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I. AFINNÝ PRIESTOR (nad R)

Poznámka. afinita = spriaznenosť

Definícia 11.1. Nech A=(B, V ) kde B̸=∅ je množina, ktorej prvky budeme oz-
načovať A,B, · · · , X a budeme ich nazývať bodmi, a V je vektorový priestor nad
R. A sa nazýva afinný priestor, ak body z B a vektory z V sú ”spriaznené” podľa
nasledujúcich pravidiel:
1◦ Pre každú usporiadanú dvojicu (X,Y )∈B×B existuje jediný vektor z V , ktorý
potom označíme

−−→
XY (nazýva sa vektor prislúchajúci k dvojici (X,Y )∈B×B).

2◦ Pre každý X∈B a každý x⃗∈V existuje jediný bod Y ∈B taký, že x⃗=−−→XY .
3◦ Pre každé X,Y, Z∈B: −−→XY+−→Y Z=−→XZ.
Ak A=(B, V ) je afinný priestor a dim(V )=n, tak hovoríme, že dim(A)=n. (Ináč:
A je n-rozmerný afinný priestor.)

Príklady.
1. B={B}, V={0⃗}. A=(B, V ) je nularozmerný afinný priestor.
2. B= množina bodov Oxy, V= vektorový priestor orientovaných úsečiek so za-
čiatkom v O. (X,Y )∈B×B priradíme jediný vektor x⃗∈V , ktorý dostaneme tak,
že orientovanú úsečku

−−→
XY posunieme do bodu O. Axiómy afinného priestoru:

1◦
√
2◦

√
3◦

√
.

B je bodová, V je vektorová zložka afinného priestoru.
3. Nech B=Rn, V=Rn. 1◦: Usporiadanej dvojici (A,B)∈B×B, kde A=(a1, · · · , an),
B=(b1, · · · , bn) priradíme vektor

−→
AB=(b1−a1, · · · , bn−an). 2◦: Pre ľubovoľný bod

X=(x1, · · · , xn)∈B a ľubovoľný a⃗=(a1, · · · , an)∈V je Y=(x1+a1, · · · , xn+an)∈B
ten jediný bod, pre ktorý platí a⃗=

−−→
XY . 3◦: X=(x1, · · · , xn), Y=(y1, · · · , yn),

Z=(z1, · · · , zn).
−−→
XY+

−→
Y Z=(y1−x1, · · · , yn−xn)+(z1−y1, · · · , zn−yn)=(z1−x1,

· · · , zn−xn)=
−→
XZ

√
. Teda A=(Rn,Rn) je n-rozmerný afinný priestor.

4.

Nech (N)


a11x1+ · · ·+a1nxn=b1
...

as1x1+ · · ·+asnxn=bs

je riešiteľný nehomogénny systém lineárnych

rovníc nad R. B = množina všetkých riešení systému (N). V =vektorový priestor
všetkých riešení príslušného homogénneho systému. 1◦: pre (X,Y )∈B×B defi-
nujeme

−−→
XY=Y−X∈V je to riešenie príslušného homogénneho systému. 2◦: pre

ľubovoľný A∈B a ľubovoľný a⃗∈V bude A+a⃗=B∈B jediný bod taký, že −→AB=a⃗.
3◦:

−−→
XY+

−→
Y Z=Y−X+Z−Y=Z−X=−→XZ.

Teda A=(B, V ) je afinný priestor dimenzie n−h(matice systému).

Veta 11.1. Nech A=(B, V ) je afinný priestor. Potom:
1.

−−→
XX=0⃗∈V pre ∀X∈B.

2. Ak
−−→
XY=

−→
ST , tak

−→
XS=

−→
Y T .

3.
−−→
XY=−−−→

Y X pre ľubovoľné X,Y ∈B.

Dôkaz.
1.

−−→
XX+

−−→
XX =

−−→
XX, preto

−−→
XX =

−→
0 .

2. Predpokladajme, že
−−→
XY=

−→
ST . Potom

−→
XS=

−−→
XY+

−→
Y S=

−→
ST+

−→
Y S=

−→
Y S+

−→
ST=

−→
Y T .

3.
−−→
XY+

−−→
Y X=

−−→
XX=0⃗. Preto

−−→
XY=−−−→

Y X.
□

Iná definícia afinného priestoru:
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Definícia 11.1*. Afinným priestorom rozumieme trojicu: A=(B, V,+), kde B̸=∅
je množina (jej prvky sú body) a V je vektorový priestor nad R (jeho prvky sú vek-
tory) a + je zobrazenie z B×V→B, ktoré každej usporiadanej dvojici (X, a⃗)∈B×V
priradí jediný prvok z B, ktorý potom označíme X+a⃗, pričom musia byť splnené
podmienky:
1∗: X+(⃗a+b⃗)=(X+a⃗)+b⃗ pre každé X∈B a každé x⃗, y⃗∈V .
2∗: X+x⃗=X ⇔ x⃗=0⃗.
3∗: pre ľubovoľné Y,X∈B existuje jediný a⃗∈V taký, že X+a⃗=Y .

Obidve definície afinného priestoru sú ekvivalentné, t.j. A=(B, V ) je afinný
priestor v zmysle def 11.1⇔ keď A=(B, V,+) (s vhodne definovaným +) je afinný
priestor podľa def 11.1∗.

Dôkaz. Predpokladajme, že A=(B, V ) je afinný priestor podľa def 11.1. Potom
pre X∈B a a⃗∈V podľa podmienky 2◦ z def 11.1(∗) existuje jediný Y ∈B taký, že
−−→
XY=a⃗. Položíme: Y=X+a⃗. Tým sme definovali + : B×V→B. Overíme 1∗ 2∗ 3∗.
1∗: (X+a⃗)+b⃗=Y+b⃗=Z podľa def.: a⃗=

−−→
XY , b⃗=

−→
Y Z. Potom X+(⃗a+b⃗)=X+(

−−→
XY+

+
−→
Y Z)=X+

−→
XZ=Z. Teda naozaj X+(⃗a+b⃗)=X+(⃗a+b⃗) 2∗: X+x⃗=X ⇔ x⃗=

−−→
XX=0⃗

(použili sme vetu 11.1). 3∗: pre ľubovoľný X∈B a a⃗∈V je Y=X+a⃗ ten jediný bod.
Teda A=(B, V,+) je afinný priestor v zmysle def 11.1.
Predpokladajme, že A=(B, V,+) je afinný priestor v zmysle def 11.1∗. Chceme
ukázať, že A=(B, V ) spĺňa 1◦, 2◦ a 3◦ z def 11.1.
1◦: Pre ľubovoľné X,Y ∈B definujeme −−→XY ∈V ako ten jediný vektor z V (podľa 3∗),
pre ktorý X+

−−→
XY=Y .

2◦: Pre každý bod X∈B a každé a⃗∈V existuje jediný vektor Y=X+a⃗ taký, že−−→
XY=a⃗.
3◦: X+(

−−→
XY+

−→
Y Z)

1∗
= (X+

−−→
XY )+

−→
Y Z=Y+

−→
Y Z=Z=X+

−→
XZ ⇒ −−→

XY+
−→
Y Z=

−→
XZ pre

ľubovoľné X,Y, Z∈B.
□

Pevne zvoľme bod O∈B v afinnom priestore A=(B, V ). Potom môžeme definovať
zobrazenie h : B→V , h(x)=

−−→
OX.

Tvrdenie 11.1. Zobrazenie h je bijekcia.

Dôkaz. Definujme g : V→B, g(⃗a)=len jediný A∈B, pre ktorý a⃗=−→OA. Potom
g◦h=idB, h◦g=idV , g◦h(X)=g(

−−→
OX)=X a h◦g(⃗a)=h(A)=a⃗.

□
Definícia 11.2. Nech A=(B, V ) je afinný priestor. Afinný podpriestor priestoru A
je afinný priestor A′=(B′, V ′), taký, že B′⊂B, V ′ je vektorový podpriestor priestoru
V , a body z B′ sú s vektormi z V ′ spriaznené podľa tých istých pravidiel, ako sú
spriaznené body s vektormi v A.

Príklad.
1. A=(B, V ) je afinný podpriestor samého seba.
2. Ak A′=(B′, V ′), A′′=(B′′, V ′′) sú afinné podpriestory v A=(B, V ), tak A′∩A′′=
=(B′∩B′′, V ′∩V ′′) je afinný podpriestor v A′ ,A′′ aj A.

Definícia 11.3. Nech An=(Bn, Vn), n∈N je n-rozmerný afinný priestor. Potom
1-rozmerný afinný podpriestor v An sa nazýva priamka v An, 2-rozmerný afinný
podpriestor v An sa nazýva rovina v An a (n − 1)-rozmerný afinný podpriestor
v An sa volá nadrovina v An.

Súradnice v afinnom priestore.

Definícia 11.4.
Nech An=(Bn, Vn) je afinný priestor. Potom (n+1)-tica (O, a⃗1, · · · , a⃗n), kde O∈Bn
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je pevne zvolený bod a (⃗a1, · · · , a⃗n) je pevne zvolená báza priestoru Vn; sa nazýva
súradnicový systém v An.

Príklad.
V An=(Rn,Rn) (n+1)-tica ((0, · · · , 0), (1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, · · · , 0, 1))
je súradnicový systém.

Priradenie súradníc.
Nech (O, a⃗1, · · · , a⃗n) je súradnicový systém v n-rozmernom afinnom priestore

An=(Bn, Vn). Pre ľubovoľný bod X∈Bn existuje jediný vektor
−−→
OX∈Vn. Potom

existuje jediná n-tica (x1, · · · , xn)∈Rn taká, že
−−→
OX=x1a⃗1+ · · ·+xna⃗n. Potom us-

poriadaná n-tica (x1, · · · , xn) je n-tica súradníc bodu X vzhľadom na súradni-
cový systém (O, a⃗1, · · · , a⃗n).

−−→
OX sa nazýva aj polohový vektor bodu X. Teda

vlastne súradnice bodu sú súradnice jeho polohového vektora vzhľadom na bázu
(⃗a1, · · · , a⃗n). Stručne píšeme X≡(x1, · · · , xn). Pre vektor b⃗∈Vn jeho súradnice
vzhľadom na súradnicový systém (O, a⃗1, · · · , a⃗n) sú jeho súradnice vzhľadom na
bázu (⃗a1, · · · , a⃗n). b⃗=b1a⃗1+ · · ·+bna⃗n, b⃗ ≡ (b1, · · · , bn).

Tvrdenie 11.2. Nech (O, a⃗1, · · · , a⃗n) je súradnicový systém v afinnom priestore
An=(Bn, Vn). Ak X ≡ (x1, · · · , xn), Y ≡ (y1, · · · , yn) tak vektor

−−→
XY má súradnice:

−−→
XY ≡ (y1−x1, · · · , yn−xn).

Dôkaz. Máme
−−→
OX=x1a⃗1+ · · ·+xna⃗n, O⃗Y=y1a⃗1+ · · ·+yna⃗n.

−−→
XY =

−−→
XO +

−→
OY =

=
−→
OY−−−→

OX=(y1−x1)⃗a1+ · · · (yn−xn)⃗an.
□

Príklad. Pre A2=(R2,R2) súradnicový systém ((0, 0), (1, 0), (0, 1)). X=(x1, x2).−−→
OX=(x1, x2)=x1e⃗1+x2e⃗2. X ≡ (x1, x2).

Afinné zobrazenie.

Definícia 11.5.
Nech A=(B, V ) a A′=(B′, V ′) sú afinné priestory. Potom afinné zobrazenie z A do
A′ je dvojica (f, φ), kde f : B→B′ a φ : V→V ′ sú lineárne zobrazenia a okrem toho

φ(
−−→
XY )=

−−−−−−−→
f(X)f(Y ). f je tzv. bodová zložka, φ je tzv. lineárna zložka afinného

zobrazenia (f, φ) : A→A′.

Poznámka. Nech A=(B, V,+) je afinný priestor v zmysle def 11.1∗. Potom vieme,
že pre ľubovoľnú (X,Y )∈B×B existuje jediný x⃗∈V taký, že X+x⃗=Y . Potom oz-
načme x⃗=Y−X=−−→XY . Potom podmienku φ(−−→XY )=

−−−−−−−→
f(X)f(Y ) z def 11.5 môžeme

napísať φ(Y−X)=f(Y )−f(X).

Príklad. V afinnom priestore An=(Bn, Vn) zvoľme pevne súradnicový systém
(O, a⃗1, · · · , a⃗n). Definujme f : Bn→Rn, f(X)=(x1, · · · , xn), kde (x1, · · · , xn) sú
súradnice bodu X. Podobne definujme φ : Vn→Rn, φ(⃗b)=(b1, · · · , bn), kde (b1,
· · · , bn) sú súradnice vektora b⃗. Potom (f, φ) : (Bn, Vn)→(Rn,Rn) je afinné zob-
razenie.

Definícia 11.6. Afinné zobrazenie (f, φ) : (B, V )→(B′, V ′) je afinný izomorfizmus,
ak f je bijekcia.

Veta 11.2. Afinné zobrazenie (f, φ) : (B, V )→(B′, V ′) je afinný izomorfizmus ⇔
keď φ je lineárny izomorfizmus.

Dôkaz.
⇒ : Pevne zvoľme bod P∈B. Označme P ′=f(P ). Predpokladajme, že (f, φ)
je afinný izomorfizmus. Chceme ukázať, že φ : V→V ′ je lineárny izomorfizmus.

Stačí ukázať, že φ je bijektívne. Surjektívnosť: Nech b⃗∈V ′. Potom b⃗=
−−→
P ′B pre
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jednoznačne určený bod B. Keďže f je bijekcia, existuje jediný bod Y ∈B taký,
že f(Y )=B, teda b⃗=

−−−−−−→
f(P )f(Y )=φ(

−→
PY ). Teda b⃗ má vzor

−→
PY ∈V . Injektívnosť:

Nech φ(⃗a)=φ(⃗b). Chceme ukázať, že a⃗=b⃗. Máme a⃗=
−→
PA, b⃗=

−→
PB pre jednoznačne

určené P∈B. Teda φ(−→PA)=φ(−→PB)⇔
−−−−−−→
f(P )f(A)=

−−−−−−→
f(P )f(B). Z toho f(A)=f(B) je

bijekcia, preto A=B. Vcelku: a⃗=b⃗.
⇐ : Predpokladajme, že φ : V→V ′ je lineárny izomorfizmus. Chceme ukázať, že

f je bijekcia. Surjektívnosť: Nech Y ∈B′ je ľubovoľný. Potom
−−→
P ′Y má jediný vzor,

povedzme φ(⃗a)=
−−→
P ′Y . Pritom: a⃗ =

−→
PA pre jediné A∈B.

−−−−→
P ′f(A) =

−−−−−−→
f(P )f(A) =

=φ(
−→
PA)=

−−→
P ′Y z toho: Y=f(A). Injektívnosť: Predpokladajme, že f(A)=f(B).

Chceme ukázať, že A=B. φ(
−→
PA) =

−−−−−−→
f(P )f(A) =

−−−−→
P ′f(A) =

−−−−→
P ′f(B) =

−−−−−−→
f(P )f(B) =

=φ(
−→
PB) a preto A=B.

□
Poznámka. Afinné zobrazenie (f, φ) určené zavedením súradnicového systému
(O, a⃗1, · · · , a⃗n) v An=(Bn, Vn) má bijektívne f , a preto je to aj afinný izomorfizmus
z An na (Rn,Rn).

Definícia 11.7. Ak existuje afinný izomorfizmus (f, φ) : A→A′ tak hovoríme, že
afinný priestor A je afinne izomorfný s afinným priestorom A′. Ak A je afinne
izomorfný s A′, tak tiež je A′ afinne izomorfný s A. V takom prípade môžeme
povedať, že A a A′ sú navzájom izomorfné.

Príklad.
Zavedením súradnicového systému (O, a⃗1, · · · , a⃗n) v n-rozmernom afinnom pries-
tore An=(Bn, Vn) vlastne definujeme afinný izomorfizmus z (Bn, Vn) na (Rn,Rn).
Teda každý n-rozmerný afinný priestor je afinne izomorfný s afinným priestorom
(Rn,Rn).

Veta 11.3. Nech (f, φ) : (Rk,Rk)→(Rn,Rn) je afinné zobrazenie. Potom pre
(x1, · · · , xk)∈Rk máme f(x1, · · · , xk) = (x1, · · · , xk) ·Mφ + f(0, · · · , 0). Pritom
v (Rk,Rk) máme súradnicový systém ((0, · · · , 0), e⃗1, · · · , e⃗k) v (Rn,Rn) súradnicový
systém: ((0, · · · , 0), e⃗1, · · · , e⃗n).
Dôkaz. Vieme, že φ(x1, · · · , xk) = (x1, · · · , xk) ·Mφ pre každé (x1, · · · , xk)∈Rk:

(x1, · · · , xk)=
−−−−−−−−−−−−−−−→
(0, · · · , 0)(x1, · · · , xk), (x1, · · · , xk)·Mφ=φ(

−−−−−−−−−−−−−−−→
(0, · · · , 0)(x1, · · · , xk))=

=
−−−−−−−−−−−−−−−−−−→
f(0, · · · , 0)f(x1, · · · , xk). f(x1, · · · , xk)−f(0, · · · , 0)=(x1, · · · , xk)·Mφ.
Teda f(x1, · · · , xk)=(x1, · · · , xk)·Mφ+f(0, · · · , 0).

□
Barycentrický súradnicový systém.
Budeme používať def 11.1∗.

Nech A=(B, V ) je afinný priestor. Vieme, že pre ľubovoľné X,Y ∈B existuje jediný
vektor x⃗∈V taký, že X+x⃗=Y . Označili sme x⃗=Y−X. Platí:
1. (A−B)+(B−C)=A−C ⇔ −→

BA+
−→
CB=

−→
CA=A−C.

2. X−X=−→0 ∀X∈B.
3. (X+x⃗)−(A+y⃗)=(X−A)+x⃗−y⃗.
Definícia 11.8. Nech A=(B, V,+) je afinný priestor, nech A0, A1, · · · , As∈B sú

ľubovoľné body a nech x0, x1, · · · , xs∈R také, že
s∑

i=0

xi=1. Potom definujeme bod

z B:
s∑

i=0

xiAi:=A+
s∑

i=0

xi(Ai−A), kde A∈B je ľubovoľný bod. Bod
s∑

i=0

xiAi sa

nazýva barycentrická kombinácia bodov A0, · · · , As s koeficientmi x0, · · · , xs.
Ukážeme, že def 11.8 barycentrickej kombinácie bodov je dobrá, t.j. že nezávisí

od voľby A. Takto: Nech B∈B je ľubovoľný bod. Potom vieme, že existuje jediný
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x⃗∈V taký, že B=A+x⃗. Potom B+
s∑

i=0

xi(Ai−B)=A+x⃗+
s∑

i=0

xi((Ai−A)−x⃗)=

=A+x⃗+
s∑

i=0

xi(Ai−A)−
s∑

i=0

xix⃗=A+
s∑

i=0

xi(Ai−A)+x⃗−

(
s∑

i=0

xi

)
x⃗=

=A+
s∑

i=0

xi(Ai−A).

Veta 11.4 a Definícia 11.9. Nech A0, A1, · · · , An sú body n-rozmerného afinného
priestoru An=(Bn, Vn). Potom: (A0, A1−A0, · · · , An−A0) je súradnicový systém
afinného priestoru An (v zmysle definície) práve vtedy, keď každý bod X∈Bn sa dá

jediným spôsobom vyjadriť ako barycentrická kombinácia X=
n∑

i=0

xiAi. Ak je toto

splnené, potom (A0, A1, · · · , An) sa volá barycentrický súradnicový systém priestoru
An; (x0, · · · , xn) sú barycentrické súradnice bodu X.

Dôkaz.
⇒ : Predpokladajme, že (A0, A1−A0, · · · , An−A0) je súradnicový systém. Nech
X∈Bn je ľubovoľný bod. Potom existuje jediný vektor x⃗∈Vn taký, že X=A0+x⃗.
Keďže (A1−A0, · · · , An−A0) je báza vo Vn, preto existujú jednoznačne určené

x1, · · · , xn∈R: x⃗=
n∑

i=0

xi(Ai−A0). Z toho: X=A0+
n∑

i=0

xi(Ai−A0). Zoberme

x0=1−
n∑

i=1

xi. Potom X=A0+
n∑

i=0

xi(Ai−A0)=
n∑

i=0

xiAi. Jednoznačnosť: Nech by

X=
n∑

i=0

xiAi=
n∑

i=0

x′iA
′
i. Máme vlastne: A0+

n∑
i=0

xi(Ai−A0)=A0+
n∑

i=0

x′i(Ai−A0).

Z toho:
n∑

i=0,1

xi(Ai−A0)=
n∑

i=0,1

x′i(Ai−A0). Pretože (A1−A0, · · · , An−A0) je báza,

musí platiť xi=x′i pre i=1, · · · , n. Potom tiež x0=1−
n∑

i=1

xi=1−
n∑

i=1

x′i=x
′
0.

⇐ : Predpokladajme, že každý bod z Bn sa dá jediným spôsobom vyjadriť ako
barycentrická kombinácia bodov A0, · · · , An. Chceme ukázať, že (A0, A1−A0, · · · ,
· · · , An−A0) je súradnicový systém v An=(Bn, Vn). Stačí ukázať, že (A1−A0, · · · ,
· · · , An−A0) je báza vo Vn. Pretože vieme, že dim(Vn)=n, stačí ukázať, že A1−A0,
· · · , An−A0 generujú celé Vn. Nech b⃗∈Vn je ľubovoľný vektor. Z axióm afinného
priestoru vieme, že k bodu A0 a vektoru b⃗ existuje jediný bod B∈Bn taký, že
b⃗=B−A0. Z nášho predpokladu vyplýva, že existuje jediné vyjadrenie B v tvare

B=
n∑

i=0

yiAi (kde
n∑

i=0

yi=1.) Z toho: b⃗=

(
n∑

i=0

yiAi

)
−A0=A0+

n∑
i=0

yi(Ai−A0)−

−A0=
n∑

i=1

yi(Ai−A0). Teda naozaj [A1−A0, · · · , An−A0]=Vn.

□

Veta 11.5. Nech (f, φ) : (B, V )→(B′, V ′) je afinné zobrazenie. Potom pre ľubovoľ-

nú barycentrickú kombináciu
n∑

i=0

xiAi ľubovoľných bodov A0, · · · , An∈B máme

f

(
n∑

i=0

xiAi

)
=

n∑
i=0

xif(Ai).
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Dôkaz. Označme B=
n∑

i=0

xiAi. Body A0, B určujú jediný vektor x⃗∈V taký, že

B=A0+x⃗, teda x⃗=B−A0. Potom φ(B−A0)=f(B)−f(A0). Pritom B−A0=

=A0+
n∑

i=0

yi(Ai−A0)−A0=
n∑

i=0

xi(Ai−A0).

f(B)−f(A0)=φ(B−A0)=
n∑

i=0

xiφ(Ai−A0)=
n∑

i=0

xi(f(Ai)−f(A0))⇔

⇔ f(
n∑

i=0

xiAi)=f(B)=f(A0)+
n∑

i=0

xi(f(Ai)−f(A0))=
n∑

i=0

xif(Ai).

□
Veta 11.6. (o afinných zobrazeniach):
Nech An=(Bn, Vn) je n-rozmerný afinný priestor a nech (A0, · · · , An) je barycent-
rický súradnicový systém v ňom. Nech B0, · · · , Bn sú ľubovoľné body afinného
priestoru A′

n=(B′
n, V

′
n). Potom existuje jediné afinné zobrazenie (f, φ) : A→A′

n

také, že f(Ai)=Bi pre i=0, · · · , n.

Dôkaz. Vieme, že každý bod X∈Bn má jediné vyjadrenie v tvare X=
n∑

i=0

xiAi.

Ak existuje afinné zobrazenie (f, φ) : A→A′ také, že f(Ai)=Bi, i=0, · · · , n tak

musí byť f(X)=f(
n∑

i=0

xiAi)=
n∑

i=0

xif(Ai)=
n∑

i=0

xiBi. Teraz definujme zobrazenie

(f, φ) : (Bn, Vn)→A′ práve takto: f(
n∑

i=0

xiAi)=
n∑

i=0

xiBi. Treba ešte ukázať, že f

(a ním určené φ : V→V ′) je afinné zobrazenie. Pre X=
n∑

i=0

xiAi, Y=
n∑

i=0

biAi je

φ(Y−X):=f(X)−f(Y )=
n∑

i=0

(xi−bi)Bi. Stačí ukázať, že φ je lineárne. Ľubovoľné

dva vektory a⃗, c⃗∈Vn, ∀α, β∈R, a⃗=A−A0, c⃗=C−A0. Potom φ(αA+βC)=

=φ(α(A−A0)+β(C−A0))=φ(α(
n∑

i=0

aiAi−A0)+β(
n∑

i=0

ciAi−A0))=

=φ(α(
n∑

i=0

ai(Ai−A0))+β(
n∑

i=0

ci(Ai−A0)))=αφ(⃗a)+βφ(c⃗).

□
Poznámka. barycenter = ťažisko.
V n-rozmernom afinnom priestore An=(Rn,Rn) body A0, · · · , An; pričom každý
z nich má jednotlivú hmotnosť, predpokladajme, že A1−A0, · · · , An−A0 nech sú
lineárne nezávislé. Teda (A0, A1, · · · , An) je barycentrický súradnicový systém.
Bod, ktorého barycentrické súradnice sú ( 1n+1 , · · · ,

1
n+1 ) je ťažisko sústavy hmot-

ných bodov A0, · · · , An. Napríklad pre n=2: 12A0+
1
2A1=A0+

1
2 (A1−A0).

Definícia 11.10. V afinnom priestore (Rn,Rn) majme body A0=(1, 0, · · · , 0) až

An−1=(0, · · · , 0, 1). Potom množina △n={
n−1∑
i=0

xiAi;
∑

xi=1;xi≥0} sa nazýva

n-rozmerný simplex. Simplexy sa používajú v topológii, geometrii, v optimalizač-
ných metódach.

