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2 I.ROČNÍK

I. ZOBRAZENIA MEDZI MNOŽINAMI

Definícia 1.1. Nech A,B sú množiny. Zobrazenie z A do B je predpis, ktorý
každému prvku z A priradí práve jeden prvok z B. Ak tento predpis označíme f ,
tak hovoríme f : A→ B. f(a) = b znamená, že sme priradili prvku a∈A→ b∈B.
a je tzv. vzor prvku b. f : a→b. f(A)=obraz zobrazenia f . Im(f) je obraz množiny
A pri zobrazení Im(f) = {y∈B ∃x∈A : f(x)=y}
Definícia 1.2. Zobrazenia f : A→B, g : A→B sa rovnajú (f=g), ak pre ∀a∈A je
f(a)=g(a). f, g : N→N; f(x)=x+x; g(x)=2x

Definícia 1.3. Nech f : A→B je zobrazenie a nech Á ⊂ A. Predpis, ktorý každému
prvku a∈Á priradí f(a) sa nazýva zúženie zobrazenia f na podmnožinu Á. Označe-
nie: f �Á: Á→B a f �Á (x)=f(x)

Definícia 1.4. f : A→B sa nazýva surjektívne ak f(A)=B. Zobrazenie f : A→B
je surjektívne ⇐⇒ ∀y∈B ∃x∈A : f(x)=y.

Definícia 1.5. Zobrazenie f : A→B sa nazýva injektívne ak z toho, že
f(a)=f(á) vyplýva, že a=á

Definícia 1.6. Zobrazenie f : A→B sa nazýva bijekcia ak je surjektívne aj injek-
tívne.

Definícia 1.7. Nech f : A→B, g : B→C sú dve zobrazenia, potom predpis
x∈A → g(f(x)) definuje zobrazenie A→C označíme ho g◦f :A→C, g◦f(x)=g(f(x))
pre ∀x∈A. Zobrazenie g◦f : A→C sa nazýva zobrazenie zložené z f a g resp. kom-
pozícia zobrazení f a g.

Tvrdenie 1.1.
1.) Ak f : A→B, g : B→C sú injekcie, tak aj g◦f : A→C je injekcia.
2.) Ak f : A→B, g : B→C sú surjekcie, tak aj g◦f : A→C je surjekcia.

Dôkaz. Predpokladajme, že g◦f(a)=g◦f(á). Chceme ukázať, že a=á.
Ale g(f(a))=g(f(á)), lebo g je injektívne. Z toho: f(a)=f(á). Ale aj f je injektívne
⇒ a=á.

Tvrdenie 1.2. Ak f : A→B, g : B→C, h : C→D sú zobrazenia,
tak h◦(g◦f)=(h◦g)◦f . To je tzv. asociatívnosť skladania zobrazení.

Dôkaz. h◦(g◦f)(x) = h((g◦f)(x))=h(g(f(x)));
(h◦g)◦f(x)=(h◦g)(f(x))=h(g(f(x)) : ∀x∈A
Veta 1.1 a Definícia 1.8. Nech f : A→B je bijekcia. Potom existuje zobrazenie
B→A, ktoré každému prvku b∈B priradí len jediný prvok a∈A, pre ktorý f(a)=b.
Toto je inverzné zobrazenie k f , označíme ho f−1. Teda f−1(b)=a ⇔ f(a)=b .
Zobrazenie f−1 : B→A je tiež bijektívne a platí: f−1◦f=idA, f◦f−1=idB .

Dôkaz.
1.)f−1 je injekcia: nech a=f−1(b)=f−1(b́) Potom f(a)=b a f(a)=b́⇒ b=b́. f−1 je
injekcia.
2.)f−1 je surjekcia: ľubovoľné a∈A, f−1(f(a))=a, f−1 je bijekcia.
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Tvrdenie 1.3. Ak f : A→B, g : B→A sú zobrazenia také, že g◦f=idA, tak f je
injekcia a g je surjekcia.

Dôkaz.
f je injekcia: Predpokladajme, že f(a) = f(á)⇒ g(f(a)) = g(f(á)) = (g ◦ f)(á) =
= idA(á) = á.
g je surjekcia: ľubovoľné a∈A⇒ f(a)∈B, a=g(f(a))⇒ f(a) je vzor k prvku a pri
zobrazení g.

Veta 1.2. Zobrazenie f : A→B je bijektívne ⇔ keď existuje g : B→A také, že
g◦f=idA a f◦g=idB

Dôkaz. Predpokladajme, že f je bijektívne. Potom vieme, že ∃f−1 : B→A s tým, že
f−1◦f=idA. Predpokladajme, že ∃g : B→A : g◦f=idA a f◦g=idB . Z tvrdenia 1.3
dostávame, že f je injektívne aj surjektívne ⇒ bijektívne.

Binárne operácie.

Definícia 1.9. Binárna operácia na množine M 6=∅ je zobrazenie M×M→M .
Binárne operácie označujeme rôznymi spôsobmi. Obraz dvojice (a, b)∈M×M po-
tom označujeme obyčajne a+b= + (a, b) · · ·
Definícia 1.10. Nech ∗ : M×M→M je binárna operácia na M . Prvok e∈M taký,
že m∗e=m=e∗m pre ∀m∈M sa nazýva neutrálny prvok operácie ∗.
Pozn.. Binárna operácia nemusí mať neutrálny prvok.

Tvrdenie 1.4. Ak binárna operácia ∗ : M×M→M má neutrálny prvok, tak ho
má jediný.

Dôkaz. Keby e1, e2∈M boli neutrálne, tak e1=e1∗e2=e2 ⇒ e1=e2.

Definícia 1.11. Nech ∗ : M×M→M je binárna operácia a nech má neutrálny
prvok e∈M . Ak pre nejaké x∈M : ∃y∈M také, že x∗y=y∗x=e, tak y sa volá
inverzný prvok k x.

Označenie. Inverzný prvok k prvku x z predchádzajúcej definície označíme x−1.

Definícia 1.12. Binárna operácia je asociatívna, ak pre všetky a, b, c∈M máme:
a∗(b∗c)=(a∗b)∗c
Tvrdenie 1.5. Nech • : M×M→M je asociatívna binárna operácia a nech e∈M
je neutr. prvok tejto operácie. Potom ak pre x∈M existuje inverzný prvok, tak je
jediný.

Dôkaz. Nech pre x∈M by inverzné prvky boli dva: a∈M , b∈M . Teda: ax=xa=e,
bx=xb=e. Chceme ukázať, že a=b. Takto: a=ae=a(xb)=(ax)b=eb=b.

Definícia 1.13. Nech G6=∅ je množina a nech ∗ : G×G→G je binárna operácia na
G s týmito vlastnosťami:
1.) binárna operácia ∗ je asociatívna
2.) v G existuje neutrálny prvok operácie ∗, označíme ho e, teda pre každé x∈G:
e∗x=x∗e=x
3.) ∀x∈G existuje v G inverzný prvok, vieme už, že to je jediný prvok x−1∈G taký,
že x∗x−1=x−1∗x=e.
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Potom hovoríme, že dvojica (G, ∗) je grupa. (alebo G s operáciou ∗ je grupa). Ak
je operácia ∗ jasná, niekedy hovoríme, že G je grupa.

Príklad. Nech m∈N je pevne zvolené. Označme Zm množinu zvyškov po delení
celých čísel číslom m. Teda Zm={0, 1, · · · ,m− 1}. Definujme pre x, y∈Zm:
x⊕y je zvyšok po vydelení x+y číslom m. Potom ⊕ je binárna operácia na Zm.
Je asociatívna, neutrálny prvok je 0, inverzný prvok k x∈Zm je zvyšok po vydelení
čísla m−x číslom m. (Zm,⊕) je grupa.

Definícia 1.14. Binárna operácia ∗:M×M→M na množine M 6=∅ je komutatívna,
ak pre ∀a, b∈M : a∗b=b∗a. Ak túto vlastnosť nemá tak je nekomutatívna.

Definícia 1.15. Ak (G, ∗) je grupa a operácia ∗ je komutatívna, tak grupa G sa
nazýva komutatívna (alebo tiež Abelovská).

Príklady.
1.)(R \ {0}, ·) je komutatívna grupa.
2.)G={e}, e∗e=e to je tzv. triviálna grupa.
3.)(Z,+), (Zm,⊕) sú komutatívne grupy.
4.) Nech M 6=∅ je množina. Označme SM := množinu všetkých bijekcií M→M .
Skladanie zobrazení definuje binárnu operáciu ∗ na SM , tj. f∗g=g◦f pre ∀f, g∈SM .
Potom (SM , ∗) je grupa. Nie je komutatívna.
5.) Ak M z 4.) je M={1, 2, · · · , n} čo je vlastne SM? S{1,2,··· ,n} je vlastne množina
permutácií prvkov 1, 2, · · · , n množiny {1, 2, · · · , n}. Permutáciu

f : {1, 2, · · · , n}→{1, 2, · · · , n}môžeme prehľadne zapísať ako f=
(

1 2 ... n

f(1) f(2) ... f(n)

)

Napr. pre S{1,2,3} je (S{1,2,3}, ∗) grupa, ktorá má 6 prvkov.

Napr.:
(

1 2 3
1 3 2

)
∗
(

1 2 3
2 1 3

)
=
(

1 2 3
2 3 1

)
kým

(
1 2 3
2 1 3

)
∗
(

1 2 3
1 3 2

)
=
(

1 2 3
3 1 2

)
.

S{1,2,3} je komutatívna grupa.

Veta 1.3. Nech (G, •) je grupa. Potom:
1.)(x−1)−1=x pre ∀x∈G
2.) (x•y)−1=y−1•x−1 pre ∀x, y∈G
Dôkaz.
1.) (x−1)−1 je inverzný prvok k x−1. Ale máme x•x−1=x−1•x=1 a teda inverzný
prvok k x−1 je x. Pretože inverzný prvok je jediný máme: (x−1)−1=x.
2.) Rátajme (x•y)•(y−1•x−1)=x•(y•y−1)•x−1=x•1•x−1=1
Podobne (y−1•x−1)•(x•y)=y−1•(x−1•x)•y=y−1•1•y=1⇒ 2.)

