Xy ¢ V(a)@V (). Keby éano, tak
by ﬁ—a—&—b pre jednoznacne uréené a€V(a), EEV(ﬁ) Potom existuje jediny bod
Zea: EL':X? a Jedlny bod Weg: *7—17 Teda: XY X?—&—W ale zéaroven
T/z X?—i—ZW +WY, teda ZTV> 0 ¢o je ekvivalentny s tym, ze Z=W. Teda

Z=Weanp=0 (kedze a, 8 st mlmobezne). Spor.

Nech v je afinny podpriestor uréeny bodom X, pricom V(y)=V(a)®V(S). Nech v
je afinny podpriestor uréeny bodom X a taky, ze V(7)=V(a)®V(8)® [X—>Y] Kedze
[XY] ¢ V(a)®V(B), dim(y')— dim(y)=1, a teda (mame yC~') v je nadrovinou v .
Nech 7@ nenulovy je normalovy vektor nadroviny v v 7. Teda 7€V (7)*=(V(a)®
eV(B)t=V(a )J-OV(B)J-. Nech teraz (dy,- - ,dy) je dajaka ortogonalna baza

vo V(a), nech (b17 e ,l;j) je ortogonélna baza vo V(8). Potom vektory dy,-- - , dx,

rovnobezné nadroviny v E™. Potom p(«, 8)=

z a. Z prikladu vieme, Ze p(P, §)=
O

—

by, -+ ,bj, 7 su linedrne nezavislé a teda tvoria bazu vo V(). Pretoze X_>Y€V('y’),
mame XY =qojd;+--- +ak&'k+[3151+ e +6jgj+5ﬁ pre jednozna¢ne uréené aq, - - -,
ok, B1,- -+, B;,6€R. Potom 6#0 lebo W%V( )®V(B). Oznac¢me P ten jediny
bod z «, pre ktory ajdi+---+ardp=XP, ozna¢me @ ten jediny bod z 3, pre
ktory 61b1+ +ﬂjb]fQ?. Teda mame, Ze ? j+]@+éﬁ Teda ]@—yn

Kedze ]@év LNV (B)*, tak priamka, ktord prechadza bodmi P,Q je kolmé
na « aj § a pretina o v P a § v Q. Este treba ukézat, ze p(P,Q)=p(c, B).
Vieme, ze p(«, 8)=1inf{p(A, B); Acq; BGB} Nech A€aq, Beﬂ st lubovolné. Potom
A=P+s1d1+ -+ +8,0, zdroven B= Q+t1b1+ -t b pre vhodné sy, - -, sg, i1,

,tieR. ﬁ B—A= I@—Ftlbl—i— -t b —s1d1— - - —8dy. Potom p(A B)?=
|1@|2 E E 1@ $1d@1— - - —Spdp+tib+ - -+t b 1@—51@1—~-~—
—spdpttibi+ - +15b;) F@ @ +2(P @,_Slal_"'_Skak+t1b1+"'+tjgj>+

=0
+< s1d1 — '--—Sk5k+t151+ +tg],—8151 ---—sk6k+t151+ +tg>
=p(P,Q)*+| —s1d1— - - —Spdpttib+ - -+t b |2. Z toho vidno, ze p(A, B) sa min-
imalizuje vtedy, ked | — syd;— - c —Spapttibi+ - 7] b i|=0 t.j. prave vtedy, ked
—8151—“-—Skc_ik—l—tlgl-i---'+tjbj—0<:>81— s =Sp=t1="" —tJ—O, lebo (51,"' s

r, by, - ,Ej) je baza vo V(a)®V (). Teda p(A, B) sa minimalizuje vtedy, ked sa
rovnd p(P, Q). To znamend, Ze naozaj p(«, 8)=p(P, Q).
g

Déosledok. Nech a=(B(a),V(«a)), B=(B(8),V(B)) si mimobeiné afinné podpries-
tory v E™. Potom existuje afinng podpriestor 31 taky, Ze SCH1, a||f1 a p(a, B)=
=p(a, B1). (= p(A, AY), pre lubovolny bod Aca, At je kolmy priemet bodu A
do p1.)
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Dokaz. Zoberme f31, ako afinny podpriestor uréeny Iubovolnym bodom z 3 a taky, ze
V(61)=V(a)®V(B). Potom je pravda, ze SCS; aj to, ze «||f1 (lebo V(a)CTV(B1)).
Z predchadzajicej vety vieme, Ze existujti PE€a, Q€f také, ze PQeV (a)*NV (B)t=
=V (a)®V(B))=V(B1)* pricom p(a, B)=p(P,Q). Mame QCJ, a teda tiez Q€3
a zaroven I@EV(HJ‘ (P)). Z toho: Qellg (P)NBi={P"}, a preto P==Q. Teda

pla, B)=p(P,Q)=p(P, P~)=p(cx, B1). -

Uhly medzi afinnymi podpriestormi v E™.

1. Uhol dvoch orientovangch priamok:
Nech p,qCE™ st dve orientované priamky (p#£q). Teda V(p), V(q) st dva oriento-
vané vektorové priestory. Z toho ak @0 je smerovy vektor orientovanej priamky p
a @0 je iny smerovy vektor, tak d@'=k-a@ pre dajaké k>0. Podobne, ak b, b st dva
smerové vektory orientovanej priamky ¢, tak V=lb.

@) (ka,lb) ki(@b) (@b
@' [kalie]  kal-p] |al(bl

Tento vyraz nezavisi od vyberu smerovych vektorov orientovanych priamok p,gq.

a, b
Zo Schwarzovej nerovnosti vieme, Ze WE<—1,1> = Jlpe(0,7) : cos @:T_'“_),T.
a a
© definujeme ako uhol zovrety orientovanou priamkou p a orientovanou priamkou q.
2. Uhol dvoch neorientovanych priamok:
Nech p, qCE" st dve neorientované priamky. Potom, ak @0, @’'#0 st dva smerové
vektory priamky p, tak @'=k-@, kde k#0. Podobne, ak b, ¥ (0) st dva smerové

vektory priamky ¢, tak v=Ib pre [£0. Potom vyraz

-

@.,vy  (ka, by k(@b L,
@' |kl (k2G| |l

)
0

vo vSeobecnosti zavisi od vyberu smerového vektora priamky p resp. ¢. Ale uz vyraz
ab ) e T .
<_' _,> uz od vyberu nezavisi. Existuje jediné 1€(0, 5) také, ze cos 1/)—|< _.>‘
|al[b] |al[b]
1) potom nazveme uhlom zovrety neorientovanych priamok p a q.
3. Uhol dvoch nadrovin
Nech o, 8 st dve nadroviny v E™, nech 7, 7z st ich normalové vektory. Potom uhol
medzi « a 3 sa definuje ako uhol neorientovanych priamok so smerovymi vektormi
fiq Tesp. Nig. Teda: ak a=a1z1+ - - +apx,+ap=0, f=biz1+ - - - +b,2,+bo=0, tak
fla=(a1, - ,an);Ng=(b1, - ,by) a Z(c, ) je to €islo z intervalu (0, g> pre ktoré

. |a1b1+"'+anbn‘
COS|Z(Q75)‘_\/(a2+~-~+a2)(b2+"'+b2)-
1 n 1 n

Vektorovy a zmieSany stdéin v R3.

@l

Definicia 11.21. Nech R? je standardne orientovany t.j. nech (€1, €, €3) je kladna
béza tohto priestoru. Nech @, b st dva vektory z R?. Potom existuje jediny vektor
ceR? taky, ze
1.¢Laclhb.

= \/ ) (5. 5)— (@, By2=y/ |aP 62— (@, 5)2.

3. Ak @,b st hnearne nezavislé, tak (a, b, @) je kladn4 baza v R3.

Vektorovy suéin vektorov d a b je vektor ¢, oznacuje sa axb.

-

Pozndmka. Vlastne sme definovali zobrazenie x : R3xR3—R2, x (@, b)=axb.
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Geometricky vyznam |Ei><5|: je to plosny obsah rovnobeznika urceného da, b.
(@xBl=/ | B2~ (11 5] cos(£@, )2 = +/|@I21512— [P Bl2(1— sin?(£@, §) =

-,

|@|2|b|2 (sin?(£a@, b)) = |d@||b| sin(£@,b). Plosny obsah rovnobeznika uréeného
b je |d||b| sin(£a, b).
Veta 11.25. Nech a=(ay,az,a3), g:(bl,b27b3) st dva vektory z R3. Potom

N €1 & €3
axb=det <a1 az a3> =c1- det (a2 aS) —eés det (a1 a?’) +¢é3 det (a1 a2> Pretoze €1=
bl b2 bg

=(1,0,0),&=(0,1,0),&=(0,0, 1), axb= (det (4} 4, ), —det (4, ;) ,det (, 42)).
Dokaz. Overime podmienky 1.y,2.y a 3.y z definicie.
1,

((ar, a2, a3), (det (4, ;) = det (3 47 ) »det (5, 4,))) =

a] a2 asg
— aydet (02 %) —azdet () +ag det (%) =det <Zl o 23) —0
1 02 03

Podobne pre b.
2.

\/det ) +det? ("1 a3)+det (‘;; Zj):

= \/|(a17a2,ag)\2|(b1,b2,bg)|2 — ((a1,a2,a3)(b1, ba, b3))?

3.y Predpokladajme, ze d=(a1, as,as), gz(bh ba, b3) su linedrne nezéavislé. To zna-
mend, ze (by,be,bs) nie je nenulovym nasobkom (aj,as,az) a preto aspon jedno
z Cisel det ( " a3) det (al a3) det( . az) je #0. Mame G=a;&,+asE+asés, b=
by & +baFat bads, = det (. a3)€1—det(b1 )62+det(‘“ b ) @. Teda matica
prechodu od bazy (€1, €2, €3) k trojici Vektorov (@,b, ) je

ay a9 as
P= b1 by bs
det (a2 a3) —det (a1 a3) det (Zi Zs)
Potom det” (7 ;7 ) +det® () ;2 ) +det® (! 37) > 0. Z toho (kedze P je regularna):
(@,b,) je baza v R?, a pretoze det(P)>0 je kladna béza aj (a,b, é). Z jednoznatnej
uréenosti @xb: axb= (det (Zj Zs) , —det ((Zi Zs) ,det (le Zj ))
O
Veta 11.26. Vektorovy sicin v R® md tieto vlastnosti:
1)d'><b—fb><&'p'reVEL' beR3.
2. )(oza—i—ﬁb)xc a(@x@)+B(bx3) a @x(Bb+y2)=B(axb)+y(@xE) t.j. zobrazenie X :
R3xR3—R3 je linedrne v oboch argumentoch.

Dokaz. 1.)6X5::€. Pre linearne zavislé Zi,g 1.y zrejme plati. Pre d’jf linearne
nezavislé mame, ze (@,b, ) je kladna baza. Zaroven (b, d, bxa) je kladna béza v R3
potom axb= — bxa.
Ing dokaz: Nech @=(a1, a2, a3), b=(by, bz, b3), potom axb= (det (> ;° ),
—det (31 2) det (5! 52)) = (d t (b2 ”Z) — det (’“ bS) det (211 ZZ)) —=—bxa.
2.y Z vlastnosti determinantov jasné.

O

Definicia 11.22. Nech R3 je tandardne orientovany. Nech @,b,7€R3 st dané
vektory. Potom ich zmiesany sicin sa definuje ako redlne ¢islo (@x b, é), ozn. (@, b, ¢).
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Veta 11.27.
N ay az as
Nech d=(a1, as,a3), b= (b1,b2,b3),c=(c1,c2,c3). Potom (@,b,&)=det (b1 ba bs).

C1 C2 C3
Dékaz. (@,b,&)=(axb,&)=((det (> ;>), —det (5 3°),det (3 }2)), (c1.c2,c3)) =
ay az a
cldet(a2a3)czdet(ZiZ:)F03det(ala2)det<b1b2b§).

C1 C2 C3

Veta 11.28. Zmiesany sucin md tieto vlastnosti:
1.y je linedrny v kaZdom argumente.

2.(@,b,8)=(b, & @)=(C,d,b).
Dokaz. jasné z determinantového vyjadrenia zmieSaného si¢inu a vlastnosti deter-

minantov.

O

Veta 11.29. Nech @, b st dva linedrne nezdvislé vektory v R?, chdpané ako orien-
tované usecky v Ogy. so zaciatkom v O. Nech € je vektor, ktory nelezi v smerovom

priestore roviny uréenej bodom O a vektormi d,b. Potom |(d,b, )| je objem rovno-
beznostena uréeneého bodom O a orientovanymi useckami d, b, c.

Dokaz. d= (ﬁl A= al,ag,a3 b O? B=(by, by,b3),c= O? C= 01,02,03) Objem
rovnobeznostena O@bé =(plosny obsah podstavy Oab) viska = |@xb|-p(C, @), kde
a je rovina uréena bodom O a vektormi @,b = |a><b| p(C,CH).

21=0+a1t+bys zy=ci+det (33 45 )P
a=< xo=0+ast+bss HCLY(C) = { wa=cy—det ( le Z; )P peR
x3=0+agt+bzs x3=cg+det (41 52)p

art+byis—det (32 52 ) p=c1
ast+bys+det (5, a3 3) p=c2
ast+bzs—det (5. 52 ) p=cs

a; az ag a1 az as
det [ b1 b2 b3 det [ b1 b2 b3
C1 C2 C3 _ c1 c2 Cc3

= det® (5 4y ) —det” (5, 5)) —det?® (5, 5) b

p:

az as b a1 as b ay az H? 5) 2
p(Cch):\/detQ (bz bg) <aD E> +de t (b1 b3) <aD8> +d t (bl bz) <aD28>

V =@ x bl - p(C,C*) = |(@,b,¢)]

Veta 11.30. Nech x : R"xR"—R" je zobrazenie s tymito vlastnostami:
14X je linedrne v oboch argumentoch.

2.y pre Vd, beR™ je (@xb)La, (@xb)Lb
3.|@xbl=/|al?|b|>— (@, b)>-

Potom n =3, alebon =17

Bez dokazu.
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II. LINEARNE TRANSFORMACIE VEKTOROVYCH PRIESTOROV

Definicia 12.1. Linedrna transformdcia vektorového priestoru V je linedrne zob-
razenie V—V.