Parametrické vyjadrenie afinného podpriestoru.

Veta 11.7. V n-rozmernom afinnom priestore An=(Bn, Vn) majme pevne zvolený
súradnicový systém (O, a⃗1, · · · , a⃗n). Nech Ãk=(B̃k, Ṽk) je k-rozmerný afinný pod-
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priestor v An. Nech A ≡ (a1, · · · , an) je dajaký bod z Ãk, nech (⃗b1, · · · , b⃗k) je báza
vo Ṽk pričom b⃗1 ≡ (b11, · · · , b1n), . . . , b⃗k ≡ (bk1 , · · · , bkn). Potom pre ľubovoľný bod
X∈Ãk platí

−−→
OX=

−→
OA+b⃗1t1+ · · ·+b⃗ktk pre vhodné t1, · · · , tk∈R. Obrátene, ak pre

dajaký vektor x⃗∈Vn platí x⃗=
−→
OA+s1⃗b1+ · · ·+sk b⃗k pre dajaké s1, · · · , sk∈R, tak x⃗ je

polohový vektor dajakého bodu z Ãk. Z toho: bod X ≡ (x1, · · · , xn) patrí do Ãk

práve vtedy, keď (R)


x1 = a1 + b11t1 + · · ·+ bk1tk
· · ·
xn = an + b1n + · · ·+ bkntk

, t1, · · · , tk∈R. Čísla t1, · · · , tk

sa volajú parametre. Systém R je tzv. parametrické vyjadrenie Ãk.

Dôkaz. Nech X∈Ãk. Máme A∈Ãk. K dvojici (A,X)∈B̃k×B̃k patrí jediný vek-
tor

−→
AX∈Ṽk. Vo Ṽk máme bázu (b1, · · · , bk) preto

−→
AX=t1⃗b1+ · · ·+tk b⃗k pre jed-

noznačne určené t1, · · · , tk∈R.
−→
AX=

−→
AO+

−−→
OX=

−−→
OX−−→

OA=t1⃗b1+ · · ·+tk b⃗k. Z toho−−→
OX=

−→
OA+t1⃗b1+ · · ·+tk b⃗k.

Obrátene: nech x⃗=
−→
OA+s1⃗b1+ · · ·+sk b⃗k ∈ Vn. Chceme ukázať, že x⃗=

−→
OY pre

dajaké Y ∈Ãk. Z axióm afinného priestoru existuje jediný bod Y ′∈B̃k taký,

že
−−→
AY ′=s1⃗b1+ · · ·+sk b⃗k, teda x⃗=

−→
OA+s1⃗b1+ · · ·+sk b⃗k=

−→
OA+

−−→
AY ′=

−−→
OY ′. Hľadaný

bod je bod Y ′.
□

Poznámka. V situácii ako vo vete sa Ṽk nazýva smerový priestor afinného pod-
priestoru Ãk, a bázové vektory b⃗1, · · · , b⃗k sú smerové vektory afinného podpriestoru
Ãk. Z vety je jasné, že afinný podpriestor Ãk je úplne jednoznačne určený jedným
bodom A a smerovými vektormi (⃗b1, · · · , b⃗k).
Všeobecné (analytické) vyjadrenie afinného podpriestoru.
Nech je daný k-rozmerný afinný podpriestor Ãk=(B̃k, Ṽk) n-rozmerného afinného

podpriestoru Ãn=(B̃n, Ṽn) s pevne zvoleným súradnicovým systémom. Nech Ãk

je určený bodom A ≡ (a1, · · · , an) a smerovými vektormi b⃗1 ≡ (b11, · · · , b1n), . . . ,
b⃗k ≡ (bk1 , · · · , bkn). Teda parametrické vyjadrenie je:

Ãk ≡


x1=a1+b11t1+ · · ·+bk1tk
· · ·
xn=an+b1nt1+ · · ·+bkntk

ti∈R

Matica B=

 b11 ··· bk1
...
. . .
...

b1n ··· bkn

má k lineárne nezávislých stĺpcov (lebo b⃗1, · · · , b⃗k sú lineár-
ne nezávislé.) Teda h(B)=k z toho B má k lineárne nezávislých riadkov, nech sú
to riadky s indexmi i1, · · · , ik∈{1, · · · , n}.

(P ) =


b11t1+ · · ·+bk1tk=x1−a1
· · ·
b1nt1+ · · ·+bkntk=xn−an

⇔ (∗)


b1i1t1+ · · ·+bki1tk=xi1−ai1
· · ·
b1ikt1+ · · ·+bkiktk=xik−aik

Máme h

 b1i1
··· bki1

...
. . .
...

b1ik
··· bkik

=k ⇒. Systém (∗) má jediné riešenie, vyrátame ho z Crame-

rovho pravidla:

t1=

det

(
xi1−ai1 b2i1

··· bki1
. . . . . . . . . . . . . . .
xik

−aik
b2ik

··· bkik

)

det

 b1i1
··· bki1

...
. . .
...

b1ik
··· bkik


=ℓ1(xi1 , · · · , xik) · · · tk=

det( )
det( )

=ℓk(xi1 , · · · , xik)
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ℓi(xi1 , · · · , xik) sú lineárne funkcie. Teraz dosadíme t1, · · · , tk do zvyšných n−k
rovníc parametrického vyjadrenia. {j1, · · · , jn−k} nech je doplnok ku {i1, · · · , ik}
v {1, · · · , n}. Dostaneme: b1j1ℓ1(xi1 , · · · , xik)+ · · ·+bkj1ℓk(xi1 , · · · , xik)=xj1−aj1 . . .
b1jn−k

ℓ1(xi1 , · · · , xik)+ · · ·+bkjn−k
ℓk(xi1 , · · · , xik)=xjn−k

−ajn−k
. t.j. systém n−k

lineárnych rovníc s n neznámymi x1, · · · , xn. Matica tohto systému má hodnosť
n−k. Teda ľubovoľný bod X ≡ (x1, · · · , xn) z Ãk spĺňa (svojimi súradnicami)
lineárny systém tvaru:

(V )


c11x1+ · · ·+c1nxn=d1
· · ·
cn−k1x1+ · · ·+cn−knxn=dn−k

kde cij , dj∈R a h

( c11 ··· c1n
...
. . .

...
cn−k1 ··· cn−kn

)
=n−k

Jedno riešenie je: (a1, · · · , an). Potom sú riešeniami aj n -tice: (a1+b11, · · · , an+b1n),
· · · , (a1+b1k, · · · , an+bkn). Báza je k lineárne nezávislých riešení homogénneho sys-
tému patriaceho k (V ): ((b11, · · · , b1n), · · · , (b1k, · · · , bkn)).
(x1, · · · , xk)=(a1, · · · , an)+s1(b11, · · · , b1n)+ · · ·+sk(bk1 , · · · , bkn)= množina bodov
vyhovujúcich (P ) t.j. súradnice bodov z Ãk.

Veta 11.8. (o všeobecnej rovnici nadroviny)
Nech α=(B(α),V(α)) je nadrovina v n-rozmernom afinnom priestore An=(Bn,Vn)
(s pevne zvoleným súradnicovým systémom v An.) Ak P ≡ (p1, · · · , pn) je bod z α
a b⃗1 ≡ (b11, · · · , b1n), · · · , b⃗n−1 ≡ (bn−11 , · · · , bn−1n ) sú smerové vektory (teda tvoria
bázu) priestoru V(α). Potom všeobecná rovnica nadroviny α je:

α ≡ det


x1−p1 · · · xn−pn
b11 · · · b1n
...

. . .
...

bn−11 · · · bn−1n

=0

Dôkaz. Nech X=(x1, · · · , xn) je ľubovoľný bod z α. Potom (P,X)∈B(α)×B(α)
jednoznačne určuje vektor

−−→
PX=V(α). Vieme, že −−→

PX ≡ (x1−p1, · · · , xn−pn) je
lineárna kombinácia (b11, · · · , b1n), · · · , (bn−11 , · · · , bn−1n ).

Preto: det


x1−p1 · · · xn−pn
b11 · · · b1n
...

. . .
...

bn−11 · · · bn−1n

 = 0
Obrátene:

Nech X∈Bn, X ≡ (x1, · · · , xn) je taký bod, že det


x1−p1 ··· xn−pn

b11 ··· b1n
...
. . .

...
bn−1
1 ··· bn−1

n

=0. Chceme
ukázať, že X∈B(α). Ekvivalentne máme: det


b11 ··· b1n
...
. . .

...
bn−1
1 ··· bn−1

n

x1−p1 ··· xn−pn

=0. Z toho
(x1−p1, · · · , xn−pn) je lineárna kombinácia (b11, · · · , b1n), · · · , (bn−11 , · · · , bn−1n ).

Teda vektor
−−→
PX je lineárnou kombináciou b⃗1, · · · , b⃗n−1, teda

−−→
PX∈V(α). K bodu

P∈B(α) a vektoru −−→
PX∈V(α) existuje jediný bod X ′∈B(α) taký, že −−→

PX=
−−→
PX ′.

Z toho: X=X ′. Teda X∈B(α).
□
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Vzájomné polohy afinných podpriestorov.

Definícia 11.11. Nech α=(B(α),V(α)) a β=(B(β),V(β)) sú afinné podpriestory
v afinnom priestore An=(Bn,Vn), dim(An)=n. Potom hovoríme, že:
1. α a β sú rovnobežné (α ∥ β), ak V(α)⊂V(β) alebo V(β)⊂V(α).
2. α a β sú rôznobežné, ak B(α)∩B(β)̸=∅ a B(α) ⊈ B(α), B(β) ⊈ B(α).
3. α a β sú mimobežné, ak B(α)∩B(β)=∅ a V(α)∩V(β)={0⃗}.

Poznámka. V aspoň 4-rozmernom afinnom priestore uvedené tri nie sú všetky
možné vzájomné polohy afinných podpriestorov α, β.

Príklad. A4=(B4,V4), nech V4 má bázu (⃗a1, a⃗2, a⃗3, a⃗4). Zvoľme bod A∈B4. Vieme,
že k bodu A a vektoru a⃗1 ∃!B∈B4 : a⃗1=

−→
AB. Zoberme dve roviny α, β v A4

takéto: α je určené bodom A a smerovými vektormi a⃗2, a⃗3; β je určené bodom B
a smerovými vektormi a⃗3, a⃗4. Potom α a β nie sú rovnobežné, lebo V(α)⊈V(β)
ani V(β) ⊆ V(α); nie sú ani mimobežné, lebo {a⃗3} ⊂ V(α)∩V(β) ̸={0⃗}. Nie
sú ani rôznobežné, lebo α∩β=∅. Nech by α∩β ̸=∅. Teda existuje X∈α∩β. Po-
tom

−→
AX∈V(α) t.j. −→

AX=α2a⃗2+α3a⃗3;
−−→
XB∈V(β) t.j. −−→

XB=β3a⃗3+β4a⃗4. Z toho:
a⃗1=

−→
AX+

−−→
XB=α2a⃗2+(α3+β3)⃗a3+β4a⃗4 – nemožné, lebo a⃗2, a⃗3, a⃗4, a⃗1 sú lineárne

nezávislé.
V An pre n≥4 sú možné javy, ktoré si nevieme predstaviť. Napr. v A4 sú

α ≡
{
x1=0

x2=0
β ≡

{
x3=0

x4=0
roviny, ktoré sa pretínajú v jedinom bode: (0, 0, 0, 0).

Veta 11.9. Nech α = (B(α),V(α)) a β = (B(β),V(β)) sú afinné podpriestory
v An=(Bn,Vn).
1. Ak dim(α)=dim(β), tak v prípade, že α ∥ β máme α=β alebo α∩β=∅.
2. Ak dim(α) ̸=dim(β), tak v prípade, že α ∥ β máme buď α∩β=∅ alebo α ⊂ β
alebo β ⊂ α.

Dôkaz.
1. Nech dim(α)=dim(β), α ∥ β. Predpokladajme, že α∩β ̸=∅. Teda existuje
bod A∈B(α)∩B(β). Máme V(α)⊂V(β) alebo V(β)⊂V(α). Z rovnosti dimenzie
V(α)=V(β). Teda α a β sú určené bodom A a tým istým smerovým priestorom
V(α)=V(β) preto α=β.
2. Povedzme, že dim(α)<dim(β). α ∥ β; ak α∩β ̸=∅, tak existuje A∈B(α)∩B(β).
Z toho, že α ∥ β a V(α)⊂V(β). Jasné, že α⊂β.

□

Veta 11.10. Nech α = (B(α),V(α)), β = (B(β),V(β)) sú afinné podpriestory
v An=(Bn,Vn) nech 2≤ dim(α)≤dim(β). Potom: α ∥ β ⇔ každá priamka v α je
rovnobežná s β.

Dôkaz.
⇒ : Predpokladajme, že α ∥ β. Teda V(α)⊂V(β). Nech p=(B(p),V(p)) je
ľubovoľná priamka v α. Teda B(p)⊂B(α), V(p)⊂V(α) potom V(p)⊂V (β). Z definí-
cie rovnobežnosti: p ∥ β.
⇐ : Zoberme ľubovoľný vektor a⃗∈V (α). Chceme ukázať, že a⃗∈V(β). Nech A∈B(α)
je ľubovoľný bod. Potom A a a⃗ určia priamku q=(B(q),V(q)) v α; A∈B(q), V(q)=[⃗a].
Podľa terajšieho predpokladu každá priamka v α je rovnobežná s β. Teda q ∥ β t.j.
a⃗∈V(q)⊂V(β) a teda a⃗∈V(β). Zistili sme, že V(α)⊂V(β), teda α ∥ β.

□

Zmena súradníc pri zmene súradnicového systému.
V o vektorovom priestore :

Nech (⃗a1, · · · , a⃗n), (⃗a′1, · · · , a⃗′n) sú dve bázy dajakého vektorového priestoru V .
Máme jednoznačné vyjadrenie: a⃗1=p11a⃗′1+ · · ·+p1na⃗′n až a⃗n=pn1a⃗′1+ · · ·+pnna⃗′n.
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Potom P=

( p11 ··· p1n
...
. . .
...

pn1 ··· pnn

)
sa nazýva matica prechodu od bázy (⃗a′1, · · · , a⃗′n) k báze

(⃗a1, · · · , a⃗n).
Obrátene máme jednoznačné vyjadrenie: a⃗′1=p

′
11a⃗1+ · · ·+p′1na⃗n až a⃗′n=p′n1a⃗1+

+ · · ·+p′nna⃗n. P′=

 p′
11 ··· p′

1n

...
. . .
...

p′
n1 ··· p′

nn

 je matica prechodu od bázy (⃗a1, · · · , a⃗n) k báze
(⃗a′1, · · · , a⃗′n). Máme: a⃗i=

n∑
j=1

pij a⃗
′
j , a⃗

′
j=

n∑
s=1

p′jsa⃗s. Z toho: a⃗i=
n∑

j=1

pij a⃗
′
j=

=
n∑

j=1

pij

n∑
s=1

p′jsa⃗s=
n∑

s=1

n∑
j=1

pijp
′
jsa⃗s. Z jednoznačnosti vyjadrenia a⃗i v tvare lineár-

nej kombinácie a⃗1, · · · , a⃗n dostávame, že
n∑

j=1

pijp
′
js=

{
1, ak i=s

0, ak i̸=s
Teda PP′=In.

Zistili sme, že P je regulárna a P′=P−1.

Veta 11.11. Matica prechodu od jednej bázy k druhej je regulárna, pričom matica
opačného prechodu je k nej inverzná.

Veta 11.12. Nech (⃗a′1, · · · , a⃗′n) je báza priestoru V a matica P=(pij)∈Mnn(R) je
regulárna. Definujme vektory a⃗1, · · · , a⃗n takto: a⃗1=p11a⃗′1+ · · ·+p1na⃗′n až
a⃗n=pn1a⃗′1+ · · ·+pnna⃗′n. Potom (⃗a1, · · · , a⃗n) je báza priestoru V .

Dôkaz. Vzhľadom na to, že vieme dim(V )=n, stačí dokázať, že a⃗1, · · · , a⃗n sú lineár-
ne nezávislé. Nech α1a⃗1+ · · ·+αna⃗n=0. Chceme ukázať, že ∀i : αi=0. Máme:
α1(p11a⃗′1+ · · ·+p1na⃗′n) + · · ·+αn(pn1a⃗′1+ · · ·+pnna⃗′n)=0. (α1p11+ · · ·+αnpn1)⃗a′1 +
· · ·+ (α1p1n+ · · ·+αnpnn)⃗a′n=0. Ale (⃗a

′
1, · · · , a⃗′n) je báza, preto:

(∗)


α1p11+ · · ·+αnpn1=0

· · ·
α1p1n+ · · ·+αnpnn=0

Matica systému je: PT=

 p11 · · · pn1
...

. . .
...

p1n · · · pnn


Pretože h(PT)=h(P) a P je podľa predpokladu regulárna, je aj PT regulárna.
Preto (∗) má iba nulové riešenie, t.j. α1= · · ·=αn=0.

□

Zmena súradníc vektora.
Vo V majme dve bázy (⃗a1, · · · , a⃗n) a (⃗a′1, · · · , a⃗′n). Nech x⃗∈V je ľubovoľný vektor,

nech x⃗ ≡ (x1, · · · , xn) vzhľadom na (⃗a1, · · · , a⃗n) a x⃗ ≡ (x′1, · · · , x′n) vzhľadom na
(⃗a′1, · · · , a⃗′n). Aký je vzťah medzi (x1, · · · , xn) a (x′1, · · · , x′n)?
Nech P=(pij) je matica prechodu od (⃗a′1, · · · , a⃗′n) k (⃗a1, · · · , a⃗n). Máme vlastne:

x⃗=
n∑

i=1

xia⃗i=
n∑

i=1

x′ia⃗
′
i. Vieme, že a⃗i=

n∑
j=1

pija
′
j . Z toho:

n∑
i=1

xi

n∑
j=1

pija
′
j=

=
n∑

i=1

x′ia⃗
′
i ⇔

n∑
j=1

(
n∑

i=1

xipij

)
a⃗′j=

n∑
j=1

x′j a⃗
′
j . Z jednoznačnosti vyjadrenia vyplýva,

že x′j=
n∑

i=1

xipij ⇒ (x′1, · · · , x′n)=(x1, · · · , xn)·P. Stručnejšie: X=(x1, · · · , xn) a

X′=(x′1, · · · , x′n)⇒ X′=XP⇒ X=X′P−1=X′P′.
V afinnom priestore: Súradnicový systém (O, a⃗1, · · · , a⃗n) v n-rozmernom afin-

nom priestore An=(Bn,Vn), kde O∈Bn a (⃗a1, · · · , a⃗n) je báza vo Vn. Iný súrad-
nicový systém v An: (O′, a⃗′1, · · · , a⃗′n). Aký je vzťah medzi súradnicami vektora
resp. bodu vzhľadom na prvý a druhý súradnicový systém v An. Pre vektory je
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to jasné: súradnice sú v takom vzťahu, ako sme to opísali vyššie vo vektorovom
priestore, t.j. ak x⃗∈Vn, x⃗ ≡ (x1, · · · , xn) v súradnicovom systéme (O, a⃗1, · · · , a⃗n);
x⃗ ≡ (x′1, · · · , x′n) v (O′, a⃗′1, · · · , a⃗′n), tak (x′1, · · · , x′n)=(x1, · · · , xn)P, kde P je ma-
tica prechodu od (⃗a′1, · · · , a⃗′n) k (⃗a1, · · · , a⃗n).
Pre body : 1.krok: O=O′. (Zmenia sa len bázy vo Vn). Súradnice bodu X sa rov-

najú súradnice polohového vektora
−−→
OXi. Vzťah medzi súradnicami v (O, a⃗1, · · · ,

a⃗n) a v systéme (O, a⃗′1, · · · , a⃗′n) je určený vzťahom X′=XP, kde P je matica pre-
chodu od ”čiarkovanej” k ”nečiarkovanej”.
2.krok: Zmeníme len začiatok, t.j. od súradnicového systému (O, a⃗1, · · · , a⃗n) prej-
deme k (O′, a⃗1, · · · , a⃗n). Nech O má v ”novom” súradnicovom systéme (O′, a⃗1, · · · ,
a⃗n) súradnice (b1, · · · , bn). Teda

−−→
O′O=b1a⃗1+ · · ·+bna⃗n. Bod X≡(x1, · · · , xn)

v súradnicovom systéme (O, a⃗1, · · · , a⃗n) a X≡(x′1, · · · , x′n) v ”novom”

(O′, a⃗1, · · · , a⃗n)⇒
−−→
OX=

n∑
i=1

xia⃗i;
n∑

i=1

x′ia⃗i=
−−→
O′X.

Aký je vzťah medzi (x1, · · · , xn) a (x′1, · · · , x′n) ?

Máme
−−→
O′X=

n∑
i=1

x′ia⃗i=
−−→
O′O+

−−→
OX ⇒

n∑
i=1

x′ia⃗i=
n∑

i=1

bia⃗i+
n∑

i=1

xia⃗i=
n∑

i=1

(xi+bi)⃗ai.

Teda: (x′1, · · · , x′n)=(x1, · · · , xn)+(b1, · · · , bn). X′=X+B.
V šeobecne: spojením týchto dvoch krokov dostaneme prechod od (O, a⃗1, · · · , a⃗n)
k (O′, a⃗′1, · · · , a⃗′n). Zmena súradníc potom je zložením dvoch čiastkových zmien.
Nech X=(x1, · · · , xn) súradnice bodu z Bn v súradnicovom systéme (O, a⃗1, · · · , a⃗n);
a nech X′=(x′1, · · · , x′n) sú jeho súradnice v súradnicovom systéme (O′, a⃗′1, · · · , a⃗′n).
Nech P je matica prechodu od (⃗a′1, · · · , a⃗′n) k (⃗a1, · · · , a⃗n). Nech B=(b1, · · · , bn) sú
súradnice bodu O v (O′, a⃗′1, · · · , a⃗′n). Potom platí: X′=XP+B.

Orientácia reálneho vektorového resp. afinného priestoru.
Orientácia reálneho vektorového priestoru:

Definícia 11.12. Nech U je množina všetkých báz n-rozmerného reálneho vek-
torového priestoru V .Potom povieme, že dve bázy (v⃗1, · · · , v⃗n) a (w⃗1, · · · , w⃗n) sú
v relácii ∼ zapíšeme (v⃗1, · · · , v⃗n)∼(w⃗1, · · · , w⃗n), ak matica prechodu od (v⃗1, · · · , v⃗n)
k (w⃗1, · · · , w⃗n) má kladný determinant.

Tvrdenie 11.3. ∼ je relácia ekvivalencie na U .

Dôkaz. Reflexivita: (v⃗1, · · · , v⃗n) ∼ (v⃗1, · · · , v⃗n) pre ľubovoľnú (v⃗1, · · · , v⃗n)∈U , lebo
matica prechodu je In a det(In)=1. Symetrickosť: nech (v⃗1, · · · , v⃗n)∼(w⃗1, · · · , w⃗n).
Matica prechodu od (v⃗1, · · · , v⃗n) k (w⃗1, · · · , w⃗n) nech je P. Vieme, že P∈Mnn(R)
je regulárna, z tohto det(P)>0. Matica prechodu od (w⃗1, · · · , w⃗n) k (v⃗1, · · · , v⃗n)
je P−1. Ale det(PP−1)=det(P) det(P−1) ⇒ det(P−1)>0. Teda (w⃗1, · · · , w⃗n) ∼
(v⃗1, · · · , v⃗n). Tranzitívnosť: Nech (v⃗1, · · · , v⃗n)

P∼ (w⃗1, · · · , w⃗n), (w⃗1, · · · , w⃗n)
Q∼

(z⃗1, · · · , z⃗n). Chceme ukázať, že (v⃗1, · · · , v⃗n) ∼ (z⃗1, · · · , z⃗n). Nech P=(pij),

Q=(qij)∈Mnn(R). Máme w⃗i=
n∑

j=1

pij v⃗i pre i=1, · · · , n a z⃗k=
n∑

i=1

qkiw⃗i

pre k=1, · · · , n. Z toho: z⃗k=
n∑

i=1

qki

n∑
j=1

pij v⃗j=
n∑

j=1

(
n∑

i=1

qkipij

)
v⃗i. V zátvorke

je prvok i-teho riadku a j-teho stĺpca matice QP. Teda matica prechodu od
(v⃗1, · · · , v⃗n) k (z⃗1, · · · , z⃗n) je QP. Potom det(QP)=det(Q) det(P)>0.
U sa rozloží na triedy ekvivalencie vzhľadom na ∼. Budú dve triedy ekvivalencie.

□

Definícia 11.13. Vektorový priestor V orientujeme tým, že jednu z dvoch tried
ekvivalencie U1,U2 vyhlásime za kladnú (privilegovanú). Urobíme to tak, že jednu
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bázu priestoru V vyhlásime za kladnú. Potom kladnú triedu báz tvoria práve tie,
ktoré sú v ∼ s touto kladnou bázou.

Príklad. Rn štandardne orientujeme tak, že za kladnú vyhlásime štandardnú bázu:
(e⃗1, · · · , e⃗n).

Veta 11.13. Nech (v⃗1, · · · , v⃗n) je báza reálneho vektorového priestoru V , nech
π∈S{1,··· ,n}. Potom báza (v⃗π(1), · · · , v⃗π(n)) je ekvivalentná s pôvodnou bázou práve
vtedy, keď je permutácia párna.

Dôkaz. Nech napr. π=
(
1 2 ··· n
2 1 ··· n

)
. Potom (v⃗π(1), · · · , v⃗π(n)) je (v⃗2, v⃗1, · · · , v⃗n).