Podgrupa.

Definícia 1.16. Nech (G, •) je grupa. Nech U 6=∅ je podmnožina v G s binárnou
operáciou ∗ : U×U→U takou, že pre každé x, y∈U platí x∗y=x•y. Ak (U, ∗) je
grupa, tak hovoríme, že (U, ∗) je podgrupa grupy (G, •). Voľnejšie tiež hovoríme, že
grupa U je podgrupou grupy G. Teda ak (U, ∗) je podgrupou v (G, •) tak zobrazenie
• |U×U : U×U→G je vlastne U teda (trochu nepresne) môžeme povedať, že v tejto
situácii je binárna operácia ∗ podgrupy U zúžením binárnej operácie • grupy G.

Veta 1.4. (kritérium podgrupy). Nech U 6=∅ je podmnožina množiny G, pričom
nech (G, •) je grupa. Potom U je podgrupou grupy G práve vtedy, keď platí
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ktorákoľvek z nasledujúcich dvoch ekvivalentných podmienok:
(I): pre ∀x, y∈U je x•y−1∈U
(II): pre ∀x, y∈U je x•y∈U a y−1∈U .

Dôkaz. U je podgrupa potom (I) ∧ (II)
Najskôr ukážeme, že (U, ∗) je podgrupa v (G, •). Označme 1U neutrálny prvok
grupy U , 1 je neutrálny prvok grupy G. Máme: 1U∗1U=1U= 1U•1U=1U•1 . Vyná-

sobením rovnosti zľava prvkom 1−1
U dostávame: 1U=1. Teraz pre ľubovoľný

prvok y∈U označme y−1
U k nemu inverzný prvok v podgrupe (U, ∗). (y−1 je inverzný

prvok k y v grupe (G, •)). Máme: yU∗y−1
U =yU•y−1

U =1U=1=y−1
U ∗yU=y−1

U •yU .

Teda z toho, čo je podčiarknuté vidíme, že k y je v G inverzný prvok y−1
U . Ale

tiež je to y−1. Keďže inverzný prvok k prvku grupy je práve jeden, dostávame:
y−1
U =y−1. Teda pre x, y∈U máme aj x, y−1∈U . Pretože (U, ∗) je podgrupa, máme
x∗y−1=x•y−1∈U . To je práve (I). Analogicky sa dokáže, že ak (U, ∗) je podgrupa,
tak platí (II).
Teraz predpokladajme, že je splnená podmienka (I). Chceme ukázať , že potom
(U, ∗) je podgrupa. Pretože U 6=∅ máme ďalej prvok a∈U . Z (I) potom dostá-
vame, že a•a−1=1∈U Ďalej, ak y∈U je ľubovoľné, tak z podmienky (I) vyplýva
1•y−1=y−1∈U . Teraz pre ľubovoľné x, y∈U bude tiež x, y−1∈U . Z (I) potom
máme, že aj x•(y−1)−1=x•y∈U . Ináč povedané, predpis x∗y=x•y pre ľubovoľné
(x, y)∈U×U definuje binárnu operáciu ∗ : U×U→U . Operácia ∗ je asociatívna
(lebo • je taká), neutrálny prvok je, inverzný prvok y−1

U =y−1, teda (U, ∗) je grupa.
Je to podgrupa v (G, •).
Homomorfizmy grúp.

Definícia 1.17. Nech (G, •), (H, ∗) sú grupy. Homomorfizmus z (G, •) do (H, ∗)
je zobrazenie f : G→H také, že f(x•y)=f(x)∗f(y) pre všetky x, y∈G.

Veta 1.5. Nech f : (G, •)→ (H, ∗) je homomorfizmus grúp. Potom
1.) f(1)=1.
2.) f(x−1)=(f(x))−1.

Dôkaz.
1.)1∗f(1)=f(1•1)=f(1)∗f(1)⇔ f−1(1)∗1∗f(1)=f−1(1)∗f(1)∗f(1)⇔ f(1)=1
2.) Nech x∈G je ľubovoľné. Potom x∗x−1=x−1∗x=1. Pretože f je homomorfiz-
mus a platí f(1)=1 máme, že f(x•x−1)=f(x)∗f(x−1)=f(x−1)∗f(x)=f(1)=1 z čoho
(f(x))−1=f(x−1).

Veta 1.6. Nech f : (G, •)→ (H, ∗) je homomorfizmus grúp. Ak S 6=∅ je podgrupa
grupy G tak f(S) je podgrupa grupy H.

Dôkaz. Pretože S je podgrupa vieme, že 1∈S. Potom f(1)=1∈S, teda f(S)6=∅.
Ďalej overíme (napr.) podmienku (I) z kritéria podgrupy pre f(S). Nech x, y∈f(S)
sú ľubovoľné . Teda x=f(a) a y=f(b) pre a, b∈S. Potom y−1=(f(b))−1=f(b−1)
z predchádzajúcej vety. Z toho x∗y−1=f(a)∗f(b−1)=f(a•b−1)∈f(S) totiž a•b−1∈S
keďže a, b∈S a S je podgrupa. Podmienka (I) je splnená a teda f(S) je podgrupa.

Definícia 1.18. Majme zobrazenie f : M→N a nech A⊂N . Vzor množiny A pri
zobrazení f označíme f−1(A) pritom f−1(A)={x∈M ; f(x)∈A}
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Veta 1.7. Nech f : (G, •)→(H, •) je homomorfizmus grúp a nech S⊂H je podgrupa
grupy H. Potom f−1(S) je podgrupa grupy G.

Dôkaz. Vieme, že f(1)=1 pritom 1∈S, lebo S je podgrupa. Teda 1∈f−1(S) a preto
f−1 6=∅. Teraz použijeme kritérium podgrupy. Nech x, y∈f−1(S) sú ľubovoľné.
Chceme ukázať, že x•y−1∈f−1(S). Takto: pretože x, y∈f−1(S) máme f(x)∈S,
f(y)∈S. Pretože S je podgrupa, potom aj f(x)•(f(y))−1∈S. Pritom však vieme,
že f(y−1)=(f(y))−1. Teda máme f(x)•f(y−1)∈S ⇒ f(x•y−1)∈S. To znamená, že
x•y−1∈f−1(S). �

Definícia 1.19. Nech f : (G, •)→(H, •) je homomorfizmus grúp. Vieme, že
{1}⊂H je podgrupa grupy H. Podgrupu f−1({1}) grupy G nazývame jadro ho-
momorfizmu f , označuje sa Ker(f). Teda Ker(f)={x∈G; f(x)=1}
Veta 1.8. Nech f : (G, •)→(H, •) je homomorfizmus grúp. Potom f je injekcia
⇔ Ker(f)={1}
Dôkaz.
⇒ : Nech f je injektívne zobrazenie. Chceme ukázať, že Ker(f)={1}. Takto:

máme f(1)=1, a teda zrejme {1}⊂Ker(f). Ak x∈Ker(f), tak f(x)=1=f(1). Z in-
jektívnosti f vyplýva, že x=1. Teda tiež Ker(f)⊂{1}. Vcelku: Ker(f)={1}.
⇐ : Predpokladajme, že Ker(f) = 1. Chceme ukázať, že f je injektívne. Takto:

nech f(x) = f(y) pre dáke x, y∈G. Potrebujeme ukázať, že x = y. Z toho, že
f(x)=f(y) dostávame f(x)•(f(y))−1=1. Ale vieme, že f(y−1)=(f(y))−1. Teda
platí: f(x)•f(y−1)=1. Pretože f je homomorfizmus, z toho dostaneme:
f(x•y−1)=1. Teda: x•y−1∈Ker(f)={1}. To znamená, že x•y−1=1. Z toho
dostaneme, že x=y.

Definícia 1.20. Injektívny homomorfizmus grúp sa nazýva monomorfizmus.
Surjektívny homomorfizmus grúp sa nazýva epimorfizmus. Homomorfizmus grúp,
ktorý je bijektívny sa volá izomorfizmus. Ak (G, •) a (H, •) sú grupy a existuje
izomorfizmus f : (G, •)→(H, •) tak hovoríme, že grupy G a H sú izomorfné. Vtedy

stručne píšeme: f : G
∼=−→ H, alebo G∼=H.

Veta 1.9. Nech f : (G, •)→(H, •) je izomorfizmus grúp. Potom aj inverzné zob-
razenie f−1 : (H, •)→(G, •) je izomorfizmus grúp.

Dôkaz. Vieme, že f−1 : H→G existuje a že je bijekcia. Ešte treba ukázať, že f−1

je aj homomorfizmus grúp. Takto: nech x, y∈H sú ľubovoľné. Potom existujú
jednoznačne určené a, b∈G také, že f(a)=x, f(b)=y. Keďže f je homomorfizmus
máme f(a)•f(b)=f(a•b)=x•y; z toho: f−1(x•y)=a•b=f−1(x)•f−1(y).

Veta 1.10. Zloženie dvoch homomorfizmov grúp je znova homomorfizmus grúp.
Zloženie dvoch izomorfizmov grúp je znova izomorfizmus.

Dôkaz. Nech f : (G, •)→(H, •), t : (T, •)→(S, •) sú homomorfizmy grúp. Potom pre
∀x, y∈G je t◦f(x•y)=t(f(x•y))=t(f(x)•f(y))=t(f(x))•t(f(y))=(t◦f(x))•(t◦f(y)).

Relácie na množinách a faktorové grupy komutatívnych grúp.

Definícia 1.21. Relácia na množine M 6=∅ je hocijaká podmnožina R⊂M×M .
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Definícia 1.22. Relácia R na množine M 6=∅ sa volá relácia ekvivalencie ak má
tieto vlastnosti:
1.)(x, x)∈R ∀x∈M (reflexívnosť relácie R)
2.) ak (x, y)∈R tak aj (y, x)∈R (symetrickosť)
3.) ak (x, y)∈R a (y, z)∈R tak aj (x, z)∈R (tranzitívnosť)

Definícia 1.23. Nech ∼ je relácia ekvivalencie na množine M 6=∅. Potom pre
ľubovoľné y∈M označíme [y]={x∈M ;x∼y}. [y] sa volá trieda ekvivalencie určená
(reprezentovaná) prvkom y, y sa volá reprezentant triedy ekvivalencie [y].