Priklad. f:R3—R3, f(x1, 79, 3)=(211+22—23, T2, —21) je linedrna transformécia
priestoru R3.

Definicia 12.2. Nech V je n-rozmerny vektorovy priestor nad polom R. Nech

(@1, ,dn) je bdza vo V. Ak f : V=V je linedrna transformécia priestoru V,
tak jej matica vzhladom na bazu (a1, - -, d,) je matica A=(a;;)€M,,,(R) takd, ze
fl@i)=apndi+ - - +aindy; i=1,--- ,n.

Priklad. Matica linedrneho zobrazenia f : R3—R3; f(x1,z2,23) = (1 — 22 — 73,
110

1422, xa+x3) vzhladom na bazu (€1, €3,€3) je M= | -11 1> €M33(R).
—101

Priklad. Nech f : R3—=R3 f(x1, 22, 23)=(621+479—223, 271 +3, 421 +475). Matica
6 24

f vzhladom na (€1, é>,€3) je My = ( 4 04>. Vektory a1=(0,1,2), d2=(2,1,2)
—210

@3=(2,—3,2) tiez tvoria bazu v R3. Aka je matica f vzhladom na bézu (dy,dz,d3)?

Vyrétame €1=(1,0,0)=x(0,1,2)+y(2,1,2)+2(2,-3,2) = J;——2,y 2,z 0. Teda

1=—1(0,1,2)+1(2,1,2)+0-(2, -3, 2). Podobne: &,=1(2,1,2)—1(2,-3,2), &=

(0,1,2)— % 2,1,2)+(2,-3,2). Teda matica prechodu od (61,52,53) k (&1, &5, ¢€3)

(
1 1 0
jeP:< c 1 ;) Potom f(@) = f(0,1,2) = 28, + 4 = 2(Ld;

0
1
2

lo\»—l

53)4—

N

ool
o=

+4(%d’1—%d’2+%@’3) = 2dy. f(d2)=6dy a f(d3)=—2d;. Teda matica f vzhladom

00 —2
Vseobecne, ak f: R"—R"” je linedrna transformdcia, tak mame f(x1, -+, x,)=
=(x1, -+ ,2n)- My, kde MseM,,,,(R) je matica f vzhladom na bazu (€1,--- ,€,).
Ale, ak BeM,,,,(R) je matica f vzhladom na inG bazu (@y,---,d,) tak uz ne-

plati, ze f(xy,--- ,xn) (z1,-+ ,2n)-B. Napriklad z predchddzajiceho prikladu:
20 0

F(1,1,1)=(—1,2,2), ale (1,1,1)- (0 6 0 ) =(2,6,-2)#(~1,2,2).

00

na bazu (ay,ds,ds) je B = (06 0 ) Pre My plati (z1, 2, x3)- Mp=f(z1, x2, z3).

Veta 12.1. Nech [:V—=V je linedrna transformdcia, nech (dy,--- ,dy) je bdza
vo V a nech AeM,,,,(R) je matica [ vzhladom na bdzu (d1,--- ,dy). Potom, ak
(1, ,xy) je n-tica siradnic vektora ZEV v bdze (dy, - ,dp), tak (x1, - ,z,)-A
je n-tica siradnic vektora f(Z) v baze (a1, - ,dyp).

Dokaz. Médme Z=x1d1+ - - - +25ayn. Potom f(Z)=f(x1d1+ - +axpdy)=x1f(d1)+
+ .. —|—xnf(c_in) =T (allc_il—!— s —&-aln&’n)—&- ce +-Tn(anlal+ t +ann6n) =
=(z1a11+ - +xpan1)d1+ - 1010+ - - +Tpapndy,. Teda f(Z) mé vzhladom

na (dy,- - ,d,) n-ticu suradnic (z1a114 - +ZTpan1, + ,T101,+ - +Tpan,). Ale

ail ain
(1'17"' axn)< >_(m1a11+"'+xnan1a"‘ 7x1a1n+"'+xnann)~ To je

anil ** Gnn
prave n-tica stradnic f(Z) vzhladom na bézu (@y,- -, dy).
O
Otdzka. Nech f:V—V je linearna transformécia, nech (ay,--- ,ay), (dy,---,dl,) sa
dve bazy vo V. Nech f méa vzhladom na (dy, - - , @,) maticu AeM,,,,(R) a vzhladom

a,,) maticu BEM,,,,(R). Aky je vztah medzi A a B?

? ’fL

na (@, ---

Odpoved. Nech PeM,,,(R) je matica prechodu od (ay,---,dl) k (@i, -+ ,dn).

Vieme, Ze P je regularna pricom P~'=P’ je matica opa¢ného prechodu. Nech Z€V
je Tubovolné, nech jeho stradnice vzhladom na (a@y,---,d1) st X=(z1, -+ ,z,) a
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vzhladom na bazu (a},--- ,d),) st X'=(z}, -+ ,z),). Vieme, ze X=X'P’, X'=XP.
Nech teraz f(Z) mé sauradnice Y=(y1, - ,yn) vzhladom na (dy,---,d,) a nech
mé suradnice Y'=(yi,--- ,y,,) vzhladom na (a},---,d),). Zas vieme, ze Y'=YP,
Y=Y'P’. 7Z predchidzajicej vety tiez vieme, ze Y=XA, Y'=X'B. Z toho:
XAP=YP=Y'=X'B=XPB = XAP=XPB t.j. ]X(AP-PB):O\ pre vietky
XeR"™. Ak postupne berieme za X n-tice €;=(1,0,---,0),--- ,€,=(0,---,0,1), tak
0 déva, Ze prvy az n-ty riadok v matici AP—PB je nulovy, a teda AP—-PB=0,

z toho AP=PB a teda | B=P AP |

Definicia 12.3. Nech A,BeM,,,,(R). Hovorime, Ze matica B je podobnd matici
A ak existuje reguldrna matica QEM,,,,(R) takd, ze B=QAQ™!. (zapis: B ~ A).

Tvrdenie 12.1. ~ je reldcia ekvivalencie na M, (R).

Dokaz.
Symetrickost: B~A = B=QAQ™!, ale potom aj A=Q 'BQ=Q!'B(Q!)"! a
teda A~B. Reflexivita: A~A, lebo A=I, AL '. Tranzitivnost: A~B,B~C =
= A=QBQ !, B=SCS! = A=QSCS!'Q'=(QS)C(QS) ! a preto A~C.

O

RieSenie predchadzajicej otdzky mozeme vyjadrit takto: Matice linedrnej trans-
formécie n-rozmerného vektorového priestoru V' vzhladom na rézne bazy priestoru
V' st navzajom podobné.

Veta 12.2. Eristuje linedrna transformdcia a vhodnd bdza priestoru R™ takée, Ze pre
dané podobné matice A, B plati: A je maticou tej linedrnej transformdcie vzhladom
na Standardni bazu (€1,---,€,) a B je matica tej istej linedrnej transformdcie
vzhladom na (dy,- -+, dy).

Dokaz. Nech A=(a;;j),B=(b;;), nech B=EPAP~! pre dajakt reguldrnu maticu

PeM,,,(R). Predpis f(€;)=ai1€1+ - +ainé, podla zdkladnej vety o linedrnych
zobrazeniach definuje linedrne zobrazenie f : R™—R", priom f mé vzhladom

na (€1, - ,€,) maticu A. Definujme vektory dy, - ,@,: @;=pi1€1+ - +DinCn,
i=1,--- ,n. Pretoze P=(p;;) je regularna, vektory (d1,--- ,d,) tvoria bazu priesto-
n

ru R™. (tiez €;= Zp.'jsd’s Vj.) Ak4 je matica f vzhladom na (ds,--- ,d,)?
j=1

n n n n n
F@)=S sl 6= ot (z ) I ST
j=1 i=1 s=1 j=1  s=1

n

n n n n n
=2 P Y ais ) Pudi=) | DD putispl | d
j=1  s=1  t=1 t=1 \s=1j=1
V zétvorke je prvok i-teho riadku a j-teho stipca B=PAP 1.
O

Definicia 12.4. Nech f : V—V je linedrna transformécia. Viastny vektor linear-
nej transformacie f je nenulovy vektor 7€V taky, ze pre ddke A€R mame f(¥))=\v.
V tejto situdcii sa A\ nazyva vlastnd hodnota linedrnej transformécie f patriaca
vlastnému vektoru v.

Priklad. idy : V—V pre Vo€V —{0} plati idy (7)=1-0.

Definicia 12.5. Vlastny vektor a k nemu patriaca vlastnéd hodnota matice
AeM,,,,(R) sa definuje ako vlastny vektor (a k nemu patriaca vlastnd hodnota)
linedrnej transformécie f4 : R®"—R" (ktorej maticou vzhladom na $tandardnt bazu
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je A.) Ina¢ povedané: nenulovy vektor (z1,--- ,z,)ER" je vlastny vektor matice A
ak existuje A€R také, ze (x1, - ,2n) - A=\(21,- - ,2,). O X hovorime ako o vlastnej
hodnote matice A patriacej k vlastnému vektoru (z1,--- ,z,).

Priklad. (zq,---,z,)#(0,---,0) (@1, ) Ip=1-(21, -, Zpn).

Poznamka. Definovali sme tzv. lavy viastny vektor matice A. Nickedy sa definuje
Y1

0
aj tzv. pravy vlastny vektor matice A ako taky ( ) #* () pre ktory existuje
Yn 0

Yn Yn

Y1 Y1
HER také, Ze A ( ) =u ( ) Transponovanim: (yi, -+, yn) AT=p(y1, -+, yn).

Y1
Teda | | je pravy vlastny vektor matice A prdave vtedy, ked (y1,--- ,yn) je lavy
y’n

vlastny vektor matice AT.
V dalsom budeme uvaZovat iba o lavych vlastnyjch vektoroch.

Tvrdenie 12.2. Podobné matice (nad R) maji ti istd mnoZinu vlastnych hodnot
(z pola R).

Dékaz. Nech A, BEM,,,,(R) a nech st podobné, teda B=PAP~! pre dajaki regu-
larnu maticu PeM,,,,(R). Oznac¢me S(A) resp. S(B) mnozinu vlastnych hodnot
matice A, resp. B. Chceme ukazat, ze S(A)=S(B). Nech AeS(A) je Tubovolné.
Vieme, Ze existuje nenulovy vektor ZER" taky, ze #-A=M\Z. Mame A=P 'BP.
Teda TP 'BP=)\7 & (7P~ 1)B=A(FP~!). Mame fp 1=7P teR"—{(0,---,0)},
kedZe linedrna transforméacia fp-1 : R"—R™ je reguldrna. Teda AeS(B), prislusny
vlastny vektor je ZP~!. Ukézali sme, ze S(A)CS(B). Analogicky sa ukaze, 7e
S(B)CS(A). Veelku S(A)=S(B).

O

Tvrdenie 12.3. Ak AeR je vlastnd hodnota matice AeM,,,,(R) a TeR"—{0} je
vlastny vektor matice A patriaci k X\, tak cv pre c€R—{0} je tieZ vlastnyg vektor
matice A (patriace k vlastnej hodnote A).

Dokaz. Médme TA=AU. Potom (ct) A=c(TA)=c(A\0)=\(cD).
0
Ako zavisi vlastny vektor (zy,--- ,x,)ER"—0 od matice A=(a;;)€M,,(R)?
(21, ,x,)ER?—{0} je vlastny vektor matice A=(a;;) €M, (R) patriaci k vlastnej
hodnote A€R prave vtedy, ked (z1, -+ ,zn)A=N21, -+ ,2n) < (21, ,Tn)A=
=(z1,-- ,x0)AL, & (21, ,2,) (AL, —A)=0. t.j.

A—a;;  —aiz - —Q1n
—az1  A—az - —Q2n
(.1317"',3371) : : .. : :(07a0)<:>
—0n1 —0an2 o )\_ann
(A—a11)r1—a2102— -+ —p12,=0
& (%)
—A1,T1—A2p T2~ (A=A )Tn=0
Teda (x1,--- ,x,)€R"—{0} je vlastnym vektorom patriacim k vlastnej hodnote
AER préve vtedy, ked (z1,- -, z,) je netrividlnym rieSenim linedrneho systému ().

Vieme, Ze (*) ma nenulové rieSenie prave vtedy, ked h( matice systému *)<n, t.j.
préve vtedy, ked h(AI,—A)<n. Takisto mame, ze A€R je vlastnou hodnotou matice
A préve vtedy, ked h(AL,—A)<n t.j. matica AI,— A je singularna. Speciélne z toho
vidno, Ze 0€R je vlastnou hodnotou matice AeM,,,,(R) < h(—A)<n t.j. préve
vtedy, ked h(A)<n.
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Priklad. Nech f : R?>—R? je linedrne zobrazenie oto¢enie o uhol p&(0,27) okolo
zaciatku stradnicového systému. f,(7)=A0. Aké ma vlastné hodnoty a vlastné
vektory? Aka je matica linedrneho zobrazenia f, vzhladom na (€1,¢€2)? R2~C.
z=x+iy. fo(x,y)=Ff,(x+iy)(cos p+isin p)=(x cosy — ysinp; xsin + ycos ).

M;, = ( cosp sing ) Kedy je AR vlastnou hodnotou matice My,? Préave vtedy,

2 —sin g cos ¢

d . . . /. A— si
ked matica AI,—My, je singuldrna < det ( 7:128:’ AEZ’O‘Z@) =0 < (A—cos )+

+sin? =0 & A2—2)\ cos g+ cos? o+ sin® p=0 < A\2—2) cos p+1=0. Z toho:
/\122260Wi V24COS2 ¢_4:coscp + v/ —sin? ¢, teda AeR < sinp=0 < =0V @=r.

Potom A;=1, \a=—1. Teda matica My, chdpand ako reidlna md vlastni hodnotu
(1 resp. -1) iba vtedy, ked =0 resp. p=m.

Aké st vlastné hodnoty matice My, ak ju chdpeme ako komplexni?

Vtedy vlastné hodnoty: Aj=cos p+isin ¢, Aa=cos p—isin ¢, pre Ve (0, 2m).

Rozsirenie definicie matice resp. determinantu.