Máme: v⃗2=0v⃗1+1v⃗2+ · · ·+0v⃗n; v⃗1=1v⃗1+0v⃗2+ · · ·+0v⃗n až v⃗n=0v⃗1+ · · ·+1v⃗n. Po-
tom matica prechodu je: 

0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1


Matica prechodu od (v⃗1, v⃗2, · · · , v⃗n) k (v⃗π(1), v⃗π(2), · · · , v⃗π(n)) vznikne z In tak, že
jej riadky permutujeme podľa π. Potom determinant matice prechodu je (−1)s(π),
kde s(π) je počet inverzií v π. Teda je kladný práve vtedy, keď π má párny počet
inverzií.

□
Orientácia afinného priestoru:

Definícia 11.14. Nech An=(Bn, Vn) je (reálny) afinný priestor. An orientujeme
tak, že orientujeme vektorový priestor Vn.

Afinno-euklidovské priestory.

Definícia 11.15. Afinný priestor A=(B, V ) sa nazýva afinno-euklidovský priestor,
ak V (s pevne zvoleným skalárnym súčinom) je euklidovský priestor.

Príklad.
(Rn,Rn) so štandardným skalárnym súčinom je afinno-euklidovský priestor.

Definícia 11.16. Nech A=(B, V ) je afinno-euklidovský priestor, pričom nech ⟨ , ⟩
je skalárny súčin na V . Ak A,B∈Bn sú dva body, tak ich vzdialenosť (označíme ju

ρ(A,B)) definujeme ako ρ(A,B)=|−→AB|=
√

⟨−→AB,−→AB⟩.

Veta 11.14. Nech A=(B, V ) je afinno-euklidovský priestor, potom ρ(A,B)≥0 pre
všetky A,B∈B.
1. ρ(A,B)=ρ(B,A).
2. ρ(A,B)=0⇔ A=B.
3. ρ(A,B)+ρ(B,C)≥ρ(A,C). (trojuholníková nerovnosť)

Dôkaz. ρ(A,B)≥0 jasné.
1. ρ(A,B)=|−→AB|=| − −→

BA|=|−→BA|=ρ(B,A).
2. ρ(A,B)=0⇔ |−→AB|=0⇔ A=B.
3. ρ(A,C)=|−→AC|=|−→AB+−→BC|≤|−→AB|+|−→BC|=ρ(A,B)+ρ(B,C).

□
Poznámka. Definovaním vzdialenosti medzi bodmi v afinno-euklidovskom priestore
A=(B, V ) sme vlastne definovali zobrazenie ρ : B×B→R s vlastnosťami z pred-
chádzajúcej vety. ρ je tzv. metrika na B; B je teda metrický priestor.
V ďalšom budeme uvažovať o n-rozmernom afinno-euklidovskom priestore s pev-

ne zvoleným súradnicovým systémom: (O, e⃗1, · · · , e⃗n), kde O je bod toho priestoru
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a (e⃗1, · · · , e⃗n) je pevne zvolená ortonormálna báza vektorovej zložky tohto priesto-
ru. Tento afinno-euklidovský priestor budeme označovať En. Súradnicový systém
(O, e⃗1, · · · , e⃗n) taký, že (e⃗1, · · · , e⃗n) je ortonormálna báza sa nazýva karteziánsky.
Pretože báza vo Vn je ortonormálna, pre vektory x⃗=x1e⃗1+ · · ·+xne⃗n a y⃗=y1e⃗1+
+ · · ·+yne⃗n ich skalárny súčin je x1y1+ · · ·+xnyn. x⃗≡(x1, · · · , xn) a y⃗≡(y1, · · · ,
yn). ⟨x, y⟩=x1y1+ · · ·+xnyn.

Veta 11.15. Nech A,B sú dva body v En pričom A má súradnice (a1, · · · , an), B
má súradnice (b1, · · · , bn). Potom ρ(A,B)=

√
(a1−b1)2+ · · ·+(an−bn)2.

Dôkaz.
−→
AB ≡ (b1−a1, · · · , bn−an).

−→
AB = (b1−a1)e⃗1 + · · · + (bn−an)e⃗n, kde

(e⃗1, · · · , e⃗n) je ortonormálna báza. ⟨
−→
AB,

−→
AB⟩=(b1−a1)2+ · · ·+(bn−an)2,

ρ(A,B)=|−→AB|=
√

⟨−→AB,−→AB⟩=
√
(b1−a1)2+ · · ·+(bn−an)2.

□

Kolmosť vektora na afinný podpriestor.

Definícia 11.17. Nech En=(Bn, Vn). Hovoríme, že vektor a⃗∈En je kolmý na a-
finný podpriestor α=(B(α), V (α)) priestoru En ak a⃗⊥x⃗ pre všetky x⃗∈V (α). (teda
a⃗∈V (α)⊥).

Veta 11.16 a Definícia 11.18. Nech α≡a1x1+ · · ·+anxn=0 je nadrovina v En.
Potom vektor n⃗≡(a1, · · · , an) je kolmý na α. Vektor n⃗ sa nazýva normálový vektor
nadroviny α.

Dôkaz. Nech x⃗∈V (α) je ľubovoľný vektor. Nech X≡(x1, · · · , xn) je ľubovoľný bod
z α. Vieme, že existuje jediný bod Y≡(y1, · · · , yn)∈α taký, že x⃗=

−−→
XY . Pritom

súradnice
−−→
XY=(y1−x1, · · · , yn−xn). Máme, keďže X,Y ∈α: a1x1+ · · ·+anxn=0 a

a1y1+ · · ·+anyn=0. Potom a1(y1−x1) + · · ·+ an(yn−xn) = 0. Teda ⟨n⃗,
−−→
XY ⟩=

=⟨n⃗, x⃗⟩=0⃗ t.j. n⃗ je kolmý na ľubovoľný vektor z V (α). Pre ľubovoľné c∈R máme
⟨cn⃗, x⃗⟩=c⟨n⃗, x⃗⟩=0.

□

Veta 11.17. Rovnica nadroviny α∈En obsahujúcej bod B≡(b1, · · · , bn) a majúce
normálový vektor n⃗≡(c1, · · · , cn) je α ≡ c1(x1−b1)+ · · ·+cn(xn−bn)=0.

Dôkaz. NechX≡(x1, · · · , xn)∈En je ľubovoľný bod z α. Potom
−−→
BX∈V (α). Pritom:

n⃗⊥−−→
BX teda ⟨n⃗,−−→BX⟩=0. n⃗≡(c1, · · · , cn),

−−→
BX≡(x1−b1, · · · , xn−bn). Teda musí

platiť c1(x1−b1)+ · · ·+cn(bn−xn)=0. Vieme, že nadrovina je určená jednou lineár-
nou rovnicou, teda c1(x1−b1)+ · · ·+cn(xn−bn)=0 je rovnica nadroviny α.

□

Kolmosť afinných podpriestorov.

Definícia 11.19. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú dva afinné podpriesto-
ry v En. Hovoríme, že podpriestor α je kolmý na β, ak V (α)⊂V (β)⊥. (teda každý
smerový vektor podpriestoru α je kolmý na každý smerový vektor podpriestoru β.)
Ak je táto podmienka splnená, napíšeme α⊥β.

Tvrdenie 11.4. Ak α⊥β, tak β⊥α. (Môžeme povedať, že α a β sú navzájom
kolmé.)

Dôkaz. Nech α⊥β. Teda V (α)⊂V (β)⊥. Ale potom (V (β)⊥)⊥⊂V (α)⊥ ⇔
⇔ V (β)⊂V (α)⊥ ⇔ β⊥α. Roviny Oxy, Oyz v E3 nie sú na seba kolmé v zmysle našej
definície. Totiž V (α) ̸⊂V (β)⊥, lebo dim(V (α))=2, dim(V (β)⊥)=1. Teda podľa našej
definície: Oxy nie je kolmý na Oyz.

□
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Veta 11.18. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú dva afinné podpriestory
v En. Ak α⊥β, tak dim(α)+dim(β)≤n.

Dôkaz. Nech α⊥β, teda V (α)⊂V (β)⊥. V (β)⊕V (β)⊥=V (n); kde En=(Bn, Vn).
Môžeme predpokladať, že dim(α)≤ dim(β). V (α)⊕V (β)⊂V (β) ⊕ V (β)⊥=V (n) ⇒
dim(V (α)⊕V (β))=dim(α)+dim(β)≤ dim(V (n))=n.

□
Tvrdenie 11.5. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú dva afinné podpriestory
v En. Ak α∩β ̸=∅ a α⊥β, tak α∩β pozostáva z jediného bodu.

Dôkaz. Nech α⊥β. Teda V (α)⊂V (β)⊥. Nech α∩β=B(α)∩B(β) ̸=∅. Nech P,Q
sú dva body z B(α)∩B(β). Potom −→

PQ∈V (α)∩V (β)⊂V (β)∩V (β)⊥={0⃗}. Z čoho:
−→
PQ=0⃗ a preto P=Q.

□
Veta 11.19. Nech α=(B(α), V (α)) je k-rozmerný (k≤n) afinný podpriestor v En.
Potom pre ľubovoľný daný bod A∈En existuje jediný (n−k)-rozmerný afinný pod-
priestor v En kolmý na α obsahujúci bod A. Tento podpriestor označíme Π⊥

α (A), a
nazýva sa kolmopremietací afinný podpriestor bodu A do α.

Dôkaz. Nech A≡(a1, · · · , an) a vo V (α)⊥ zvoľme bázu (w⃗1, · · · , w⃗n−k), kde w⃗1=
=(w11, · · · , w1n) až w⃗n−k=(w

n−k
1 , · · · , wn−k

n ) Potom podpriestor

γ=


x1=a1+w11t1+ · · ·+wn−k

1 tn−k

· · ·
xn=an+w1nt1+ · · ·+wn−k

n tn−k

má dimenziu n−k a je kolmý na α.

(V (γ)=[w⃗1, · · · , w⃗n−k]=V (α)⊥). Tým sme ukázali existenciu takého podpriestoru
ako sa tvrdí vo vete. Jednoznačnosť: Nech δ=(B(δ), V (δ)) je (iný) (n−k)-rozmerný
afinný podpriestor v En, kolmý na α obsahujúci bod A. Potom V (δ)⊂V (α)⊥. Ale
dim(V (δ))=n−k, dim(V (α)⊥)=n−k. Teda musí: V (δ)=V (α)⊥. T.j. V (δ)=V (γ).
Pretože A∈B(δ), A∈B(γ) musí byť δ=γ.

□
Veta 11.20. Nech α=(B(α), V (α)) je k-rozmerný afinný podpriestor v En. Potom
Π⊥

α (A)∩α pozostáva z jediného bodu, označíme ho A⊥ a nazývame ho kolmý priemet
bodu A do afinného podpriestoru α.

Dôkaz. A≡(a1, · · · , an); nech (v⃗1, · · · , v⃗n) je ortonormálna báza priestoru V (α),
pričom v⃗1=(v11 , · · · , v1n) až v⃗k=(vk1 , · · · , vkn). Vieme, že V (Π⊥

α (A))=V (α)
⊥. Nech

(z⃗1, · · · , z⃗n−k) je ortonormálna báza priestoru V (α)⊥, pričom z⃗1=(z11 , · · · , z1n) až
z⃗n−k=(z

n−k
1 , · · · , zn−k

n ). Nech B∈Π⊥
α (A), B≡(b1, · · · , bn). Potom

α≡


x1=a1+v11t1+ · · ·+v1nt1
· · ·
xn=an+v1nt1+ · · ·+vkntk

Π⊥
α (A)≡


x1=b1+z11s1+ · · ·+zn−k

1 sn−k

· · ·
xn=bn+z1ns1+ · · ·+zn−k

n sn−k

Bod X≡(x1, · · · , xn)∈Π⊥
α (A)∩α spĺňa:

a1+v11t1+ · · ·+vk1 tk=b1+z11s1+ · · ·+zn−k
1 sn−k

· · ·
an+v1nt1+ · · ·+vkntk=bn+z1ns1+ · · ·+zn−k

n sn−k

pre dajaké ti, si∈R. Teda (t1, · · · , tn, s1, · · · , sn−k) spĺňa:

(∗)


v11t1+ · · ·+vk1 tk−z11s1− · · ·−zn−k

1 sn−k=b1−a1
· · ·
v1nt1+ · · ·+vkntk−z1ns1− · · ·−zn−k

n sn−k=bn−an



16 PRVÝ ROČNÍK, LETNÝ SEMESTER

Teda X∈α∩Π⊥
α (A) ⇔ systém (*) je riešiteľný. Matica systému má n lineárne

nezávislých riadkov, teda jej hodnosť je n. Teda (∗) má práve jedno riešenie.
□

Vzdialenosť afinných podpriestorov.

Definícia 11.20. Nech α, β sú dva afinné podpriestory v En. Vzdialenosť α od β
definujeme ako nezáporné reálne číslo ρ(α, β):= inf{ρ(X,Y );X∈A, Y ∈B}.

Veta 11.21. Nech A∈En je bod a nech α=(B(α), V (α)) je afinný podpriestor v En.
Potom ρ(A,α)=ρ(A,A⊥).

Dôkaz. ρ(A,α)= inf{ρ(A,X), X∈α} a ρ(A,A⊥)∈{ρ(A,X), X∈α}, teda ρ(A,α)≤
≤ρ(A,A⊥). Ukážeme, že ρ(A,A⊥) je dolným ohraničením množiny {ρ(A,X);X∈α}
Z toho: ρ(A,A⊥)≤ρ(A,α)= inf{ρ(A,X), X∈α} keďže inf je najväčšie dolné ohra-
ničenie. Rátajme: ρ(A,A⊥)2=|

−−→
AA⊥|2; ρ(A,X)2=|−→AX|2=|

−−→
AA⊥+

−−−→
A⊥X|2 =

=⟨
−−→
AA⊥+

−−−→
A⊥X,

−−→
AA⊥+

−−−→
A⊥X⟩ = ⟨

−−→
AA⊥,

−−→
AA⊥⟩+2⟨

−−→
AA⊥,

−−−→
A⊥X⟩+⟨

−−−→
A⊥X,

−−−→
A⊥X⟩=

=ρ(AA⊥)2+2·0+ρ(A⊥X)2. Z toho: ρ(A,X)2≥ρ(A,A⊥) preto ρ(A,X)≥ρ(A,A⊥).
Teda naozaj ρ(A,A⊥) je dolným ohraničením.

□
Vzdialenosť rovnobežných afinných podpriestorov.

Veta 11.22. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú rovnobežné afinné podpri-
estory v En. Nech dim(α)≤ dim(β). Potom ρ(α, β)=ρ(A, β)=ρ(A,A⊥).

Dôkaz. Z definície ρ(α, β)= inf{ρ(X,Y );X∈α, Y ∈β}. ρ(A,A⊥)∈{ρ(X,Y ), X∈α,
Y ∈β}, a preto ρ(α, β)≤ρ(A,A⊥). Aby sme dokázali obrátenú nerovnosť ukážeme,
že ρ(A,A⊥) je tiež dolným ohraničením množiny {ρ(X,Y )}. Z toho potom dosta-
neme ρ(A,A⊥)=ρ(α, β). Pre ľubovoľný X∈α existuje jediný vektor −→AX∈V (α). Ale
α ∥ β a preto −→AX∈V (β). Pretože A⊥ ∈ B(β) a −→AX∈V (β) existuje jediný bod Z∈β:
−→
AX=

−−→
A⊥Z.

−−→
AA⊥=

−→
AX+

−−−→
XA⊥. Ale

−→
AX=

−−→
A⊥Z. Z toho:

−−→
AA⊥=

−−→
A⊥Z+

−−−→
XA⊥=

=
−−−→
XA⊥+

−−→
A⊥Z=

−→
XZ∈V (β)⊥=Π⊥

β (X). Máme Z∈β∩Π⊥
β (X)={X⊥}. Preto Z=X⊥ a

teda
−−→
AA⊥=

−−−→
XX⊥ pre ľubovoľný bod X∈α. ρ(A,A⊥)=ρ(X,X⊥)=ρ(X,β)≤ρ(X,Y )

pre ľubovoľné Y ∈β, X∈α. ρ(A,A⊥)≤ρ(X,Y ) ,teda ρ(A,A⊥) je dolným ohraniče-
ním množiny {ρ(X,Y ), X∈α, Y ∈β}.

□
Príklad. Určte vzdialenosť bodu P≡(p1, · · · , pn) v En od nadroviny α ≡ α1x1 +
· · ·+ αnxn + a0 = 0.
Riešenie: Π⊥

α (P ) je priamka, jej smerový vektor je vlastne normálový vektor nadro-

viny α, t.j. n⃗ ≡ (a1, · · · , an). Π⊥
α (P ) =


x1 = p1 + a1t

· · ·
xn = pn + ant

Určíme jediný bod P⊥ = Π⊥
α (P )∩α. a1(p1+a1t)+ · · ·+an(pn+ant)+a0=0⇔

⇔ a0+a1p1+ · · ·+anpn+t(a21+ · · ·+a2n)=0. Z toho: t=− a1p1+ · · ·+anpn+a0
a21+ · · ·+a2n

.

ρ(P, α)=|PP⊥|=|(−a1
a1p1+ · · ·+anpn+a0

a21+ · · ·+a2n
, · · · ,−an

a1p1+ · · ·+anpn+a0
a21+ · · ·+a2n

)|=

=

√
(a1p1+ · · ·+anpn+a0)2

(a21+ · · ·+a2n)2
·(a21+ · · ·+a2n)=

|a1p1+ · · ·+anpn+a0|√
a21+ · · ·+a2n

.

Teda: ρ(P, α)=
|a1p1+ · · ·+anpn+a0|√

a21+ · · ·+a2n
.
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Vzdialenosť rovnobežných nadrovín.

Veta 11.23. Nech α≡a1x1+ · · ·+anxn+a0=0 a β≡a1x1+ · · ·+anxn+b0=0 sú dve

rovnobežné nadroviny v En. Potom ρ(α, β)=
|b0−a0|√
a21+ · · ·+a2n

.

Dôkaz. Z vety 11.22 máme: ρ(α, β)=ρ(P, β), kde P≡(p1, · · · , pn) je ľubovoľný bod

z α. Z príkladu vieme, že ρ(P, β)=
|a1p1+ · · ·+anpn+b0|√

a21+ · · ·+a2n
=

|−a0+b0|√
a21+ · · ·+a2n

.

□
Vzdialenosť dvoch mimobežných afinných podpriestorov.

Veta 11.24. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú mimobežné afinné podpri-
estory v En. Teda B(α)∩B(β)=∅ a V (α)∩V (β)={0⃗}. Potom existuje bod P∈α a
Q∈β také, že −→PQ∈V (α)⊥∩V (β)⊥ a platí: ρ(α, β)=ρ(P,Q). (Priamka určená bodmi
P,Q je tzv. stredná priečka afinných podpriestorov α, β.)

Dôkaz. Nech X∈α, Y ∈β sú ľubovoľné. Potom −−→
XY /∈ V (α)⊕V (β). Keby áno, tak

by
−−→
XY=a⃗+b⃗ pre jednoznačne určené a⃗∈V (α), b⃗∈V (β). Potom existuje jediný bod

Z∈α: a⃗=−→XZ a jediný bod W∈β: −−→
WY=b⃗. Teda:

−−→
XY=

−→
XZ+

−−→
WY , ale zároveň−−→

XY=
−→
XZ+

−−→
ZW+

−−→
WY , teda

−−→
ZW=0⃗, čo je ekvivalentný s tým, že Z=W . Teda

Z=W∈α∩β=∅ (keďže α, β sú mimobežné). Spor.
Nech γ je afinný podpriestor určený bodom X, pričom V (γ)=V (α)⊕V (β). Nech γ′

je afinný podpriestor určený bodom X a taký, že V (γ′)=V (α)⊕V (β)⊕[−−→XY ]. Keďže
[
−−→
XY ] /∈ V (α)⊕V (β), dim(γ′)− dim(γ)=1, a teda (máme γ⊂γ′) γ je nadrovinou v γ′.
Nech n⃗ nenulový je normálový vektor nadroviny γ v γ′. Teda n⃗∈V (γ)⊥=(V (α)⊕
⊕V (β))⊥=V (α)⊥∩V (β)⊥. Nech teraz (⃗a1, · · · , a⃗k) je dajaká ortogonálna báza
vo V (α), nech (⃗b1, · · · , b⃗j) je ortogonálna báza vo V (β). Potom vektory a⃗1, · · · , a⃗k,
b⃗1, · · · , b⃗j , n⃗ sú lineárne nezávislé a teda tvoria bázu vo V (γ′). Pretože

−−→
XY ∈V (γ′),

máme
−−→
XY=α1a⃗1+ · · ·+αka⃗k+β1⃗b1+ · · ·+βj b⃗j+δn⃗ pre jednoznačne určené α1, · · · ,

αk, β1, · · · , βj , δ∈R. Potom δ ̸=0, lebo −−→
XY /∈V (α)⊕V (β). Označme P ten jediný

bod z α, pre ktorý α1a⃗1+ · · ·+αka⃗k=
−−→
XP , označme Q ten jediný bod z β, pre

ktorý β1⃗b1+ · · ·+βj b⃗j=
−→
QY . Teda máme, že

−−→
XY=

−−→
XP+

−→
PQ+

−→
QY . Teda

−→
PQ=γn⃗.

Keďže
−→
PQ∈V (α)⊥∩V (β)⊥, tak priamka, ktorá prechádza bodmi P,Q je kolmá

na α aj β a pretína α v P a β v Q. Ešte treba ukázať, že ρ(P,Q)=ρ(α, β).
Vieme, že ρ(α, β)= inf{ρ(A,B);A∈α;B∈β}. Nech A∈α,B∈β sú ľubovoľné. Potom
A=P+s1a⃗1+ · · ·+ska⃗k zároveň B=Q+t1⃗b1+ · · ·+tj b⃗j pre vhodné s1, · · · , sk, t1,
· · · , tj∈R.

−→
AB=B−A=−→PQ+t1⃗b1+ · · ·+tj b⃗j−s1a⃗1− · · ·−ska⃗k. Potom ρ(A,B)2=

= |−→AB|2 = ⟨−→AB,−→AB⟩ = ⟨−→PQ−s1a⃗1− · · ·−ska⃗k+t1b⃗1+ · · ·+tj b⃗j ,
−→
PQ−s1a⃗1− · · ·−

−ska⃗k+t1⃗b1+ · · ·+tj b⃗j⟩ = ⟨−→PQ,−→PQ⟩+2⟨−→PQ,−s1a⃗1− · · ·−ska⃗k+t1⃗b1+ · · ·+tj b⃗j︸ ︷︷ ︸
=0

⟩+

+⟨−s1a⃗1 − · · · − ska⃗k + t1⃗b1 + · · ·+ tj b⃗j ; −s1a⃗1 − · · · − ska⃗k + t1⃗b1 + · · ·+ tj b⃗j⟩ =
=ρ(P,Q)2+|−s1a⃗1− · · ·−ska⃗k+t1⃗b1+ · · ·+tj b⃗j |2. Z toho vidno, že ρ(A,B) sa min-
imalizuje vtedy, keď | − s1a⃗1− · · ·−ska⃗k+t1⃗b1+ · · ·+tj b⃗j |=0 t.j. práve vtedy, keď
−s1a⃗1− · · ·−ska⃗k+t1⃗b1+ · · ·+tj b⃗j=0⃗⇔ s1= · · ·=sk=t1= · · ·=tj=0, lebo (⃗a1, · · · ,
a⃗k, b⃗1, · · · , b⃗j) je báza vo V (α)⊕V (β). Teda ρ(A,B) sa minimalizuje vtedy, keď sa
rovná ρ(P,Q). To znamená, že naozaj ρ(α, β)=ρ(P,Q).

□
Dôsledok. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú mimobežné afinné podpries-
tory v En. Potom existuje afinný podpriestor β1 taký, že β⊂β1, α∥β1 a ρ(α, β)=
=ρ(α, β1). (= ρ(A,A⊥), pre ľubovoľný bod A∈α, A⊥ je kolmý priemet bodu A
do β1.)
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Dôkaz. Zoberme β1, ako afinný podpriestor určený ľubovoľným bodom z β a taký, že
V (β1)=V (α)⊕V (β). Potom je pravda, že β⊂β1 aj to, že α∥β1 (lebo V (α)⊂V (β1)).
Z predchádzajúcej vety vieme, že existujú P∈α, Q∈β také, že −→PQ∈V (α)⊥∩V (β)⊥=
=(V (α)⊕V (β))=V (β1)⊥ pričom ρ(α, β)=ρ(P,Q). Máme Q⊂β, a teda tiež Q∈β1
a zároveň

−→
PQ∈V (Π⊥

β1
(P )). Z toho: Q∈Π⊥

β1
(P )∩β1={P⊥}, a preto P⊥=Q. Teda

ρ(α, β)=ρ(P,Q)=ρ(P, P⊥)=ρ(α, β1).
□

Uhly medzi afinnými podpriestormi v En.
1. Uhol dvoch orientovaných priamok:

Nech p, q⊂En sú dve orientované priamky (p̸=q). Teda V (p), V (q) sú dva oriento-
vané vektorové priestory. Z toho ak a̸⃗=0⃗ je smerový vektor orientovanej priamky p
a a⃗′ ̸=0⃗ je iný smerový vektor, tak a⃗′=k·⃗a pre dajaké k>0. Podobne, ak b⃗′, b⃗ sú dva
smerové vektory orientovanej priamky q, tak b⃗′=l·⃗b.

⟨⃗a′, b⃗′⟩
|⃗a′|·|⃗b′|

=
⟨ka⃗, l⃗b⟩
|ka⃗|·|l⃗b|

=
kl⟨⃗a, b⃗⟩
kl|⃗a|·|⃗b|

=
⟨⃗a, b⃗⟩
|⃗a|·|⃗b|

Tento výraz nezávisí od výberu smerových vektorov orientovaných priamok p, q.

Zo Schwarzovej nerovnosti vieme, že
⟨⃗a, b⃗⟩
|⃗a||⃗b|

∈⟨−1, 1⟩ ⇒ ∃!φ∈⟨0, π⟩ : cosφ= ⟨⃗a, b⃗⟩
|⃗a||⃗b|

.