Veta 1.11. Nech ∼ je relácia ekvivalencie na množine M 6=∅ a nech [y] pre y∈M
znamená triedu reprezentovanú prvkom y. Potom:
1.)[y] 6=∅ ∀y∈M
2.)[x]=[y]⇔ x∼y ∀x, y∈M
3.) ak [x] 6=[y], tak [x]∩[y]=∅
4.)

⋃

x∈M
[x]=M

Dôkaz.
1.)y∼y a vtedy y∈M .
2.) ⇐ : Nech x∼y. Chceme ukázať, že [x]=[y]. Nech a∈[x]. Potom a∼x, ale x∼y,
preto a∼y, a teda a∈[y]. Teda [x]⊂[y]. Analogicky sa dokáže [y]⊂[x], teda [x]=[y].
⇒ : Predpokladajme, že [x]=[y]. Potom x∈[x]=[y], teda x∈[y], preto x∼y.

3.) Predpokladajme, že [x]∩[y] 6=∅. Teda existuje a∈[x]∩[y]. Potom a∼x a a∼y,
teda x∼y.
4.) Je zrejmé, že

⋃

x∈M
[x]⊂M . Nech teraz x∈M . Potom x∈[x], teda x∈

⋃

x∈M
[x],

ukázali sme tiež, že M⊂
⋃

x∈M
[x]. Teda M=

⋃

x∈M
[x].

Veta 1.12. Nech (G,+) je komutatívna grupa a nechH je jej podgrupa. Definujme
reláciu ∼ na G takto: pre x, y∈G platí x∼y ⇔ x−y∈H. Potom ∼ je relácia
ekvivalencie.

Dôkaz.
Reflexívnosť: x−x=0∈H, teda x∼x ∀x∈G
Symetrickosť: nech x∼y. Potom x−y∈H. Ale H je podgrupa a preto aj −(x−y)∈H
teda y∼x.
Tranzitívnosť: nech x∼y a y∼z. Potom: x−y∈H a y−z∈H. Pretože H je podgrupa
máme, že (x−y)+(y−z)∈H. Teda x∼z.
Označenie. Množinu tried ekvivalencie na grupe G vzhľadom na reláciu ekvivalen-
cie z predchádzajúcej vety označíme G/H.(G podľa H)

Tvrdenie 1.5. Nech pre [x]∈G/H a [y]∈G/H je [x]⊕[y]=[x+y]. Potom
⊕ : G/H×G/H→G/H je dobre definované zobrazenie a teda ⊕ je binárna operácia
na množine G/H.

Dôkaz. Treba ukázať, že [x+y] nezávisí od výberu reprezentant tried [x] resp.
[y]. Nech [x]=[a], [y]=[b]. Chceme ukázať, že [a+b]=[x+y]. Takto: z toho, že
[x]=[a], [y]=[b] vieme, že x∼a, y∼b. Teda x−a∈H, y−b∈H. Pretože H je podgrupa
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grupy G, máme tiež (x−a)+(y−b)∈H ⇔ (x+y)−(a+b)∈H. Z toho x+y∼a+b, teda
[x+y]=[a+b].

Veta 1.13 a Definícia 1.24. Nech G je komutatívna grupa a H je jej podgrupa.
Na množine G/H definujme binárnu operáciu ⊕ ako v predchádzajúcom tvrdení.
Potom (G/H;⊕) je komutatívna grupa. Táto grupa sa volá faktorová grupa grupy
G podľa podgrupy H.

Dôkaz. G/H 6=∅, lebo [0]∈G/H. Asociatívnosť operácie ⊕: [x]⊕([y]⊕[z])=[x+(y+
+z)]=[(x+y)+z]=[x+y]⊕[z]=([x]⊕[y])⊕[z] pre ∀[x], [y], [z]∈G/H. Existencia neut-
rálneho prvku: pre každé [x]∈G/H máme [x]⊕[0]=[x+0]=[x]=[0+x]=[0]⊕[x] Teda
[0] je neutrálny prvok operácie ⊕. Existencia inverzného prvku: nech [x]∈G/H je
ľubovoľné, potom: [x]⊕[−x]=[x−x]=[0]=[−x]⊕[x], teda inverzný prvok k [x]∈G/H
je [−x]∈G/H. (G/H,⊕) je komutatívna grupa: [x]⊕[y]=[x+y]=[y+x]=[y]⊕[x].

Príklad. Nech m∈N je pevne zvolené. Zoberme G=Z s operáciou sčitovania a
H=mZ. Z/mZ={[0], [1], · · · , [m−1]}, [x]⊕[y]=[x+y] ∀x, y∈Z, (Z/mZ,⊕) je komu-
tatívna grupa.

Tvrdenie 1.6. Nech H 6={0} je podgrupa grupy (Z,+). Potom ∃m∈N také, že
H=mZ.

Dôkaz.

Nech m je najmenšie celé číslo patriace do H. Potom aj k·m=

k−krát︷ ︸︸ ︷
m+ · · ·+m∈H

pre ∀k∈N \ {0}. Pretože H je podgrupa, máme tiež k·m∈H pre ∀k∈Z. Teda
mZ⊂H. Ešte ukážeme, že H⊂mZ. Nech x∈H je ľubovoľný kladný prvok z H,
ukážeme, že x∈mZ (to stačí). Vieme, že x=q·m+r, pre jednoznačne určené q, r
pričom 0≤r<m. Z toho: r=x−q·m∈H. Keby r>0, tak by r bolo kladné číslo z H,
menšie ako najmenší kladný prvok z H –to je nemožné. Preto r=0, a teda x=q·m
tj. x∈mZ. Tým sme ukázali, že aj H⊂mZ. Vcelku: H=mZ.

Veta 1.14. (o faktorovom izomorfizme): Nech (G,+) a (H,+) sú komutatívne
grupy a nech f : G→H je homomorfizmus grúp. Potom G/Ker(f)∼=Im(f).
Špeciálne, ak f je epimorfizmus, tak G/Ker(f)∼=H.

Dôkaz. Predpis, ktorý ľubovoľnému [x]∈G/Ker(f) priradí f(x)∈Im(f)=f(G),
dobre definuje zobrazenie f̄ :G/Ker(f)→Im(f). Treba ukázať, že ak [x]=[a], tak aj
f(x)=f(a). Takto: ak [x]=[a], tak x∼a, teda x−a∈Ker(f). Z toho f(x−a)=0∈H
tj. f(x)− f(a) = 0, a teda f(x) = f(a). Ukázali sme, že f̄ : G/Ker(f)→ Im(f);
f̄([x]) = f(x) je dobre definované zobrazenie. f̄ je aj homomorfizmus grúp:
f̄([x] + [y]) = f̄([x+ y]) = f(x+ y) = f(x) + f(y) = f̄([x]) + f̄([y]) pre všetky
[x], [y] ∈ G/Ker(f). f̄ je monomorfizmus grúp: Nech f̄([x]) = f̄([y]). Potom
f(x)=f(y), a teda f(x)−f(y)=0, tj. f(x−y)=0 tj. x−y∈Ker(f). Teda x∼y, preto
[x]=[y]. f̄ je epimorfizmus grúp: pre ľubovoľné b∈Im(f) máme x∈G : f(x)=b.
Potom f̄([x])=f(x)=b⇒ f je izomorfizmus grúp.

Príklad. m∈N pevne zvolené. Zobrazenie ϕm : Z→Zm. ϕm(x)= zvyšok po vydelení
x číslom m. ϕm je epimorfizmus z grupy (Z,+) na (Zm,⊕).
Ker(ϕm)={x∈Z;m|x}=mZ. Z vety o faktorovom izomorfizme: Z/mZ∼=Zm.
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II. OKRUH,TELESO,POLE

Definícia 2.1. Nech R je množina v ktorej sú aspoň dva prvky. Nech sú na R
definované dve binárne operácie: + : R×R→R (”sčitovanie ”) a • : R×R→R
(”násobenie”). Hovoríme, že (R,+, •) je okruh, ak:
1.)(R,+) je komutatívna grupa.
2.)• je asociatívna: x•(y•z)=(x•y)•z ∀x, y, z∈R
3.)• je distributívna vzhľadom na sčitovanie: x•(y+z)=x•y+x•z
(x+y)•z=x•z+y•z Ak • je komutatívna, potom (R,+, •) s vlastnosťami 1.), 2.), 3.)
je komutatívny okruh. Ak •má neutrálny prvok, hovoríme o okruhu s 1, (R,+, •, 1).

Definícia 2.2. Okruh (R,+, •), v ktorom operácia • je komutatívna sa volá komu-
tatívny okruh.

Definícia 2.3. Nech (R,+, •) je okruh s 1, ak • |R∗ , kde R∗=R \ {0} nadobúda
hodnoty v R, tj. ak • |R∗ definuje binárnu operáciu v R∗, a R∗ s touto operáciou
je grupa, tak (R,+, •, 1) sa nazýva teleso. Komutatívny okruh, ktorý je telesom sa
nazýva pole.

Veta 2.1. Nech (R,+, ·) je ľubovoľný okruh. Potom v ňom platia tieto pravidlá
pre rátanie:
1.)0·x=x·0 pre ∀x∈R
2.)(−x)·y=x·(−y)=−(x·y) pre ∀x, y∈R
3.) Ak R má 1, tak 16=0.
4.) Ak R je teleso, tak z toho, že x·y=0 vyplýva, že x=0 ∨ y=0.
5.) Ak R je teleso, tak x2=1⇔ x=1 ∨ x=−1.