Pripustime, Ze prvky matic moézu byt aj prvky Iubovolného komutativneho okru-
hu s 1. Rovnost matic, ndsobenie atd. funguje analogicky. Ak A=(a;;)€M,,(R)
(kde (R, +,-,1) je komutativny okruh s 1) definujeme determinant:

det(A)= D> (~1)*Paryayaze()  anpm)
PES(1,.. n}

Mnohé z vlastnosti determinantov nad polom sa zachovaji aj pre determinanty
nad komutativnym okruhom s 1. Napr. determinant zmeni znamienko na opac¢né
ak vzdjomne vymenime dva riadky; determinant je nulovy ak niektory riadok je
nulovy; det(AB)=det(A) det(B), atd...

Definicia 12.6. Charakteristicky polyndm matice AeIM,,,,(R) (kde R je pole) sa
definuje ako x4 (t)=det(¢tI,—A).

t—ay1 —ai2 - —a1p

—ag1 t—agy -+ —ag,
A=(a;;)EMpn(R) xa(t)=det

—Qn1 —Qn2 tee t_ann

Prvkami tejto matice st prvky okruhu polynémov R[t]. Oznac¢me R[t] okruh polynd-
mov v neuréitej ¢t nad polom R. Ak p(t)eR][t], tak jeho koreii je a€R, pre ktoré

p(a)=0.
Priklad. p(t)=t>—2t+1 € RJ[t]. p(1)=0, 1 je korefi.

Z doterajsieho: A€R je vlastnd hodnota matice A€M, (R) préve vtedy, ked A
je korefiom charakteristického polynému x 4(t) matice A.

10 2 t—10 —2
Napr.: A= (o 0 1) €M33(R). XA(t):det( 0t —1) =t3—t2+t—1=(t>+1)(t-1)
0-10 01 ¢

Ma jeden realny koren: 1. Matica A chapana ako redlna matica ma jedint vlastna
hodnotu: A=1. Neskor sa pozrieme, aké st vlastné hodnoty, ak A chapeme ako
komplexni maticu.

oo

Definicia 12.7. Stupeni polynomu p(t)= ZaitieR[t] je s, ak a,7#0, ale a;=0, pre
i=0

i>s v pripade, ze p(t)#£0. Ak p(t)=0, tak stupeil polynému sa definuje ako —oco.

Veta 12.3. Nech A€M, (R). Potom stuperi xa(t) je n. Okrem toho, koeficient

pri t" ™1 v xa(t) je — Za“ a absolitny clen v x4 (t) je (—1)™ det(A).
i=1
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Dokaz.

t—ai1 —aiz -+ —ain
—a21 t—ag2 - —az2n

xa(t)=det : C =(t—a11)(t—ag) - - (t—ap, )+cleny s ¥

—Qnl1 —Gn2 - —0nn

kde k<n—2. Koeficient pri t" a t"~! ziskame z (t—a11)(t—azz) - (t—ann,). Z toho

koeficient pri t" je 1, pri %, s>n st nuly. Koeficient pri "~ je — Z a;. Koeficient
i=1

) = det(—A)=(—1)" det(A).

—a11 - —Qin

pri t9 je x4 (0)=det <
—Qn1 ** —0nn

d

n
Definicia 12.8. Pre maticu A=(a;;)€M,,,(R) sa Za” nazyva stopa matice A,

=1
ozn. Tr(A); Sp(A). Plati napr. ak A, BeEM,,,(R), tak Tr(AB)=Tr(BA).
Veta 12.4. Podobné matice maju ten isty charakteristicky polyndm.

Dékaz. Majme A,BeM,,,(R), nech B=PAP~! pre ddku regularnu PeM,,,(R).
Chceme ukdzat, ze xa(t)=xp(t). Z definicie: xp(t)=det(¢I, — B)=det(tI,—
—PAP 1)=det(PtI,P ! —~PAP!)=det(P(tI,—A)P~1)=det(P) det(tI,—A)-
-det(P~1)=det(P) det(P~!) det(tI,—A)=det(tL,—A) = xa(t).

0

Definicia 12.9. Charakteristicky polyném linearnej transformécie f : R"—R™
(R je pole) je charakteristicky polyném matice linedrnej transformécie vzhladom na
lubovolnd bazu v R™.

Definicia je dobrd, lebo ak A je matica transformacie f vzhladom na jednu bazu
a B je jej matica vzhladom na int bazu, tak A, B st podobné, teda x4 (t)=x5(t).

Pozndmka. z=a+1ib, Z=a—1ib je komplexne zdruzené k z. z€C je redlne < z=2Z.
- 2
z-z=|z|?.

Definicia 12.10. Nech A=(a;;)eMy(C). Komplexne zdruzena k nej je matica

A:(C_Lij)emks(((:).
Zrejme plati: A+B=A+B; AB=AB.

Veta 12.5. Nech A€M, (R) je symetrickd (t.j. A=AT). Ak A chdpeme ako
komplexni maticu, tak vsetky jej vlastné hodnoty su redlne.

Dokaz. Nech A\eC je Tubovolna vlastné hodnota matice A. Teda existuje nenulovy
vektor Z€C" taky, ze TA=)\Z. Komplexné zdruzenie: TA=A7 t.j. ZA=AZ. PretoZe
A ma vSetky prvky redlne, mame A=A, a teda YA=)\Z. Transponovanie dava:
(ZA)T=(Z)T, t.j. ATZ =\7", ale A=AT a preto AT =\7' < TAT =\i7 .
1
Mame: TA=MZT; preto AT =TT t.j. ()\fj\)ffc'T:O. a_c':_?T:(x17~~~ , ) ( : ) =
Tn
=171+ +xnin_:|x1|2+ oo, |2>0, kedze (21, - ,2,)€C"—{(0,---,0)}, pre-
to A—A=0 t.j. A=)\ teda AeR.
d
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Podobnost matice s diagonalnou maticou.

Veta 12.6. Matica A€M, (R) je podobnd diagondlnej matici prdve vtedy, ked
vlastné vektory matice A generuju cely priestor R™. Ak A je podobnd diagondl-

nej matici, tak je podobnd matici diag(A1,--- ,\n), kde A1, -+, A\yER su vlastné
hodnoty matice A.

Dokaz.

[=] Predpokladajme, ze matica A je podobnd D=diag(dy,--- ,d,). Pretoze
méame &;=(0,---,0,1,---,0) : &D=d;é;, teda dy,--- ,d, su vlastné hodnoty ma-
tice D (a €1, , €, su prislusné vlastné vektory). Vieme, ze {dy,--- ,d,} je tiez

mnozinou vSetkych vlastnych hodnot matice A. Chceme ukézat, Ze vlastné vek-
tory matice A generuju R". Mame, ze D=PAP~! pre vhodni regularnu maticu
P. Teda z €;D=d;é; dostaneme: &PAP '=d;é; (sprava P): (€;P)A=d;(&;P).
e 1P, -+, e, P st nenulové z R", teda su to vlastné vektory patriace k vlastnym
hodnotam dy,- - - , d, matice A. NavySe €1 P, --- , €, P st linedrne nezavislé, lebo su
to obrazy bazovych vektorov é1, - - - , €, priestoru R"™ pri regularnej linedrnej trans-
forméacie fp : R"—R™. Teda e1P,--- ,e,P st vlastné vektory matice A, generujice
R™.

:Predpokladajme, ze vlastné vektory matice A generuja cely priestor R™. Vy-
berme spomedzi nich bazu (51, cee gn) priestoru R™. Nech A1, --- , A\, €R st vlastné
hodnoty matice A patriace k b1, by. Teda 51A:/\151:f,4(l;1), e ,gnA:Ang,L:
ZfA(bn). t.j. mame, ze fA(b1)=/\1b1+0b2—‘r <o 40by,, - - fA(bn)ZOb1+ oAby

Teda linedrna transformécia fsq : R"—R"™ (ktord vzhladom na (€, ---,¢é,) ma
maticu A) mé vzhladom na bazu (by,---,b,) maticu diag(A1,---,\,). Potom
z jednej z viet vieme, Ze A je podobnd diag(A1, -, \,).

O

Priklad. Matica A = ( ) € M, (R) nie je podobnd diagonalnej matici.

xa(t) =det ( 0 ;11) = (t—1)2. Keby A bola podobné diagonalnej matici, tak by

bola podobni (0 1) Teda by existovala regularna matica P taka, ze ((1) 1) =

=PAP = ((1) 2) — to nie je pravda, preto A nie je podobna diagonilnej matici.

Vlastné vektory patriace k vlastnej hodnote A=1: (z1,x2) ((1) i) =1-(x1,z2).

Z toho: x1=x1 a x1+xe=xz2 Potom z;=0. Vlastné vektory sa tvaru: k(0,1);
k€ER—{0}. Vlastné vektory negeneruji celé R? podla vety A nie je podobnd di-
agonalnej matici.

Veta 12.7. Nech AeIM,,,,(R) a nech A1, , A\ €R si také vlastné hodnoty matice
A, ktoré su navzdjom rozne. Nech by, --- b, st vlastné vektory patriace Ay, --- , A,
Potom by, --- , b, su linedrne nezdvislé.

Doékaz. Indukcia podla r:
1° Pre r=1 kedZze b, #6 je linearne nezavislé, tvrdenie plati.

2° Predpokladajme, Ze tvrdenie plati pre r—1. Teraz nech Ay, - - - )\T je r navzadjom
roznych Vlastnych hodnoét, nech prislusné vlastné vektory sua bl, -+« ,b.. Nech
a1by+ - +oz,nb,»—0 Chceme ukdzat, ze a;="--=a,=0. Sprava (\,.I,—A):

Oélbl()\ I— )—|— O 7 1br 1()\ I— ) ()\ IT—A) & alglATIT—a1A151+ cee
SR e 7 1br 1)\ I —a,_1 )\ _ 1br 1+Ozrb AL aTA b,=0 & a1\, bl—al)\lbl—i—
B e T 1)\ br 1+Oér 1>\r 1b7« 1+Olr>\ b 7017“)\ bT—O Teda Oél(>\ Al)b1+ -+

Far_1(Ar=A— 1) ._1=0. 7 indukéného predpokladu vieme, zZe bl, . br 1 st
linedrne nezavislé. Preto ay (A.—A1)=0, -, a;— 1()\ —Ar—1)=0. Ale \; #AJ pre %7,
teda A\.—A1#0, -+ , A\ —A-_17#0, z toho: ay;=---=a,_1=0. Zostava a,b =0. Pre-

toze 5}#6, mame aj a,=0.
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d

Dosledok. Ak A je takd matica, Ze md n navzdjom réznych vlastnych hodnét, tak
prislusné vlastné vektory su linedrne nezavisle, teda generuji celé R™, a teda je
podobna diagondlnej matici diag(A1,- -+, Ap).

Niektoré fakty o polynémoch.

Veta 12.8. Nech polyndm p(t) je stupria n>0; ¢(t) je stupria m>0 nad R. Po-
tom ezxistuje jeding polyndm d(t) a jeding polynom r(t) (deg(r(t))<m) také, Ze
p(t)=d(t)q(t)+r(t)

Veta 12.9. Nech p(t)€R][t], deg(p(t))>1. Potom a€R je koreriom p(t) prive vtedy,
ked p(t)=(t—a)q(t), kde deg(q(t))=deg(p(t))—1.

Dokaz.
[= ] Predpokladajme, ze a€R je koren. Teda p(a)=0. Z vety 12.8 vieme, Ze:
p(t)=(t—a)q(t)+r(t), kde deg(r(t))<l. Kedze p(a)=0=r(«), mame r(t)=0, teda
O-{t-)l)
[<] Ak p(t)=(t—a)q(t), tak p(a)=(a—a)q(t)=0, teda o je koreii.

g

Definicia 10.11. Hovorime, zZe polyném p(t)=an,t"+ - - - +ait+ao€R[t] sa nad R
tplne rozklad4 na linedrne ¢initele, ak p(t) sa d& vyjadrif v tvare p(t)=a, (t—ay) - - -

-+ (t—a,) pre déke aq, -+ , @, €R. Ked zdruzime rovnaké ¢initele, tak dostaneme:
p(t)=a,(t—ay)* - (t—ay,)*s, pricom 3 k;=n.

Priklad. Polyném t?>+1 sa nad R nerozklad4 tplne na linedrne ¢initele, ale nad C
sa rozklada.

Zakladna veta algebry.

Kazdy nekonstantny polynom z C[t] md v C korerl.

Dosledok. Kazdy polynom z Clt] sa dplne rozkladd na linedrne dinitele nad C.
Tvrdenie 12.4. KaZdy nekonstantny polynom s realnymi koeficientmi sa rozkladd
na sucin polynomov stupna <2.

Doékaz. Nech p(t)=ant™+ - - - +ait+ag, a;€R. Ak p(t) chdpeme ako polyném nad
C a z€C je jeho koreti, tak aj Zp je koreni, lebo p(z9)=0=a,2{+ - +a1z0+ao,

a teda tiez 0=anz{+ - - +a1z0+ao=an2{+ - - - +@120+a0=0,(20)"+ - - - +a1Zo+ao.
Z dosledku zdkladnej vety algebry vieme, Ze p(t)=a,(t—z1) - (t—2z,) pre z€C.

Ale ak z; je koren, tak aj Z; je koren, teda pre Vie{l,.---,n} z;=%; pre vhodné
j€{1,--- ,n}. Teda p(t) obsahuje stciny (t—z;)(t—z;)=t>— (z;+%;) + zjZj; ob-
———
€R €R

sahuje ¢initele stupna 1 VvV 2.

Tvrdenie 12.5. Ak p(t)eR[t] md nepdrny stuper, tak p(t) md koren v R.
Dokaz. 7 predchadzajicich tvah vyplyva, ze ak p(t)€R[t] nem4 redlne korene, tak
ma parny stupen.

O

Veta 12.10. Nech A€M, (R) md charakteristicky polynom x a(t)ER]t] taky, Ze sa
aplne rozkladd nad R na navzdjom rézne linedrne cinitele, x a(t)=(—X1) -+ (t=Xn);
Xi#Nj pre i#j. Nech 51, e ,5n st vlastné€ vektory patriace k A1,--- , A\n, oznacme
Va(bi)= [B]CR” Potom matica A je podobnd diagondlnej matici diag(A1,- -+, Ap)
a R"=[01]® - - - ®[by).