φ definujeme ako uhol zovretý orientovanou priamkou p a orientovanou priamkou q.
2. Uhol dvoch neorientovaných priamok:

Nech p, q⊂En sú dve neorientované priamky. Potom, ak a̸⃗=0⃗, a⃗′ ̸=0⃗ sú dva smerové
vektory priamky p, tak a⃗′=k·⃗a, kde k ̸=0. Podobne, ak b⃗, b⃗′(̸=0⃗) sú dva smerové
vektory priamky q, tak b⃗′=l⃗b pre l ̸=0. Potom výraz

⟨⃗a′, b⃗′⟩
|⃗a′|·|⃗b′|

=
⟨ka⃗, l⃗b⟩
|ka⃗|·|l⃗b|

=
kl⟨⃗a, b⃗⟩
|kl||⃗a|·|⃗b|

̸= ⟨⃗a, b⃗⟩
|⃗a|·|⃗b|

vo všeobecnosti závisí od výberu smerového vektora priamky p resp. q. Ale už výraz∣∣∣∣∣ ⟨⃗a, b⃗⟩|⃗a||⃗b|

∣∣∣∣∣ už od výberu nezávisí. Existuje jediné ψ∈⟨0, π2 ⟩ také, že cosψ= |⟨⃗a, b⃗⟩|
|⃗a||⃗b|

.

ψ potom nazveme uhlom zovretý neorientovaných priamok p a q.
3. Uhol dvoch nadrovín
Nech α, β sú dve nadroviny v En, nech n⃗α, n⃗β sú ich normálové vektory. Potom uhol
medzi α a β sa definuje ako uhol neorientovaných priamok so smerovými vektormi
n⃗α resp. n⃗β . Teda: ak α≡a1x1+ · · ·+anxn+a0=0, β≡b1x1+ · · ·+bnxn+b0=0, tak
n⃗α=(a1, · · · , an); n⃗β=(b1, · · · , bn) a ∠(α, β) je to číslo z intervalu ⟨0, π

2
⟩ pre ktoré

cos |∠(α, β)|= |a1b1+ · · ·+anbn|√
(a21+ · · ·+a2n)(b21+ · · ·+b2n)

.

Vektorový a zmiešaný súčin v R3.

Definícia 11.21. Nech R3 je štandardne orientovaný t.j. nech (e⃗1, e⃗2, e⃗3) je kladná
báza tohto priestoru. Nech a⃗, b⃗ sú dva vektory z R3. Potom existuje jediný vektor
c⃗∈R3 taký, že
1. c⃗ ⊥ a⃗, c⃗ ⊥ b⃗.

2. |⃗c|=
√
⟨⃗a, a⃗⟩⟨⃗b, b⃗⟩−⟨⃗a, b⃗⟩2=

√
|⃗a|2 |⃗b|2−⟨⃗a, b⃗⟩2.

3. Ak a⃗, b⃗ sú lineárne nezávislé, tak (⃗a, b⃗, c⃗) je kladná báza v R3.
Vektorový súčin vektorov a⃗ a b⃗ je vektor c⃗, označuje sa a⃗×b⃗.

Poznámka. Vlastne sme definovali zobrazenie × : R3×R3→R2, ×(⃗a, b⃗)=a⃗×b⃗.



LINEÁRNA ALGEBRA A GEOMETRIA 19

Geometrický význam |⃗a×b⃗|: je to plošný obsah rovnobežníka určeného a⃗, b⃗.
|⃗a×b⃗|=

√
|⃗a|2 |⃗b|2−(|⃗a||⃗b| cos(∠a⃗, b⃗))2 =

√
|⃗a|2 |⃗b|2−|⃗a|2 |⃗b|2(1− sin2(∠a⃗, b⃗) =

=
√

|⃗a|2 |⃗b|2(sin2(∠a⃗, b⃗)) = |⃗a||⃗b| sin(∠a⃗, b⃗). Plošný obsah rovnobežníka určeného
a⃗, b⃗ je |⃗a||⃗b| sin(∠a⃗, b⃗).

Veta 11.25. Nech a⃗=(a1, a2, a3), b⃗=(b1, b2, b3) sú dva vektory z R3. Potom

a⃗×b⃗=det
(

e⃗1 e⃗2 e⃗3
a1 a2 a3
b1 b2 b3

)
=e⃗1· det

( a2 a3
b2 b3

)
−e⃗2 det

( a1 a3
b1 b3

)
+e⃗3 det

( a1 a2
b1 b2

)
. Pretože e⃗1=

=(1, 0, 0), e⃗2=(0, 1, 0), e⃗3=(0, 0, 1), a⃗×b⃗=
(
det
( a2 a3
b2 b3

)
,− det

( a1 a3
b1 b3

)
, det

( a1 a2
b1 b2

))
.

Dôkaz. Overíme podmienky 1.), 2.) a 3.) z definície.
1.)

⟨(a1, a2, a3),
(
det
( a2 a3
b2 b3

)
,− det

( a1 a3
b1 b3

)
, det

( a1 a2
b1 b2

))
⟩ =

= a1 det
( a2 a3
b2 b3

)
−a2 det

( a1 a3
b1 b3

)
+a3 det

( a1 a2
b1 b2

)
=det

(
a1 a2 a3
a1 a2 a3
b1 b2 b3

)
= 0

Podobne pre b⃗.
2.) √

det2
( a2 a3
b2 b3

)
+det2

( a1 a3
b1 b3

)
+det2

( a1 a2
b1 b2

)
=

=
√

|(a1, a2, a3)|2|(b1, b2, b3)|2 − ⟨(a1, a2, a3)(b1, b2, b3)⟩2

3.) Predpokladajme, že a⃗=(a1, a2, a3), b⃗=(b1, b2, b3) sú lineárne nezávislé. To zna-
mená, že (b1, b2, b3) nie je nenulovým násobkom (a1, a2, a3) a preto aspoň jedno
z čísel det

( a2 a3
b2 b3

)
, det

( a1 a3
b1 b3

)
, det

( a1 a2
b1 b2

)
je ̸=0. Máme a⃗=a1e⃗1+a2e⃗2+a3e⃗3, b⃗=

=b1e⃗1+b2e⃗2+b3e⃗3, c⃗=det
( a2 a3
b2 b3

)
e⃗1− det

( a1 a3
b1 b3

)
e⃗2+det

( a1 a2
b1 b2

)
e⃗3. Teda matica

prechodu od bázy (e⃗1, e⃗2, e⃗3) k trojici vektorov (⃗a, b⃗, c⃗) je

P =

 a1 a2 a3
b1 b2 b3

det
( a2 a3
b2 b3

)
− det

( a1 a3
b1 b3

)
det
( a1 a2
b1 b2

)


Potom det2
( a2 a3
b2 b3

)
+det2

( a1 a3
b1 b3

)
+det2

( a1 a2
b1 b2

)
> 0. Z toho (keďže P je regulárna):

(⃗a, b⃗, c⃗) je báza v R3, a pretože det(P)>0 je kladná báza aj (⃗a, b⃗, c⃗). Z jednoznačnej
určenosti a⃗×b⃗: a⃗×b⃗=

(
det
( a2 a3
b2 b3

)
,− det

( a1 a3
b1 b3

)
, det

( a1 a2
b1 b2

))
.

□
Veta 11.26. Vektorový súčin v R3 má tieto vlastnosti:
1.)a⃗× b⃗ = −b⃗× a⃗ pre ∀a⃗, b⃗∈R3.
2.)(αa⃗+βb⃗)×c⃗=α(⃗a×c⃗)+β(⃗b×c⃗) a a⃗×(βb⃗+γc⃗)=β(⃗a×b⃗)+γ(⃗a×c⃗) t.j. zobrazenie × :
R3×R3→R3 je lineárne v oboch argumentoch.

Dôkaz. 1.)a⃗×b⃗:=c⃗. Pre lineárne závislé a⃗, b⃗ 1.) zrejme platí. Pre a⃗, b⃗ lineárne
nezávislé máme, že (⃗a, b⃗, c⃗) je kladná báza. Zároveň (⃗b, a⃗, b⃗×a⃗) je kladná báza v R3
potom a⃗×b⃗=− b⃗×a⃗.
Iný dôkaz: Nech a⃗=(a1, a2, a3), b⃗=(b1, b2, b3), potom a⃗×b⃗=

(
det
( a2 a3
b2 b3

)
,

− det
( a1 a3
b1 b3

)
, det

( a1 a2
b1 b2

))
=−

(
det
(

b2 b3
a2 a3

)
,− det

(
b1 b3
a1 a3

)
, det

(
b1 b2
a1 a2

))
=−b⃗×a⃗.

2.) Z vlastností determinantov jasné.
□

Definícia 11.22. Nech R3 je štandardne orientovaný. Nech a⃗, b⃗, c⃗∈R3 sú dané
vektory. Potom ich zmiešaný súčin sa definuje ako reálne číslo ⟨⃗a×b⃗, c⃗⟩, ozn. ⟨⃗a, b⃗, c⃗⟩.
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Veta 11.27.

Nech a⃗=(a1, a2, a3), b⃗=(b1, b2, b3), c⃗=(c1, c2, c3). Potom ⟨⃗a, b⃗, c⃗⟩=det
(

a1 a2 a3
b1 b2 b3
c1 c2 c3

)
.

Dôkaz. ⟨⃗a, b⃗, c⃗⟩=⟨⃗a×b⃗, c⃗⟩=⟨
(
det
( a2 a3
b2 b3

)
,− det

( a1 a3
b1 b3

)
, det

( a1 a2
b1 b2

))
, (c1, c2, c3)⟩ =

= c1 det
( a2 a3
b2 b3

)
− c2 det

( a1 a3
b1 b3

)
+ c3 det

( a1 a2
b1 b2

)
= det

(
a1 a2 a3
b1 b2 b3
c1 c2 c3

)
.

□
Veta 11.28. Zmiešaný súčin má tieto vlastnosti:
1.) je lineárny v každom argumente.

2.)⟨⃗a, b⃗, c⃗⟩=⟨⃗b, c⃗, a⃗⟩=⟨c⃗, a⃗, b⃗⟩.

Dôkaz. jasné z determinantového vyjadrenia zmiešaného súčinu a vlastností deter-
minantov.

□
Veta 11.29. Nech a⃗, b⃗ sú dva lineárne nezávislé vektory v R3, chápané ako orien-
tované úsečky v Oxyz so začiatkom v O. Nech c⃗ je vektor, ktorý neleží v smerovom
priestore roviny určenej bodom O a vektormi a⃗, b⃗. Potom |⟨⃗a, b⃗, c⃗⟩| je objem rovno-
bežnostena určeného bodom O a orientovanými úsečkami a⃗, b⃗, c⃗.

Dôkaz. a⃗=
−→
OA,A≡(a1, a2, a3), b⃗=

−→
OB,B≡(b1, b2, b3), c⃗=

−→
OC,C≡(c1, c2, c3). Objem

rovnobežnostena Oa⃗⃗bc⃗ =(plošný obsah podstavy Oa⃗⃗b)·výška = |⃗a×b⃗|·ρ(C,α), kde
α je rovina určená bodom O a vektormi a⃗, b⃗ = |⃗a×b⃗|·ρ(C,C⊥).

α≡


x1=O+a1t+b1s

x2=O+a2t+b2s

x3=O+a3t+b3s

Π⊥
α (C) ≡


x1=c1+det (

a2 a3
b2 b3 ) p

x2=c2− det ( a1 a3
b1 b3 ) p

x3=c3+det (
a1 a2
b1 b2 ) p

p∈R


a1t+b1s− det ( a2 a3

b2 b3 ) p=c1
a2t+b2s+det (

a1 a3
b1 b3 ) p=c2

a3t+b3s− det ( a1 a2
b1 b2 ) p=c3

p =
det

(
a1 a2 a3
b1 b2 b3
c1 c2 c3

)
− det2

( a2 a3
b2 b3

)
− det2

( a1 a3
b1 b3

)
− det2

( a1 a2
b1 b2

) = det
(

a1 a2 a3
b1 b2 b3
c1 c2 c3

)
D

ρ(C,C⊥)=

√
det2

( a2 a3
b2 b3

) ⟨⃗a, b⃗, c⃗⟩2
D2

+det2
( a1 a3
b1 b3

) ⟨⃗a, b⃗, c⃗⟩2
D2

+det2
( a1 a2
b1 b2

) ⟨⃗a, b⃗, c⃗⟩2
D2

...

V = |⃗a× b⃗| · ρ(C,C⊥) = |⟨⃗a, b⃗, c⃗⟩|

□
Veta 11.30. Nech × : Rn×Rn→Rn je zobrazenie s týmito vlastnosťami:
1.)× je lineárne v oboch argumentoch.
2.) pre ∀a⃗, b⃗∈Rn je (⃗a×b⃗)⊥a⃗, (⃗a×b⃗)⊥b⃗

3.) |⃗a×b⃗|=
√
|⃗a|2 |⃗b|2−⟨⃗a, b⃗⟩2.

Potom n = 3, alebo n = 7.
Bez dôkazu.
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II. LINEÁRNE TRANSFORMÁCIE VEKTOROVÝCH PRIESTOROV

Definícia 12.1. Lineárna transformácia vektorového priestoru V je lineárne zob-
razenie V→V .

Príklad. f : R3→R3, f(x1, x2, x3)=(2x1+x2−x3, x2,−x1) je lineárna transformácia
priestoru R3.

Definícia 12.2. Nech V je n-rozmerný vektorový priestor nad poľom R. Nech
(⃗a1, · · · , a⃗n) je báza vo V . Ak f : V→V je lineárna transformácia priestoru V ,
tak jej matica vzhľadom na bázu (⃗a1, · · · , a⃗n) je matica A=(aij)∈Mnn(R) taká, že
f (⃗ai)=ai1a⃗1+ · · ·+aina⃗n; i=1, · · · , n.

Príklad. Matica lineárneho zobrazenia f : R3→R3; f(x1, x2, x3) = (x1 − x2 − x3,

x1+x2, x2+x3) vzhľadom na bázu (e⃗1, e⃗2, e⃗3) je M =
(
1 1 0
−1 1 1
−1 0 1

)
∈M33(R).

Príklad. Nech f : R3→R3 f(x1, x2, x3)=(6x1+4x2−2x3, 2x1+x3, 4x1+4x2). Matica

f vzhľadom na (e⃗1, e⃗2, e⃗3) je Mf =

(
6 2 4
4 0 4
−2 1 0

)
. Vektory a⃗1=(0, 1, 2), a⃗2=(2, 1, 2)

a⃗3=(2,−3, 2) tiež tvoria bázu v R3. Aká je matica f vzhľadom na bázu (⃗a1, a⃗2, a⃗3)?
Vyrátame: e⃗1=(1, 0, 0)=x(0, 1, 2)+y(2, 1, 2)+z(2,−3, 2) ⇒ x=−12 , y=

1
2 , z=0. Teda

e⃗1=− 12 (0, 1, 2)+
1
2 (2, 1, 2)+0·(2,−3, 2). Podobne: e⃗2=

1
4 (2, 1, 2)−

1
4 (2,−3, 2), e⃗3=

=12 (0, 1, 2)−
1
8 (2, 1, 2)+(2,−3, 2). Teda matica prechodu od (⃗a1, a⃗2, a⃗3) k (e⃗1, e⃗2, e⃗3)

je P =

(
− 1
2

1
2 0

0 1
4 − 1

4
1
2 − 1

8
1
8

)
. Potom f (⃗a1) = f(0, 1, 2) = 2e⃗2 + 4e⃗3 = 2( 14 a⃗2 −

1
4 e⃗3)+

+4( 12 a⃗1−
1
8 a⃗2+

1
8 a⃗3) = 2a⃗1. f (⃗a2)=6a⃗2 a f (⃗a3)=−2a⃗3. Teda matica f vzhľadom

na bázu (⃗a1, a⃗2, a⃗3) je B =
(
2 0 0
0 6 0
0 0 −2

)
. Pre Mf platí (x1, x2, x3)·Mf=f(x1, x2, x3).

Všeobecne, ak f : Rn→Rn je lineárna transformácia, tak máme f(x1, · · · , xn)=
=(x1, · · · , xn)·Mf , kde Mf∈Mnn(R) je matica f vzhľadom na bázu (e⃗1, · · · , e⃗n).
Ale, ak B∈Mnn(R) je matica f vzhľadom na inú bázu (⃗a1, · · · , a⃗n) tak už ne-
platí, že f(x1, · · · , xn)=(x1, · · · , xn)·B. Napríklad z predchádzajúceho príkladu:

f(1, 1, 1)=(−1, 2, 2), ale (1, 1, 1)·
(
2 0 0
0 6 0
0 0 −2

)
=(2, 6,−2)̸=(−1, 2, 2).

Veta 12.1. Nech f :V→V je lineárna transformácia, nech (⃗a1, · · · , a⃗n) je báza
vo V a nech A∈Mnn(R) je matica f vzhľadom na bázu (⃗a1, · · · , a⃗n). Potom, ak
(x1, · · · , xn) je n-tica súradníc vektora x⃗∈V v báze (⃗a1, · · · , a⃗n), tak (x1, · · · , xn)·A
je n-tica súradníc vektora f(x⃗) v báze (⃗a1, · · · , a⃗n).

Dôkaz. Máme x⃗=x1a⃗1+ · · ·+xna⃗n. Potom f(x⃗)=f(x1a⃗1+ · · ·+xna⃗n)=x1f (⃗a1)+
+ · · ·+xnf (⃗an) = x1(a11a⃗1+ · · ·+a1na⃗n)+ · · ·+xn(an1a⃗1+ · · ·+anna⃗n) =
=(x1a11+ · · ·+xnan1)⃗a1+ · · ·+(x1a1n+ · · ·+xnanna⃗n. Teda f(x⃗) má vzhľadom
na (⃗a1, · · · , a⃗n) n-ticu súradníc (x1a11+ · · ·+xnan1, · · · , x1a1n+ · · ·+xnann). Ale

(x1, · · · , xn)

( a11 ··· a1n
...
. . .
...

an1 ··· ann

)
=(x1a11+ · · ·+xnan1, · · · , x1a1n+ · · ·+xnann). To je

práve n-tica súradníc f(x⃗) vzhľadom na bázu (⃗a1, · · · , a⃗n).
□

Otázka. Nech f :V→V je lineárna transformácia, nech (⃗a1, · · · , a⃗n), (⃗a′1, · · · , a⃗′n) sú
dve bázy vo V . Nech f má vzhľadom na (⃗a1, · · · , a⃗n) maticuA∈Mnn(R) a vzhľadom
na (⃗a′1, · · · , a⃗′n) maticu B∈Mnn(R). Aký je vzťah medzi A a B?

Odpoveď. Nech P∈Mnn(R) je matica prechodu od (⃗a′1, · · · , a⃗′n) k (⃗a1, · · · , a⃗n).
Vieme, že P je regulárna pričom P−1=P′ je matica opačného prechodu. Nech x⃗∈V
je ľubovoľné, nech jeho súradnice vzhľadom na (⃗a1, · · · , a⃗1) sú X=(x1, · · · , xn) a



22 PRVÝ ROČNÍK, LETNÝ SEMESTER

vzhľadom na bázu (⃗a′1, · · · , a⃗′n) sú X′=(x′1, · · · , x′n). Vieme, že X=X′P′, X′=XP.
Nech teraz f(x⃗) má súradnice Y=(y1, · · · , yn) vzhľadom na (⃗a1, · · · , a⃗n) a nech
má súradnice Y′=(y′1, · · · , y′n) vzhľadom na (⃗a′1, · · · , a⃗′n). Zas vieme, že Y′=YP,
Y=Y′P′. Z predchádzajúcej vety tiež vieme, že Y=XA, Y′=X′B. Z toho:
XAP=YP=Y′=X′B=XPB ⇒ XAP=XPB t.j. X(AP−PB)=0 pre všetky
X∈Rn. Ak postupne berieme zaX n-tice e⃗1=(1, 0, · · · , 0), · · · , e⃗n=(0, · · · , 0, 1), tak
dáva, že prvý až n-tý riadok v matici AP−PB je nulový, a teda AP−PB=0,

z toho AP=PB a teda B=P−1AP .

Definícia 12.3. Nech A,B∈Mnn(R). Hovoríme, že matica B je podobná matici
A, ak existuje regulárna matica Q∈Mnn(R) taká, že B=QAQ−1. (zápis: B ∼ A).

Tvrdenie 12.1. ∼ je relácia ekvivalencie na Mnn(R).

Dôkaz.
Symetrickosť: B∼A ⇒ B=QAQ−1, ale potom aj A=Q−1BQ=Q−1B(Q−1)−1 a
teda A∼B. Reflexivita: A∼A, lebo A=InAI−1n . Tranzitívnosť: A∼B,B∼C⇒
⇒ A=QBQ−1, B=SCS−1 ⇒ A=QSCS−1Q−1=(QS)C(QS)−1 a preto A∼C.

□
Riešenie predchádzajúcej otázky môžeme vyjadriť takto: Matice lineárnej trans-

formácie n-rozmerného vektorového priestoru V vzhľadom na rôzne bázy priestoru
V sú navzájom podobné.

Veta 12.2. Existuje lineárna transformácia a vhodná báza priestoru Rn také, že pre
dané podobné matice A,B platí: A je maticou tej lineárnej transformácie vzhľadom
na štandardnú bázu (e⃗1, · · · , e⃗n) a B je matica tej istej lineárnej transformácie
vzhľadom na (⃗a1, · · · , a⃗n).

Dôkaz. Nech A=(aij),B=(bij), nech B=PAP−1 pre dajakú regulárnu maticu
P∈Mnn(R). Predpis f(e⃗i)=ai1e⃗1+ · · ·+aine⃗n podľa základnej vety o lineárnych
zobrazeniach definuje lineárne zobrazenie f : Rn→Rn, pričom f má vzhľadom
na (e⃗1, · · · , e⃗n) maticu A. Definujme vektory a⃗1, · · · , a⃗n: a⃗i=pi1e⃗1+ · · ·+pine⃗n,
i=1, · · · , n. Pretože P=(pij) je regulárna, vektory (⃗a1, · · · , a⃗n) tvoria bázu priesto-

ru Rn. (tiež e⃗j=
n∑

j=1

p′jsa⃗s ∀j.) Aká je matica f vzhľadom na (⃗a1, · · · , a⃗n)?

f (⃗ai)=
n∑

j=1

pijf(e⃗j)=
n∑

i=1

pijf

(
n∑

s=1

ajse⃗s

)
=

n∑
j=1

pij

n∑
s=1

ajse⃗s=

=
n∑

j=1

pij

n∑
s=1

ajs

n∑
t=1

p′sta⃗t=
n∑

t=1

 n∑
s=1

n∑
j=1

pijajsp
′
st

 a⃗t

V zátvorke je prvok i-teho riadku a j-teho stĺpca B=PAP−1.
□

Definícia 12.4. Nech f : V→V je lineárna transformácia. Vlastný vektor lineár-
nej transformácie f je nenulový vektor v⃗∈V taký, že pre dáke λ∈R máme f(v⃗)=λv⃗.
V tejto situácii sa λ nazýva vlastná hodnota lineárnej transformácie f patriaca
vlastnému vektoru v⃗.

Príklad. idV : V→V pre ∀v⃗∈V−{0⃗} platí idV (v⃗)=1·v⃗.

Definícia 12.5. Vlastný vektor a k nemu patriaca vlastná hodnota matice
A∈Mnn(R) sa definuje ako vlastný vektor (a k nemu patriaca vlastná hodnota)
lineárnej transformácie fA : Rn→Rn (ktorej maticou vzhľadom na štandardnú bázu
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je A.) Ináč povedané: nenulový vektor (x1, · · · , xn)∈Rn je vlastný vektor matice A
ak existuje λ∈R také, že (x1, · · · , xn)·A=λ(x1, · · · , xn). O λ hovoríme ako o vlastnej
hodnote matice A patriacej k vlastnému vektoru (x1, · · · , xn).

Príklad. (x1, · · · , xn)̸=(0, · · · , 0) (x1, · · · , xn)In=1·(x1, · · · , xn).

Poznámka. Definovali sme tzv. ľavý vlastný vektor matice A. Niekedy sa definuje

aj tzv. pravý vlastný vektor matice A ako taký
( y1

···
yn

)
̸=
(
0
···
0

)
pre ktorý existuje

µ∈R také, že A
( y1

···
yn

)
=µ

( y1
···
yn

)
. Transponovaním: (y1, · · · , yn)AT=µ(y1, · · · , yn).

Teda

( y1
···
yn

)
je pravý vlastný vektor matice A práve vtedy, keď (y1, · · · , yn) je ľavý

vlastný vektor matice AT.
V ďalšom budeme uvažovať iba o ľavých vlastných vektoroch.

Tvrdenie 12.2. Podobné matice (nad R) majú tú istú množinu vlastných hodnôt
(z poľa R).

Dôkaz. Nech A,B∈Mnn(R) a nech sú podobné, teda B=PAP−1 pre dajakú regu-
lárnu maticu P∈Mnn(R). Označme S(A) resp. S(B) množinu vlastných hodnôt
matice A, resp. B. Chceme ukázať, že S(A)=S(B). Nech λ∈S(A) je ľubovoľné.
Vieme, že existuje nenulový vektor x⃗∈Rn taký, že x⃗·A=λx⃗. Máme A=P−1BP.
Teda x⃗P−1BP=λx⃗ ⇔ (x⃗P−1)B=λ(x⃗P−1). Máme fP−1=x⃗P−1∈Rn−{(0, · · · , 0)},
keďže lineárna transformácia fP−1 : Rn→Rn je regulárna. Teda λ∈S(B), príslušný
vlastný vektor je x⃗P−1. Ukázali sme, že S(A)⊂S(B). Analogicky sa ukáže, že
S(B)⊂S(A). Vcelku S(A)=S(B).

□
Tvrdenie 12.3. Ak λ∈R je vlastná hodnota matice A∈Mnn(R) a v⃗∈Rn−{0⃗} je
vlastný vektor matice A patriaci k λ, tak cv⃗ pre c∈R−{0} je tiež vlastný vektor
matice A (patriace k vlastnej hodnote λ).