Dôkaz.
1.)0·x=(0+0)·x=0·x+0·x⇔ 0=0·x.
2.)(x+(−x))·y=0·y=0
x·y+(−x)·y=0⇔ −(x·y)=(−x)·y.
3.) Pretože R má aspoň 2 prvky, existuje x∈R, x 6=0. Ak R má 1, tak x·0=0 podľa
1.) a x·1=1, keďže x6=0⇒ 16=0.
4.) Ak x6=0 a y 6=0, tak treba dokázať x·y 6=0. Takto: x6=0,y 6=0, tak x∈R∗ a y∈R∗,
ale R∗ je grupa ( vzhľadom na · |R∗) a preto x·y∈R∗ tj. x·y 6=0.

5.) ⇒ : Predpokladajme, že x2=1. Teda x2−1=0, tj.(x−1)(x+1)=0
4.)⇒ x+1=0 ∨

x−1=0⇔ x=−1 ∨ x=1.
⇐ Pomocou 2.). �

Lema 2.1.
Nech p, q∈N. Potom množina {p·x+q·y∈Z; x, y∈Z} je podgrupou v (Z,+), pričom
{p·x+q·y∈Z;x, y∈Z}=rZ, kde r je najväčší spoločný deliteľ čísel p, q.

Dôkaz. {p·x+q·y∈Z}6=∅. Kritérium podgrupy: p·x+ q·y− (p·x́+ q·ý) = p·(x− x́)+
+q·(y−ý)∈{p·x+q·y, x, y∈Z}. V (Z,+) sú všetky podgrupy tvaru: kZ, (pre ne-
jaké k∈N). Teda {p·x+q·y; x, y∈Z}=rZ. Treba ešte ukázať, že r je najväčší
spoločný deliteľ čisel p, q. p∈{p·x+q·y; x, y∈Z}, p=r·k, teda r|p. q∈{p·x+q·y;
x, y∈Z}, q=r·l, teda r|q. Nech c je nejaký spoločný deliteľ čísel p, q. Chceme
ukázať, že c|r. Ak c|p a c|q, tak c|p·x+q·y pre ∀x, y∈Z, a teda c je deliteľom
každého prvku z {p·x+q·y;x, y∈Z}=rZ, teda c|r·1 t.j. c|r.
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Veta 2.2. Nech m∈N, m≥2. Potom (Z/mZ,⊕,�) je pole ⇔ m je prvočíslo.

Dôkaz.
⇒ : Predpokladajme, že Z/mZ je pole. (To znamená, že nenulové prvky tvoria

grupu.) Keby m nebolo prvočíslo, tak by m=m1·m2, kde m1,m2∈N, 1<m1<m
1<m2<m. Potom [m1]6=0, [m2]6=0, ale [m1]·[m2]=[m1·m2]=[m]=[0]=0. Je to spor
s tým, že (Z/mZ)∗ je grupa.
⇐ : Predpokladajme, že m je prvočíslo. Chceme ukázať, že (Z/mZ,�) je grupa.

Na to stačí ukázať, že pre ľubovoľné nenulové 06=x∈Z/mZ existuje v (Z/mZ)∗

inverzný prvok vzhľadom na násobenie. Takto: pre [x]∈(Z/mZ)∗ mámem-x, z toho:
najväčší spoločný deliteľ m,x je 1. Potom z Lemy 2.1 vieme, že 1=a·x+b·y pre dáke
a, b∈Z. Z toho [1]=1=[a·x+b·y]=[a·x]+[b·y]=[a]·[x]+[0]⇔ [1]=[a]�[x] tj. inverzný
prvok k [x] vzhľadom na násobenie je [a]∈(Z/mZ)∗.

III. VEKTOROVÉ PRIESTORY

Definícia 3.1. Nech V 6=∅ je množina, jej prvky budeme označovať: ~a, · · · , ~x. Nech
R je pole. Nech na V je definovaná binárna operácia + : V×V→V (budeme jej
hovoriť sčitovanie prvkov z V ) a nech okrem toho je dané zobrazenie R×V→V :
(α, ~x) 7→ α·~x (hovoríme mu násobenie prvkov z V prvkami z R.) V sa nazýva
vektorový priestor nad poľom R ak spĺňa axiómy:
1.)(V,+) je komutatívna grupa.
2.)α(~x+~y)=α~x+α~y pre všetky α∈R, ~x, ~y∈V .
3.)(α+β)~x=α~x+β~y pre ∀α, β∈R a ∀~x∈V
4.)α(β~x)=(αβ)~x pre ∀α, β∈R, ∀~x∈V .
5.)1·~x=~x, pre ∀~x∈V .
Ak V je vektorový priestor, prvky z V sa volajú vektory, prvky z R sa volajú
skaláry.

Poznámka.
Neutrálny prvok vo vektorovom priestore (V,+) sa nazýva nulový vektor, ozn.: ~0.
Ak α∈R, ~x∈V , tak α·~x nazývame α-násobok vektora ~x∈V .

Veta 3.1. Nech V je vektorový priestor nad poľom R. Potom ∀~x∈V, ∀α∈R:
1.)0·~x=~0.
2.)(−1)·~x=−~x.

3.)α·~0=~0

Dôkaz.
1.)~x=1·~x=(1+0)~x=1~x+0~x=~x+0~x⇔ 0~x=~0.
2.)(1+(−1))~x=0~x=~0. 1~x+(−1)~x=~x+(−1)~x. Teda ~x+(−1)~x=~0, z čoho −~x=(−1)~x.
3.)α~0=α(~x+(−~x))=α(1~x+(−1)~x)=α(1+(−1))~x=α0~x=0~x=~0.

Definícia 3.2. Nech V je vektorový priestor nad poľom R a nech D 6=∅ je pod-
množina vo V . D je vektorový podpriestor priestoru V , ak D je vektorový priestor
nad R, pričom sčitovanie v D a násobenie prvkov z D skalármi z R je zúžením
sčitovania vo V resp. násobenia prvkov z V skalármi z R.
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Veta 3.2. (kritérium podpriestoru):
Nech V je vektorový priestor nad poľom R a nech D 6=∅, D⊂V . D je vektorový
podpriestor priestoru V práve vtedy, keď je splnená hociktorá z týchto dvoch ekvi-
valentných podmienok:
(I.) ∀~x, ~y∈D : ~x+~y∈D a pre ľubovoľné α∈ R, ~x∈D je α~x∈D.
(II.) ∀~x, ~y∈D a ∀α, β∈R je α~x+β~y∈D.

Dôkaz. Predpokladajme, že D je vektorový podpriestor. Potom (I) je splnená
(z definície vektorového podpriestoru). Teraz predpokladajme, že je splnená (I).
+ z V je zúžené na D definuje na D binárnu operáciu +. Podľa (I) : 0~x=~0
patrí do D. ~0 je neutrálny prvok operácie + na D. Pre ~x∈D podľa (I) tiež
(−1)~x=−~x∈D. + je asociatívne, komutatívne, vcelku (D,+) je komutatívna grupa.
Okrem toho z (I) vyplýva, že máme definované zobrazenie R×D→D. Operácia +
a násobenie prvkov z D prvkami z R majú potrebné vlastnosti (zdedené z V ); D
je teda vektorový podpriestor priestoru V . Na ukončenie dôkazu vety stačí ukázať

(I) ⇔ (II). Nech platí (I), nech α, β∈R a ~x, ~y∈D. Potom α~x∈D a β~y∈D (I)⇒
α~x+β~y∈D. Teda (I) ⇒ (II). Nech platí (II). Potom pre ∀~x, ~y∈D máme, že
1~x+1~y=~x+~y∈D. Pre ľubovoľné α∈R a ľubovoľné ~x∈D, podľa (II) : α~x+0~x=α~x∈D
tj. aj (II)⇒ (I).

Veta 3.3. Nech S, T sú vektorové podpriestory vektorového priestoru V nad poľom
R. Potom S∩T je takisto vektorový podpriestor priestoru V .

Dôkaz. S∩T 6=∅, lebo ~0∈S∩T . Ukážeme, že S∩T spĺňa podmienku (II). Nech
α, β∈R, pre ∀~x, ~y ∈ S ∩ T sú ľubovoľné. Potom α~x+ β~y ∈ S a α~x+ β~y ∈ T ⇒
⇒ α~x+ β~y ∈ S ∩ T . Čiže S aj T spĺňajú podmienku (II).

Veta 3.4. Nech {Sα, α∈A} (A indexová množina.) je ľubovoľný systém vek-

torových podpriestorov vektorového priestoru V nad poľom R. Potom
⋂

α∈A
Sα je

vektorový podpriestor priestoru V .

Dôkaz. Podobne ako vo V ete 3.3.

Definícia 3.3. Nech V je vektorový priestor nad poľom R a nech A6=∅ je pod-
množina vo V . Najmenší vektorový podpriestor priestoru V obsahujúci A je vek-
torový podpriestor S taký, že:
1.)A⊂S.
2.) Ak T je vektorový podpriestor vo V taký, že A⊂T , tak S⊂T .

Veta 3.5. Nech V je vektorový priestor nad poľom R a nech A je podmnožina
vo V . Potom najmenší vektorový podpriestor vo V obsahujúci A existuje a je
jediný.

Dôkaz.
Jednoznačnosť: Nech by S a T boli najmenšie podpriestory obsahujúce A. Potom
T⊂S a S⊂T , teda S=T .
Existencia: Nech ϕ je systém všetkých vektorových podpriestorov obsahujúcich A.
ϕ 6=∅, lebo V ∈ϕ. Potom

⋂

S∈ϕ
S je najmenší podpriestor vo V obsahujúci A, lebo:



12 I.ROČNÍK

∀S∈ϕ máme A⊂S, a preto A⊂
⋂

S∈ϕ
S, tj. je splnená aj podmienka 2.) z Def 3.3.

Teda SA=
⋂

S∈ϕ
S.

Definícia 3.4. Nech ~x1, · · · , ~xk sú vektory z vektorového priestoru V nad poľom
R, nech α1, · · · , αk∈R. Potom α1 · ~x1+ · · ·+αk · ~xk sa nazýva lineárna kombinácia
vektorov ~x1, · · · , ~xk s koeficientmi α1, · · · , αk. Ak α1= · · ·=αk=0, táto lineárna
kombinácia sa nazýva triviálna (a je to ~0). Ak niektoré αi 6=0, tak lineárna kom-
binácia je netriviálna.