Doékaz. To, Ze A je podobnd diag(\1, - -+ , A,) uz vlastne vieme z dosledku vety 12.7.
Tiez vieme, Ze by, - - - , b, generuju celé R™. Teda kazdé Z€R" je tvaru ¥=a1b1+ - - -
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- tanby, teda R"=[01]® -~ ®[bn]. Ale [B]N([1]® - - ®bi-a]@bBiga]@ - @[ba])=
—{O} pre k kazdé i. (keby nie,tak by pre dake ab; Blbl—i— S+ 1bi 1+ﬁl+1bl+1+
+ - —|—ﬁn ns. ¢o je nemozné, lebo bl, . ,bn st linedrne nezévislé.) Teda v skutoé-
nosti: R"=[by]&d - - - B[by].

O

Definicia 12.12. Pre AeM,,,,(R) definujme jej k-t mocninu (k€Z, k>0) takto:
AO=L, A'=A AF=A-AF-L

Veta Cayley-Hamiltonova.

Nech xa(t) = apt™ + -+ - + art + ag € R[t] je charakteristicky polyndm matice

A € M, (R). Potom plati a,A™ + a, 1 A" + -+ a1 A + agl,, = 0. Strucne
xa(A) =0.

bi1 - bin
Dokaz. Ak Bz( ) mame

bnl bnn

bi1 -+ bin Bi1 -+ Bna
B~adj(B):< Do ) < Do ):diag(det(B),-~~ ,det(B)) = det(B)I,,

bn1 -+ bnn Bin -+ Bnn

to plati aj pre matice nad komutativnym okruhom s 1. Specidlne:
(x) (tL,—A)adj(tl,—A)=det(tI,—A)L,=xa(t)L,

LCubovolnd maticu nad okruhom R[t] moZeme napisat v tvare "polyném” s koefi-
cientami z M, (R) pri mocninach ¢. Napr.:

2 2 -1 100 010 000 00 -1
( 0 t 2t>(000>t3+<000)t2+(012>t+(000)

t+t2 t4+t2 3 001 110 110 00 0
adj(tI,,—A) takto napiSeme ako "polyném” s konstantnymi maticovymi koeficient-
mi stuptia <n—1. Teda adj(tl, — A) = Bg + Byt + -+ + B,,_1t"~! pre vhodné
By, -+ ,Bu_1€M,,(R). Teda (*) prepiSeme (tI,—A)(Bo+Bit+---+B, _1t" 1)=
=(ag+ait+---+a,_1t""1+t")I,. Porovname koeficienty na lavej a pravej strane
pri rovnakych mocninéch ¢.

0. —ABg = aol, /-A°
tl : B()*ABl = alIn /A
t2 : BlfABg = CLQIn /A2

t"!': B, s—AB,_1=a, I, /A"!
" B,.1=1I, /An

Séitanim Tavych resp. pravych stran: agl,+a1A+--- +a,_1 A" 1 +A"=0.
O

Veta 12.11 a Definicia 12.13. Pre kaZdi maticu A€M, (R) existuje prave je-
den polynom pa(t)ER[t] s koeficientom 1 pri najvyssej mocnine t taky, Ze

"ua(A)=07 a taky, Ze kazdy polynom R[t]>p(t)#£0 s viastnostou "p(A)=07 je nd-
sobkom polyndmu p(t). Polynom pua(t) sa nazgva minimdlny polyndm matice A.
Dokaz. Oznac¢me Na={p(t)eR]t]; p(A)=0 a ak p(t)#0, tak méa koeficient 1 pri naj-
vysSej mocnine}. N4#(), lebo z Cayley — Hamiltonovej vety vieme, Ze x4(t)EN4.
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Zaroveti je jasné, ze v N4 existujua polyndmy stuptia >0. Nech p4(t) je polyném
najmensieho stuptia >1 v N4. Nech p(t)#£0 je taky, ze p(A)=0. Chceme ukazat,
ze p(t) je nasobkom pa(t). Vieme, ze existuje jediny p(t) a jediny r(t) tak, ze
p(t) = pa(t)q(t) + r(t), pricom deg(r(t)) < deg(pa(t)). Mame r(A) = 0 a zéroven
deg(r(t))< deg(ua(t)), to je mozné len tak, ze r(t)=0, teda p(t) je ¢(t)-ndsobkom
polynému p14(t). Este treba ukdzat jednozna¢nost: Nech by boli dva také polynémy
wa(t); ia(t) s potrebnymi vliastnostami. Potom fi4(t) je ndsobkom polynému p4(t),
ale aj 4 je nasobkom [ia(t). Pretoze pa(t) aj fia(t) mé koeficient 1 pri najvyssej
mocnine, dostavame p4(t)=pa(t).

U

Priklad. A= ( ) xa(t)=(t—1)%. pa(t) by mohol byt (t—1)? alebo (t—1).

11 10 2
(0 1) — (0 1) #* (0 0) teda t—1 nie je minimélny polyném. Teda p(t)=(t—1)°.
Jordanov normalny tvar matice (linedrnej transformaécie).

Definicia 12.14. Ak f : R"—R" je linearna transformicia a A€R je jej vlastna
hodnota, tak (f — A\)*¥ bude oznacovat linedrnu transformaciu (f — Xidgn)o---o

o(f—MNidgn) : R"—R"™ Specidlne: (f—\)°=idg.. Oznacme V;(\)={FER"; e
xistuje n>0 také, ze (f—\)"(Z)=0}. Vlastné vektory linearnej transformécie f
patriace k A patria do V§(A): ak ¥ je vlastny vektor patriaci k A, tak f(0)=A0t.].

(f=2)()=0

Definicia 12.15. V;(\) sa nazyva zovseobecnend vlastnd mnoZina patriaca
k vlastnej hodnote .

Veta 12.12.
1yV¢(A) je vektorovy podpriestor v R™.
2. f(VF(N)CVi(N) (tomu sa hovori, Ze Vi(\) je f-invariantny podpriestor v R".)

3.) Pre ZeR™ oznacme T;=(f—N)"(Z). Ak &o,--- ,Tp—1 si (pre ddke k) nenulové,
ale uz T,=0, tak potom T, ,Tx_1 st linedrne nezdvislé.
Dokaz.

1.y V§(A)#0, lebo tam patria vlastné vektory f. Nech Z, €V} () st [ubovolné, nech

a€R, BER. Chceme ukézat, ze aZ+B7cV;(\). Mame (f—\)*(#)=0 pre dike k>0;

(f=A\)™(7)=0 pre déke m>0. Potom (f—\)*"(az+87) = (f—A)™(f—\)*-

(ad+BY=(F=N)" (2f =V (&) +B(f =N @) =B =N "™ (f=2)*(@)=B(f-2)*
—_——

1]
(f=N)"(H) = 0.
v
0
2.y Nech g f(V¢(A)). Chceme ukazat, ze €V (\). Mame = f (%) pre dake £€Vy(N)

Teda Im>0: (f~\)"(#)=0. Potom (f~\)"(§)= (FA™ (@)~ () ~
Fo (f=A)™ (@) = 0, teda eV} (\).
~—_———

0

3.y Nech agZo+ -+ +ag_17)— 1=0, chceme ukdzaf, 7e ag=---=ap_1=0. Méme

ap(f—A)° (_')—i-ozl(f MNYE)+ - Aag_1 (f-N)1(E ) 0. AphkUJerne na obe stra-
ny (f=A)*"" Potom ao(f =) (@) +ar(f=A) @)+ - +ap_1(f-A)* 7 (7)=0
QoTp— 1+O+ +0 O<:>5L'k 1#0#0&0 0.
Zostava: ay(f—M\) (Z)+ - +ap_1(f=N*1@)=0 /(f-1)*2
a1 (f=NFEUD) + - Fap_1 (f=N)F3(@)=0 o1 Fp_1+0+---+0=0 = a;=0 atd.

|
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—

Désledok. VaeVy(\) mdme (f—\)"(@)=0.

Dékaz. Nech @€V ()) je Tubovolny. Ak (f—\)™(a@)#0, tak aj @;=(f—\)*(@)#0 pre
i = 0,---,n. Z 3. by sme mali (kedZe existuje m>0 : (f—\)"(@)=0, pretoze
acVi(N), ze do, - - , @y st linedrne nezavislé. Ale je ich n+1 a st v R"-spor.

0

Definicia 12.16. Jordanova matica typu nxn nad polom R patriaca k vlastnej
hodnote A (linedrnej transformécie, resp. matice) je matica, ktord mé na hlavnej
diagondle samé A, na susednej (zhora) ¢iare rovnobeznej s hlavnou diagondlou ma
samé 1, a inde 0. Ozn. J,,(N).

1
Priflad. J1(\=(\),32(0)=(} 1) - Js(N)= (3 X ?).
00X

Veta 12.13. Nech f : R®"—R" je linedrna transformdcia, ktord md jedini a pritom
n-ndsobnd vlastni hodnotu AeR. Potom Vy(A\)=R" a vo Vy(\) existuje bdza,
vzhladom na ktord md f maticu A(XN)eEM,,,,(R), pozostdvajica z Jordanovjch matic
Jo (AN, T () (kde 1> -+ - >q, ) umiestnenyich pozdlZ hlavnej diagondly a okrem
toho uZ iba z nul. q1+---+q.=n

. o . o
ac| 0[] o
0 0o [3.0

Veta 12.14. Pre maticu A€M, (R) takd, Ze md jedind n-ndsobni vlastnd hod-
notu AeR plati, Ze Vy(A\)=R" a matica A je podobnd matici A(N)eM,,(R) po-
zostdvagicej z Jordanovych matic: Iy, (N), -+ ,Jg. (N) umiestnengjch pozdlZ hlavnej
diagondly (q1+ - - - +g-=n) inac iba z nal.

Dokaz. xa(t)=(t—\)". Z Cayley — Hamiltonovej vety: (f—\)"=0. T.j. pre
VZER™ : (f—\)"(%)=0; z toho teda R"=V}(\).
O

Veta 12.15. Nech f : R"—R"™ je linedrna transformdcia takd, Ze jej charakteri-
sticky polynom je: xy(t)=(t—A1)" (t—=X2)"> - - - (t—As)™ (kde ni+---+ns=n). Po-
tom R"=Vi(\)@---®Vi(As) a pre kazdé Vi(X;);i=0,1--- s existuje jeho bdza,
vzhladom na ktord md flv,(x,) : Vi(Ni—=Vy(A\i) maticu A(N;) €My, n, (R) pozostdva-
Jiicu z Jordanouvijch matic (sicet stupriov ktorych je n; ) umiestnengich pozdiZ hlavnej
diagondly a ind¢ iba z nil. Teda vzhladom na bdzu (By,--- , Bs) priestoru R™ md
f maticu tvaru:

. o 0
o [3,0 0

A , e
0 0 3,0

Potom xa(t)=(t=A1)™ --- (t=As)". (3 ni=n) plati, Ze R"=Vi(M)®--- OVy(As)
a matica A je podobnd matici tvaru (x).
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Definicia 12.17. Matica (x) je tzv. Jordanov normdlny tvar matice A.

Pozndmka.

1.y Kazd4 matica A€M, (C) splha predpoklady vety a teda k nej existuje nejaky
Jordanov normaélny tvar.

2.y Specidlne, ak matica A€M, (R) je takd, ze x a(t)=(t—A1) - - - (t—A,) kde \;#N;
pre i # j, tak sme uz dévnejsie dokazali, ze A je podobna diagonalnej matici
diag(A1, -+, An). Toto je Jordanov normalny tvar takejto matice A.

Tvrdenie 12.6.

1 Jordanqv normdlny tvar je jediny, odhliadnime od permutdcie Jordanovych
matic pozdlZ hlavnej diagondly.

2.y Dve matice A, BEM,,,,(R) take, Ze ich charakteristicke polynomy sa nad R plne
rozkladaji na linedrne cinitele st podobné prdve vtedy, ked pripistaji ten isty Jor-
danov normdlny tvar.

3.y Pocet Jordanovych matic v Jordanovom normdlnom tvare matice A sa rovnd
nagmensiemu moznému poctu linedrne nezdvislijch vlastnijch vektorov matice A.
4.y Pocet Jordanovych matic zodpovedajicich nejakej vlastnej hodnote matice A sa
rovnd mazximdlnemu poctu linedrne nezavislych vlastnych vektorov patriacich k tej
vlastnej hodnote. Ak xa(t)=(t—X1)"* - (t—=Xs)™, kde A\1,--- , \sER; (\i#N; pre
i#£j) tak m;=sicet stupriov Jordanovych matic patriacich k A;.

5.y Stupen najvicsej spomedzi Jordanovych matic patriacich k vlastnej hodnote A
sa rovnd ndsobnosti \ ako koreria minimdlneho polynomu.

6.y Nech xa(t)=(t—=A1)" --- (t=As)™, MER, \i#)\; pre i#j. Potom stuper naj-
vacsej spomedzi Jordanovych matic patriacich k \; urcime takto: vyrdtame
A-\I,, (A-\1,)2,---. Zistime, Ze hodnost matice (A—X\;1,)* s rastom k po case
prestane klesat. Prdve najmensia hodnota k, pre ktori sa dosiahne najniZsia hod-
nost sa rovnd stupni najvicsej Jordanovej matici patriacej k \;.

Priklad.

6 5 —4 -4 Xa(t)=(t-1)*(t-2)*
A2 3 2 -3 teda existuje jej
1 1 0 —% Jordanov
6 6 —6 -3 normalny tvar.
h(A—214)=3; h((A—214)?)=2; h((A—214)?)=2, - - Teda v Jordanovom norméalnom
tvare bude Jo(2)= ((2) ;) h(A—114)=2; h((A—114)?)=2,- - - stupet najvicsej Jor-

danovej matice patrice k 1 bude 1. Z toho Jordanov normalny tvar matice A je:

2100
0200
A(N)= (0 01 0)
0001
Pozndmka.

Nech charakteristicky polyném matice A€M, (R) je xa(t)=(t—A)". Potom:

(1) Najvicsia Jordanova matica mé stupen ki, kde k1 je najmensie celé také, ze
(A—L,,)* =0.

(18)h((A—=AI, )kl = pocet Jordanovych matic stupiia k.
(iii)h((A—MI,,)**~2)=(2-pocet Jordanovych matic stupiia k1 )+(pocet Jordanovych
matic stuptia (k1—1)).