Dôkaz. Máme v⃗A=λv⃗. Potom (cv⃗)A=c(v⃗A)=c(λv⃗)=λ(cv⃗).
□

Ako závisí vlastný vektor (x1, · · · , xn)∈Rn−0⃗ od matice A=(aij)∈Mnn(R)?
(x1, · · · , xn)∈Rn−{0⃗} je vlastný vektor maticeA=(aij)∈Mnn(R) patriaci k vlastnej
hodnote λ∈R práve vtedy, keď (x1, · · · , xn)A=λ(x1, · · · , xn) ⇔ (x1, · · · , xn)A=
=(x1, · · · , xn)λIn ⇔ (x1, · · · , xn)(λIn−A)=0⃗. t.j.

(x1, · · · , xn)


λ−a11 −a12 · · · −a1n
−a21 λ−a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · λ−ann

=(0, · · · , 0)⇔

⇔ (∗)


(λ−a11)x1−a21x2− · · ·−an1xn=0
· · ·
−a1nx1−a2nx2− · · · (λ−ann)xn=0

Teda (x1, · · · , xn)∈Rn−{0⃗} je vlastným vektorom patriacim k vlastnej hodnote
λ∈R práve vtedy, keď (x1, · · · , xn) je netriviálnym riešením lineárneho systému (∗).
Vieme, že (∗) má nenulové riešenie práve vtedy, keď h( matice systému *)<n, t.j.
práve vtedy, keď h(λIn−A)<n. Takisto máme, že λ∈R je vlastnou hodnotou matice
A práve vtedy, keď h(λIn−A)<n t.j. matica λIn−A je singulárna. Špeciálne z toho
vidno, že 0∈R je vlastnou hodnotou matice A∈Mnn(R) ⇔ h(−A)<n t.j. práve
vtedy, keď h(A)<n.
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Príklad. Nech f : R2→R2 je lineárne zobrazenie otočenie o uhol φ∈⟨0, 2π) okolo
začiatku súradnicového systému. fφ(v⃗)=λv⃗. Aké má vlastné hodnoty a vlastné
vektory? Aká je matica lineárneho zobrazenia fφ vzhľadom na (e⃗1, e⃗2)? R2≈C.
z=x+iy. fφ(x, y)=fφ(x+iy)(cosφ+i sinφ)=(x cosφ− y sinφ;x sinφ+ y cosφ).

Mfφ=
(
cosφ sinφ
− sinφ cosφ

)
. Kedy je λ∈R vlastnou hodnotou matice Mfφ? Práve vtedy,

keď matica λIn−Mfφ je singulárna ⇔ det
(

λ− cosφ sinφ
− sinφ λ− cosφ

)
=0⇔ (λ− cosφ)2+

+sin2 φ=0⇔ λ2−2λ cosφ+cos2 φ+sin2 φ=0⇔ λ2−2λ cosφ+1=0. Z toho:
λ12=

2 cosφ±
√
4 cos2 φ−4
2 =cosφ ±

√
− sin2 φ, teda λ∈R ⇔ sinφ=0 ⇔ φ=0 ∨ φ=π.

Potom λ1=1, λ2=−1. Teda matica Mfφ chápaná ako reálna má vlastnú hodnotu
(1 resp. -1) iba vtedy, keď φ=0 resp. φ=π.
Aké sú vlastné hodnoty matice Mfφ ak ju chápeme ako komplexnú?
Vtedy vlastné hodnoty: λ1=cosφ+i sinφ, λ2=cosφ−i sinφ, pre ∀φ∈⟨0, 2π).

Rozšírenie definície matice resp. determinantu.
Pripustíme, že prvky matíc môžu byť aj prvky ľubovoľného komutatívneho okru-

hu s 1. Rovnosť matíc, násobenie atď. funguje analogicky. Ak A=(aij)∈Mnn(R)
(kde (R,+, ·, 1) je komutatívny okruh s 1) definujeme determinant:

det(A)=
∑

φ∈S{1,··· ,n}

(−1)s(φ)a1φ(1)a2φ(2) · · · anφ(n)

Mnohé z vlastností determinantov nad poľom sa zachovajú aj pre determinanty
nad komutatívnym okruhom s 1. Napr. determinant zmení znamienko na opačné
ak vzájomne vymeníme dva riadky; determinant je nulový ak niektorý riadok je
nulový; det(AB)=det(A) det(B), atď. . .

Definícia 12.6. Charakteristický polynóm matice A∈Mnn(R) (kde R je pole) sa
definuje ako χA(t)=det(tIn−A).

A=(aij)∈Mnn(R) χA(t)=det


t−a11 −a12 · · · −a1n
−a21 t−a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · t−ann


Prvkami tejto matice sú prvky okruhu polynómov R[t]. Označme R[t] okruh polynó-
mov v neurčitej t nad poľom R. Ak p(t)∈R[t], tak jeho koreň je a∈R, pre ktoré
p(a)=0.

Príklad. p(t)=t2−2t+1 ∈ R[t]. p(1)=0, 1 je koreň.
Z doterajšieho: λ∈R je vlastná hodnota matice A∈Mnn(R) práve vtedy, keď λ

je koreňom charakteristického polynómu χA(t) matice A.

Napr.: A=
(
1 0 2
0 0 1
0 −1 0

)
∈M33(R). χA(t)=det

(
t−1 0 −2
0 t −1
0 1 t

)
=t3−t2+t−1=(t2+1)(t−1)

Má jeden reálny koreň: 1. Matica A chápaná ako reálna matica má jedinú vlastnú
hodnotu: λ=1. Neskôr sa pozrieme, aké sú vlastné hodnoty, ak A chápeme ako
komplexnú maticu.

Definícia 12.7. Stupeň polynómu p(t)=
∞∑
i=0

ait
i∈R[t] je s, ak as ̸=0, ale ai=0, pre

i>s v prípade, že p(t) ̸=0. Ak p(t)≡0, tak stupeň polynómu sa definuje ako −∞.

Veta 12.3. Nech A∈Mnn(R). Potom stupeň χA(t) je n. Okrem toho, koeficient

pri tn−1 v χA(t) je −
n∑

i=1

aii a absolútny člen v χA(t) je (−1)n det(A).
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Dôkaz.

χA(t)=det


t−a11 −a12 ··· −a1n
−a21 t−a22 ··· −a2n
...

...
. . .

...
−an1 −an2 ··· −ann

=(t−a11)(t−a22) · · · (t−ann)+členy s tk
kde k≤n−2. Koeficient pri tn a tn−1 získame z (t−a11)(t−a22) · · · (t−ann). Z toho

koeficient pri tn je 1, pri ts, s>n sú nuly. Koeficient pri tn−1 je −
n∑

i=1

aii. Koeficient

pri t0 je χA(0)=det

( −a11 ··· −a1n
...
. . .

...
−an1 ··· −ann

)
=det(−A)=(−1)n det(A).

□

Definícia 12.8. Pre maticu A=(aij)∈Mnn(R) sa
n∑

i=1

aii nazýva stopa matice A,

ozn. Tr(A);Sp(A). Platí napr. ak A,B∈Mnn(R), tak Tr(AB)=Tr(BA).

Veta 12.4. Podobné matice majú ten istý charakteristický polynóm.

Dôkaz. Majme A,B∈Mnn(R), nech B=PAP−1 pre dáku regulárnu P∈Mnn(R).
Chceme ukázať, že χA(t)=χB(t). Z definície: χB(t)=det(tIn − B)=det(tIn−
−PAP−1)=det(PtInP−1−PAP−1)=det(P(tIn−A)P−1)=det(P) det(tIn−A)·
· det(P−1)=det(P) det(P−1) det(tIn−A)=det(tIn−A) = χA(t).

□
Definícia 12.9. Charakteristický polynóm lineárnej transformácie f : Rn→Rn

(R je pole) je charakteristický polynóm matice lineárnej transformácie vzhľadom na
ľubovoľnú bázu v Rn.

Definícia je dobrá, lebo ak A je matica transformácie f vzhľadom na jednu bázu
a B je jej matica vzhľadom na inú bázu, tak A,B sú podobné, teda χA(t)=χB(t).

Poznámka. z=a+ib, z̄=a−ib je komplexne združené k z. z∈C je reálne ⇔ z=z̄.
z·z̄=|z|2.

Definícia 12.10. Nech A=(aij)∈Mks(C). Komplexne združená k nej je matica
Ā=(āij)∈Mks(C).

Zrejme platí: A+B=Ā+B̄; AB=Ā·B̄.

Veta 12.5. Nech A∈Mnn(R) je symetrická (t.j. A=AT). Ak A chápeme ako
komplexnú maticu, tak všetky jej vlastné hodnoty sú reálne.

Dôkaz. Nech λ∈C je ľubovoľná vlastná hodnota matice A. Teda existuje nenulový
vektor x⃗∈Cn taký, že x⃗A=λx⃗. Komplexné združenie: x⃗A=λx⃗ t.j. ¯⃗xĀ=λ̄¯⃗x. Pretože
A má všetky prvky reálne, máme Ā=A, a teda ¯⃗xA=λ̄¯⃗x. Transponovanie dáva:
(¯⃗xA)T=(λ̄¯⃗x)T, t.j. AT ¯⃗x

T
=λ̄¯⃗x

T
, ale A=AT a preto A¯⃗x

T
=λ̄¯⃗x

T ⇔ x⃗A¯⃗x
T
=λ̄x⃗¯⃗x

T
.

Máme: x⃗A=λx⃗; preto λx⃗¯⃗x
T
=λ̄x⃗¯⃗x

T
t.j. (λ−λ̄)x⃗¯⃗xT=0. x⃗¯⃗xT=(x1, · · · , xn)

( x̄1
...
x̄n

)
=

=x1x̄1+ · · ·+xnx̄n=|x1|2+ · · ·+|xn|2>0, keďže (x1, · · · , xn)∈Cn−{(0, · · · , 0)}, pre-
to λ−λ̄=0 t.j. λ=λ̄ teda λ∈R.

□
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Podobnosť matice s diagonálnou maticou.

Veta 12.6. Matica A∈Mnn(R) je podobná diagonálnej matici práve vtedy, keď
vlastné vektory matice A generujú celý priestor Rn. Ak A je podobná diagonál-
nej matici, tak je podobná matici diag(λ1, · · · , λn), kde λ1, · · · , λn∈R sú vlastné
hodnoty matice A.

Dôkaz.
⇒ : Predpokladajme, že matica A je podobná D=diag(d1, · · · , dn). Pretože
máme e⃗i=(0, · · · , 0, 1, · · · , 0) : e⃗iD=die⃗i, teda d1, · · · , dn sú vlastné hodnoty ma-
tice D (a e⃗1, · · · , e⃗n sú príslušné vlastné vektory). Vieme, že {d1, · · · , dn} je tiež
množinou všetkých vlastných hodnôt matice A. Chceme ukázať, že vlastné vek-
tory matice A generujú Rn. Máme, že D=PAP−1 pre vhodnú regulárnu maticu
P. Teda z e⃗iD=die⃗i dostaneme: e⃗iPAP−1=die⃗i (sprava P): (e⃗iP)A=di(e⃗iP).
e⃗1P, · · · , e⃗nP sú nenulové z Rn, teda sú to vlastné vektory patriace k vlastným
hodnotám d1, · · · , dn matice A. Navyše e⃗1P, · · · , e⃗nP sú lineárne nezávislé, lebo sú
to obrazy bázových vektorov e⃗1, · · · , e⃗n priestoru Rn pri regulárnej lineárnej trans-
formácie fP : Rn→Rn. Teda e⃗1P, · · · , e⃗nP sú vlastné vektory matice A, generujúce
Rn.
⇐ :Predpokladajme, že vlastné vektory matice A generujú celý priestor Rn. Vy-

berme spomedzi nich bázu (⃗b1, · · · , b⃗n) priestoru Rn. Nech λ1, · · · , λn∈R sú vlastné
hodnoty matice A patriace k b⃗1, · · · , b⃗n. Teda b⃗1A=λ1⃗b1=fA(⃗b1), · · · , b⃗nA=λnb⃗n=
=fA(⃗bn). t.j. máme, že fA(⃗b1)=λ1⃗b1+0⃗b2+ · · ·+0⃗bn, · · · , fA(⃗bn)=0⃗b1+ · · ·+λnb⃗n.
Teda lineárna transformácia fA : Rn→Rn (ktorá vzhľadom na (e⃗1, · · · , e⃗n) má
maticu A) má vzhľadom na bázu (⃗b1, · · · , b⃗n) maticu diag(λ1, · · · , λn). Potom
z jednej z viet vieme, že A je podobná diag(λ1, · · · , λn).

□
Príklad. Matica A =

(
1 1
0 1

)
∈ Mnn(R) nie je podobná diagonálnej matici.

χA(t) = det
(

t−1 −1
0 t−1

)
= (t−1)2. Keby A bola podobná diagonálnej matici, tak by

bola podobná
(
1 0
0 1

)
. Teda by existovala regulárna matica P taká, že

(
1 1
0 1

)
=

=PAP−1=
(
1 0
0 1

)
– to nie je pravda, preto A nie je podobná diagonálnej matici.

Vlastné vektory patriace k vlastnej hodnote λ=1: (x1, x2)
(
1 1
0 1

)
=1·(x1, x2).

Z toho: x1=x1 a x1+x2=x2 Potom x1=0. Vlastné vektory sú tvaru: k(0, 1);
k∈R−{0}. Vlastné vektory negenerujú celé R2, podľa vety A nie je podobná di-
agonálnej matici.

Veta 12.7. Nech A∈Mnn(R) a nech λ1, · · · , λr∈R sú také vlastné hodnoty matice
A, ktoré sú navzájom rôzne. Nech b⃗1, · · · , b⃗r sú vlastné vektory patriace λ1, · · · , λr.
Potom b⃗1, · · · , b⃗r sú lineárne nezávislé.

Dôkaz. Indukcia podľa r:
1◦ Pre r=1 keďže b⃗1 ̸=0⃗ je lineárne nezávislé, tvrdenie platí.
2◦ Predpokladajme, že tvrdenie platí pre r−1. Teraz nech λ1, · · · , λr je r navzájom
rôznych vlastných hodnôt, nech príslušné vlastné vektory sú b⃗1, · · · , b⃗r. Nech
α1⃗b1+ · · ·+αr b⃗r=0⃗. Chceme ukázať, že α1= · · ·=αr=0. Sprava (λrIn−A):
α1⃗b1(λrIr−A)+ · · ·+αr−1⃗br−1(λrIr−A)=0⃗(λrIr−A)⇔ α1⃗b1λrIr−α1λ1⃗b1+ · · ·
· · ·+αr−1⃗br−1λrIr−αr−1λr−1⃗br−1+αr b⃗rλrIr−αrλr b⃗r=0⃗⇔ α1λr b⃗1−α1λ1⃗b1+ · · ·
· · ·+αr−1λr b⃗r−1+αr−1λr−1⃗br−1+αrλr b⃗r−αrλr b⃗r=0⃗. Teda α1(λr−λ1)⃗b1+ · · ·+
+αr−1(λr−λr−1)⃗br−1=0⃗. Z indukčného predpokladu vieme, že b⃗1, · · · , b⃗r−1 sú
lineárne nezávislé. Preto α1(λr−λ1)=0, · · · , αr−1(λr−λr−1)=0. Ale λi ̸=λj pre i̸=j,
teda λr−λ1 ̸=0, · · · , λr−λr−1 ̸=0, z toho: α1= · · ·=αr−1=0. Zostáva αr b⃗r=0⃗. Pre-
tože b⃗r ̸=0⃗, máme aj αr=0.
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□
Dôsledok. Ak A je taká matica, že má n navzájom rôznych vlastných hodnôt, tak
príslušné vlastné vektory sú lineárne nezávislé, teda generujú celé Rn, a teda je
podobná diagonálnej matici diag(λ1, · · · , λn).

Niektoré fakty o polynómoch.

Veta 12.8. Nech polynóm p(t) je stupňa n≥0; q(t) je stupňa m≥0 nad R. Po-
tom existuje jediný polynóm d(t) a jediný polynóm r(t) (deg(r(t))<m) také, že
p(t)=d(t)q(t)+r(t)

Veta 12.9. Nech p(t)∈R[t], deg(p(t))≥1. Potom α∈R je koreňom p(t) práve vtedy,
keď p(t)=(t−α)q(t), kde deg(q(t))=deg(p(t))−1.

Dôkaz.
⇒ : Predpokladajme, že α∈R je koreň. Teda p(α)=0. Z vety 12.8 vieme, že:
p(t)=(t−α)q(t)+r(t), kde deg(r(t))<1. Keďže p(α)=0=r(α), máme r(t)≡0, teda
p(t)=(t−α)q(t).
⇐ : Ak p(t)=(t−α)q(t), tak p(α)=(α−α)q(t)=0, teda α je koreň.

□
Definícia 10.11. Hovoríme, že polynóm p(t)=antn+ · · ·+a1t+a0∈R[t] sa nad R
úplne rozkladá na lineárne činitele, ak p(t) sa dá vyjadriť v tvare p(t)=an(t−α1) · · ·
· · · (t−αn) pre dáke α1, · · · , αn∈R. Keď združíme rovnaké činitele, tak dostaneme:
p(t)=an(t−α1)k1 · · · (t−αs)ks , pričom

∑
ki=n.

Príklad. Polynóm t2+1 sa nad R nerozkladá úplne na lineárne činitele, ale nad C
sa rozkladá.

Základná veta algebry.
Každý nekonštantný polynóm z C[t] má v C koreň.

Dôsledok. Každý polynóm z C[t] sa úplne rozkladá na lineárne činitele nad C.

Tvrdenie 12.4. Každý nekonštantný polynóm s reálnymi koeficientmi sa rozkladá
na súčin polynómov stupňa ≤2.

Dôkaz. Nech p(t)=antn+ · · ·+a1t+a0, αi∈R. Ak p(t) chápeme ako polynóm nad
C a z0∈C je jeho koreň, tak aj z̄0 je koreň, lebo p(z0)=0=anzn0+ · · ·+a1z0+a0,
a teda tiež 0=anzn0+ · · ·+a1z0+a0=anzn0+ · · ·+a1z0+ā0=an(z̄0)n+ · · ·+a1z̄0+a0.
Z dôsledku základnej vety algebry vieme, že p(t)=an(t−z1) · · · (t−zn) pre zi∈C.
Ale ak zi je koreň, tak aj z̄i je koreň, teda pre ∀i∈{1, · · · , n} zi=z̄j pre vhodné
j∈{1, · · · , n}. Teda p(t) obsahuje súčiny (t−zj)(t−z̄j)=t2− (zj+z̄j)︸ ︷︷ ︸

∈R

+ zj z̄j︸︷︷︸
∈R

; ob-

sahuje činitele stupňa 1 ∨ 2.
□

Tvrdenie 12.5. Ak p(t)∈R[t] má nepárny stupeň, tak p(t) má koreň v R.

Dôkaz. Z predchádzajúcich úvah vyplýva, že ak p(t)∈R[t] nemá reálne korene, tak
má párny stupeň.

□
Veta 12.10. Nech A∈Mnn(R) má charakteristický polynóm χA(t)∈R[t] taký, že sa
úplne rozkladá nad R na navzájom rôzne lineárne činitele, χA(t)=(t−λ1) · · · (t−λn);
λi ̸=λj pre i ̸=j. Nech b⃗1, · · · , b⃗n sú vlastné vektory patriace k λ1, · · · , λn, označme
VA(⃗bi)=[⃗bi]⊂Rn. Potom matica A je podobná diagonálnej matici diag(λ1, · · · , λn)
a Rn=[⃗b1]⊕ · · ·⊕[⃗bn].

Dôkaz. To, žeA je podobná diag(λ1, · · · , λn) už vlastne vieme z dôsledku vety 12.7.
Tiež vieme, že b⃗1, · · · , b⃗n generujú celé Rn. Teda každé x⃗∈Rn je tvaru x⃗=α1⃗b1+ · · ·



28 PRVÝ ROČNÍK, LETNÝ SEMESTER

· · ·+αnb⃗n, teda Rn=[⃗b1]⊕ · · ·⊕[⃗bn]. Ale [⃗bi]∩([⃗b1]⊕ · · ·⊕[⃗bi−1]⊕[⃗bi+1]⊕ · · ·⊕[⃗bn])=
={0⃗} pre každé i. (keby nie,tak by pre dáke α⃗bi=β1⃗b1+ · · ·+βi−1⃗bi−1+βi+1⃗bi+1+
+ · · ·+βnb⃗n, čo je nemožné, lebo b⃗1, · · · , b⃗n sú lineárne nezávislé.) Teda v skutoč-
nosti: Rn=[⃗b1]⊕ · · ·⊕[⃗bn].

□
Definícia 12.12. Pre A∈Mnn(R) definujme jej k-tú mocninu (k∈Z, k≥0) takto:
A0=In,A1=A,Ak=A·Ak−1.

Veta Cayley-Hamiltonova.
Nech χA(t) = antn + · · ·+ a1t+ a0 ∈ R[t] je charakteristický polynóm matice
A ∈ Mnn(R). Potom platí anAn + an−1An−1 + · · · + a1A + a0In = 0. Stručne
χA(A) = 0.

Dôkaz. Ak B=

( b11 ··· b1n
...
. . .
...

bn1 ··· bnn

)
máme

B·adj(B) =

( b11 ··· b1n
...
. . .
...

bn1 ··· bnn

)( B11 ··· Bn1

...
. . .
...

B1n ··· Bnn

)
= diag(det(B), · · · , det(B)) = det(B)In

to platí aj pre matice nad komutatívnym okruhom s 1. Špeciálne:

(∗) (tIn−A)adj(tIn−A)=det(tIn−A)·In=χA(t)·In

Ľubovoľnú maticu nad okruhom R[t] môžeme napísať v tvare ”polynóm” s koefi-
cientami z Mnn(R) pri mocninách t. Napr.:(

t3 t2 −1
0 t 2t

t+t2 t+t2 t3

)
=

(
1 0 0
0 0 0
0 0 1

)
t3+

(
0 1 0
0 0 0
1 1 0

)
t2+

(
0 0 0
0 1 2
1 1 0

)
t+

(
0 0 −1
0 0 0
0 0 0

)
adj(tIn−A) takto napíšeme ako ”polynóm” s konštantnými maticovými koeficient-
mi stupňa ≤n−1. Teda adj(tIn − A) = B0 + B1t + · · · + Bn−1t

n−1 pre vhodné
B0, · · · ,Bn−1∈Mnn(R). Teda (∗) prepíšeme (tIn−A)(B0+B1t+ · · ·+Bn−1t

n−1)=
=(a0+a1t+ · · ·+an−1tn−1+tn)In. Porovnáme koeficienty na ľavej a pravej strane
pri rovnakých mocninách t.

t0 : −AB0 = a0In /·A0

t1 : B0−AB1 = a1In /·A
t2 : B1−AB2 = a2In /·A2

...
...

...

tn−1 : Bn−2−ABn−1 = an−1In /·An−1

tn : Bn−1 = In /·An

Sčítaním ľavých resp. pravých strán: a0In+a1A+ · · ·+an−1An−1+An=0.
□

Veta 12.11 a Definícia 12.13. Pre každú maticu A∈Mnn(R) existuje práve je-
den polynóm µA(t)∈R[t] s koeficientom 1 pri najvyššej mocnine t taký, že
”µA(A)=0” a taký, že každý polynóm R[t]∋p(t) ̸=0 s vlastnosťou ”p(A)=0” je ná-
sobkom polynómu µA(t). Polynóm µA(t) sa nazýva minimálny polynóm matice A.

Dôkaz. Označme NA={p(t)∈R[t]; p(A)=0 a ak p(t)̸=0, tak má koeficient 1 pri naj-
vyššej mocnine}. NA ̸=∅, lebo z Cayley−Hamiltonovej vety vieme, že χA(t)∈NA.



LINEÁRNA ALGEBRA A GEOMETRIA 29

Zároveň je jasné, že v NA existujú polynómy stupňa ≥0. Nech µA(t) je polynóm
najmenšieho stupňa ≥1 v NA. Nech p(t)̸=0 je taký, že p(A)=0. Chceme ukázať,
že p(t) je násobkom µA(t). Vieme, že existuje jediný p(t) a jediný r(t) tak, že
p(t) = µA(t)q(t) + r(t), pričom deg(r(t)) < deg(µA(t)). Máme r(A) = 0 a zároveň
deg(r(t))< deg(µA(t)), to je možné len tak, že r(t)≡0, teda p(t) je q(t)-násobkom
polynómu µA(t). Ešte treba ukázať jednoznačnosť: Nech by boli dva také polynómy
µA(t); µ̄A(t) s potrebnými vlastnosťami. Potom µ̄A(t) je násobkom polynómu µA(t),
ale aj µA je násobkom µ̄A(t). Pretože µA(t) aj µ̄A(t) má koeficient 1 pri najvyššej
mocnine, dostávame µA(t)=µ̄A(t).

□

Príklad. A=
(
1 1
0 1

)
, χA(t)=(t−1)2. µA(t) by mohol byť (t−1)2 alebo (t−1).(

1 1
0 1

)
−
(
1 0
0 1

)
̸=
(
0 0
0 0

)
teda t−1 nie je minimálny polynóm. Teda µA(t)=(t−1)2.

Jordanov normálny tvar matice (lineárnej transformácie).

Definícia 12.14. Ak f : Rn→Rn je lineárna transformácia a λ∈R je jej vlastná
hodnota, tak (f − λ)k bude označovať lineárnu transformáciu (f − λidRn) ◦ · · · ◦
◦(f−λidRn) : Rn→Rn. Špeciálne: (f−λ)0=idRn . Označme Vf (λ)={x⃗∈Rn; e-
xistuje n≥0 také, že (f−λ)n(x⃗)=0⃗}. Vlastné vektory lineárnej transformácie f
patriace k λ patria do Vf (λ): ak v⃗ je vlastný vektor patriaci k λ, tak f(v⃗)=λv⃗ t.j.
(f−λ)(v⃗)=0⃗.