Veta 3.6. Nech ~x1, · · · , ~xk sú vektory z vektorového priestoru V nad R. Potom
M = {α1~x1+ · · ·+αk~xk∈V, αi∈R} je vektorový podpriestor vo V .

Dôkaz. Daná množina je neprázdna, lebo ~0∈M . Ďaľej kritérium vektorového pod-
priestoru. Nech α, β∈R, α1~x1+ · · ·+αk~xk, β1~x1+ · · ·+βk~xk sú z tej množiny. Po-

tom α ·
k∑

i=1

αi ~xi+β ·
k∑

i=1

βi ~xi=
k∑

i=1

(ααi+ββi)~xi∈M , lebo ααi+ββi∈R.

Označenie. V situácii z predchádzajúcej vety označíme: [~x1, · · · , ~xk]={α1~x1 + · · ·+
+αk~xk∈V ; αi∈R}.
Veta 3.7. Nech ~x1, · · · , ~xk sú vektory z vektorového priestoru V nadR a nech T⊂V
je vektorového podpriestor taký, že {~x1, · · · , ~xk}⊂T . Potom aj [~x1, · · · , ~xk]⊂T .

Dôkaz. Indukcia vzhľadom na maximálny počet nenulových koeficientov lineárnej
kombinácie vektorov ~x1, · · · , ~xk. Ak lineárna kombinácia α1~x1+ · · ·+αk~xk má ma-
ximálny počet nenulových koeficientov, tak patrí do T , lebo je to buď ~0, alebo
nenulový násobok spomedzi ~x1, · · · , ~xk, v každom prípade táto lineárna kombiná-
cia patrí do T . Predpokladajme, že každá lineárna kombinácia vektorov ~x1, · · · , ~xk
s maximálne s− 1 (≤ k − 1) nenulovými koeficientmi patrí do T . Nech β1~x1+
+ · · ·+βs~xs je lineárna kombinácia s maximálne s nenulovými koeficientmi. Potom
β1~x1+ · · ·+βs~xs=(β1~x1+ · · ·+βs−1~xs−1)+βs ~xs∈T ; T je vektorový podpriestor.

Veta 3.8.
Nech V je vektorový priestor nad R a nech {~x1, · · · , ~xk} je ľubovoľná konečná pod-
množina vo V . Potom najmenší vektorový podpriestor je S{~x1,··· ,~xk}=[~x1, · · · , ~xk].

Dôkaz. Stačí ukázať, že [~x1, · · · , ~xk] má obidve vlastnosti najmenšieho vektorového
podpriestoru obsahujúceho množinu {~x1, · · · , ~xk}.
1. {~x1, · · · , ~xk}⊂[~x1, · · · , ~xk].
2. Ak T⊂V je ľubovoľný podpriestor vo V obsahujúci {~x1, · · · , ~xk}, tak
[~x1, · · · , ~xk]⊂T platí podľa V ety 3.7. Z jednoznačnej určenosti vlastnosťami 1.), 2.)
vyplýva, že naozaj S{~x1,··· ,~xk}=[~x1, · · · , ~xk].

Definícia 3.5. Nech V je vektorový priestor nad R a nech {~x1, · · · , ~xk}⊂V . Po-
tom vektorový priestor [~x1, · · · , ~xk]⊂V sa nazýva lineárny (vektorový) obal množiny
{~x1, · · · , ~xk}. Vektory ~x1, · · · , ~xk sa nazývajú generátory vektorového priestoru
[~x1, · · · , ~xk].
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Veta 3.9. Nech V je vektorový priestor nad R a nech [~x1, · · · , ~xk,~a]∈V . Po-
tom [~x1, · · · , ~xk,~a]=[~x1, · · · , ~xk] práve vtedy, keď ~a je lineárna kombinácia vektorov
~x1, · · · , ~xk.

Dôkaz.
⇒ : Predpokladajme, že [~x1, · · · , ~xk] = [~x1, · · · , ~xk,~a]. Potom

[~x1, · · · , ~xk,~a] ⊂ [~x1, · · · , ~xk] teda ~a je lineárna kombinácia vektorov ~x1, · · · , ~xk.
⇐ : Predpokladajme, že ~a je lineárnou kombináciou ~x1, · · · , ~xk. Chceme ukázať,

že [~x1, · · · , ~xk] = [~x1, · · · , ~xk,~a]. Je zrejmé, že {~x1, · · · , ~xk} ⊂ [~x1, · · · , ~xk,~a] a
[~x1, · · · , ~xk] ⊂ [~x1, · · · , ~xk,~a]. Okrem toho, pretože ~a je lineárna kombinácia
~x1, · · · , ~xk máme, že {~x1, · · · , ~xk,~a}⊂[~x1, · · · , ~xk], teda [~x1, · · · , ~xk,~a]⊂[~x1, · · · , ~xk].
Vcelku: [~x1, · · · , ~xk,~a]=[~x1, · · · , ~xk].
Z toho vyplýva, že najjednoduchší zápis lineárneho obalu [~y1, · · · , ~yk] dostaneme
postupným vynechávaním tých vektorov, ktoré sú lineárnou kombináciou ostatných.

IV. SYSTÉMY LINEÁRNYCH ROVNÍC

Definícia 4.1. Systém rovníc S:

a11x1 + · · ·+ a1nxn = b1

...

as1x1 + · · ·+ asnxn = bs

(všetky rovnice musia byť splnené súčasne) je systém s lineárnych rovníc s n
neznámymi x1, · · · , xn, ak aij∈R (i∈[1, s], j∈[1, n]) a bi∈R, kde R je dané pole.
Prvky poľa aij sa nazývajú koeficienty, b1, · · · , bn sa nazývajú absolútne členy
systému S.

Definícia 4.2. Usporiadaná n-tica (r1, · · · , rn)∈Rn je riešenie systému S, ak
r1, · · · , rk po dosadení xi=ri vyhovuje všetkým rovniciam S. Vyriešiť systém zna-
mená nájsť všetky jeho riešenia. Ak žiadna n-tica z Rn nie je riešením systému S,
hovoríme, že je neriešiteľný.

Definícia 4.3. Dva systémy lineárnych rovníc sú ekvivalentné ak majú tú istú
množinu riešení. Vyriešiť daný lineárny systém potom znamená vyriešiť hocijaký
s ním ekvivalentný systém.

Definícia 4.4. Ekvivalentné úpravy sú také, ktoré nemenia množinu riešení.

Veta 4.1. Nasledujúce úpravy sú ekvivalentné:
1.) Vzájomná výmena dvoch rovníc systému.
2.) Vynásobenie ľubovoľnej rovnice v S prvkom α 6=0, α∈R.
3.) Pripočítanie ľubovoľnej rovnici v S inej rovnici v S.

Dôkaz. triviálny.

Zámer pri riešení systému S. :
Pomocou ekvivalentných úprav ho prevedieme na jednoduchý ekvivalentný systém,
ktorý už nie je problém vyriešiť.
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Gaussova eliminačná metóda.
Predpokladajme, že niektorý z koeficientov pri x1 v S je nenulový. Môžeme

priamo predpokladať, že a11 6=0.

1.krok. Pomocou prvej rovnice vylúčime x1 z druhej · · · , s-tej rovnice. Takto:
k druhej rovnici prirátame −(a−1

11 a21)-násobok prvej rovnice, · · · atď, až k s-tej
rovnici prirátame −(a−1

11 as1)-násobok prvej rovnice. Dostaneme ekvivalentný sys-
tém S∗ tvaru:

a11x1+a12x2+ · · ·+a1nxn=b1
ā22x2+ · · ·+ā2nxn=b2

...

ās2x2+ · · ·+āsnxn=bn

V S∗ môžu byť rovnice s ľavou aj pravou stranou nulovou, tie vynecháme. V S∗ sa
môže vyskytnúť rovnica s ľavou stranou nulovou, kým jej pravá strana je nenulová.
Ak sa stane takéto niečo, potom systém S∗ a teda aj S je neriešiteľný.
Po konečnom počte opakovaní prvého kroku dostaneme systém V tvaru:

c11y1+c12y2+ · · ·+c1kyk+ · · ·+c1nyn=d1

c22y2+ · · ·+c2kyk+ · · ·+c2nyn=d2

...

ckkyk+ · · ·+cknyn=dk

Kde y1, · · · , yn vznikli (príp. viacnásobným) premenovaním neznámych x1, · · · , xn,
pritom k≤s a k≤n. Navyše c11 6=0, · · · , cii 6=0, · · · , ckk 6=0.
Ak k=n, tak V vyzerá takto:

c11y1+ · · ·+c1nyn=d1

c21y2+ · · ·+c2nyn=d2

...

cn−1,n−1yn−1+cn−1,nyn=dn−1

cnnyn=dn

a teda vyrátame z poslednej rovnice yn=dnc−1
nn , dosadíme do predposlednej, z nej

vyrátame yn−1, · · · atď, až napokon y1. Vtedy V má práve jedno riešenie. Spätným
premenovaním dostaneme tú jedninú n-ticu v R, ktorá je riešením systému S.
Ak k<n, tak y1, · · · , yk sú viazané rovnicami systému V , kým neznáme yk+1, · · · , yn
považujeme za tzv. voľné neznáme (parametre), nadobúdajú ľubovoľné hodnoty
z R. Zo systému V potom postupne, počnúc od poslednej rovnice, vyrátame
yk, yk−1, · · · , y1 pomocou parametrov yk+1, · · · , yn. Takto dostaneme všeobecné
vyjadrenie riešenia systému V pomocou parametrov yk+1, · · · , yn. Spätným pre-
menovaním neznámych dostaneme z toho všeobecné vyjadrenie riešenia systému S
pomocou n−k parametrov.
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V. LINEÁRNA ZÁVISLOSŤ A NEZÁVISLOSŤ VEKTOROV

Definícia 5.1. Nech V je vektorový priestor nad R a nech ~x1, · · · , ~xk∈V sú dané
vektory. Hovoríme, že ~x1, · · · , ~xk sú lineárne závislé, ak ~0 sa dá vyjadriť ako netriv-
iálna lineárna kombinácia vektorov ~x1, · · · , ~xk. Vektory ~x1, · · · , ~xk sa nazývajú
lineárne nezávislé ak nie sú lineárne závislé.