(iv)h((A—AI,)*1=3)=(3-pocet JM stupiia ki )+2-(pocet JM stupiia k;—1)+1-(podet
JM stupiia (k1—2)).

atd.

Priklad.
P30 =(t—1)%, h(A-11,)=2
A (-2 —60 13) €M, 4(R) . xa(t)=(t-1)%, ( 4)

0213 (A-1L)?)=1, h(A-1L))=0
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Potom podet Jordanovych matic stupiia 3 je h((A—114)%)=1

[

Jordanov normaélny tvar matice A je

AN

1100
0110
0010
0001

)
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III. KVADRATICKE FORMY (NAD PoLOM R)

Budeme uvazovat o n (n>0) premennych 1, -+ ,z,, ktoré budi moct nadobu-
dat realne hodnoty, pritom bude platit z;z;=x;z; Vi,j. Potom kvadratickd forma
n premennych x1,--- ,x, je vyraz tvaru: Z a;;T;%;5, kde a;;€R su tzv. koefi-

1<i<j<n

cienty kvadratickej formy.

Priklad.

1.y 0 je kvadratickd forma, kde a;;=0 Vi, j.

2.y 2i+x3 je kvadraticka forma dvoch premennych.

3. x%+2x1x2—3x2x3 je kvadraticka forma troch premennych.

1 1 0 T
22421 29— 3x0x3= (21 2 z3){1 0 0 Ta
0 -3 0 T3

Kvadratickt formu Y a;jz;z; (n premennych) mozeme napisat v tvare: XAXT,
kde X=(z1, - ,zn),

@11 a2 -+ Gin\  Ale takychto zapisov a11 a1z—e - ain
- . T _ "
. 0 ax G2n | v tvare X-matica-X e ax az T
A= . . . . . X! . . . X
: : : : je nekonecne vela S e
0 0 - apn napr. tiez: 0 0 - ann

pre Iubovolné ecR.

Veta 13.1. Pre kazdi kvadraticki formu )" a;jz;x; existuje jedind symetrickd ma-
tica SEM,,, (R) takd, Ze Z aijxixj=XSXT, kde X=(x1, -+ ,Zn)-
1<i<j<n
n

Dékaz. S=s;j5;5;j=5;;. Musi byt E Qi TiT = E 8;j@;x;. Z porovndvania:

1<i<j<n 1=i;j
a;;=38;; pre izl, -+ ,N a pre 275.] : sij—l—sji:2sij:aij = sijzéaij.
S je matica kvadratickej formy.
g

Priklad.

2 —% 0 1

fo—xlmg—l—x% S (xy xy x3) —% 0 0 Ta
0 0 1 I3

Definicia 13.1.

Reguldrnou linedrnou transforméciou premennych X=(z1,--- ,x,) rozumieme za-
vedenie novych premennych Y=(y1, - ,yn) takych, ze Y=XP pre ddku reguldrnu
maticu PeM,,,(R). Y=XP & X=YP~ L

Kvadratické formy budeme zapisovat v tvare XSXT, kde S = ST € M,,,,(R),
X = (1, -+ ,2,). Urobme v kvadratickej forme XSXT regularnu linedrnu trans-
formaciu premennjch Y = XP. Kedze P je regularna, mame X = YP !, teda
XSXT=YP'S(YP H)T=Y P 'S(P HT YT Mame BT=(P~'S(P1)T)T=

—_——

B
=P~ I1S(P1)T = B, teda B je symetrickd. Od formy XSXT premennych
X=(x1, - ,2,) sme presli ku kvadratickej forme n premennych Y=(y1, - ,yn),

YBYT pricom B=P~'S(P~1)T. t.j. S=PBPT.
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Definicia 13.2. Matice A, BeM,,,,(R) st kongruentne (nad R) ak existuje regu-
larna matica Q€M (R) taks, ze A=QBQT.

Pozndmka. Ak kvadratickt formu XSXT upravime regularnou linearnou transfor-
maéaciou premennych na “novid” kvadratickt formu, tak matice tychto foriem st
kongruentné.

Veta 13.2. KaZdi (nenulovi) kvadratickd formu n premenngch mozZno vhodnou
requldrnou linedrnou transformdciou premenngch previest na tvar:
Yit Y —Yi— o —Ys, kde s<n.

Dékaz. Majme (nenulovil) kvadratickt formu XSXT, kde X=(zy,--- ,7,), S#0
S=ST=(s,;;)€M,,,,(R). Vhodnou regulédrnou lineirnou transformaciou premennjch
mozeme XSXT previest na ZBZT, kde Z=(z1, - ,2,), B=BT=(b;;)€M,.,.(R),

pricom uz by; # 0. Ak existuje i€{1,--- ,n} také, ze s;; # 0, tak zoberieme z;=z1,
T1=2%;, T;=2; pre 1#j#i. Ak s11="--=5,,=0 tak existuja déke ¢, je{1,--- ,n} i#j,
5i;70. Potom zavedieme nové premenné (yi,--- ,Yn), Ti=Vi+Y;; T;=VYi—Y;; Lu=Yk

pre i#k#j. To je regularna lineadrna transformécia premennych. Dostaneme:

XSXT = 2 s;; zz;+¢leny bezz;z; = 28ij(yi2—y]2)+éleny bez y?=2s,;y?+cleny
P

bez y?, mame XSXT=YCYT, kde C=(c;;) mé c;;=2s;;#0. Potom zdmenou pre-

mennych z1=y;; 2;=Y1; 2; yj pre 1#j#i prejdeme k forme ZBZT, kde uz by;#0.

Teraz: XSXT=ZBZT= b1121+b1221z2+ - +b1nz12n+bo12021+ - - —|—bnlzn21+

+ Z bijzizj= b11z1+22b”z12j—|— Z bijzizj=b11( 21—1—22126

2<i;5<n j=2 2<i;5<n
2
} : Z Z Z by
+ szzzzj*bll Z1+ b bljzlzj bll b j )
2<4;5<n 2<4,5<n 11
n
u—z+zb1jz. 1 0 -~ 0
. e b1y’ to je reguldrna bz 1 ...
zamena =2 L . bi1
remenndch: Us =29 — linearna transformacia
p ye: premennych, jej matica: : : -
bin o --- 1
Un=%"n b1

je regularna. Dostaneme: XSXT:ZBZT:bnu%Jr Z gl-juiuj:buu%JrUGUT,
2<i,j<n

kde GEM,, 1, 1(R); G=GT, U=(ug, - ,u,). Opakovanim kone¢ného poctu ta-

kjrchto krokov dostaneme pomocou regularnych linedarnych transformécii premen-

nych, ze XSXT=d v+ - +d,v?, kde s<n. Permuticiou premennych V1, ,Up
dostaneme, 7e XSXT=c;p?+ - +ckpk+ck+1pk+1+csps, kde c1,- -+ ,cx st kladné a
Ck+1, - ,Ck SU zaporné. Potom urobime reguldrnu linearnu transforméciu premen-
nych: y1=1/Cip1, -, Ye=+/CkPk> Yk-+1=v/—Cht1Pk+1," " * »Ys=/—CsDs-
Potom y3+--- erify,%ﬂf s —y2=XSXT; s<n

O

Désledok. Kazda symetrickd matica typu nxn nad R je kongruentnd s diagondl-
nou maticou, ktord md na hlavnej diagondle iba proky z {—1,0,1}.

Dékaz. Ak S=STeM,,,,(R), tak XSXT je kvadraticka forma, ktord sa reguldrnou
linedrnou transformaciou premennych upravi na tvar: yi+--- +y2—y?2 1 —y2,
(s<n),teda na kvadraticki formu s maticou diag(1, 1,-1,---,-1,0,---,0).
Matice tych kvadratickych foriem st kongruentné.

)

O
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Veta 13.3. (o zotrvaénosti):

Ak danii (nenulovi) kvadraticki formu XSXT n premenngjch upravime requldrnou
linedrnou transformdciou premenngjch Y=XQ na y3+--- +y,f—y,3+1— co =y
(s<n) a reguldrnou l@'nea’rnou transformaciou premennych Z=XH ju upravime na
2442222 — =27 (t<n), tak k=r a s=t.

Pozndmka. Této veta oddvodiiuje, preco sa tvar yo+ - - - —I—yi—yiﬂ— oo —y? (s<n)
nazyva aj kanonicky tvar kvadratickej formy XSXT.

Dékaz. 1. s=t|: Di=diag(1,---,1,—1,---,—1,0,---,0) je matica y2+ - - +y2—
5=t |} Dy=diag( ) j i yi
s— k

—y,%+1—~-~—y§. Vieme, ze S= QDlQT o=diag(1,---,1,—1,--- ,—=1,0,---,0)
H/—/%/—’

t—r
je matica 23+ - +22—22 — - —z7. Tiez S= HD,HT. Pre hodnost mame:

h(S) = h(QD1QT)=dim(Imforp,q)=dm(Imfor fp, fo) = dim(Imfor fp,) =
=dim(Imfp,) = h(D1) = s (pretoze Q aj QT je linearny izomorfizmus).
2.): Nech by r<k. fg : R"—=R", fg : R"—=R" st linedrne izomorfizmy. Oz-
nac¢me S1=[€1," - , €], S2=[€r41, - ,En] podpriestory v R™. Teda dim(S;) = k,
dim(S3)=n—r. Oznalme lefél(Sl),ngfI}l(Sg). Pretoze fg, fu st linedrne
izomorfizmy, mame dim(T})=k, dim(Ty)=n—r. Tvrdime, ze TiNTo7#{0}.

dim (71 +7T%)=dim(T} )+ dim(7Ty)— dim(TyNT2)= dim (71 )+ dim(T)=k+n—r. Ale

z predpokladu k—r>0, teda by bolo, ze dim(T;4+7T2)>n spor s tym, ze T1+T>CR".

Nech teraz EETlﬂTg,E';«é(_j. Méme D;=diag(1,---,1,-1,---—1,0,---,0),
——— N— ——
k s—k
Dy=diag(1,---,1,—1,--- ,—1,0,--- ,0). Vieme, ze S=QD;QT,S=HD,HT. R4-
——— —— —
T s—r

tajme: &S-cT=¢QD1QT-cT=(cQ)D1(¢:Q)T=fo()D1(fo(e))T. Kedze fq(¢)€S:
)

méame: fo(&)=(¢1, -+ ,&,0, - ,0), kde (&1, ,&)#(0,-,0). Teda &:S-cT=
:(Ela"' 7Ek707"' 70)dlag(1a ala_17"' 7_1707"' 70)(617"' 7Ek707"' 70)T:
——
k
=Gy, 8,0, ,0)(C1, -+, Ck, 0, ,0)T=E2+ ... +2>0. Zaroven: ¢-S-¢T=

:EHDZHTET:fH(aD2(fH(E))T, G#fH(E’):(Oa T a07 é’r+1a T 751’7,) Preto

5'S~5T:(07~”,0,ér+1,~",én)diag(l,'“,1,—1,'“,—1,0,'“,0)(0,'”,0,ér+1,
——— N— ——
7én)T:(07"' 0 é7”4’17' : 7_55707"' 70)(07 70757”4»17"' 7én)T:
= Eil c<0spor

Podobne sa odvodi spor z predpokladu r>k. Vcelku: r = k.
O

Definicia 13.3. Kvadratickd forma XAXT sa nazjva kladne definitnd, ak pre
vietky X#0 je XAXT>0. [nazyva sa kladne semidefinitnd, ak XAXT>0 pre
vietky X+#£0; nazyva sa zdporne definitnd ak XAXT<0 pre vietky X+0.]

Definicia 13.4. Symetrickd matica AeM,,,(R) sa vola kladne definitnd, ak kvad-
ratickd forma XAXT je kladne definitna.

Veta 13.4. Ak kvadratickd forma XAXT je kladne definitnd o Y=XP je regu-
ldrna linedrna transformdcia premennych, tak kvadratickd forma YBYT ziskand
2 XAXT wvedenou reguldrnou linedrnou transformdciou premenngjch je tieZ kladne
definitnd.

Dékaz. Vieme, 7e A=PBPT B=P~!A(P~1)T. Potom pre lubovolni Y#0 mame
YBYT—YP—!A(P-1)TYT—(YP-1)A(YP~1)T, ak forma XAXT je kladne defi-
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nitnd, tak YBY T=(YP~1)A(YP1)T>0, lebo YP~1#0 (kedZe P! je regulérna
matica). Teda aj forma YBYT je kladne definitna.
O

Veta 13.5. Kwvadratickd forma je kladne definitnd prdve vtedy, ked jej kanonicky
tvar je yi+ - +y2.

Dokaz. [<]: Ak kanonicky tvar je yi+---+y2, tak pre vietky Y=(y1,--- ,yn)#0

je y?+ .- +y2>0. Z predchadzajicej vety vyplyva, Ze aj povodna forma je kladne

definitn4.

[=] Predpokladajme, Ze dand kvadratickd forma je kladne definitna. Jej kanon-

icky tvar y3+--- +y,2€—y,%+1— ---—y2:5<n. Keby bolo k<s<n, tak hodnota tejto

kvadratickej formy v (0,---,0,1,0,---,0) by bola —1, a teda tato kvadratické forma
——

k
by nebola kladne definitna t.j. ani pévodna by nebola kladne definitna —spor.
O

Veta 13.6. Matica A=ATeM,,,,(R) je kladne definitnd prdve vtedy, ked existuje
reguldrna matica PEM,,,(R) takd, e A=PPT.

Dokaz.

[= ] Predpokladajme, Ze A je kladne definitna. Teda kvadratickd forma XAXT
je kladne definitn4, teda jej kanonicky tvar je y?+---+32=YI,YT. Potom vieme,
7e A=PI,PT, kde Y=XP je regularna linedrna transforméacia premennych, ktoré
XAXT prevedie na YI,YT.

[< ] Predpokladajme, Ze A=PPT. Potom kvadratické forma urcens maticou A je
XAXT=XPPTXT=(XP)(XP)T. Ak X=(z1, -+ ,2,)#0, tak XAXT>0, alebo
XP=(x1,-+ ,z,)P je nenulova n-tica (by,--- ,b,)ER™ a b3+ - - - +b2>0.