Definícia 12.15. Vf (λ) sa nazýva zovšeobecnená vlastná množina patriaca
k vlastnej hodnote λ.

Veta 12.12.
1.)Vf (λ) je vektorový podpriestor v Rn.
2.)f(Vf (λ))⊂Vf (λ) (tomu sa hovorí, že Vf (λ) je f-invariantný podpriestor v Rn.)
3.) Pre x⃗∈Rn označme x⃗i=(f−λ)i(x⃗). Ak x⃗0, · · · , x⃗k−1 sú (pre dáke k) nenulové,
ale už x⃗k=0⃗, tak potom x⃗0, · · · , x⃗k−1 sú lineárne nezávislé.

Dôkaz.
1.) Vf (λ)̸=∅, lebo tam patria vlastné vektory f . Nech x⃗, y⃗∈Vf (λ) sú ľubovoľné, nech
α∈R, β∈R. Chceme ukázať, že αx⃗+βy⃗∈Vf (λ). Máme (f−λ)k(x⃗)=0⃗ pre dáke k≥0;
(f−λ)m(y⃗)=0⃗ pre dáke m≥0. Potom (f−λ)k+m(αx⃗+βy⃗) = (f−λ)m(f−λ)k·
·(αx⃗+βy⃗)=(f−λ)m(α(f−λ)k(x⃗)︸ ︷︷ ︸

0⃗

+β(f−λ)k(y⃗))=β(f−λ)m(f−λ)k(y⃗)=β(f−λ)k·

· (f−λ)m(y⃗)︸ ︷︷ ︸
0⃗

= 0⃗.

2.) Nech y⃗∈f(Vf (λ)). Chceme ukázať, že y⃗∈Vf (λ). Máme y⃗=f(x⃗) pre dáke x⃗∈Vf (λ)
Teda ∃m≥0: (f−λ)m(x⃗)=0⃗. Potom (f−λ)m(y⃗)=(f−λ)m(f(x⃗))=(f−λ)m◦f(x⃗) =
f◦ (f−λ)m(x⃗)︸ ︷︷ ︸

0⃗

= 0⃗, teda y⃗∈Vf (λ).

3.) Nech α0x⃗0+ · · ·+αk−1x⃗k−1=0⃗, chceme ukázať, že α0= · · ·=αk−1=0. Máme
α0(f−λ)0(x⃗)+α1(f−λ)1(x⃗)+ · · ·+αk−1(f−λ)k−1(x⃗)=0⃗. Aplikujeme na obe stra-
ny (f−λ)k−1. Potom α0(f−λ)k−1(x⃗)+α1(f−λ)k(x⃗)+ · · ·+αk−1(f−λ)2k−1(x⃗)=0⃗
α0x⃗k−1+0⃗+ · · ·+0⃗=0⃗⇔ x⃗k−1 ̸=0⃗⇒ α0=0.
Zostáva: α1(f−λ)1(x⃗)+ · · ·+αk−1(f−λ)k−1(x⃗)=0⃗ /(f−λ)k−2
α1(f−λ)k−1(x⃗)+ · · ·+αk−1(f−λ)2k−3(x⃗)=0⃗ α1x⃗k−1+0⃗+ · · ·+0⃗=0⃗ ⇒ α1=0 atď.
αi=0 ∀i.

□
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Dôsledok. ∀a⃗∈Vf (λ) máme (f−λ)n(⃗a)=0⃗.

Dôkaz. Nech a⃗∈Vf (λ) je ľubovoľný. Ak (f−λ)n(⃗a) ̸=0⃗, tak aj a⃗i=(f−λ)i(⃗a)̸=0⃗ pre
i = 0, · · · , n. Z 3.) by sme mali (keďže existuje m≥0 : (f−λ)m(⃗a)=0⃗, pretože
a⃗∈Vf (λ)), že a⃗0, · · · , a⃗n sú lineárne nezávislé. Ale je ich n+1 a sú v Rn–spor.

□

Definícia 12.16. Jordanova matica typu n×n nad poľom R patriaca k vlastnej
hodnote λ (lineárnej transformácie, resp. matice) je matica, ktorá má na hlavnej
diagonále samé λ, na susednej (zhora) čiare rovnobežnej s hlavnou diagonálou má
samé 1, a inde 0. Ozn. Jn(λ).

Príklad. J1(λ)=(λ),J2(λ)=
(

λ 1
0 λ

)
,J3(λ)=

(
λ 1 0
0 λ 1
0 0 λ

)
.

Veta 12.13. Nech f : Rn→Rn je lineárna transformácia, ktorá má jedinú a pritom
n-násobnú vlastnú hodnotu λ∈R. Potom Vf (λ)=Rn a vo Vf (λ) existuje báza,
vzhľadom na ktorú má f maticu A(λ)∈Mnn(R), pozostávajúca z Jordanových matíc
Jq1(λ), · · · ,Jqr (λ) (kde q1≥ · · ·≥qr) umiestnených pozdĺž hlavnej diagonály a okrem
toho už iba z núl. q1+ · · ·+qr=n

A(λ)=


Jq1(λ) 0 · · · 0

0 Jq2(λ) · · · 0
...

...
. . .

...
0 0 · · · Jqr (λ)



Veta 12.14. Pre maticu A∈Mnn(R) takú, že má jedinú n-násobnú vlastnú hod-
notu λ∈R platí, že Vf (λ)=Rn a matica A je podobná matici A(λ)∈Mnn(R) po-
zostávajúcej z Jordanových matíc: Jq1(λ), · · · ,Jqr (λ) umiestnených pozdĺž hlavnej
diagonály (q1+ · · ·+qr=n) ináč iba z núl.

Dôkaz. χA(t)=(t−λ)n. Z Cayley − Hamiltonovej vety: (f−λ)n≡0. T.j. pre
∀x⃗∈Rn : (f−λ)n(x⃗)=0⃗; z toho teda Rn=Vf (λ).

□

Veta 12.15. Nech f : Rn→Rn je lineárna transformácia taká, že jej charakteri-
stický polynóm je: χf (t)=(t−λ1)n1(t−λ2)n2 · · · (t−λs)ns (kde n1+ · · ·+ns=n). Po-
tom Rn=Vf (λ1)⊕ · · ·⊕Vf (λs) a pre každé Vf (λi); i=0, 1 · · · , s existuje jeho báza,
vzhľadom na ktorú má f |Vf (λi) : Vf (λi→Vf (λi) maticu A(λi)∈Mnini(R) pozostáva-
júcu z Jordanových matíc (súčet stupňov ktorých je ni) umiestnených pozdĺž hlavnej
diagonály a ináč iba z núl. Teda vzhľadom na bázu (B1, · · · , Bs) priestoru Rn má
f maticu tvaru:

A(λ)=


Jq1(λ) 0 · · · 0

0 Jq2(λ) · · · 0
...

...
. . .

...
0 0 · · · Jqr (λ)

 (∗)

Potom χA(t)=(t−λ1)n1 · · · (t−λs)ns . (
∑
ni=n) platí, že Rn=Vf (λ1)⊕ · · ·⊕Vf (λs)

a matica A je podobná matici tvaru (∗).
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Definícia 12.17. Matica (∗) je tzv. Jordanov normálny tvar matice A.

Poznámka.
1.) Každá matica A∈Mnn(C) spĺňa predpoklady vety a teda k nej existuje nejaký
Jordanov normálny tvar.
2.) Špeciálne, ak matica A∈Mnn(R) je taká, že χA(t)=(t−λ1) · · · (t−λn) kde λi ̸=λj
pre i ̸= j, tak sme už dávnejšie dokázali, že A je podobná diagonálnej matici
diag(λ1, · · · , λn). Toto je Jordanov normálny tvar takejto matice A.

Tvrdenie 12.6.
1.) Jordanov normálny tvar je jediný, odhliadnime od permutácie Jordanových
matíc pozdĺž hlavnej diagonály.
2.) Dve matice A,B∈Mnn(R) také, že ich charakteristické polynómy sa nad R úplne
rozkladajú na lineárne činitele sú podobné práve vtedy, keď pripúšťajú ten istý Jor-
danov normálny tvar.
3.) Počet Jordanových matíc v Jordanovom normálnom tvare matice A sa rovná
najmenšiemu možnému počtu lineárne nezávislých vlastných vektorov matice A.
4.) Počet Jordanových matíc zodpovedajúcich nejakej vlastnej hodnote matice A sa
rovná maximálnemu počtu lineárne nezávislých vlastných vektorov patriacich k tej
vlastnej hodnote. Ak χA(t)=(t−λ1)m1 · · · (t−λs)ms , kde λ1, · · · , λs∈R; (λi ̸=λj pre
i̸=j) tak mi=súčet stupňov Jordanových matíc patriacich k λi.
5.) Stupeň najväčšej spomedzi Jordanových matíc patriacich k vlastnej hodnote λ
sa rovná násobnosti λ ako koreňa minimálneho polynómu.
6.) Nech χA(t)=(t−λ1)m1 · · · (t−λs)ms , λi∈R, λi ̸=λj pre i̸=j. Potom stupeň naj-
väčšej spomedzi Jordanových matíc patriacich k λi určíme takto: vyrátame
A−λiIn, (A−λiIn)2, · · · . Zistíme, že hodnosť matice (A−λiIn)k s rastom k po čase
prestane klesať. Práve najmenšia hodnota k, pre ktorú sa dosiahne najnižšia hod-
nosť sa rovná stupni najväčšej Jordanovej matici patriacej k λi.

Príklad.

A=


6 5 −4 −113
2 3 −2 − 43
1 1 0 − 23
6 6 −6 −3


χA(t)=(t−1)2(t−2)2
teda existuje jej
Jordanov

normálny tvar.

h(A−2I4)=3;h((A−2I4)2)=2;h((A−2I4)2)=2, · · · Teda v Jordanovom normálnom
tvare bude J2(2)=

(
2 1
0 2

)
. h(A−1I4)=2;h((A−1I4)2)=2, · · · stupeň najväčšej Jor-

danovej matice patrice k 1 bude 1. Z toho Jordanov normálny tvar matice A je:

A(λ)=

( 2 1 0 0
0 2 0 0
0 0 1 0
0 0 0 1

)
Poznámka.
Nech charakteristický polynóm matice A∈Mnn(R) je χA(t)=(t−λ)n. Potom:
(i) Najväčšia Jordanova matica má stupeň k1, kde k1 je najmenšie celé také, že
(A−λIn)k1=0.
(ii)h((A−λIn)k1−1)= počet Jordanových matíc stupňa k1.
(iii)h((A−λIn)k1−2)=(2·počet Jordanových matíc stupňa k1)+(počet Jordanových
matíc stupňa (k1−1)).
(iv)h((A−λIn)k1−3)=(3·počet JM stupňa k1)+2·(počet JM stupňa k1−1)+1·(počet
JM stupňa (k1−2)).
atď.

Príklad.

A=

( 1 −3 0 3
−2 −6 0 13
0 −3 1 3
−1 −4 0 8

)
∈M4,4(R)

χA(t)=(t−1)4, h(A−1I4)=2
h((A−1I4)2)=1, h(A−1I4)3)=0
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Potom počet Jordanových matíc stupňa 3 je h((A−1I4)2)=1.

Jordanov normálny tvar matice A je A(λ)=

( 1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

)
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III. KVADRATICKÉ FORMY (nad poľom R)

Budeme uvažovať o n (n≥0) premenných x1, · · · , xn, ktoré budú môcť nadobú-
dať reálne hodnoty, pritom bude platiť xixj=xjxi ∀i, j. Potom kvadratická forma
n premenných x1, · · · , xn je výraz tvaru:

∑
1≤i≤j≤n

aijxixj , kde aij∈R sú tzv. koefi-

cienty kvadratickej formy.

Príklad.
1.) 0 je kvadratická forma, kde aij=0 ∀i, j.
2.) x21+x

2
2 je kvadratická forma dvoch premenných.

3.) x21+2x1x2−3x2x3 je kvadratická forma troch premenných.

x21+2x1x2−3x2x3=(x1 x2 x3 )

 1 1 0
1 0 0
0 −3 0

x1
x2
x3


Kvadratickú formu

∑
aijxixj (n premenných) môžeme napísať v tvare: XAXT,

kde X=(x1, · · · , xn),

A=


a11 a12 · · · a1n
0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann


Ale takýchto zápisov
v tvare X·matica·XT
je nekonečne veľa
napr. tiež:

X


a11 a12−ε ··· a1n
−ε a22 ··· a2n
...
...
. . .
...

0 0 ··· ann

XT

pre ľubovoľné ε∈R.

Veta 13.1. Pre každú kvadratickú formu
∑
aijxixj existuje jediná symetrická ma-

tica S∈Mnn(R) taká, že
∑

1≤i≤j≤n

aijxixj=XSXT, kde X=(x1, · · · , xn).

Dôkaz. S=sij ; sij=sji. Musí byť
∑

1≤i≤j≤n

aijxixj=
n∑

1=i,j

sijxixj . Z porovnávania:

aii=sii pre i=1, · · · , n a pre i̸=j : sij+sji=2sij=aij ⇒ sij= 12aij .
S je matica kvadratickej formy.

□

Príklad.

2x21−x1x2+x23 ⇔ (x1 x2 x3 )

 2 − 12 0
− 12 0 0
0 0 1

x1
x2
x3


Definícia 13.1.
Regulárnou lineárnou transformáciou premenných X=(x1, · · · , xn) rozumieme za-
vedenie nových premenných Y=(y1, · · · , yn) takých, že Y=XP pre dáku regulárnu
maticu P∈Mnn(R). Y=XP⇔ X=YP−1.

Kvadratické formy budeme zapisovať v tvare XSXT, kde S = ST ∈ Mnn(R),
X = (x1, · · · , xn). Urobme v kvadratickej forme XSXT regulárnu lineárnu trans-
formáciu premenných Y = XP. Keďže P je regulárna, máme X = YP−1, teda
XSXT=YP−1S(YP−1)T=YP−1S(P−1)T︸ ︷︷ ︸

B

YT. Máme BT=(P−1S(P−1)T)T=

= P−1S(P−1)T = B, teda B je symetrická. Od formy XSXT premenných
X=(x1, · · · , xn) sme prešli ku kvadratickej forme n premenných Y=(y1, · · · , yn),
YBYT pričom B=P−1S(P−1)T. t.j. S=PBPT.
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Definícia 13.2. Matice A,B∈Mnn(R) sú kongruentné (nad R) ak existuje regu-
lárna matica Q∈Mnn(R) taká, že A=QBQT.

Poznámka. Ak kvadratickú formu XSXT upravíme regulárnou lineárnou transfor-
máciou premenných na ”novú” kvadratickú formu, tak matice týchto foriem sú
kongruentné.

Veta 13.2. Každú (nenulovú) kvadratickú formu n premenných možno vhodnou
regulárnou lineárnou transformáciou premenných previesť na tvar:
y21+ · · ·+y2k−y2k+1− · · ·−y2s , kde s≤n.

Dôkaz. Majme (nenulovú) kvadratickú formu XSXT, kde X=(x1, · · · , xn), S̸=0
S=ST=(sij)∈Mnn(R). Vhodnou regulárnou lineárnou transformáciou premenných
môžeme XSXT previesť na ZBZT, kde Z=(z1, · · · , zn),B=BT=(bij)∈Mnn(R),
pričom už b11 ̸= 0. Ak existuje i∈{1, · · · , n} také, že sii ̸= 0, tak zoberieme xi=z1,
x1=zi, xj=zj pre 1 ̸=j ̸=i. Ak s11= · · ·=snn=0 tak existujú dáke i, j∈{1, · · · , n} i̸=j,
sij ̸=0. Potom zavedieme nové premenné (y1, · · · , yn), xi=yi+yj ;xj=yi−yj ;xk=yk
pre i ̸=k ̸=j. To je regulárna lineárna transformácia premenných. Dostaneme:
XSXT = 2 sij︸︷︷︸

̸=0

xixj+členy bezxixj = 2sij(y2i−y2j )+členy bez y2i=2sijy2i+členy

bez y2i , máme XSX
T=YCYT, kde C=(cij) má cii=2sij ̸=0. Potom zámenou pre-

menných z1=yi; zi=y1; zj=yj pre 1 ̸=j ̸=i prejdeme k forme ZBZT, kde už b11 ̸=0.
Teraz: XSXT=ZBZT=b11z21+b12z1z2+ · · ·+b1nz1zn+b21z2z1+ · · ·+bn1znz1+

+
∑

2≤i;j≤n

bijzizj=b11z
2
1+2

n∑
j=2

bijz1zj+
∑

2≤i;j≤n

bijzizj=b11(z
2
1+2z1

n∑
j=2

b1j
b11

zj)+

+
∑

2≤i;j≤n

bijzizj=b11(z1+
n∑

j=2

b1j
b11

zj)
2+

∑
2≤i,j≤n

bijzizj−b11

 n∑
j=2

b1j
b11

zj

2,

zámena
premenných:

∣∣∣∣∣∣∣∣∣∣
u1=z1+

n∑
j=2

b1j
b11

zj

u2=z2
· · ·

un=zn

∣∣∣∣∣∣∣∣∣∣
−

to je regulárna
lineárna transformácia
premenných, jej matica:


1 0 · · · 0
b12
b11

1 · · · 0
...
...
. . .

...
b1n
b11

0 · · · 1


je regulárna. Dostaneme: XSXT=ZBZT=b11u21+

∑
2≤i,j≤n

gijuiuj=b11u
2
1+UGU

T,

kde G∈Mn−1n−1(R);G=GT,U=(u2, · · · , un). Opakovaním konečného počtu ta-
kýchto krokov dostaneme pomocou regulárnych lineárnych transformácií premen-
ných, že XSXT=d1v21+ · · ·+dsv2s , kde s≤n. Permutáciou premenných v1, · · · , vn
dostaneme, že XSXT=c1p21+ · · ·+ckp2k+ck+1p2k+1+csp2s, kde c1, · · · , ck sú kladné a
ck+1, · · · , ck sú záporné. Potom urobíme regulárnu lineárnu transformáciu premen-
ných: y1=

√
c1p1, · · · , yk=

√
ckpk, yk+1=

√−ck+1pk+1, · · · , ys=
√
−csps.

Potom y21+ · · ·+y2k−y2k+1− · · ·−y2s=XSXT; s≤n
□

Dôsledok. Každá symetrická matica typu n×n nad R je kongruentná s diagonál-
nou maticou, ktorá má na hlavnej diagonále iba prvky z {−1, 0, 1}.

Dôkaz. Ak S=ST∈Mnn(R), tak XSXT je kvadratická forma, ktorá sa regulárnou
lineárnou transformáciou premenných upraví na tvar: y21+ · · ·+y2k−y2k+1− · · ·−y2s ,
(s≤n),teda na kvadratickú formu s maticou diag(1, · · · , 1,−1, · · · ,−1, 0, · · · , 0).
Matice tých kvadratických foriem sú kongruentné.

□
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Veta 13.3. (o zotrvačnosti):
Ak danú (nenulovú) kvadratickú formu XSXT n premenných upravíme regulárnou
lineárnou transformáciou premenných Y=XQ na y21+ · · ·+y2k−y2k+1− · · ·−y2s ,
(s≤n) a regulárnou lineárnou transformáciou premenných Z=XH ju upravíme na
z21+ · · ·+z2r−z2r+1− · · ·−z2t (t≤n), tak k=r a s=t.

Poznámka. Táto veta odôvodňuje, prečo sa tvar y21+ · · ·+y2k−y2k+1− · · ·−y2s (s≤n)
nazýva aj kanonický tvar kvadratickej formy XSXT.

Dôkaz. 1.) s=t : D1=diag(1, · · · , 1︸ ︷︷ ︸
k

,−1, · · · ,−1︸ ︷︷ ︸
s−k

, 0, · · · , 0) je matica y21+ · · ·+y2k−

−y2k+1− · · ·−y2s . Vieme, že S=QD1QT. D2=diag(1, · · · , 1︸ ︷︷ ︸
r

,−1, · · · ,−1︸ ︷︷ ︸
t−r

, 0, · · · , 0)

je matica z21+ · · ·+z2r−z2r+1− · · ·−z2t . Tiež S=HD2HT. Pre hodnosť máme:
h(S) = h(QD1QT)=dim(ImfQTD1Q)=dim(ImfQTfD1fQ) = dim(ImfQTfD1) =
= dim(ImfD1) = h(D1) = s (pretože Q aj Q

T je lineárny izomorfizmus).
2.) k=r : Nech by r<k. fQ : Rn→Rn, fH : Rn→Rn sú lineárne izomorfizmy. Oz-
načme S1=[e⃗1, · · · , e⃗k], S2=[e⃗r+1, · · · , e⃗n] podpriestory v Rn. Teda dim(S1) = k,
dim(S2)=n−r. Označme T1=f−1Q (S1), T2=f

−1
H (S2). Pretože fQ, fH sú lineárne

izomorfizmy, máme dim(T1)=k, dim(T2)=n−r. Tvrdíme, že T1∩T2 ̸={0⃗}.
dim(T1+T2)=dim(T1)+dim(T2)− dim(T1∩T2)=dim(T1)+dim(T2)=k+n−r. Ale
z predpokladu k−r>0, teda by bolo, že dim(T1+T2)>n spor s tým, že T1+T2⊂Rn.
Nech teraz c⃗∈T1∩T2, c̸⃗=0⃗. Máme D1=diag(1, · · · , 1︸ ︷︷ ︸

k

,−1, · · · − 1︸ ︷︷ ︸
s−k

, 0, · · · , 0),

D2=diag(1, · · · , 1︸ ︷︷ ︸
r

,−1, · · · ,−1︸ ︷︷ ︸
s−r

, 0, · · · , 0). Vieme, že S=QD1QT,S=HD2HT. Rá-

tajme: c⃗·S·⃗cT=c⃗·QD1QT ·⃗cT=(c⃗·Q)D1(c⃗·Q)T=fQ(c⃗)D1(fQ(c⃗))T. Keďže fQ(c⃗)∈S1
máme: fQ(c⃗)=(c̃1, · · · , c̃k, 0, · · · , 0), kde (c̃1, · · · , c̃k )̸=(0, · · · , 0). Teda c⃗·S·⃗cT=
=(c̃1, · · · , c̃k, 0, · · · , 0)·diag(1, · · · , 1︸ ︷︷ ︸

k

,−1, · · · ,−1, 0, · · · , 0)(c̃1, · · · , c̃k, 0, · · · , 0)T=

=(c̃1, · · · , c̃k, 0, · · · , 0)(c̃1, · · · , c̃k, 0, · · · , 0)T=c̃21+ · · ·+c̃2k>0. Zároveň: c⃗·S·⃗cT=
=c⃗·HD2HT ·⃗cT=fH(c⃗)D2(fH(c⃗))T, 0⃗ ̸=fH(c⃗)=(0, · · · , 0︸ ︷︷ ︸

r

, ˜̃cr+1, · · · , ˜̃cn). Preto

c⃗·S·⃗cT=(0, · · · , 0, ˜̃cr+1, · · · , ˜̃cn)diag(1, · · · , 1︸ ︷︷ ︸
r

,−1, · · · ,−1︸ ︷︷ ︸
s−r

, 0, · · · , 0)(0, · · · , 0, ˜̃cr+1,

· · · , ˜̃cn)T=(0, · · · , 0,−˜̃cr+1, · · · ,−˜̃cs, 0, · · · , 0)(0, · · · , 0, ˜̃cr+1, · · · , ˜̃cn)T=
= −˜̃c2r+1 − · · · − ˜̃c2s<0 spor.
Podobne sa odvodí spor z predpokladu r>k. Vcelku: r = k.

□

Definícia 13.3. Kvadratická forma XAXT sa nazýva kladne definitná, ak pre
všetky X̸=0 je XAXT>0. [nazýva sa kladne semidefinitná, ak XAXT≥0 pre
všetky X̸=0; nazýva sa záporne definitná ak XAXT<0 pre všetky X̸=0.]

Definícia 13.4. Symetrická matica A∈Mnn(R) sa volá kladne definitná, ak kvad-
ratická forma XAXT je kladne definitná.

Veta 13.4. Ak kvadratická forma XAXT je kladne definitná a Y=XP je regu-
lárna lineárna transformácia premenných, tak kvadratická forma YBYT získaná
z XAXT uvedenou regulárnou lineárnou transformáciou premenných je tiež kladne
definitná.

Dôkaz. Vieme, že A=PBPT, B=P−1A(P−1)T. Potom pre ľubovoľnú Y ̸=0 máme
YBYT=YP−1A(P−1)TYT=(YP−1)A(YP−1)T, ak forma XAXT je kladne defi-
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nitná, tak YBYT=(YP−1)A(YP−1)T>0, lebo YP−1 ̸=0 (keďže P−1 je regulárna
matica). Teda aj forma YBYT je kladne definitná.

□

Veta 13.5. Kvadratická forma je kladne definitná práve vtedy, keď jej kanonický
tvar je y21+ · · ·+y2n.

Dôkaz. ⇐ : Ak kanonický tvar je y21+ · · ·+y2n, tak pre všetky Y=(y1, · · · , yn)̸=0
je y21+ · · ·+y2n>0. Z predchádzajúcej vety vyplýva, že aj pôvodná forma je kladne
definitná.
⇒ : Predpokladajme, že daná kvadratická forma je kladne definitná. Jej kanon-
ický tvar y21+ · · ·+y2k−y2k+1− · · ·−y2s ; s≤n. Keby bolo k<s<n, tak hodnota tejto
kvadratickej formy v (0, · · · , 0︸ ︷︷ ︸

k

, 1, 0, · · · , 0) by bola −1, a teda táto kvadratická forma

by nebola kladne definitná t.j. ani pôvodná by nebola kladne definitná –spor.
□

Veta 13.6. Matica A=AT∈Mnn(R) je kladne definitná práve vtedy, keď existuje
regulárna matica P∈Mnn(R) taká, že A=PPT.