Veta 5.1. Nech ~x1, · · · , ~xk sú navzájom rôzne nenulové vektory vektorového pries-
toru V nad R, nech k ≥ 2. Potom platí: ~x1, · · · , ~xk sú lineárne závislé ⇔ niektorý
z nich je lineárna kombinácia ostatných.

Dôkaz.
Predpokladajme, že ~x1, · · · , ~xk sú lineárne závislé. Teda existujú α1, · · · , αk∈R nie

všetky nulové, také, že ~0 =
k∑

i=1

αi·~xi. Povedzme, že αi 6= 0, teda α1~x1+ · · ·+αi~xi+

+ · · ·+αk~xk=~0. Z toho: αi~xi=−α1~x1− · · ·−αi−1~xi−1−αi+1~xi+1− · · ·−αk~xk, teda:

xi=−α−1
i ·

k∑

j=1,j 6=i
αj~xj .

Opačne: Predpokladajme, že napr. ~xi je lineárnou kombináciou ostatných.

Teda ~xi=
k∑

j=1,j 6=i
βj~xj ⇒ β1~x1+ · · ·+βi−1~xi−1−βi~xi+βi+1~xi+1+ · · ·+βk~xk=~0.

Teda ~x1, · · · , ~xk sú lineárne závislé.

Veta 5.2. Nech V je vektorový priestor nad R, nech {~x1, · · · , ~xk}⊂V−{~0}. Po-
tom ~x1, · · · , ~xk sú lineárne závislé práve vtedy, keď niektorý z týchto vektorov je
lineárnou kombináciou tých, čo sú napísané pred ním.

Dôkaz.
Predpokladajme, že ~x1, · · · , ~xk sú lineárne závislé. Teda existujú α1, · · · , αk∈R nie

všetky nulové také, že ~0=
k∑

i=1

αi~xi. Nech j je najvyšší index taký, že αj 6=0. Teda

~0=
j∑

i=1

αi~xi. pričom αj 6=0. Potom j≥2, lebo keby j=1, tak by sme mali α1~x1=~0,

α1 6=0, teda ~x1=~0 –spor.
Opačne: Nech niektorý z ~x1, · · · , ~xk je lineárnou kombináciou tých, čo sú napísané
pred ním. Potom je lineárnou kombináciou aj ostatných, lebo stačí tie, čo sú za
ním zobrať s koeficientom 0. Z V ety 5.1 sú lineárne závislé.

Dôsledok. Nech V je vektorový priestor nad R, nech {~x1, · · · , ~xk}⊂V − {~0}. Po-
tom ~x1, · · · , ~xk sú lineárne závislé práve vtedy, keď existuje j∈{1, 2, · · · , k}, že
[~x1, · · · , ~xk]=[~x1, · · · , ~xj−1, ~xj+1, · · · , ~xk].

Dôkaz. Zrejmý.

Poznámka. Z dôsledku vyplýva návod na hľadanie najkratšieho zápisu lineárneho
obalu. Ak ~x1, · · · , ~xk sú lineárne nezávislé, tak zápis [~x1, · · · , ~xk] je najkratší. Ak
~x1, · · · , ~xk sú lineárne závislé, tak niektorý z nich je lineárnou kombináciou ostat-
ných, ten vynecháme, pričom lineárny obal zvyšných: [~x1, · · · , ~xk], ak tie zvyšné
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vektory sú lineárne nezávislé, tak sme skončili; ak sú lineárne závislé tak opakujeme
predchádzajúci krok. Po konečnom počte krokov dostaneme vyjadrenie [~x1, · · · , ~xk]
pomocou lineárne nezávislej podmnožiny množiny {~x1, · · · , ~xk}.

Steinitzova veta. Nech vektorový priestor V 6= {~0}, V = [~x1, · · · , ~xk]. Nech
{~y1, · · · , ~yj}⊂V je lineárne nezávislá podmnožina. Potom platia:
1◦ j≤k
2◦ Spomedzi ~x1, · · · , ~xk existuje k−j vektorov, ktoré spolu s ~y1, · · · , ~yj generujú
celý priestor V .

Dôkaz. Indukcia vzhľadom na j.
1◦ Pre j=1: ~y1 je lineárne nezávislý práve vtedy, keď ~y1 6=~0, pretože V 6={~0},
máme j=1≤k. Teda 1◦ platí. Máme V=[~x1, · · · , ~xk], ale ~y1∈V tj. ~y1 je lineárna
kombinácia ~x1, · · · , ~xk, teda množina {~y1, ~x1, · · · , ~xk} je lineárne závislá. Potom
V=[~x1, · · · , ~xk]=[~y1, ~x1, · · · , ~xk]. Vektory ~y1, ~x1, · · · , ~xk sú lineárne závislé, teda
niektorý z nich je lineárna kombinácia tých, čo sú napísané pred ním. ~y1 to nemôže
byť, teda je to niektorý spomedzi ~x1, · · · , ~xk. Povedzme, že to je ~xk. Potom
V=[~x1, · · · , ~xk]=[~y1, ~x1, · · · , ~xk−1]. Tým sme overili, že platí 2◦.
2◦ Predpokladajme, že veta platí pre j=s−1. Nech teraz {~y1, · · · , ~ys} je ľubovoľná
lineárne nezávislá podmnožina vo V . Chceme ukázať, že veta platí aj pre j=s.
Aj množina {~y1, · · · , ~ys−1} je lineárne nezávislá. Podľa indukčného predpokladu
1◦ platí: s−1≤k a 2◦ ~y1, · · · , ~ys−1 sa dajú k−(s−1) vektormi spomedzi ~x1, · · · , ~xk
doplniť tak, že spolu generujú celý priestor V . Povedzme, že tie ”doplňujúce”
vektory sú ~x1, · · · , ~xk−s+1. Teda V=[~x1, · · · , ~xk]=[~y1, · · · , ~ys−1, ~x1, · · · , ~xk−s+1].
Chceme ukázať, že s≤k. Ukážeme, že s−1<k. Keby s−1=k tak by sme mali, že
V=[~x1, · · · , ~xk]=[~y1, · · · , ~ys−1]. Ale ~ys∈V , teda by mal byť lineárnou kombináciou
vektorov ~y1, · · · , ~ys−1, to je spor s tým, že ~y1, · · · , ~ys sú lineárne nezávislé. Ďalej:
V=[~x1, · · · , ~xk]=[~y1, · · · , ~ys, ~x1, · · · , ~xk−s+1]. Teraz ~ys∈V , teda ~ys je lineárna kom-
binácia vektorov ~y1, · · · , ~ys−1, ~x1, · · · , ~xk−s+1. Teda ~y1, · · · , ~ys, ~x1, · · · , ~xk−s+1 sú
lineárne závislé. Z vety vieme, že niektorý z nich je lineárna kombinácia tých, čo sú
pred ním. Nemôže to byť žiadny spomedzi ~y1, · · · , ~ys, lebo sú lineárne nezávislé a
teda je to miektorý spomedzi ~x1, · · · , ~xk−s+1, povedzme, že to je posledný ~xk−s+1.
Ten môžeme vynechať a podľa vety 5.2: V=[~y1, · · · , ~ys, ~x1, · · · , ~xk−s]. Teda aj 2◦

je pre ~y1, · · · , ~ys v poriadku.

Báza a dimenzia.
V=[~x1, · · · , ~xk]. Dá sa každý vektorový priestor napísať ako lineárny obal koneč-

nej množiny vektorov? (tj. dá sa generovať konečnou množinou)
Odpoveď: NIE.

Príklad. R[t] všetky polynómy. p(t)=
∞∑

i=0

ait
i iba konečne veľa ai je nenulový. R[t]

je vektorový priestor nad R. Stupeň
∞∑

i=0

ait
i je s, ak s6=0, ale as+1, · · · sú nuly. Keby

existovali polynómy q1(t), · · · , qk(t)∈R[t] také, že R[t]=[q1(t), · · · , qk(t)], tak po-
tom pre n>max{deg(q1(t)), · · · , deg(qk(t))} by polynóm tn /∈R[t]. Teda vektorový
priestor R[t] sa nedá generovať konečnou množinou.
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Definícia 5.2. Vektorový priestor V sa nazýva konečne generovaný ak existuje
konečná množina {~x1, · · · , ~xk}⊂V taká, že V=[~x1, · · · , ~xk]. Ak V nie je konečne
generovaný, hovoríme, že je nekonečne generovaný.

Definícia 5.3. Nech V 6={~0} je konečne generovaný vektorový priestor nad R.
Potom usporiadaná množina (~a1, · · · ,~ak) vektorov z V sa nazýva báza priestoru
V , ak:
1◦: V=[~a1, · · · ,~ak].
2◦: ~a1, · · · ,~ak sú lineárne nezávislé.

Veta 5.3. Každý konečne generovaný vektorový priestor V 6={~0} nad R má bázu.

Dôkaz. Keďže V je konečne generovaný, existuje konečná množina {~x1, · · · , ~xp}⊂V ,
pre ktorú [~x1, · · · , ~xp]=V . Ak ~x1, · · · , ~xp sú lineárne nezávislé, tak tvoria bázu.
Ak nie, tak niektorý z nich je lineárna kombinácia zvyšných, potom lineárny obal
zvyšných =V . Ak tie zvyšné sú lineárne nezávislé, tak tieto tvoria bázu priestoru
V , ak sú lineárne závislé, tak zas zopakujeme predchádzajúcu úvahu. Po konečnom
počte krokov dostaneme podmnožinu množiny {~x1, · · · , ~xp}, ktorá už je lineárne
nezávislá a jej lineárny obal je celé V . Tá je báza priestoru V .