O
Veta 13.7. (Sylvestrovo kritérium)
Matica A=AT=(a;;)€M,.,(R) je kladne definitnd prave vtedy, ked det(a11)>0,
aii - Qin
det (Z; Z;z) >0,--- ,det ( --------- >0 co je ekvivalentné s tym, Ze kvadratickd
An1 - Ao

forma XAXT je kladne definitnd.
Strucne: prdve vtedy, ked vsetky tzv. hlavné rohové determinanty matice A st
kladné.

Dokaz. Indukcia vzhladom na n:

1°: Pre n=1: a;12? je kladne definitn prave vtedy, ked a;1=det(a;)>0.

2°: Predpokladajme, ze tvrdenie plati pre vSetky realne symetrické matice typu

(n—1) x (n—1). Teraz nech A=ATeM,,,(R).

Nutnost podmienky: Predpokladajme, Ze A je kladne definitnd. Chceme ukézat, ze

jej hlavné rohové determinanty st kladné. Vieme, Ze kvadraticks forma XAXT je

kladne definitnd. X=(z1,--- ,7,). XAXT= Z i T 5= Z Qi T;T 5+
1<i,j<n 1<i,j<n—1

+2:(a1nT1 T+ F 1T Tr—1)+ann2?. Uvazujme o kvadratickej forme:

ail -t Glp-—1
Z ai;rivi. Jej matica je ( ) Tato kvadratickd forma je

A An—11 " Gpn—1n—1
1<i,j<n—1
tiez kladne definitnd. Keby nie, tak by existovala (n—1)-tica (Z1, - ,&n—1)#0
taka, Ze Z a;;&;%;<0. Potom (&1, --- , Z5,—1,0) by bola nenulova n-tica, pri¢om
1<i,j<n

> ayiid;= Y a;#F;<0 —spor s tym, ze XAXT je kladne definitn.
1<i,j<n 1<i,j<n—1

Z induk¢éného predpokladu: det(a;1)>0,--- ,det(

aiir -t Alpn-—1

) >0. Zostava

An—11 *** Gn—1n—1
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este ukazaft, ze det(A)>0. Ale matica A je kladne definitnd, a teda podla vety 13.6
existuje reguldrna matica P : A=PPT, preto det(A)= det(P) det(PT)=det?(P)>0
kedZze P je regulérna.

ai1 -t Aln
Postacujicost: Predpokladajme, ze det(aq1)>0,--- ,det [ - - - ) >0.

Anl *** AQnn

Z indukéného predpokladu vyplyva, ze kvadraticka forma

aix A1n—1 x1

(T1, ,Tp1) : : e = E i T;i T
_ 1<i,j<n—1
ap—-11 *°* On—-1n-1 In—1 Shisn
je kladne definitna. Teda existuje regularna matica PeM,,, (R) taka, ze reguldrna
linedrna transformécia premennych (y1,- -, yn—1)=(1, - , Tn—1)-P prevedie tto
kvadratickti formu na y?+ - - - +y2_,. Definujme y,,=x,. To znamen, %e dostaneme

reguldrnu linedrnu transformaciu n premennych (y1,- -+, yn)=(x1, -, 2,) (l; (1))

Tato prevedie kvadraticka formu Z Qi T;T 5 Na y%—i— e —l—y%,l +2:(biny1Yn+---
1<i,j<n
o +bp1nYn—1Yn)+buny? pre vhodné bi;€R.

Upravime: Z aijTit;=(y1+ - +b1nyn)’+ - +(Yn—1+bn—1nYn)’+cyz=
1<ij<n

z1=y1+ -+ +binYn 1 - 00
_ 20 . 2 2 tato forma iR
| 20— 1=Yn—1+bn—1nYn AE I s maticu: 0 --- 10
Zn=1Yn 0 --- 0 ¢
Tato je kongruentnd s A, teda existuje reguldrna matica QeM,,,,(R) taks, ze:
diag(1,1,--- ,1,c)=QAQT. Z toho: det(QAQT)=c=det(Q)det(A)det(QT)=
=det?(Q)- det(A)>0, teda ¢>0.
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IV. HOMOGENNE BILINEARNE FORMY

Definicia 14.1. Nech st dané dve skupiny n premennych x1, - , 2, a y1, -+, Yn-

Potom homogénna bilinedrna forma (tychto dvoch skupin premennych) je vyraz
n

tvaru: Z Z;045Y;, pricom a;;€ER st koeficienty tejto formy.
i,j=1
Priklad. x1y1+ -+ - +ZnYy, je homogénna bilinedrna forma, ktord definuje Standard-
ny skalarny sucin v R™.
n

Formu E r;a;;y; mozeme zapisat pomocou matic XAYT, kde X=(z1, - ,xn)
ij=1

n

Y=(y1, - ,Un), A=(ai;) €M, (R). Ak X=Y tak Z z;a;;y; je kvadraticka forma

i,j=1
premennych X=(z1, - ,z,).
Definicia 14.2. Nech V je vektorovy priestor nad R. Funkcia ¢ : VXV —=R je
bilinedrna, ak pre kazdé «, fER, &, 7, Z€V plati: p(af+L7; 2)=ap(Z, 2)+Lp(¥, 2);
(&, o+ BZ)=aup (&, §)+Bep (T, ).
Tvrdenie 14.1. Homogénna bilinedrna forma je vlastne suradnicové vyjadrenie
bilinedrnej funkcie.

Dokaz. Nech V je vektorovy priestor nad R, nech (a3, - ,d,) a (51, e ,En) st dve
bazy vo V. Nech r=x1d1+ - - +xpan resp. gj':ylbﬁ— <o« 4+Ynby. Nech ¢ : VXV =R

je bilinedrna funkcia. Potom ¢(Z, §)= Zx a;; Zyj Z xiw(ﬁi,gj)yj. Ko
inj=1
prislicha homogénna bilinearna forma XAYT, kde X—(xl, L xn)Y=(Y1," " yYn)
A mé v i-tom riadku a j-tom stipci prvok o(a;, b;).
O

Homogénna kvadraticka funkcia.

Definicia 14.3. Nech V je vektorovy priestor nad R, nech ¢ : VXV —=R je bi-
linearna funkcia. Potom homogénna kvadratickd funkcia prislichajiaca k ¢ sa defin-
uje ako ¢ : V=R; (2)=p(Z, Z).

Priklad. V=R3, bilinearna funkcia ¢ : R3xR3—R s predpisom (%, ) = br1y1+
+21Y2+3T2y1 —Tay2. @ uréuje kvadraticka funkciu ¢ : R3—R, (z1, 22, 23) =

= 5x244x09—23. T4 istd kvadratickd funkcia prislicha aj k bilinearnej funkcii
¢ : R¥XR3 =R, §(Z, §)=5x1y1+3x1y2+2y1 —T2Ya.

Veta 14.1. Nech v : V=R je homogénna kvadratickd funkcia na redlnom vek-
torovom priestore V. Potom exstuje jedind symetrickd bilinedrna funkcia urcujica
Y (teda takd bilinedrna funkcia ¢ : VXV =R, Ze o(Z, §)=¢(y, Z) pre vietky &, jeV
a pritom Y(Z)=¢(Z, T)).
Dokaz.
Jedinecnost: Nech ¢ : VxV—R je symetrickd bilinedrna funkcia, ktord uréuje
homogénnu kvadratickt funkciu ¢ : V=R (teda ¢(Z)=¢ (&, ), Z€V'). Pre lubovolné
T, geV (T4 T+y)=p(Z, ) +20(Z, i) +(¥, §) = (F+7)=1(2Z)+¢ () +20(Z, )
z ¢oho mame, ze musi platit ¢(Z, 7)=3 [(Z+7)—¢(Z)—(7)]. Teda symetrické ¢ je
naozaj jednoznacne urcend funkciou ¢.
Ezistencia: 7 definicie vieme, Ze existuje nejaka bilinearna fukcia ¢ : VxV—R
také ze Y(T)=¢(Z, T) pre kazdé £€V. Definujme funkciu ¢ : VXV =R, o(Z, §)=
=3[ (@+9) (@)~ (F)]. ¢ je symetricka, lebo (T, §)=5[(T+7)—y(Z)—¥(¥)]=
=1 (G+2)—(§) — ¥ (E)]=¢(¥, T). Je Tahké overit, Ze kedze ¢(Z)=¢(Z, T), tak ¢ je
blhnearna funkcia. Nakoniec ndm zostava dokézat, Ze pre kazdé €V mame (tak
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ako treba) o(Z, &)=1(Z). Ratajme: o(F,T)=3 [ (2%)—2¢ ()=
=312(27, 27) - 2¢(7, T)|=5 [44(Z, T) —24(Z, ) |=p(T, T) = (Z). -

Pozndmka. Nech V je redlny vektorovy priestor, nech je dana kvadraticka forma
XAXT n premennych X=(z1,---,7,), AT=A. Potom tato kvadraticka forma
urc¢uje homogénnu kvadratick funkciu takto: zvolme bézu (dy,--- ,d,) vo V. Ak
F=x1d1+ - +2,d8,€V, tak definujeme (Z)=XAXT. Potom v : V=R je ho-
mogénna kvadraticka funkcia.

Niektore fakty z euklidovskej tedrie kvadratickych foriem.

Pripometime si: matica A€M, (R) je ortogondlna, ak AAT=I,, t.j. jej ri-
adky tvoria ortonormélny systém vektorov v R™ t.j. pre vSetky Z, y€R"™ mame, Ze
(ZA; 7A)=(Z, 7).

Tvrdenie 14.2. Ortogondlne matice typu nXxn tvoria grupu; je to tzv. ortogondlna
grupa; oznacme ju O(n).

Dékaz. Ak A, BeO(n), tak AAT=L,, BBT=I, potom AB(AB)T=ABBTAT—
=AI,AT=I,. Teda AB€O(n). Asociativnost: ./; neutralny prvok: I,€0(n),
inverzny prvok k AcO(n) je AT, mdme AAT=I, a ATA =1, = AT(AT)T ¢j.
ATeO(n).

O

Veta 14.2. Matica prechodu od ortonormalnej bdzy v R™ (so standardnym skaldr-
nym sucinom) k ortonormdlnej bdze je ortogondlna matica. Tiez: ak od ortonor-
mdlnej bazy v R™ prejdeme pomocou ortogondlnej matice prechodu k novej bdze,
tak aj movd bdza bude ortonormdlna.

Dékaz. 1.éast: Nech (dy,---,dyn), (@}, - ,d,) st dve ortonormdlne bazy v R™.
Nech P=(p;;)€M,.,(R) je matica prechodu od (a},---,d,) k (d’l, . Ein). Teda

r 'n

— —/ .
a; = § bijaj, © = 1,--+,n. Potom di, = azaak' § ng ]7 E pke =
1=1

L 1 ak Z—k‘
= Z Zpijpks jv s mepkjv teda szjpkj { . . To znamené, ze
N—— 0 ak ’L#k

j=1s=1
=55

kazdy riadok v P (ako vektor z R™) m4 dizku 1 a kazdé dva riadky st na seba
kolmé, t.j. riadky v P tvoria ortonormélnu bazu v R", t.j. P€O(n).

2.¢ast: Nech je dand O(n)>P=(p;;) a béza (&},---,d,), ktord je ortonormalna.
n
Matica P je reguldrna, teda vztahy a;= Zpijﬁg- definuja bazu (dy, - - - ,dy,). Pritom
j=1
vSak (d@;, dx)= Zpijpkj =0, teda (dy,--- ,dy,) je ortonormalna baza.
j=1 .

Veta 14.3. (o hlavngch osiach) Pre kaZdi redlnu symetrickd maticu A€M, (R)
existuje C€O(n) takd, 2e CACT=CAC '=diag(\1, - ,\n), kde A1, , A\, su
vlastné hodnoty matice A. (Riadky v C st ortogondlne vlastné vektory patriace

k )‘17"' 7)\n)

Dokaz. Indukcia vzhladom na n.

1° Pre n=1 tvrdenie plati.

2° Indukény predpoklad: Predpokladajme, Ze veta je spravna pre n—1. Teraz nech
A je symetricka redlna matica typu nxn. Nech A1 €R je jej vlastna hodnota, k nej
zoberme vlastny vektor 1, rovno ho zoberme taky, ze |#1|=1. Dopliime vektor &1 na
ortonormélnu bazu v R™; nech to je (&1, &2, - ,Z,). Nech P je matica prechodu
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od (€1, - ,€n) k (&1, -+ ,%,), vieme, ze P€O(n). Nech B je matica linedrnej
transformécie f4 : R"—R" vzhladom na (#1,---,#,). Matica f4 vzhladom na
(€1,--- ,€n) je A, potom vieme, 72 B=PAP '=PAPT. Mame BT=B. Tiez:
fa(Z1)=M1a1, lebo & je vlastny vektor matice A patriaci k A\;. To znamend, Ze
B— (*1 0 ) kde A’€9M,,_1,_1(R) je symetrickd. Podla indukéného predpokladu

“\o0 A
existuje ortonormalna matica HeO(n—1): HA'HT=HA'H '=diag()\}, - ,\,),
kde A, ---, Al st vlastné hodnoty matice A’. Utvorme: Q= (31?1 mame, ze
QeO(n). Tiez QPEO(n). Ratajme: QPA(QP)~'=QPA(QP)T=QPAPTQT=
A O - 0
_ T (10 (M 0 1 o) (M 0 _ 0 X = 0
~ama™=(35) (5 %) (o) = (% smaer) =[5 5
00 - X,

Z podobnosti vyplyva {A1, A2, -+, Ap}={A1, A5, -+ , N, }. Za C z tvrdenia zoberie-
me QP. Teda mame CcO(n) taki, ze CACT=CAC~'=diag(\i, - ,\,). Z toho:
& CAC t=¢;diag(\1, - ,\n). &CA=(0,---,\;,--+,0)C=\;€;C. Teda (&;C)A=
=X;(€;C) t.j. €;C je vlastny vektor matice A patriaci k vlastnej hodnote \; zéroven
€;C je i-ty riadok matice C.

U

Poznamka.