Dôkaz.
⇒ : Predpokladajme, že A je kladne definitná. Teda kvadratická forma XAXT
je kladne definitná, teda jej kanonický tvar je y21+ · · ·+y2n=YInYT. Potom vieme,
že A=PInPT, kde Y=XP je regulárna lineárna transformácia premenných, ktorá
XAXT prevedie na YInYT.
⇐ : Predpokladajme, že A=PPT. Potom kvadratická forma určená maticou A je
XAXT=XPPTXT=(XP)(XP)T. Ak X=(x1, · · · , xn)̸=0, tak XAXT>0, alebo
XP=(x1, · · · , xn)P je nenulová n-tica (b1, · · · , bn)∈Rn a b21+ · · ·+b2n>0.

□

Veta 13.7. (Sylvestrovo kritérium)
Matica A=AT=(aij)∈Mnn(R) je kladne definitná práve vtedy, keď det(a11)>0,

det
( a11 a12
a21 a22

)
>0, · · · , det

(
a11 ··· a1n
··· ··· ···
an1 ··· ann

)
>0 čo je ekvivalentné s tým, že kvadratická

forma XAXT je kladne definitná.
Stručne: práve vtedy, keď všetky tzv. hlavné rohové determinanty matice A sú
kladné.

Dôkaz. Indukcia vzhľadom na n:
1◦: Pre n=1: a11x21 je kladne definitná práve vtedy, keď a11=det(a11)>0.
2◦: Predpokladajme, že tvrdenie platí pre všetky reálne symetrické matice typu
(n−1)× (n−1). Teraz nech A=AT∈Mnn(R).
Nutnosť podmienky: Predpokladajme, že A je kladne definitná. Chceme ukázať, že
jej hlavné rohové determinanty sú kladné. Vieme, že kvadratická forma XAXT je
kladne definitná. X=(x1, · · · , xn). XAXT=

∑
1≤i,j≤n

aijxixj=
∑

1≤i,j≤n−1

aijxixj+

+2·(a1nx1xn+ · · ·+ann−1xnxn−1)+annx2n. Uvažujme o kvadratickej forme:∑
1≤i,j≤n−1

aijxixj . Jej matica je

( a11 ··· a1n−1
··· ··· ···

an−11 ··· an−1n−1

)
. Táto kvadratická forma je

tiež kladne definitná. Keby nie, tak by existovala (n−1)-tica (x̃1, · · · , x̃n−1)̸=0
taká, že

∑
1≤i,j≤n

aij x̃ix̃j≤0. Potom (x̃1, · · · , x̃n−1, 0) by bola nenulová n-tica, pričom∑
1≤i,j≤n

aij x̃ix̃j=
∑

1≤i,j≤n−1

aij x̃ix̃j≤0 –spor s tým, že XAXT je kladne definitná.

Z indukčného predpokladu: det(a11)>0, · · · , det
( a11 ··· a1n−1

··· ··· ···
an−11 ··· an−1n−1

)
>0. Zostáva
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ešte ukázať, že det(A)>0. Ale matica A je kladne definitná, a teda podľa vety 13.6
existuje regulárna matica P : A=PPT, preto det(A)=det(P) det(PT)=det2(P)>0
keďže P je regulárna.

Postačujúcosť: Predpokladajme, že det(a11)>0, · · · , det
(

a11 ··· a1n
· ··· ·

an1 ··· ann

)
>0.

Z indukčného predpokladu vyplýva, že kvadratická forma

(x1, · · · , xn−1)

 a11 · · · a1n−1
...

. . .
...

an−11 · · · an−1n−1


 x1

· · ·
xn−1

= ∑
1≤i,j≤n−1

aijxixj

je kladne definitná. Teda existuje regulárna matica P∈Mnn(R) taká, že regulárna
lineárna transformácia premenných (y1, · · · , yn−1)=(x1, · · · , xn−1)·P prevedie túto
kvadratickú formu na y21+ · · ·+y2n−1. Definujme yn=xn. To znamená, že dostaneme
regulárnu lineárnu transformáciu n premenných (y1, · · · , yn)=(x1, · · · , xn)

(
P 0
0 1

)
.

Táto prevedie kvadratickú formu
∑

1≤i,j≤n

aijxixj na y21+ · · ·+y2n−1+2·(b1ny1yn+ · · ·

· · ·+bn−1nyn−1yn)+bnny2n pre vhodné bij∈R.
Upravíme:

∑
1≤i,j≤n

aijxixj=(y1+ · · ·+b1nyn)2+ · · ·+(yn−1+bn−1nyn)2+cy2n=

=

∣∣∣∣∣∣∣
z1=y1+ · · ·+b1nyn

· · ·
zn−1=yn−1+bn−1nyn

zn=yn

∣∣∣∣∣∣∣=z21+ · · ·+z2n−1+cz2n
táto forma
má maticu:


1 · · · 0 0
...
. . .

...
...

0 · · · 1 0
0 · · · 0 c


Táto je kongruentná s A, teda existuje regulárna matica Q∈Mnn(R) taká, že:
diag(1, 1, · · · , 1, c)=QAQT. Z toho: det(QAQT)=c=det(Q) det(A) det(QT)=
=det2(Q)· det(A)>0, teda c>0.

□
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IV. HOMOGÉNNE BILINEÁRNE FORMY

Definícia 14.1. Nech sú dané dve skupiny n premenných x1, · · · , xn a y1, · · · , yn.
Potom homogénna bilineárna forma (týchto dvoch skupín premenných) je výraz

tvaru:
n∑

i,j=1

xiaijyj , pričom aij∈R sú koeficienty tejto formy.

Príklad. x1y1+ · · ·+xnyn je homogénna bilineárna forma, ktorá definuje štandard-
ný skalárny súčin v Rn.

Formu
n∑

i,j=1

xiaijyj môžeme zapísať pomocou matícXAYT, kdeX=(x1, · · · , xn)

Y=(y1, · · · , yn),A=(aij)∈Mnn(R). Ak X=Y tak
n∑

i,j=1

xiaijyj je kvadratická forma

premenných X=(x1, · · · , xn).

Definícia 14.2. Nech V je vektorový priestor nad R. Funkcia φ : V×V→R je
bilineárna, ak pre každé α, β∈R, x⃗, y⃗, z⃗∈V platí: φ(αx⃗+βy⃗; z⃗)=αφ(x⃗, z⃗)+βφ(y⃗, z⃗);
φ(x⃗, αy⃗+βz⃗)=αφ(x⃗, y⃗)+βφ(x⃗, z⃗).

Tvrdenie 14.1. Homogénna bilineárna forma je vlastne súradnicové vyjadrenie
bilineárnej funkcie.

Dôkaz. Nech V je vektorový priestor nad R, nech (⃗a1, · · · , a⃗n) a (⃗b1, · · · , b⃗n) sú dve
bázy vo V . Nech x⃗=x1a⃗1+ · · ·+xna⃗n resp. y⃗=y1⃗b1+ · · ·+ynb⃗n. Nech φ : V×V→R

je bilineárna funkcia. Potom φ(x⃗, y⃗)=φ(
n∑

i=1

xia⃗i;
n∑

j=1

yj b⃗j)=
n∑

i,j=1

xiφ(⃗ai, b⃗j)yj . K φ

prislúcha homogénna bilineárna forma XAYT, kde X=(x1, · · · , xn)Y=(y1, · · · , yn)
A má v i-tom riadku a j-tom stĺpci prvok φ(⃗ai, b⃗j).

□
Homogénna kvadratická funkcia.

Definícia 14.3. Nech V je vektorový priestor nad R, nech φ : V×V→R je bi-
lineárna funkcia. Potom homogénna kvadratická funkcia prislúchajúca k φ sa defin-
uje ako ψ : V→R; ψ(x⃗)=φ(x⃗, x⃗).

Príklad. V=R3, bilineárna funkcia φ : R3×R3→R s predpisom φ(x⃗, y⃗) = 5x1y1+
+x1y2+3x2y1−x2y2. φ určuje kvadratickú funkciu ψ : R3→R, ψ(x1, x2, x3) =
= 5x21+4x1x2−x22. Tá istá kvadratická funkcia prislúcha aj k bilineárnej funkcii
φ̃ : R3×R3→R, φ̃(x⃗, y⃗)=5x1y1+3x1y2+x2y1−x2y2.

Veta 14.1. Nech ψ : V→R je homogénna kvadratická funkcia na reálnom vek-
torovom priestore V . Potom exstuje jediná symetrická bilineárna funkcia určujúca
ψ (teda taká bilineárna funkcia φ : V×V→R, že φ(x⃗, y⃗)=φ(y⃗, x⃗) pre všetky x⃗, y⃗∈V
a pritom ψ(x⃗)=φ(x⃗, x⃗)).

Dôkaz.
Jedinečnosť: Nech φ : V×V→R je symetrická bilineárna funkcia, ktorá určuje
homogénnu kvadratickú funkciu ψ : V→R (teda ψ(x⃗)=φ(x⃗, x⃗), x⃗∈V ). Pre ľubovoľné
x⃗, y⃗∈V : φ(x⃗+y⃗; x⃗+y⃗)=φ(x⃗, x⃗)+2φ(x⃗, y⃗)+φ(y⃗, y⃗) ⇒ ψ(x⃗+y⃗)=ψ(x⃗)+ψ(y⃗)+2φ(x⃗, y⃗)
z čoho máme, že musí platiť φ(x⃗, y⃗)= 12 [ψ(x⃗+y⃗)−ψ(x⃗)−ψ(y⃗)]. Teda symetrická φ je
naozaj jednoznačne určená funkciou φ.
Existencia: Z definície vieme, že existuje nejaká bilineárna fukcia φ̃ : V×V→R
taká, že ψ(x⃗)=φ̃(x⃗, x⃗) pre každé x⃗∈V . Definujme funkciu φ : V×V→R, φ(x⃗, y⃗)=
=12 [ψ(x⃗+y⃗)−ψ(x⃗)−ψ(y⃗)]. φ je symetrická, lebo φ(x⃗, y⃗)=

1
2 [ψ(x⃗+y⃗)−ψ(x⃗)−ψ(y⃗)]=

=12 [ψ(y⃗+x⃗)−ψ(y⃗)−ψ(x⃗)]=φ(y⃗, x⃗). Je ľahké overiť, že keďže ψ(x⃗)=φ̃(x⃗, x⃗), tak φ je
bilineárna funkcia. Nakoniec nám zostáva dokázať, že pre každé x⃗∈V máme (tak
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ako treba) φ(x⃗, x⃗)=ψ(x⃗). Rátajme: φ(x⃗, x⃗)= 12 [ψ(2x⃗)−2ψ(x⃗)]=
=12 [φ̃(2x⃗, 2x⃗)−2φ̃(x⃗, x⃗)]=

1
2 [4φ̃(x⃗, x⃗)−2φ̃(x⃗, x⃗)]=φ̃(x⃗, x⃗)=ψ(x⃗).

□

Poznámka. Nech V je reálny vektorový priestor, nech je daná kvadratická forma
XAXT n premenných X=(x1, · · · , xn), AT=A. Potom táto kvadratická forma
určuje homogénnu kvadratickú funkciu takto: zvoľme bázu (⃗a1, · · · , a⃗n) vo V . Ak
x⃗=x1a⃗1+ · · ·+xna⃗n∈V , tak definujeme ψ(x⃗)=XAXT. Potom ψ : V→R je ho-
mogénna kvadratická funkcia.

Niektoré fakty z euklidovskej teórie kvadratických foriem.
Pripomeňme si: matica A∈Mnn(R) je ortogonálna, ak AAT=In, t.j. jej ri-

adky tvoria ortonormálny systém vektorov v Rn t.j. pre všetky x⃗, y⃗∈Rn máme, že
⟨x⃗A; y⃗A⟩=⟨x⃗, y⃗⟩.

Tvrdenie 14.2. Ortogonálne matice typu n×n tvoria grupu; je to tzv. ortogonálna
grupa; označme ju O(n).

Dôkaz. Ak A,B∈O(n), tak AAT=In,BBT=In potom AB(AB)T=ABBTAT=
=AInAT=In. Teda AB∈O(n). Asociatívnosť:

√
; neutrálny prvok: In∈O(n),

inverzný prvok k A∈O(n) je AT, máme AAT=In a ATA = In = AT(AT)T t.j.
AT∈O(n).

□

Veta 14.2. Matica prechodu od ortonormálnej bázy v Rn (so štandardným skalár-
nym súčinom) k ortonormálnej báze je ortogonálna matica. Tiež: ak od ortonor-
málnej bázy v Rn prejdeme pomocou ortogonálnej matice prechodu k novej báze,
tak aj nová báza bude ortonormálna.

Dôkaz. 1.časť: Nech (⃗a1, · · · , a⃗n), (⃗a′1, · · · , a⃗′n) sú dve ortonormálne bázy v Rn.
Nech P=(pij)∈Mnn(R) je matica prechodu od (⃗a′1, · · · , a⃗′n) k (⃗a1, · · · , a⃗n). Teda

a⃗i =
n∑

i=1

pij a⃗
′
j , i = 1, · · · , n. Potom δik = ⟨⃗ai, a⃗k⟩ = ⟨

n∑
j=1

pij a⃗
′
j ,

n∑
s=1

pksa⃗
′
s⟩ =

=
n∑

j=1

n∑
s=1

pijpks ⟨⃗a′j , a⃗′s⟩︸ ︷︷ ︸
=δjs

=
n∑

j=1

pijpkj , teda
n∑

j=1

pijpkj=

{
1 ak i=k

0 ak i̸=k
. To znamená, že

každý riadok v P (ako vektor z Rn) má dĺžku 1 a každé dva riadky sú na seba
kolmé, t.j. riadky v P tvoria ortonormálnu bázu v Rn, t.j. P∈O(n).
2.časť: Nech je daná O(n)∋P=(pij) a báza (⃗a′1, · · · , a⃗′n), ktorá je ortonormálna.

Matica P je regulárna, teda vzťahy a⃗i=
n∑

j=1

pij a⃗
′
j definujú bázu (⃗a1, · · · , a⃗n). Pritom

však ⟨⃗ai, a⃗k⟩=
n∑

j=1

pijpkj=δik teda (⃗a1, · · · , a⃗n) je ortonormálna báza.

□

Veta 14.3. (o hlavných osiach) Pre každú reálnu symetrickú maticu A∈Mnn(R)
existuje C∈O(n) taká, že CACT=CAC−1=diag(λ1, · · · , λn), kde λ1, · · · , λn sú
vlastné hodnoty matice A. (Riadky v C sú ortogonálne vlastné vektory patriace
k λ1, · · · , λn.)

Dôkaz. Indukcia vzhľadom na n.
1◦ Pre n=1 tvrdenie platí.
2◦ Indukčný predpoklad: Predpokladajme, že veta je správna pre n−1. Teraz nech
A je symetrická reálna matica typu n×n. Nech λ1∈R je jej vlastná hodnota, k nej
zoberme vlastný vektor x⃗1, rovno ho zoberme taký, že |x⃗1|=1. Doplňme vektor x⃗1 na
ortonormálnu bázu v Rn; nech to je (x⃗1, x⃗2, · · · , x⃗n). Nech P je matica prechodu
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od (e⃗1, · · · , e⃗n) k (x⃗1, · · · , x⃗n), vieme, že P∈O(n). Nech B je matica lineárnej
transformácie fA : Rn→Rn vzhľadom na (x⃗1, · · · , x⃗n). Matica fA vzhľadom na
(e⃗1, · · · , e⃗n) je A, potom vieme, že B=PAP−1=PAPT. Máme BT=B. Tiež:
fA(x⃗1)=λ1x⃗1, lebo x⃗1 je vlastný vektor matice A patriaci k λ1. To znamená, že

B=
(

λ1 0
0 A′

)
, kde A′∈Mn−1n−1(R) je symetrická. Podľa indukčného predpokladu

existuje ortonormálna matica H∈O(n−1): HA′HT=HA′H−1=diag(λ′2, · · · , λ′n),
kde λ′2, · · · , λ′n sú vlastné hodnoty matice A′. Utvorme: Q=

(
1 0
0 H

)
máme, že

Q∈O(n). Tiež QP∈O(n). Rátajme: QPA(QP)−1=QPA(QP)T=QPAPTQT=

=QBQT=
(
1 0
0 H

)(
λ1 0
0 A′

)(
1 0
0 HT

)
=

(
λ1 0
0 HA′HT

)
=


λ1 0 ··· 0
0 λ′

2 ··· 0

...
...
. . .
...

0 0 ··· λ′
n

.
Z podobnosti vyplýva {λ1, λ2, · · · , λn}={λ1, λ′2, · · · , λ′n}. Za C z tvrdenia zoberie-
me QP. Teda máme C∈O(n) takú, že CACT=CAC−1=diag(λ1, · · · , λn). Z toho:
e⃗iCAC−1=e⃗idiag(λ1, · · · , λn). e⃗iCA=(0, · · · , λi, · · · , 0)C=λie⃗iC. Teda (e⃗iC)A=
=λi(e⃗iC) t.j. e⃗iC je vlastný vektor matice A patriaci k vlastnej hodnote λi zároveň
e⃗iC je i-tý riadok matice C.

□
Poznámka.
1. Vieme, že vďaka symetrickosti reálnej matice A sú všetky jej vlastné hodnoty
reálne.
2. AT=A∈Mnn(R) môžeme chápať ako maticu lineárnej transformácie fA:Rn→Rn

Veta vlastne hovorí, že existuje taká báza v Rn vzhľadom na ktorú je A podobná
diagonálnej matici diag(λ1, · · · , λn).
3. Pre kvadratické formy n premenných veta hovorí, že regulárna lineárna trans-
formácia X=YC (t.j. Y=XCT=XC−1) prevedie danú kvadratickú formu XAXT

na tvar λ1y21+ · · ·+λny2n. (Y=(y1, · · · , yn))

Veta 14.4. Nech A=AT∈Mnn(R) je taká, že jej vlastné hodnoty λ1, · · · , λn
sú navzájom rôzne. Nech x⃗1, · · · , x⃗n sú jednotkové vlastné vektory prislúchajúce
k λ1, · · · , λn. Potom x⃗1, · · · , x⃗n∈Rn tvoria ortonormálny systém v Rn (a môžeme
ick zobrať ako riadky matice C∈O(n) z vety 14.3).

Dôkaz. Máme: x⃗iA=λix⃗i (pre i=1, · · · , n ). Vynásobením: x⃗iAx⃗Tj =λix⃗ix⃗Tj ; trans-
ponovaním: x⃗jATx⃗Ti = λix⃗j x⃗

T
i t.j. x⃗jAx⃗

T
i = λix⃗j x⃗

T
i ⇔ λj x⃗j x⃗

T
i = λix⃗j x⃗

T
i ⇔

⇔ (λj−λi)x⃗j x⃗Ti =0. Ale λi ̸=λj , teda x⃗j x⃗Ti =0 štandardný skalárny súčin ⟨x⃗i, x⃗j⟩=0.
fA : Rn→Rn má vzhľadom na bázu (x⃗1, · · · , x⃗n) maticu diag(λ1, · · · , λn).

□

Príklad. A=
(
1 0 1
0 1 1
1 1 0

)
∈Mnn(R). Nájsť ortogonálnu maticu C∈O(n),

aby CAC−1=CACT=diag(λ1, λ2, λ3). Kde λ1=1, λ2=− 1, λ3=2.
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V. KRIVKY 2. RÁDU

V afinno-euklidovskom priestore (R2,R2) majme karteziánsku súradnicový sys-
tém (O, e⃗1, e⃗2). Bod X nech má v ňom súradnice X≡(x1, x2). Nech je daná funkcia
f : A→R; f(x1, x2)=a11x21+2a12x1x2+a22x22+2a1x1+2a2x2+d, kde aij , ai, a∈R.
f je tzv. nehomogénna kvadratická funkcia na A, ak a11 ̸=0 ∨ a12 ̸=0 ∨ a22 ̸=0. ozn.
g(x1, x2)=a11x21+2a12x1x2+a22x

2
2.

Otázka: Akú množinu bodov v A vyjadruje rovnica f(x1, x2)=0, ak aspoň jedno
z aij ̸=0? Odpoveď: Veta 15.1:

Veta 15.1. {(x1, x2)∈R2; f(x1, x2)=0} je tzv. zovšeobecnená kužeľosečka; presnej-
šie je to elipsa, hyperbola, parabola, priamka, dvojica priamok, prázdna množina.

Dôkaz. Kvadratická forma g(x1, x2) = a11x21 + 2a12x1x2 + a22x
2
2 má maticu

A=
( a11 a12
a21 a22

)
∈M22(R). Z vety o hlavných osiach vieme, že existuje C∈O(2) :

CAC−1=CACT=
(

λ1 0
0 λ2

)
, kde λ1, λ2∈R sú vlastné hodnoty matice A.(

a b

c d

)
∈O(2) : a2+b2=1, c2+d2=1, ac+bd=0. Prvky z O(2) sú tvaru

(
cosφ sinφ
− sinφ cosφ

)
t.j. matica otočenia o uhol φ, alebo

(
− cosφ sinφ
sinφ cosφ

)
. (determinant prvej matice je 1 a

druhej je -1.) Ale za C z vety o hlavných osiach možno zobrať maticu z O(2) tvaru(
cosφ sinφ
− sinφ cosφ

)
.(Totiž v druhom prípade stačí vynásobiť maticu maticou

(
1 0
0 −1

)
)

Takto: nech e⃗′1 je vlastný vektor patriaci k λ1. |e⃗′1|=1. Doplňme x⃗1 vektorom
e⃗′2∈R2, |e⃗′2|=1 na bázu (e⃗′1, e⃗′2) v R2 takú, aby matica prechodu od (e⃗1, e⃗2) k (e⃗′1, e⃗′2)
–ozn. ju P– mala kladný determinant. Nech B je matica lineárnej transformácie
fA:R2→R2 vzhľadom na (e⃗′1, e⃗′2). Máme f(e⃗′1)=λ1e⃗′1 vieme, že B=PAP−1=PAPT,

lebo P∈O(2). Teda B=BT, B=
(

λ1 0
0 b

)
, b musí byť λ2, za C zoberieme P. Teda

nech C=
(
cosφ − sinφ
sinφ cosφ

)
∈O(2) je taká, že CACT=CAC−1=

=
(

λ1 0
0 λ2

)
. Ak (x′1, x

′
2) sú súradnice bodu X≡(x1, x2) vzhľadom na bázu (e⃗′1, e⃗′2) a

(x1, x2) sú jeho súradnice vzhľadom na (e⃗1, e⃗2), a C je matica prechodu od (e⃗1, e⃗2)
k (e⃗′1, e⃗

′
2), tak (x

′
1, x

′
2)=(x1, x2)·C, t.j. (x1, x2)=(x′1, x′2)·C−1 čo je to isté ako

(x1, x2)=(x′1, x
′
2)
(
cosφ sinφ
− sinφ cosφ

)
. (∗)

{
x1=x′1 cosφ+x

′
2 sinφ

x2=x′2 cosφ−x′1 sinφ
. (∗) pre vhodné φ je

regulárna lineárna transformácia premenných, ktorá formu a11x21+2a12x1x2+a22x
2
2

prevedie na λ1x′
2
1 + λ2x

′2
2. Týmto otočením prejde (♣) f(x1, x2) = 0 na tvar

(♢) λ1x
′2
1+λ2x

′2
2+2b1x

′
1+2b2x′2+b=0. λ1, λ2 sú korene charakteristického poly-

nómu χA(t)=det
(

t−a11 −a12
−a12 t−a22

)
= (t− λ1)(t− λ2). Z toho: det(A) = λ1λ2 = :δ.

Rozlíšime dva prípady:
(I): δ ̸=0 : λ1λ2 ̸=0. Máme teda λ1 ̸=0̸=λ2. (♢) upravíme takto: λ1(x′21+2 b1λ1x

′
1)+

+λ2(x′
2
2+2

b2
λ2
x′2)+b=0. Upravíme na štvorce: λ1(x′1 +

b1
λ1
)2 + λ2(x′2+

b2
λ2
)2 + b−

−λ1 b21
λ21
−λ2 b22

λ22
=0. Potom regulárna lineárna transformácia:

{
x′′1=x′1+

b1
λ1

x′′2=x′2+
b2
λ2

t.j. posunutie prevedie (♢) na tvar: (♠) λ1x
′′2
1+λ2x

′′2
2+c=0; c∈R.

Ak λ1>0, λ2>0, c<0 ∨ λ1<0, λ2<0, c>0 tak rovnica (♠) a teda aj f(x1, x2)=0 vy-
jadruje elipsu.
Ak λ1>0, λ2<0, c ̸=0 ∨ λ1<0, λ2>0, c ̸=0 tak je to hyperbola.
Ak c=0 a δ=λ1λ2>0, tak jednobodová množina, ak c=0, δ<0, tak dvojica priamok.
Ak λ1>0, λ2>0, c>0 ∨ λ1<0, λ2<0, c<0 , tak prázdna množina.
(II): δ=0=λ1λ2 Nech napr. λ1=0, λ2 ̸=0. Teda (♢) je λ2x′22+2b1x′1+2b2x′2+b=0.
Ak b1 ̸=0 : λ2(x′22+2 b2λ2x

′
2)+2b1(x′1+ b

2b1
)=0⇔ λ2(x′2+

b2
λ2
)2+2b1(x′1−c)=0
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x′′1=x′1−c
x′′2=x′2+

b2
λ2

⇒ λ2x
′′2
2+2b1x

′′
1=0 to je rovnica paraboly.

Ak b1=0, potom množina vyhovujúcich bodov je zrejme alebo prázdna množina,
alebo priamka, alebo dvojica rovnobežných priamok.

□
Invarianty krivky 2. rádu.

Definícia 15.1. Invariantom krivky druhého rádu vyjadrenej rovnicou
a11x

2
1+2a12x1x2+a22x

2
2+2a1x1+2a2x2+a=0 je taký algebraický výraz závisiaci od

(a11, a12, a22, a1, a2, a), ktorý sa nezmení, ak túto krivku vyjadríme v inom kartezi-
ánskom súradnicovom systéme (ku ktorému prejdeme pomocou otočení a posunutí).