Príklad.
Rn má bázu: [(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1)] = [~e1, ~e2, · · · , ~en]. To je
tzv. štandardná báza v Rn.

Veta 5.4. Všetky bázy nenulového konečne generovaného vektorového priestoru
majú rovnaký počet prvkov.

Dôkaz. Nech (~a1, · · · ,~as), (~b1, · · · ,~bq) sú dve bázy takého vektorového priestoru.
Potom zo Steinitzovej vety: s≤q a q≤s a teda s=q.

Definícia 5.4. Počet prvkov (ľubovoľnej) bázy konečne generovaného nenulového
vektorového priestoru V nad R sa nazýva dimenzia priestoru V nad poľom R, ozn:
dimR(V ) (alebo dim(V ) ak je R jasné z kontextu).

Dimenzia nulového priestoru je 0. dim({~0})=0
Dimenzia priestoru, ktorý je nekonečne generovaný je ∞. dim(V )=∞.

Príklady.
1. dimCC=1
2. dimRC=2
3. dimRn=n
4. dimR[t]=∞
Veta 5.5. Každú lineárne nezávislú množinu nenulového konečne generovaného
vektorového priestoru môžeme doplniť na jeho bázu.

Dôkaz. Nech V je taký priestor, nech {~y1, · · · , ~yj}⊂V je lineárne nezávislá. Keďže
V je konečne generovaný, existujú ~x1, · · · , ~xk∈V . (~x1, · · · , ~xk) je báza vo V . Zo
Steinitzovej vety : j≤k, ~y1, · · · , ~yj sa dajú doplniť k−j vektormi spomedzi ~x1, · · · ,
~xk tak, že týchto k vektorov generuje celé V . Tieto vektory však musia byť aj
lineárne nezávislé. (Keby boli lineárne závislé, tak by V mal bázu s nanajvýš k−1
prvkami. Spor s dimenziou.) Teda ~y1, · · · , ~yj spolu s tými, doplňujúcimi vektormi
tvoria bázu priestoru V .
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Veta 5.6. Ak dim(V )=n, tak n+1 vektorov z V je vždy lineárne závislých.

Dôkaz. dim(V )=n, teda vo V existuje n−prvková báza (~a1, · · · ,~an). Keby ľubovoľ-
ná n+1-prvková množina lineárne nezávislá, tak podľa Steinitzovej vety by bolo
n+1≤n, čo je spor.

Veta 5.7. Nech dim(V )=n. Potom:
1. usporiadaná množina (~a1, · · · ,~an) n vektorov z V je bázou vo V práve vtedy,
keď {~a1, · · · ,~ak} je lineárne nezávislá.
2. (~a1, · · · ,~an) je bázou vo V práve vtedy, keď V=[~a1, · · · ,~an].

Dôkaz.
1.⇒: jasné.
⇐: Predpokladajme, že {~a1, · · · ,~an} je lineárne nezávislá. Podľa vety 5.5 túto
množinu môžeme doplniť n−n=0 vektormi z V na bázu vo V . tj.už (~a1, · · · ,~an) je
báza.
2.⇒: jasné
⇐: Predpokladajme, že V=[~a1, · · · ,~an]. Chceme ukázať, že ~a1, · · · ,~an sú aj
lineárne nezávislé. Keby boli lineárne závislé, postupným vynechávaním tých, ktoré
sú lineárnou kombináciou zvyšných by sme dostali bázu, ktorá by mala nanajvýš
n−1 prvkov. Spor s tým, že dim(V )=n. Teda všetky bázy majú n prvkov.

Veta 5.8 a Definícia 5.5. Nech V 6={~0} je konečne generovaný vektorový priestor
nad R. Potom množina (~a1, · · · ,~an) je bázou vo V práve vtedy, keď každý vektor
z V sa dá jediným spôsobom vyjadriť ako lineárna kombinácia vektorov ~a1, · · · ,~an.
Ak (~a1, · · · ,~an) je báza vo V a pre ~x∈V máme ~x=x1~a1+ · · ·+xn~an. Tak uspo-
riadaná n-tica (x1, · · · , xn)∈Rn sa nazýva n-tica súradníc vektora ~x vzhľadom na
bázu (~a1, · · · ,~an).

Dôkaz.
⇒ : Predpokladajme, že (~a1, · · · ,~an) je báza v priestore V . Teda V=[~a1, · · · ,~an]

tj. pre ľubovoľný vektor ~x∈V ∃x1, · · · , xn∈R také, že ~x=x1~a1+ · · ·+xn~an. Keby
~x=x′1~a1+ · · ·+x′n~an bolo iné také vyjadrenie, tak x1~a1+ · · ·+xn~an=x′1~a1+ · · ·+
+x′n~an ⇔ (x1−x′1)~a1+ · · ·+(xn−x′n)~an=~0. Ale ~a1, · · · ,~an tvoria bázu, sú aj lineár-
ne nezávislé, preto x1−x′1=0, · · · , xn−x′n=0⇔ xi=x′i. čsmd.
⇐ : Predpokladajme, že každý vektor z V sa dá jediným spôsobom vyjadriť ako

lineárna kombinácia ~a1, · · · ,~an. Teda V⊂[~a1, · · · ,~an]. Ešte ukážeme, že ~a1, · · · ,~an
sú lineárne nezávislé. Nech α1~a1+ · · ·+αn~an=~0. Tiež: 0~a1+ · · ·+0~an=~0, keďže
vyjadrenie 0 ako lineárna kombinácia vektorov ~a1, · · · ,~an je podľa predpokladu
jediné, tak máme: α1= · · ·=αn=0.
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VI. LINEÁRNE A DIREKTNÉ SÚČTY
VEKTOROVÝCH PRIESTOROV

Ak S, T sú vektorové podpriestory vektorového priestoru V , tak S∪T nemusí byť
vektorový podpriestor vo V . Aký je najmenší podpriestor vo V , obsahujúci S∪T?

Veta 6.1 a Definícia 6.1. Nech S, T⊂V sú vektorové podpriestory. Potom
{~s+~t∈V , ~s∈S, ~t∈T} je vektorový podpriestor vo V , nazýva sa lineárny súčet S
a T , ozn. S+T .

Dôkaz. ~0∈{~s+~t∈V,~s∈S, ~t∈T}6=∅, lebo ~0+~0=~0. Ak ~x, ~y∈{~s+~t, ~s∈S,~t∈T}, tak
~x=~s1+~t1, ~y=~s2+~t2, potom α~x+β~y=α(~s1+~t1)+β(~s2+~t2)= (α~s1+β~s2)︸ ︷︷ ︸

∈S

+ (α~t1+β~t2)︸ ︷︷ ︸
∈T

,

teda α~x+β~y∈{~s+~t, ~s∈S,~t∈T}.
Tvrdenie. S+T je najmenší podpriestor obsahujúci S∪T .

Lema 6.1. Ak P je vektorový podpriestor konečne generovaného vektorového
priestoru V , tak aj P je konečne generovaný.

Dôkaz. : dú.

Veta 6.2. Predpokladajme, že V je konečne generovaný vektorový priestor nad R,
nech S, T sú jeho podpriestory. Potom dim(S+T )= dim(S)+ dim(T )− dim(S∩T ).

Dôkaz.
1. Predpokladajme, že S∩T={~0}. Nech ~x1, · · · , ~xs je báza v S, (~y1, · · · , ~yt) je
báza v T . Potom S+T=[~x1, · · · , ~xs, ~y1, · · · , ~yt]. Navyše (~x1, · · · , ~xs, ~y1, · · · , ~yt) je
báza v S+T . Stačí ukázať ich lineárna nezávislosť. Keby boli lineárne závislé,
potom jeden z nich by bol lineárna kombináciou tých, čo sú pred ním. Nemôže
byť žiadny z ~x1, · · · , ~xs, lebo tie tvoria bázu v S. Teda musí to byť dajaké ~yi:
~yi=a1~x1+ · · ·+as~xs+b1~y1+ · · ·+bi−1~yi−1, z toho ~yi−b1~y1− · · ·−bi−1~yi−1︸ ︷︷ ︸

6=~0,∈T∩S={~0}, spor

=α1~x1+

+ · · ·+αs~xs. dim(S+T )=s+t= dim(S)+ dim(T ).
2. S∩T 6={~0}: Nech (~z1, · · · , ~zr) je báza v S∩T . S∩T je podpriestor v S aj v T .
Podľa Steinitzovej vety doplňme (~z1, · · · , ~zr) na bázu (~z1, · · · , ~zr, ~x1, · · · , ~xs) v S
resp. na bázu (~z1, · · · , ~zr, ~y1, · · · , ~yt) v T . Teda dim(S)=r+s,dim(T )=r+t. Máme
S+T=[~z1, · · · , ~zr, ~x1, · · · , ~xs, ~y1, · · · , ~yt]. Navyše ~z1, · · · , ~zr, ~x1, · · · , ~xs, ~y1, · · · , ~yt
sú lineárne nezávislé, teda tvoria bázu v S+T . Nech by boli lineárne závislé.
Teda niektorý je lineárna kombinácia tých, čo sú pred ním. Nemôže to byť ži-
adny spomedzi ~z1, · · · , ~zr, ~x1, · · · , ~xs lebo tvoria bázu v S. Teda existuje i:

(∗) ~yi=γi~z1+ · · ·+γr~zr+α1~x1+ · · ·+αs~xs+β1~y1+ · · ·+βi−1~yi−1.
Z toho ~yi−β1~y1− · · ·−βi−1~yi−1︸ ︷︷ ︸

∈T

= γ1~z1+ · · ·+γr~zr+α1~x1+ · · ·+αs~xs︸ ︷︷ ︸
∈S

∈S∩T ⇒

⇒ γ1~z1+ · · ·+γr~zr+α1~x1+ · · ·+αs~xs = δ1~z1+ · · ·+δr~zr ⇔ (γ1−δ1)~z1+ · · ·+(γr−
−δr)~zr+α1~x1+ · · ·+αs~xs=~0. Z toho, že ~z1, · · · , ~zr, ~x1, · · · , ~xs sú lineárne nezávislé
máme, že α1= · · ·=αs=0. Teda z (∗): ~yi=γ1~z1+ · · ·+γr~zr+β1 ~y1+ · · ·+βi−1~yi−1

spor s tým, že (~z1, · · · , ~zr, ~y1, · · · , ~yt) je báza. Teda naozaj (~z1, · · · , ~zr, ~y1, · · · , ~yt, ~x1,
· · · , ~xs) je báza v S+T . Teda dim(S+T ) = r+s+t = dim(S)+r+t−r = dim(S)+
+ dim(T )−dim(S∩T ).
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Definícia 6.2. Ak S, T sú vektorové podpriestory priestoru V a S∩T={~0}, tak
vektorový podpriestor S+T sa nazýva direktný súčet vektorových podpriestorov S
a T . ozn. S⊕T .