1. Vieme, ze vdaka symetrickosti redlnej matice A st vSetky jej vlastné hodnoty
realne.

2. AT=AeM,,,,(R) mdzeme chipat ako maticu linearnej transformacie f4:R"—R"
Veta vlastne hovori, Ze existuje takd baza v R™ vzhladom na ktort je A podobnéa
diagonélnej matici diag(A1, -+, Ap)-

3. Pre kvadratické formy n premennych veta hovori, Ze regularna linearna trans-
forméacia X=YC (t.j. Y=XCT=XC™1) prevedie dant kvadratickd formu XAXT
na tvar \yi+ - +A2. (Y=(y1," "+ ,Un))

Veta 14.4. Nech A=ATcM,,(R) je takd, Ze jej vlastné hodnoty A\i,---,\,
st navzdjom rozne. Nech Ty, - ,Z, su jednotkové vlastné vektory prislichajice
kA, , . Potom &y, ,Z,€R™ tvoria ortonormdlny systém v R™ (a mdZeme
ick zobrat ako riadky matice CeO(n) z vety 14.3).

Doékaz. Méme: ¥;A=\;Z; (prei=1,--- ,n ). Vyndsobenim: i"iAff:)\ififf; trans-
pOIlOV&IliIIlZ f]ATfZT = )\lfjf;r tJ fjAf;r = Alf]f;r 4 )\jfjf;r = Aﬁf}f;r =4
54 (AJ—Al)fjf?:O Ale /\ﬁé/\], teda fjf}":O étandardny skalérny sucin <fi, fj>:0

fa : R*—>R™ m4 vzhladom na bazu (#1,- -+ ,Z,) maticu diag(A1,- -+, Ap).
O
101
Priklad. A=( o011 ) €M,,(R). Néjst ortogonalnu maticu CeO(n),

110
aby CAC_1:CACT:diag()\1, )\2, /\3) Kde )\1:1, )\2: — 1, /\3:2.
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V. KRIVKY 2. RADU

V afinno-euklidovskom priestore (R?, R?) majme kartezidnsku stradnicovy sys-
tém (O, €1, €3). Bod X nech m4 v fiom suradnice X=(z1, z2). Nech je dana funkcia
f : .A—)R; f(Il,1‘2):a1133‘%4—20,12%1.1‘24—&2233%4—2&1331+2a2$2+d, kde aij,ai,aeR.

f je tzv. nehomogénna kvadratickd funkcia na A, ak a117#0V a127#0 V ag2#0. ozn.
g(x1, T2)=a1123 420122122+ a20 3.

Otézka: Akt mnozinu bodov v A vyjadruje rovnica f(z1,22)=0, ak asponi jedno
z a;;707 Odpoved: Veta 15.1:

Veta 15.1. {(x1,22)€R?; f(x1,22)=0} je tzv. zovseobecnend kuZelosecka; presnej-
sie je to elipsa, hyperbola, parabola, priamka, dvojica priamok, prazdna mnoZina.

Dékaz. Kvadraticka forma g(z1,22) = a1127 + 2a1271 22 + a2223 ma maticu
A= (01 12) eMys(R). Z vety o hlavnych osiach vieme, Ze existuje C€O(2) :

a1 a22

CAC'=CACT= (%1 ;)2 ), kde A1, \2€R st vlastné hodnoty matice A.
(Z Z) €0(2) : a®>+b*=1, 2 +d*=1, ac+bd=0. Prvky z O(2) st tvaru (_Czisnfp :;I;:Z)

—cos ¢ sing

t.j. matica otocenia o uhol ¢, alebo ( .
sing cos

). (determinant prvej matice je 1 a

druhej je -1.) Ale za C z vety o hlavnych osiach mozno zobrat maticu z O(2) tvaru

(fzisnip i‘;i).(Totii v druhom pripade sta¢i vynasobif maticu maticou (é _01>)
Takto: nech & je vlastny vektor patriaci k A;. |€j|=1. Dopliime #; vektorom
&@€R2?, |&,|=1 na bazu (€}, &y) v R? takd, aby matica prechodu od (€1, €2) k (€}, &)
—ozn. ju P— mala kladny determinant. Nech B je matica linedrnej transformaécie
fa:R2—R?2 vzhladom na (€}, &,). Mame f(&})=\,€] vieme, 7e B=PAP '=PAPT,

lebo P€O(2). Teda B=BT, B= (*0 2), b musi byt A2, za C zoberieme P. Teda

nech C= (7 07 ) €0(2) je taka, 7e CACT=CAC™!=
= (Aol ;)2 ) Ak (2], 24) st stradnice bodu X=(x1, z3) vzhladom na bazu (€, é}) a
(1, x2) st jeho stradnice vzhladom na (€1, €3), a C je matica prechodu od (€}, €3)

k (&),¢,), tak (z],zh)=(x1,x2)-C, t.j. (xl,:vlg):(a:’l,x/’g):cfl ¢o je to isté ako

(o1, w2) =4, 25) (5 oont)- (*){ TIPS (4) pre vhodné ¢ je
xo=xh cos p—x) sin ¢

regularna linedrna transformacia premennych, ktora formu a11x%+2a12x1x2—|—ag2x§

prevedie na, Alx'f + /\2x’§. Tymto otocenim prejde (&) f(z1,22) = 0 na tvar

(&) Alm’i—l—)\zx’g—l—%lx’l+2b2$’2+b20. A1, Ao st korene charakteristického poly-

nému x4 (t)=det (H‘“ —a12 ) — (£ = \)(t — A2). Z toho: det(A) = A Ao = 6.

—a12 t—az2
Rozlisime dva pripady:
(I): 6540 : A1 A27#0. Méame teda A17#0#X2. () upravime takto: Al(m’f+2§—11x’1)+
+)\2(x’§+2§’\—22x’2)+b:0. Upravime na Stvorce: A\ (z'y + %)2 + )\2(:5’2+§—22)2 + b—
"ol b1
b2 b2 . . T 1=T 1‘|‘>\*1
—)\1/\—5—)\2/\—%:0. Potom regularna linedrna transformacia: A
! 2 $”2=$/2+>\%
t.j. posunutie prevedie () na tvar: (#) Aiz”>+Agz” 3+c=0; ceR.
Ak A\1>0,23>0,¢c<0 V A1<0, A2<0, c>0 tak rovnica (#) a teda aj f(z1,z2)=0 vy-
jadruje elipsu.
Ak A1>0,A2<0,c£0 V A1<0, A2>0, c#0 tak je to hyperbola.
Ak ¢=0 a §=XA1 A2>0, tak jednobodova mnozina, ak ¢=0, §<0, tak dvojica priamok.
Ak A1>0,22>0,c>0 V A1<0, \2<0, ¢<0 , tak prazdna mnoZina.
(IT): 6=0=A; A2 Nech napr. A\;=0, A\37#0. Teda () je )\gx’§+2blm/1+2b2x’2+b:0.
Ak b1 #0 : /\2(z’§+2f\—22z’2)+2b1 (214 55)=0 < Ag(2'9+32)242b; (21 —¢) =0
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"o

rhi=ra—c 72 " : :

v b = A22542012"1=0 to je rovnica paraboly.
X' o=x 2+/\72

Ak b;=0, potom mnozina vyhovujicich bodov je zrejme alebo prazdna mnozina,

alebo priamka, alebo dvojica rovnobeznych priamok.

O
Invarianty krivky 2. radu.

Definicia 15.1. Invariantom krivky druhého radu vyjadrenej rovnicou

allx%+2a12x1:62+a22x%+2a1x1+2a2x2—|—a:0 je taky algebraicky vyraz zavisiaci od
(a11, a12, aze, a1, as, a), ktory sa nezmeni, ak tito krivku vyjadrime v inom kartezi-
4nskom sturadnicovom systéme (ku ktorému prejdeme pomocou otoc¢eni a posunuti).

Veta 15.2.
Invariantmi krivky 2.rddu a11:5%+2a12$1x2+a22x§+2a1x1+2a2x2—|—a:0 su:

S:T’I"(A):azll“‘a/QQ; o= det(A)= det (au alz) =A1)9; A=det (1112 azz (12)

a2 a2 a1 az a

=2+«
2 2 Ta=ay+f

a1 '] + 2a127) 7Y + agex’s + 2(ar ataraf+ar )ry + 2(a12a+ags B+az)rh + (a0 +

+2a1208 + az3? + 2a1a + 2a28 + a)=0.

Mame: s(z],x5)=a11+a2=Tr(A)=s(x1,x2) a §(z}, xh)=det (21; Z;;) =6(x1,x2).

Dokaz. Urobme transforméciu posunutie: { (cr, BER dané). Dostaneme:

a1l a2 ariataizfB+tar
A=det ( a2 a2 ai1zatazeB+az )
arrataizftar arzatazeBtaz a1a’+2a120B8+a228%+2a10+2a28+a

Otocenie: od kvadratickej formy XAXT:a11$%+2CL12{IJ11’2—‘ragg.’l?% prejdeme pomo-
cosp sinp
—sin g cos ¢
cou CACT. Potom s=Tr(CACT)=Tr(CACH)=Tr(C 1CA)=Tr(A)=a11+azs.
d=det(CAC1)=det(C) det(A) det(C~1)=det(A).

cou regularnej linedrnej transforméacie s maticou C= ) k forme s mati-

O

Invarianty krivky 2.rddu sa daji vyuzit pri skmani rovnice

a119:%+2a12:z:1x2+a22z§+2a1z1+2a2z2+a:0 *

Napr. videli sme, ze v situécii, ked A\; \o=0#0 vhodnym oto¢enim rovnica % prejde

na tvar /\1x’§+/\2x’§+c:o, kde c€R, A1, Ay st vlastné hodnoty matice A. Z in-

variantnosti A mame: A=det diag(\1, A2, ¢)=A1 Aac=0c, teda c:%. Teda mame

Alx’f—&—/\gx’g—i—%zo —7 tohto sa uz Tahko prejde ku kanonickému tvaru.

0>0 A#0 ak sA<0, tak elipsa; ak sA>0, tak 0
krivka eliptického typu A=0 bod
0<0 A##0 hyperbola
krivka hyperbolického typu A=0 dvojica roznobeZnych priamok
0=0 A=#£0 parabola

krivka parabolického typu A=0 dvojica rovnobeznych priamok, priamka alebo ()
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VI. DUALNY VEKTOROVY PRIESTOR A
ZAKLADY MULTILINEARNEJ ALGEBRY

Nech V, W st vektorové priestory nad R. Ozna¢me L(V, W) mnoZinu linedrnych
zobrazeni z V' do W.L(V,W)#0, lebo nulové zobrazenie patri do L(V,W). Defi-
nujeme +:L(V,W)xL(V,W)=L(V,W), (f+g)(Z)=f(Z)+g(Z). Pre feL(V,W) a
a€R definujeme: af : VoW, af(@)=a(f(Z)), afeL(V,W). Pre f,geL(V,W) je
f+g: V=W naozaj linedrne: (f+g)(aZ+p5Y) = f(aZ+p9)+g(aZ+py) = af(Z)+
+Bf(§)+ag(@)+B89(y) = a(f(@)+9(2)+B(f([H)+9(¥)) = a(f+9)(@)+B(f+9)(H).
Podobne sa presved¢ime, Ze pre a€R, feL(V,W) je af : V—W naozaj linearne.
af (BU+yp)=a(f(BU+yp))=a(Bf(0)+7f(B))=aB f(0)+ay f(P)=Baf (V) +yaf(P)=
=B(af)(0)+7y(af)(p). Lahko sa overi, ze potom L(V,W) s takto definovanym +
resp. takto definovanim ndsobenim prvkov z L(V, W) prvkami z R je vektorovy
priestor nad R.

Definicia 16.1. Nech f : V—W je linearne zobrazenie. Nech V' a W st konecne
generované. Pevne zvolme bazu (0,---,0;) vo V a (W, - ,@s) vo W. Potom
matica f vzhladom na bazy (0y,---,0) resp. (Wi, - ,wWs) sa definuje ako ma-
tica A€My (R) takd, ze jej i-ty riadok (i=1,--- , k) tvoria stradnice vektoru f(%;)
vzhladom na bazu (i, - - ,Ws).
Veta 16.1.
Nech vektorové priestory V,W nad R su konecne generované. Potom aj vektorovy
priestor L(V, W) je konecne generovany, a mdame dim(L(V, W))=dim(V)- dim(W).
Dokaz. Definujme zobrazenie ® : L(V,W)—Mys(R), kde dim(V)=k, dim(W)=s.
®(f):= matica f vzhladom na pevne zvolent bézu (vy,- - , 7)) vo V respektive
(W, ,Ws) vo W. Toto ® je linedrny izomorfizmus, kedze My (R) je vektorovy
priestor dimenzie k-s, z toho vyplyva tvrdenie.
v

® je linedrne: ®(f)= (f( .

J (k)
Pre o, B€R, f,gcL(V,W) mame:

>. (s-tice stradnic vektora f(4;) v baze (wy,--- ,ws).)

(af + Bg)vi af(v1) + Bg(vr)
@(af+ﬁg): = =
(af + Bg)vi af(Ux) + Bg ()
f(v1) 9(1)
—a| s | = e + s
f(Uk) 9()

® je surjektivne: Nech A=

—

a;j)€Mys(R) je Iubovolna. Potom predpis

f(O1)=a11W1+ - - - +a15Ws

f(Uk)=a1,W1+ - - - +apsws

Uplne a jednoznacne definuje, kedze (¥, --,¥%) je baza linedrneho zobrazenia
[+ V=W, z definicie je jasné, Ze f mé vzhladom na béazy (¢%,---,0x) resp.
(W, - ,Ws) maticu A, t.j. D(f)=A.
® je injektivne: Nech ®(f)=®(g). To znamen4, ze f(0;)=g(¥;), i=1,-- , k. Pretoze
(U1, ,Uk) je baza vo V, z toho f=g.

O

Definicia 16.2. Nech V je vektorovy priestor nad R. Vektorovy priestor L(V, R)
sa nazyva dudlny priestor k priestoru V', ozna¢ime ho V*.

Poznamka. Z vety 16.1 (kedZe R je l-rozmerny vektorovy priestor nad R) méme,
ze ak V je kone¢ne generovany, tak dim(V*)=dim(V).
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Definicia 16.3.
Prvky z V* sa volaju linedrne formy na vektorovom priestore V.

Priklad.

1. V=R" pr; : R">R, pri(xy,- - ,x,) = z;. pr; je linedrna forma na R™

t.j. prie(R™)*.

2. C((0,1),R) je vektorovy priestor spojitych funkcii (0, 1)—R. fol :C({0,1),R)—=R
1 1 1 N

Iy (af+Bg)=a [} f+5 [ g teda [ €C*({0,1),R).