Veta 15.2.
Invariantmi krivky 2.rádu a11x21+2a12x1x2+a22x

2
2+2a1x1+2a2x2+a=0 sú:

s=Tr(A)=a11+a22; δ=det(A)=det
(
a11 a12
a12 a22

)
=λ1λ2; ∆=det

(
a11 a12 a1
a12 a22 a2
a1 a2 a

)
Dôkaz. Urobme transformáciu posunutie:

{
x1=x′1+α

x2=x′2+β
(α, β∈R dané). Dostaneme:

a11x
′2
1+2a12x

′
1x

′
2+ a22x

′2
2+2(a11α+a12β+a1)x

′
1+2(a12α+a22β+a2)x

′
2+(a11α

2+
+2a12αβ + a2β2 + 2a1α+ 2a2β + a)=0.
Máme: s(x′1, x

′
2)=a11+a22=Tr(A)=s(x1, x2) a δ(x

′
1, x

′
2)=det

( a11 a12
a12 a22

)
=δ(x1, x2).

∆=det

(
a11 a12 a11α+a12β+a1
a12 a22 a12α+a22β+a2

a11α+a12β+a1 a12α+a22β+a2 a11α
2+2a12αβ+a22β

2+2a1α+2a2β+a

)
Otočenie: od kvadratickej formy XAXT=a11x21+2a12x1x2+a22x

2
2 prejdeme pomo-

cou regulárnej lineárnej transformácie s maticou C=
(
cosφ sinφ
− sinφ cosφ

)
k forme s mati-

cou CACT. Potom s=Tr(CACT)=Tr(CAC−1)=Tr(C−1CA)=Tr(A)=a11+a22.
δ=det(CAC−1)=det(C) det(A) det(C−1)=det(A).

□
Invarianty krivky 2.rádu sa dajú využiť pri skúmaní rovnice

a11x
2
1+2a12x1x2+a22x

2
2+2a1x1+2a2x2+a=0 ⋆

Napr. videli sme, že v situácii, keď λ1λ2=δ ̸=0 vhodným otočením rovnica ⋆ prejde
na tvar λ1x′

2
1+λ2x

′2
2+c=0, kde c∈R, λ1, λ2 sú vlastné hodnoty matice A. Z in-

variantnosti ∆ máme: ∆=det diag(λ1, λ2, c)=λ1λ2c=δc, teda c=∆δ . Teda máme

λ1x
′2
1+λ2x

′2
2+
∆
δ =0 –z tohto sa už ľahko prejde ku kanonickému tvaru.

δ>0 ∆̸=0 ak s∆<0, tak elipsa; ak s∆>0, tak ∅
krivka eliptického typu ∆=0 bod

δ<0 ∆̸=0 hyperbola

krivka hyperbolického typu ∆=0 dvojica rôznobežných priamok

δ=0 ∆̸=0 parabola

krivka parabolického typu ∆=0 dvojica rovnobežných priamok, priamka alebo ∅
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VI. DUÁLNY VEKTOROVÝ PRIESTOR A
ZÁKLADY MULTILINEÁRNEJ ALGEBRY

Nech V,W sú vektorové priestory nad R. Označme L(V,W ) množinu lineárnych
zobrazení z V do W .L(V,W )̸=∅, lebo nulové zobrazenie patrí do L(V,W ). Defi-
nujeme +:L(V,W )×L(V,W )→L(V,W ), (f+g)(x⃗)=f(x⃗)+g(x⃗). Pre f∈L(V,W ) a
α∈R definujeme: αf : V→W , αf(x⃗)=α(f(x⃗)), αf∈L(V,W ). Pre f, g∈L(V,W ) je
f+g : V→W naozaj lineárne: (f+g)(αx⃗+βy⃗) = f(αx⃗+βy⃗)+g(αx⃗+βy⃗) = αf(x⃗)+
+βf(y⃗)+αg(x⃗)+βg(y⃗) = α(f(x⃗)+g(x⃗))+β(f(y⃗)+g(y⃗)) = α(f+g)(x⃗)+β(f+g)(y⃗).
Podobne sa presvedčíme, že pre α∈R, f∈L(V,W ) je αf : V→W naozaj lineárne.
αf(βv⃗+γp⃗)=α(f(βv⃗+γp⃗))=α(βf(v⃗)+γf(p⃗))=αβf(v⃗)+αγf(p⃗)=βαf(v⃗)+γαf(p⃗)=
=β(αf)(v⃗)+γ(αf)(p⃗). Ľahko sa overí, že potom L(V,W ) s takto definovaným +
resp. takto definovaním násobením prvkov z L(V,W ) prvkami z R je vektorový
priestor nad R.

Definícia 16.1. Nech f : V→W je lineárne zobrazenie. Nech V a W sú konečne
generované. Pevne zvoľme bázu (v⃗1, · · · , v⃗k) vo V a (w⃗1, · · · , w⃗s) vo W . Potom
matica f vzhľadom na bázy (v⃗1, · · · , v⃗k) resp. (w⃗1, · · · , w⃗s) sa definuje ako ma-
tica A∈Mks(R) taká, že jej i-tý riadok (i=1, · · · , k) tvoria súradnice vektoru f(v⃗i)
vzhľadom na bázu (w⃗1, · · · , w⃗s).

Veta 16.1.
Nech vektorové priestory V,W nad R sú konečne generované. Potom aj vektorový
priestor L(V,W ) je konečne generovaný, a máme dim(L(V,W ))=dim(V )· dim(W ).
Dôkaz. Definujme zobrazenie Φ : L(V,W )→Mks(R), kde dim(V )=k, dim(W )=s.
Φ(f):= matica f vzhľadom na pevne zvolenú bázu (v⃗1, · · · , v⃗k) vo V respektíve
(w⃗1, · · · , w⃗s) vo W . Toto Φ je lineárny izomorfizmus, keďže Mks(R) je vektorový
priestor dimenzie k·s, z toho vyplýva tvrdenie.

Φ je lineárne: Φ(f)=

(
f(v⃗1)
···

f(v⃗k)

)
. (s-tice súradníc vektora f(v⃗i) v báze (w⃗1, · · · , w⃗s).)

Pre α, β∈R, f, g∈L(V,W ) máme:

Φ(αf + βg) =

 (αf + βg)v⃗1· · ·
(αf + βg)v⃗k

 =
 αf(v⃗1) + βg(v⃗1)

· · ·
αf(v⃗k) + βg(v⃗k)

 =
= α

 f(v⃗1)
· · ·
f(v⃗k)

+ β
 g(v⃗1)

· · ·
g(v⃗k)

 = αΦ(f) + βΦ(g)
Φ je surjektívne: Nech A=(aij)∈Mks(R) je ľubovoľná. Potom predpis

f(v⃗1)=a11w⃗1+ · · ·+a1sw⃗s

· · ·
f(v⃗k)=a1kw⃗1+ · · ·+aksw⃗s

úplne a jednoznačne definuje, keďže (v⃗1, · · · , v⃗k) je báza lineárneho zobrazenia
f : V→W , z definície je jasné, že f má vzhľadom na bázy (v⃗1, · · · , v⃗k) resp.
(w⃗1, · · · , w⃗s) maticu A, t.j. Φ(f)=A.
Φ je injektívne: Nech Φ(f)=Φ(g). To znamená, že f(v⃗i)=g(v⃗i), i=1, · · · , k. Pretože
(v⃗1, · · · , v⃗k) je báza vo V , z toho f=g.

□
Definícia 16.2. Nech V je vektorový priestor nad R. Vektorový priestor L(V,R)
sa nazýva duálny priestor k priestoru V , označíme ho V ∗.

Poznámka. Z vety 16.1 (keďže R je 1-rozmerný vektorový priestor nad R) máme,
že ak V je konečne generovaný, tak dim(V ∗)=dim(V ).
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Definícia 16.3.
Prvky z V ∗ sa volajú lineárne formy na vektorovom priestore V .

Príklad.
1. V = Rn, pri : Rn→R, pri(x1, · · · , xn) = xi. pri je lineárna forma na Rn

t.j. pri∈(Rn)∗.
2. C(⟨0, 1⟩,R) je vektorový priestor spojitých funkcií ⟨0, 1⟩→R.

∫ 1
0 :C(⟨0, 1⟩,R)→R∫ 1

0 (αf+βg)=α
∫ 1
0 f+β

∫ 1
0 g teda

∫ 1
0 ∈C∗(⟨0, 1⟩,R).

Definícia 16.4+Tvrdenie 16.1.
Zobrazenie ( , ) : V ∗×V→R (V je vektorový priestor nad R); (x∗, y⃗)=x∗(y⃗) pre
každé x∗∈V ∗, y⃗∈V , je bilineárne, nazýva sa párovacie zobrazenie V ∗ a V .

Dôkaz.
Lineárnosť v 1.argumente: α, β∈R, x∗, y∗∈V ∗v⃗∈V , (αx∗+βy∗, v⃗)=(αx∗+βy∗)(v⃗)=
= αx∗(v⃗)+βy∗(v⃗) = α(x∗, v⃗)+β(y∗, v⃗). Lineárnosť v 2.argumente: (x∗, αa⃗+βb⃗) =
=x∗(αa⃗+βb⃗)=αx∗(⃗a)+βx∗(⃗b)=α(x∗, a⃗)+β(x∗, b⃗).

□

Definícia 16.5+Veta 16.2.
Nech vektorový priestor V nad R je konečne generovaný, nech (⃗b1, · · · , b⃗k) je dáka

báza vo V . Potom predpis (b∗i , b⃗j)=δij=

{
1,ak i=j

0,ak i̸=j
pre i, j=1, · · · , k úplne a

jednoznačne definuje lineárne formy b∗1, · · · , b∗k∈V ∗. (b∗1, · · · , b∗k) je potom báza
priestoru V ∗, nazýva sa duálna báza k báze (⃗b1, · · · , b⃗k).

Dôkaz. Vieme, že dim(V ∗)=dim(V )=k. Teda na dôkaz toho, že (b∗1, · · · , b∗k) je báza
vo V ∗ stačí ukázať, že b∗1, · · · , b∗k sú lineárne nezávislé. Nech α1b∗1+ · · ·+αkb

∗
k=0

(t.j. nulové zobrazenie V→R). Chceme ukázať, že α1 = · · · = αk = 0. Takto:
(α1b∗1+ · · ·+αkb

∗
k; b⃗i)=α1(b

∗
1, b⃗i)+ · · ·+αi−1(b∗i−1, b⃗i)+αi(b∗i , b⃗i)+ · · ·+αk(b∗k, b⃗i)=

= αi·1 = 0 pre i = 1, · · · , k.
□

Tvrdenie 16.2. Ak V je konečne generovaný vektorový priestor nad R, tak V ∗∼=V .

Dôkaz. Zoberieme ľubovoľnú bázu (⃗b1, · · · , b⃗k) vo V . Potom priradenie b⃗i 7→b∗i
i=1, · · · , k definuje lineárne zobrazenie V→V ∗, keďže zobrazuje bázu na bázu, je to
lineárny izomorfizmus.

□

Definícia 16.6. Nech V je vektorový priestor nad R. Priestor (V ∗)∗ označíme
V ∗∗, nazýva sa druhý duálny priestor priestoru V .

Veta 16.3. Ak V je konečne generovaný, tak existuje kanonický lineárny izomor-
fizmus V ∗∗∼=V .

Dôkaz. Definujme εV : V→V ∗∗, εV (v⃗) : V ∗→R, εV (v⃗)(x∗):=x∗(v⃗). (ak εV je
naozaj lineárny izomorfizmus, tak je jasné, že je kanonický, lebo nezávisí od výberu.)
1. Overíme, že εV (v⃗) je pre každé v⃗∈V lineárne zobrazenie. εV (v⃗)(αa∗ + βb∗) =
=(αa∗+βb∗)(v⃗)=(αa∗)(v⃗)+(βb∗)(v⃗)=αa∗(v⃗)+βb∗(v⃗)=αεV (v⃗)(a∗)+βεV (v⃗)(b∗).

2. Overíme, že εV :V→V ∗∗ je lineárne. εV (αv⃗+βz⃗)
?
= αεV (v⃗)+βεV (z⃗) pre α, β∈R,

v⃗, z⃗∈V . Stačí ukázať, že ľavá a pravá strana majú rovnaké hodnoty na všetkých
x∗∈V ∗. Ľavá strana: εV (αv⃗+βz⃗)(x∗)=x∗(αv⃗+βz⃗)=αx∗(v⃗)+βx∗(z⃗)=αεV (v⃗)(x∗)+
+βεV (z⃗)(x∗)=(αεV (v⃗)+βεV (z⃗))(x∗)=pravá strana.
3. Ukážeme, že εV : V → V ∗∗ je bijekcia. Nech (⃗b1, · · · , b⃗k) je báza vo V . Nech
(b∗1, · · · , b∗k) je duálna báza vo V ∗ a nech (b∗∗1 , · · · , b∗∗k ) je duálna báza vo V . Zau-
jíma nás, čo je εV (⃗bi). Máme εV (⃗bi)∈(V ∗)∗, rátajme (εV (⃗bi), b∗j ) = εV (⃗bi)(b

∗
j ) =
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= b∗j (⃗bi) =

{
1 ak i=j

0 ak i ̸=j
. Z jednoznačnej určenosti duálnej bázy dostávame, že

εV (⃗bi)=b∗∗i i=1, · · · , k. Keďže εV zobrazuje bázu na bázu, je to lineárny izomorfiz-
mus.

□
Veta 16.4. Nech V,W sú vektorové priestory nad R, nech f : V → W je lineárne
zobrazenie. Potom existuje jediné lineárne zobrazenie f∗ : W ∗ → V ∗ také, že
(f∗(w∗), v⃗)=(w∗, f(v⃗)). pre všetky w∗∈W ∗, v⃗∈V . Toto f∗ sa volá duálne, alebo
adjungované lineárne zobrazenie k zobrazeniu f .

Dôkaz.
Jednoznačnosť: Nech by aj f∗1 : W

∗→V ∗ bolo také ako f∗ z tvrdenia. Potom
(f∗(w∗), v⃗)=(w∗, f(v⃗))=(f∗1 (w

∗), v⃗). Z toho: (f∗(w∗), v⃗)=(f∗1 (w
∗), v⃗) pre všetky

v⃗∈V,w∗∈W ∗. Z bilineárnosti: (f∗(w∗)−f∗1 (w∗), v⃗)=((f∗−f∗1 )(w∗), v⃗)=0. Teda
(f∗−f∗1 )(w∗) : V→R je nulové, preto f∗−f∗1 = nulové zobrazenie, teda f∗=f∗1 .
Existencia: Treba, že f∗ definované vlastnosťou (f∗(w∗), v⃗)=(w∗, f(v⃗)) je lineárne:

f∗(αw∗+βz∗)
?
= αf∗(w∗)+βf∗(z∗). Treba ukázať, že ľavá a pravá strana majú

(ako lineárne zobrazenie V→R) tú istú hodnotu v ľubovoľnom v⃗∈V . Ľavá strana:
(f∗(αw∗+βz∗), v⃗) = (αw∗+βz∗, f(v⃗)) = α(w∗, f(v⃗))+β(z∗, f(v⃗)) = α(f∗(w∗), v⃗)+
+β(f∗(z∗), v⃗)=(αf∗(w∗)+βf∗(z∗), v⃗) =pravá strana.

□
Veta 16.5. Nech V,W sú konečne generované nad R, nech f : V→W má vzhľadom
na bázy (v⃗1, · · · , v⃗k) vo V resp. (w⃗1, · · · , w⃗s) vo W maticu A=(aij)∈Mks(R). Po-
tom duálne lineárne zobrazenie f∗ :W ∗→V ∗ má vzhľadom na bázu (w∗

1 , · · · , w∗
s) vo

W ∗ resp. (v∗1 , · · · , v∗k) maticu AT.

Dôkaz. Máme f(v⃗i)=
s∑

j=1

aijwj pre i=1, · · · , k. Potrebujeme zistiť, čo je f∗(w∗
t ) pre

t = 1, · · · , s. Máme f∗(w∗
t ) =

k∑
j=1

bijv
∗
j , chceme zistiť btj (f

∗(w∗
t ), v⃗p) =

= (w∗
t ,

s∑
j=1

apjw⃗j) =⇝=
s∑

j=1

apj(w
∗
t , w⃗j) = apt. Pravá strana: k∑

j=1

btjv
∗
j , v⃗p

= k∑
j=1

btj(v
∗
j , v⃗p)=btp; z toho btp=apt teda matica B zobrazenia f

∗

je vlastne AT.
□

Veta 16.6. Ak f, g sú lineárne zobrazenia f, g : V→W , tak
1. (f+g)∗=f∗+g∗

2. Ak f : V→W,α∈R, tak (αf)∗=α(f∗)
3. O : V→W je nulové zobrazenie, potom O∗ : V ∗→W ∗ je tiež nulové; (idV )∗=idV ∗

4. Ak f : V→W , g :W→S sú lineárne zobrazenia, tak (g◦f)∗=f∗◦g∗.
5. Ak f : V→W je lineárne zobrazenie a V,W sú konečne generované, tak (f∗)∗ :
(V ∗)∗→(W ∗)∗ sa stotožní s f , ak stotožní V ∗∗ s V a W ∗∗ s W .

Dôkaz. Priamo z definície: pre prípad zobrazení medzi konečne generovanými pries-
tormi tieto vlastnosti vyplývajú z vlastnosti matíc. Napr. (f+g)∗=f∗+g∗ ⇔
(A+B)T=AT+BT alebo: (g◦f)∗=f∗◦g∗ ⇔ (AB)T=BTAT.

□
Tenzorový súčin vektorových priestorov.
Nech V,W sú konečne generované vektorové priestory nad R. Potom V×W je

vektorový priestor nad R. Označme M množinu všetkých zobrazení V×W→R,
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ktoré nadobúdajú nenulové hodnoty iba v konečnom počte prvkov z V×W . M ̸=∅,
lebo nulové zobrazenie patrí do M . Množina G všetkých zobrazení z V×W→R je
vektorový priestor . Pre f, g∈G definujeme f+g : V×W→R; (f+g)(x⃗, y⃗)=f(x⃗, y⃗)+
+g(x⃗, y⃗), podobne pre f∈G,α∈R definujeme αf :V×W→R; (αf)(x⃗, y⃗)=α(f(x⃗, y⃗)).
Je jasné, že G je vektorový priestor nad R. M je vektorový podpriestor v G. (stačí
použiť kritérium vektorového podpriestoru).
Ak f∈M , tak existujú (v⃗1, w⃗1), · · · , (v⃗k, w⃗k)∈V×W také, že f(v⃗i, w⃗i)=αi pre i=1, 2,
3, · · · , k, pričom αi ̸=0 a f(v⃗, w⃗)=0 pre (v⃗, w⃗)/∈{(v⃗1, w⃗1), · · · , (v⃗k, w⃗k)}. Pre takéto
f zavedieme symbol α1(v⃗1, w⃗1)+ · · ·+αk(v⃗k, w⃗k). Napr. (v⃗0, w⃗0) (pre v⃗∈V, w⃗∈W )
znamená funkciu, ktorá má vo (v⃗0, w⃗0) hodnotu 1 a vo všetkých iných má hodnotu
0. Podobne −1·(v⃗0, w⃗0):=−(v⃗0, w⃗0) je funkcia, ktorá má vo (v⃗0, w⃗0) hodnotu −1 a
všade inde 0.
Iný prípad: (v⃗1 + v⃗2; w⃗2)− (v⃗1, w⃗2)− (v⃗2, w⃗2) je symbol označujúci zobrazenie
V×W→R, ktorá má vo (v⃗1+v⃗2, w⃗2) hodnotu 1, vo (v⃗1, w⃗2) a (v⃗2, w⃗2) −1 a všade
inde 0.

Definícia 16.6. Nech S⊂M je vektorový podpriestor v M generovaný prvkami
tvaru (v⃗1+v⃗2, w⃗)−(v⃗1, w⃗)−(v⃗2, w⃗), (v⃗, w⃗1+w⃗2)−(v⃗, w⃗1)−(v⃗, w⃗2), (αv⃗, w⃗)−α(v⃗, w⃗)
[pre ľubovoľné v⃗, v⃗1, v⃗2∈V, w⃗, w⃗1, w⃗2∈W ] a (v⃗, αw⃗)−α(v⃗, w⃗).

Definícia 16.7. Nech V,W,M,S sú ako vyššie. Potom tenzorový súčin priestorov
V aW sa definuje ako faktorový vektorový priestorM/S, označíme ho V⊗W . Teda
V⊗W=M/S. Prvok vo V⊗W reprezentovaný (v⃗, w⃗)∈M označíme v⃗⊗w⃗.

Trieda ekvivalencie prvku (v⃗1+v⃗2, w⃗)−(v⃗1, w⃗)−(v⃗2, w⃗) bude (v⃗1+v⃗2)⊗w⃗−v⃗1⊗w⃗−
−v⃗2⊗w⃗=0∈V×W t.j. platí: (v⃗1+v⃗2)⊗w⃗=v⃗1⊗w⃗+v⃗2⊗w⃗. Podobne:

v⃗⊗(w⃗1+w⃗2)=v⃗⊗w⃗1+v⃗⊗w⃗2
(αv⃗)⊗w⃗=α(v⃗⊗w⃗)
v⃗⊗(αw⃗)=α(v⃗⊗w⃗)

Teda ak definujeme zobrazenie S : V×W→V⊗W , S(v⃗, w⃗)=v⃗⊗w⃗, toto S bude
bilineárne.

Veta 16.7.
1. Ak V,W, T sú konečne generované vekt. priestory, tak (V⊗W )⊗T∼=V⊗(W⊗T ).
2. Ak V,W sú konečne generované, tak V⊗W∼=W⊗V .
3. Ak V alebo W je nulový priestor, tak V⊗W∼=0
4. Ak (v⃗1, · · · , v⃗k) je báza vo V , (w⃗1, · · · , w⃗s) je báza vo W , tak báza vo V⊗W
pozostáva z vektorov (v⃗i ⊗ w⃗j), kde 1≤i≤k, 1≤j≤s. Teda dim(V ⊗W ) = k · s =
= dim(V ) · dim(W ).

Veta 16.8. Nech V,W sú konečne generované vektorové priestory nad R. Potom
V ∗⊗W∼=L(V,W ).

Dôkaz. Nech (v⃗1, · · · , v⃗k) je báza vo V , (w⃗1, · · · , w⃗s) je báza vo W . Definujme
lineárne zobrazenie Φ : V ∗⊗W→L(V,W ) takto: Φ(v∗i ⊗w⃗j)(v⃗s)=v∗i (v⃗s)·w⃗j . Teda
Φ(v∗i⊗v⃗j)(v⃗s)=δisw⃗j . Teda Φ(v∗i ⊗w⃗j) má maticu (vzhľadom na bázu (v⃗1, · · · , v⃗k)
vo V resp. (w⃗1, · · · , w⃗s) vo W .) ktorej i-tý riadok má v j-tom stĺpci 1 a všade inde
sú nuly. Teda Φ(v∗i ⊗w⃗j) je bázový prvok v L(V,W ) t.j. Φ je lineárny izomorfizmus.
Je jasné, že pre vektorové priestory V1, · · · , Vk môžeme definovať ich tenzorový súčin
induktívne:

V1⊗V2⊗ · · ·⊗Vk=V1⊗(V2⊗ · · ·⊗Vk).
□

Definícia 16.8. Nech V je konečne generovaný vektorový priestor nad R. Nech
p, q sú dané nezáporné celé čísla. Potom vektorový priestor

T q
p (V )=V

∗⊗ · · ·⊗V ∗︸ ︷︷ ︸
p

⊗V⊗ · · ·⊗V︸ ︷︷ ︸
q
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sa nazýva priestor tenzorov p-krát kovariantných a q-krát kontravariantných. Prvky
T q
p (V ) sa volajú tenzory typu (p, q) nad V .

Príklad.
1. T 10 (V )=V , teda tenzory typu (0, 1) sú vektory z V .
2. T 01 (V )=V

∗, teda tenzory typu (1, 0) sú lineárne formy na V .
3. T 11 (V )=V

∗⊗V∼=L(V, V ), teda tenzory typu (1, 1) sú vlastne lineárne zobrazenia
z V do V .
Tenzory typu (p, q) sa využívajú v diferenciálnej geometrie a v matematickej

fyzike. Pracuje sa tam s ich súradnicami.
Nech (v⃗1, · · · , v⃗k) je báza vo V . Potom bázu priestoru T q

p (V ) tvoria vektory
v∗i1⊗ · · · v∗ip⊗v⃗j1⊗ · · ·⊗v⃗jq kde 1≤i1≤ · · ·≤ip≤k a 1≤j1≤ · · ·≤jq≤k. Teda každý pr-
vok z T q

p (V ) má jediné vyjadrenie v tvare:∑
1≤ii,ji≤k

T
j1,··· ,jq
i1,··· ,ip v

∗
i1⊗ · · ·⊗v∗ip⊗v⃗j1⊗ · · ·⊗v⃗jp

Namiesto v∗s napíšeme v
s, potom dostaneme: vj(v⃗i)=δij .∑

1≤···≤k

T
j1,··· ,jq
i1,··· ,ip v

i1⊗ · · ·⊗vip⊗v⃗j1⊗ · · ·⊗v⃗jq

Einsteinova sumačná konvencia: Ten istý tenzor zapíšeme takto:

T
j1,··· ,jq
i1,··· ,ip v

i1⊗ · · ·⊗vip⊗v⃗j1⊗ · · ·⊗v⃗jq

Aj bázové vektory sa v praxi vynechávajú, ten istý tenzor sa označuje T j1,··· ,jq
i1,··· ,ip ,

(1≤i1, · · · , ip, j1, · · · , jq≤k).
Dané sú pravidlá ako sa zmení tenzor T j1,··· ,jq

i1,··· ,ip , ak od bázy (v⃗1, · · · , v⃗k) vo V prej-
deme k báze (v⃗′1, · · · , v⃗′k). To je obsah tzv. tenzorového počtu.