Definicia 16.4+Tvrdenie 16.1.
Zobrazenie (, ) : V*xV—=R (V je vektorovy priestor nad R); (z*,¥)=x*(y) pre
kazdé x*€V* eV je bilinedrne, nazyva sa pdrovacie zobrazenie V* a V.

Dokaz.
Linedrnost v l.argumente: «, BER, x*, y*€V*UEV, (ax*+Ly*, ¥)=(ax*+Ly*) (V)=

= az*(7)+ By*(¥) = az*, ¥) + B(y*, 7). Linedrnost v 2.argumente: (z*, ad + 4b) =

-

—z*(ad+pb)=az* (@)+Bz* (b)=a(z*, @)+ B(z*, b).

O
Definicia 16.5+Veta 16.2. . .
Nech vektorovy priestor V nad R je koneéne generovany, nech (by,--- ,by) je dika
o l,ak i=j5
baza vo V. Potom predpis (b],b;)=0;;= i j pre i,5=1,--- ,k Uplne a
0,ak i#j
jednoznacéne definuje linearne formy bi,--- ,b5eV*. (b],---,bf) je potom béza
priestoru V*, nazyva sa dudlna bdza k baze (b1, - ,bg).

Dékaz. Vieme, ze dim(V*)=dim(V)=k. Teda na dokaz toho, ze (b7, - - ,b}) je baza
vo V* sta¢i ukdzat, ze b7, --- , b} su linedrne nezavislé. Nech a;bj+ - - +apb;=0
(t.j. nulové zobrazenie V—R). Chceme ukazat, ze oy = - -+ = oy, = 0. Takto:
(abi+ -+ bl b)=0n (b5, bi)+ - - +ai_1 (b, by)+ai (bF, bi)+ - - +ag (b, bi)=
=a;:1=0prei=1,--- k.

Il

Tvrdenie 16.2. AkV je koneéne generovany vektorovy priestor nad R, tak V*=V.

Doékaz. Zoberieme lubovolnt bazu (51, e ,I;k) vo V. Potom priradenie 5,»»—>b;-*
i=1,--- , k definuje linedrne zobrazenie V—V*, kedZe zobrazuje bazu na bazu, je to

linearny izomorfizmus.
O

Definicia 16.6. Nech V je vektorovy priestor nad R. Priestor (V*)* ozna¢ime
V** nazyva sa druhy dualny priestor priestoru V.

Veta 16.3. Ak V je konecne generovany, tak existuje kanonicky linedrny izomor-
fizmus V=V,

Dokaz. Definujme ey : V=V*™, ey (¥) : V*5R, ey (0)(a*):=2*(¥). (ak ey je
naozaj linedrny izomorfizmus, tak je jasné, ze je kanonicky, lebo nezavisi od vyberu.)
1. Overime, Ze ey () je pre kazdé v€V linedrne zobrazenie. ey (0)(aa* 4+ 8b*) =
=(aa”+8b")(V)=(aa)(0)+(8b%) (V) =aa™ (0)+4b" (0)=acy () (a*)+Bev () (b").

2. Overime, Ze ey:V—=V** je linedrne. ey (av+572) z aey (V)+Bev (Z) pre a, BER,
¥, Z€V. Stadi ukédzat, Ze lava a pravé strana maju rovnaké hodnoty na vSetkych
x*eV*. Lavd strana: ey (atv+L2)(x*)=a*(av+82)=az*(0)+Lx*(Z)=acy (V) (z*)+
+8ev (2)(x*)=(cev (0)+Bev (%)) (xz*)=pravé strana.

3. Ukézeme, 7ze ey : V. — V** je bijekcia. Nech (51, e ,gk) je baza vo V. Nech
(b3,---,b}) je dudlna baza vo V* a nech (b7*,--- ,b*) je dudlna baza vo V. Zau-

— — — —

jima naés, ¢o je ey (b;). Mame ey (b;)€(V™)*, ratajme (ev (b;),b) = v (b;)(b}) =
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- 1 ak i=j
= b;f(b,») = . j 7 jednoznacnej urcenosti dudlnej bazy dostavame, ze
0 ak i#j
ey (b;)=b* i=1,--- , k. Kedze ey zobrazuje bazu na bazu, je to linedrny izomorfiz-
mus.

O

Veta 16.4. Nech V,W su vektorové priestory nad R, nech f:V — W je linedrne
zobrazenie. Potom existuje jedin€ linedrne zobrazenie f* : W* — V™ také, Ze
(f*(w*), 0)=(w*, f(?¥)). pre vietky w*eW*,9eV. Toto f* sa vold dudlne, alebo
adjungované linedrne zobrazenie k zobrazeniu f.
Dokaz.
Jednoznacénost: Nech by aj fi : W*—=V* bolo také ako f* z tvrdenia. Potom
(f* (w*), 0)=(w", f(0))=(f7 (w"),¥). Z toho: (f*(w"),¥)=(f{(w"),?) pre vietky
veV,w*eW*. Z bilinedrnosti: (f*(w*)—f1(w*),0)=((f*—f1)(w*),v)=0. Teda
(f*—f1)(w*) : V=R je nulové, preto f*—f; = nulové zobrazenie, teda f*=f;.
Ezistencia: Treba, ze f* definované vlastnostou (f*(w*), ¥)=(w*, f(¥)) je linedrne:
[ law*+B2z%) L af*(w*)+8f*(z*). Treba ukazat, Ze lavd a pravad strana maju
(ako linedrne zobrazenie V—R) t istd hodnotu v [ubovolnom ¢€V. Lava strana:
(f*(ew™+2"),¥) = (aw™+pz", f(7)) = aw”, f(V))+B(z", f(V)) = a(f*(w"), )+
+A(f*(27), i)=(af* (w*)+Bf*(2"), V) =pravé strana.

O
Veta 16.5. Nech V,W st konecne generované nad R, nech [ : V—W md vzhladom
na bdzy (U1, , ) vo V resp. (Wi, - ,Ws) vo W maticu A=(a;;)€Mis(R). Po-
tom dudine linedrne zobrazenie f* : W*—=V™* md vzhladom na bdzu (wy,- - ,wk) vo
W* resp. (vi,---,v;) maticu AT.

S
Doékaz. Méme f(v;)= Z a;;w; pre i=1,--- , k. Potrebujeme zistit, o je f*(w;) pre
j=1

k
t=1,---,s. Mame f*(wy) = Zbij’l];, chceme zistit by, (f*(wy), V) =

Jj=1
S S
o % T ) * =\ 2 .
= (wf, E Ap;W5) =~>= E apj (W}, W;) = ape. Prava strana:
Jj=1 Jj=1
k k
E bijvy, Uy | = E bej (v}, Up)=bip; z toho by,=ap teda matica B zobrazenia f*
i=1 j=1

je vlastne AT,
O

Veta 16.6. Ak f,g su linedarne zobrazenia f,qg: V—W, tak

1L (f+9)" =f"+g"

2. Ak f: VoW, a€R, tak (af)*=a(f*)

3. O : V=W je nulové zobrazenie, potom OF : V*—W* je tieZ nulové; (idy )*=idy -
4. Ak [ V=W, g: W—S si linedrne zobrazenia, tak (gof)*=f*og*.

5. Ak f : V=W je linedrne zobrazenie a V,W st koneéne generované, tak (f*)* :
(V*)*=(W™*)* sa stotozni s f, ak stotoini V** sV a W** s W.

Dokaz. Priamo z definicie: pre pripad zobrazeni medzi kone¢ne generovanymi pries-
tormi tieto vlastnosti vyplyvaja z vlastnosti matic. Napr. (f+g¢g)*=f*+g* &
(A+B)T=AT+BT alebo: (gof)*=f*og* < (AB)T=BTAT.

d
Tenzorovy sucin vektorovych priestorov.

Nech V, W st koneéne generované vektorové priestory nad R. Potom VxXW je
vektorovy priestor nad R. Oznac¢me M mnozinu vSetkych zobrazeni VW —R,
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ktoré nadobtidaji nenulové hodnoty iba v koneénom poéte prvkov z VxW. M#(,
lebo nulové zobrazenie patri do M. Mnozina G vSetkych zobrazeni z VW —R je
vektorovy priestor . Pre f, g€G definujeme f+g : VXW—=R; (f+9)(Z,9)=f(Z, §)+
+9(Z, ), podobne pre feG, a€R definujeme af:VXW—=R; (af)(Z,7)=a(f(Z,7)).
Je jasné, Ze G je vektorovy priestor nad R. M je vektorovy podpriestor v G. (staci
pouzit kritérium vektorového podpriestoru).

Ak feM, tak existuja (v, W), - , (U, W) EV X W také, ze f(v;, W;)=a; pre i=1, 2,
3, ,k, pricom o;#0 a f(0,w)=0 pre (7, W)¢{(v1,w1), -, (g, Wk)}. Pre takéto
f zavedieme symbol ay (¥, W)+ - - - +ay(Uk, Wy). Napr. (Uo,wo) (pre veV,weW)
znamend funkciu, ktord ma vo (7, @p) hodnotu 1 a vo vSetkych inych ma hodnotu
0. Podobne —1-(¥y, Wy):=— (7, Wp) je funkcia, ktord mé vo (¥, wp) hodnotu —1 a
vSade inde 0.

Iny pripad: (U1 4 va; Wa) — (1, Wa) — (U2, Wa) je symbol oznacujici zobrazenie
VxW—=R, ktord mé vo (U1 +02,Ws) hodnotu 1, vo (¥,ws) a (vh,wWs) —1 a vSade
inde 0.

Definicia 16.6. Nech SCM je vektorovy podpriestor v M generovany prvkami
tvaru (’171-1-’1727 117)—(171, IU)—(1727 ’LB), (’17, U71+1172)—(17, 1171)—(’(7, 1172), (CY’U, ’LB)—CY(’U, ’LU)
[pre lubovolné o, ¥y, Vo€V, W, W, Wa € W] a (¥, all) —a (T, W).

Definicia 16.7. Nech V., W, M, S st ako vyssie. Potom tenzorovy sucin priestorov
V a W sa definuje ako faktorovy vektorovy priestor M/S, oznac¢ime ho VQW. Teda
VeW=M/S. Prvok vo VW reprezentovany (¢, w)eM oznacime 7@u.

Trieda ekvivalencie prvku (¥ +s, W) — (U1, W) — (s, &) bude (¥ +0s ) @uW—0; W —
—U@W=0€V xW t.j. plati: (¥;+02)@uW=0;@wW+0>@w. Podobne:
TR (W +w ) =TQ W1 + QW
(a?)@W=a (VW)
1R (o) =a(7ew)
Teda ak definujeme zobrazenie S : VW —=VeW | S(¥,W)=0xwW, toto S bude
bilinearne.

Veta 16.7.

1. Ak V,W, T si konecéne generované vekt. priestory, tak (VW )QT=V(WQT).
2. Ak V. W si konecne generované, tak VRW =W V.

8. Ak'V alebo W je nulovy priestor, tak VW =0

4. Ak (V1,--- ,0k) je bdza vo V, (Wi, - ,Ws) je bdza vo W, tak bdza vo VQW
pozostdva z vektorov (U; ® W;), kde 1<i<k,1<j<s. Teda dim(V @ W)=k s =

= dim(V) - dim(W).

Veta 16.8. Nech V,W su konecne generované vektorové priestory nad R. Potom
V*QW=L(V,W).

Doékaz. Nech (Uy,---,7k) je baza vo V, (W, ,Ws) je baza vo W. Definujme
linedrne zobrazenie ® : V*QW—L(V,W) takto: ®(v;®@w;)(Vs)=v}(Vs)-w;. Teda
@ (v ®7;)(Vs)=0;swW;. Teda ®(vi®w;) ma maticu (vzhladom na bazu (U1, --- , U)
vo V resp. (W1, -- ,,) vo W.) ktorej i-ty riadok mé v j-tom stlpci 1 a viade inde
st nuly. Teda ®(v}®w;) je bazovy prvok v L(V, W) t.j. ® je linedrny izomorfizmus.
Je jasné, Ze pre vektorové priestory Vi, - - - , Vi mozeme definovat ich tenzorovy stcin
induktivne:
@Ve®- - @Vp=10(Ve® - - @Vy).
O

Definicia 16.8. Nech V je koneéne generovany vektorovy priestor nad R. Nech
P, q st dané nezaporné celé ¢isla. Potom vektorovy priestor

TI(V)=V*® - V'@V aV

p

p q
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sa nazyva priestor tenzorov p-krat kovariantnych a ¢-krat kontravariantnych. Prvky
T3(V) sa volaju tenzory typu (p,q) nad V.

Priklad.
1. T}(V)=V, teda tenzory typu (0,1) st vektory z V.
2. TY(V)=V"*, teda tenzory typu (1,0) si linedrne formy na V.
3. THV)=V*@V=L(V,V), teda tenzory typu (1,1) s vlastne linedrne zobrazenia
zV doV.

Tenzory typu (p,q) sa vyuZivaju v diferencidlnej geometrie a v matematickej
fyzike. Pracuje sa tam s ich stradnicami.
Nech (v1,---,0k) je baza vo V. Potom bazu priestoru T)/(V) tvoria vektory
Vi@ ~Ufp®{)’j1® < @U;, kde 1<y < -+ - <ip<k a 1<j; < - - <j <k. Teda kazdy pr-
vok z T}/(V) mé jediné vyjadrenie v tvare:

SNoortinr e @ 90,0 0,

11,0 2p
1<is,ji<k

Namiesto v napigeme v*, potom dostaneme: v/ (7;)=0;;.

Z TJl’ o 7J‘1 11® ®’U p®“]1® ®U]q

11,
1<---<k

Einsteinova sumacné konvencia: Ten isty tenzor zapiSeme takto:

T]h - 1.711 11 R - ®U p®vj1® ®,qu

15

“Hlq
“Hlp

Aj bazové vektory sa v praxi vynechavaju, ten isty tenzor sa oznaduje T] v
(1§Z1, R del’ S quk)_

Dané st pravidla ako sa zmeni tenzor Tijllj‘ , ak od bazy (v1,---,Uk) vo V prej-
deme k baze (77, - -, 4},). To je obsah tzv. tenzoroveho poctu.

)

"Jq