Dôsledok formuly dimenzie: Ak S, T sú podpriestory konečne generovaného vek-
torového priestoru V a S∩T={~0}, tak dim(S⊕T )= dim(S)+ dim(T ). Teraz vieme,
že ak (~x1, · · · , ~xs) je báza v S, a (~y1, · · · , ~yt) je báza v T , tak (~x1, · · · , ~xs, ~y1, · · · , ~yt)
je báza pre (S⊕T ).

Veta 6.3. Nech S, T, P sú vektorové podpriestory priestoru V . Potom P je direkt-
ným súčtom S a T (P=S⊕T ) práve vtedy, keď každý vektor z P sa dá jediným
spôsobom vyjadriť ako súčet vektora z S a vektora z T .

Dôkaz.
⇒ : Predpokladajme, že P=S⊕T . Potom je samozrejme pravda, že každý vektor

z P je súčet vektora z S a vektora z T . Nech by existovali dve takéto vyjadrenia
~x∈P : ~x=~s1+~t1=~s2+~t2, ~s1, ~s2∈S,~t1,~t2∈T . Potom ~s2−~s1=~t1−~t2∈(S∩T )={~0} ⇒
~s1=~s2 a ~t1=~t2.
⇐ : Predpokladajme, že každý vektor z P má jediné vyjadrenie v tvare ”vektor

z S + vektor z T”. Teda P=S+T . Teraz nech ~a∈S∩T . Potom ~a= ~a︸︷︷︸
∈S

+ ~0︸︷︷︸
∈T

=

= ~0︸︷︷︸
∈S

+ ~a︸︷︷︸
∈T

, keďže takéto vyjadrenie je jediné, máme ~a=~0. Dokázali sme, že

S∩T={~0}. Vcelku: P=S⊕T .

VII. MATICE

Definícia 7.1. Matica typu k×s nad poľom R je tabuľka (obdĺžniková), v ktorej
k·s prvkov z R rozmiestňujeme do k riadkov a s stĺpcov. Všeobecný zápis:




a11 · · · a1s

a21 · · · a2s
...

. . .
...

ak1 · · · aks




aij∈R, i−riadkový index, j−stĺpcový index. Matice označujeme: A,B, · · · . Struč-
nejší všeobecný zápis: A=(aij)k,s alebo len A=(aij) ak k, s je jasné z kontextu.
Ak A=(aij)k,s kde k=s, tak A sa volá štvorcová matica stupňa k.
Jednotková matica stupňa n:

In=




1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




Definícia 7.2. Dve matice toho istého typu nad tým istým poľom sa rovnajú, ak na
všetkých zodpovedajúcich miestach majú rovnaké prvky. A=(aij)k,s,B=(buv)m,n
obidve nad R. A=B znamená, že k=m, s=n, aij=bij pre všetky i=1, · · · , k a
j=1, · · · , s.
Označenie. Množina všetkých matíc typu k×s nad R označíme: Mk,s(R).
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Definícia 7.3. Ak A,B∈Mk,s(R), tak definujeme ich súčet ako maticu, ktorú ozn.
A+B; je typu k×s; jej prvok i−teho riadku a j−teho stĺpca je súčet aij+bij .

Veta 7.1. (Mk,s,+) je komutatívna grupa.

Dôkaz. Asociatívnosť operácie + vyplýva z asociatívnosti operácie + v poli R.
Neutrálny prvok je matica, ktorej všetky prvky sú 0∈R tj. tzv. nulová matica.
Inverzný prvok k matici A=(aij) je matica −A=(−aij). Komutatívnosť vyplýva
z komutatívnosti operácie + v poli R .

Definícia 7.4. Pre α∈R, A=(aij)∈Mk,s(R) definujme α-násobok matice A ako
maticu, ktorú označíme αA=(αaij)∈Mk,s(R)

Veta 7.2. Mk,s(R) s vyššie definovaným sčitovaním resp. násobením je vektorový
priestor nad R. α(A+B)=α((aij)+(bij))=(α(aij))+(α(bij))=α(aij)+α(bij).

Tvrdenie 7.1. Ak definujeme Eij∈Mk,s(R) ako maticu, ktorá má v i-tom ri-
adku a j-tom stĺpci 1 a všetky ostatné prvky nulové, tak Mk,s(R) je generovaný
takýmito maticami Eij , i=1, · · · , k j=1, · · · , s. Navyše Eij , i=1, · · · , k j=1, · · · , s
sú lineárne nezávislé a teda tvoria bázu priestoru Mk,s(R). Z toho: dim(Mk,s(R))=
=k·s.

Dôkaz. Nech A=

( a11 ··· a1s

...
. . .

...
ak1 ··· aks

)
∈Mk,s(R). Potom A=

∑

1≤i≤k
1≤j≤s

aijEij . Teda Eij ge-

nerujú Mk,s(R). Nech

( α11 ··· α1s

...
. . .

...
αk1 ··· αks

)
=
∑

1≤i≤k
1≤j≤s

αijEij=

(
0 ··· 0
...

. . .
...

0 ··· 0

)
a teda α11= · · ·=

=αks = 0.

Definícia 7.5. Nech A=(aij) je matica typu Mk,s(R). Riadky matice A chápme
teraz ako prvky z Rs. Označíme SA vektorový podpriestor Rs generovaný riadkami
matice A. SA=[(a11, · · · , a1s), · · · , (ak1, · · · , aks)].
Definícia 7.6. Elementárna riadková operácia na matici je každá z týchto úprav
(ERO):
1. Vzájomná výmena dvoch riadkov v matici.
2. Vynásobenie ľubovoľného riadku nenulovým skalárom.
3. Prirátanie ľubovoľného násobku riadku k inému riadku.

Definícia 7.7. Nech A,B∈Mk,s(R). Hovoríme, že matica B je riadkovo ekviva-
lentná s A (píšeme A≈B) ak B vznikne z A konečným počtom ERO.

Veta 7.3. Relácia riadkovej ekvivalentnosti ≈ je relácia ekvivalencie na Mk,s(R).

Dôkaz.
1.Reflexívnosť: A≈A triviálne.
2.Symetrickosť: Nech A≈B. Každá ERO sa dá vrátiť naspäť (má inverznú). B≈A.
3.Tranzitívnosť: A≈B,B≈C⇒ A≈C z definície jasné.
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Veta 7.4. Nech A,B∈Mk,s(R). Ak A≈B tak SA=SB .

Dôkaz. Stačí dokázať pre prípad, že matica B vznikla z A vykonaním práve jedinej
ERO.
1.Nech B vznikla z A vzájomnou výmenou i-teho a j-teho riadku (i≤j). Riadky
v A označme ~x1, · · · , ~xk.
Teda SB=[~x1, · · · , ~xi−1, ~xj , ~xi+1, · · · , ~xj−1, ~xi, ~xj+1, · · · , ~xk]. Je jasné, že je to to
isté ako lineárny obal [~x1, · · · , ~xk].
2. Nech B vznikla z A tak, že sme i-tý riadok ~xi vynásobili α 6=0, α∈R. Teda
SB=[~x1, · · · , α~xi, · · · , ~xk]. To je to isté ako [~x1, · · · , ~xi, · · · , ~xk]=SA.
3. B vznikla z A pripočítaním α-násobok prvého riadku k druhému. tj. α~x1+~x2.
Teda SB=[~x1, α~x1+~x2, ~x3, · · · , ~xk]. Ale [~x1, α~x1 + ~x2, ~x3, · · · , ~xk]=[~x1, · · · , ~xk] =
=SA. Naozaj: inklúzia ⊂ je zrejmá. Majme ľubovoľnú lineárnu kombináciu:
α1~x1+ · · ·+αk~xk=α1~x1+α2(~x2+α~x1)−αα2~x1+α3~x3+ · · ·+αk~xk=(α1−αα2)~x1+
+α2(~x2+α~x1)+α3~x3+ · · ·+αk~xk∈[~x1, ~x2+α~x1, · · · , ~xk].

Otázka. Platí aj obrátené tvrdenie vo vete 7.4 ?
Odpoveď: Áno.

Definícia 7.8. Hovoríme, že matica A=(aij)∈Mk,s(R)
je v redukovanom trojuholníkovom tvare, ak:
1. Prvý nenulový prvok (tzv. vedúci prvok) každého nenulového riadku je 1.
2. V stĺpci obsahujúcom vedúci prvok niektorého riadku sú ostatné prvky nulové.
3. Ak aij a apq sú vedúce prvky i-teho a p-teho riadku a pritom i<p, tak potom
j<q.
4. Nulové riadky (ak existujú) sú pod všetkými nenulovými.

Príklad.

1. Matica

(
1 2 3 1
0 1 0 0
0 0 1 0

)
nie je v RTM (redukovaná trojuholníková matica).

2.Matica

(
1 0 0 1
0 1 0 0
0 0 1 0

)
je v RTM.

Poznámka. Ak A spĺňa len podmienky 3.,4. tak je to matica v tzv. trojuhol-
níkovom tvare. Redukovaná trojuholníková matica typu k×k je buď nulová, alebo
ak neobsahuje nulové riadky, tak je jednotková matica Ik.

Veta 7.5. Nech A∈Mk,s(R) je RTM. Potom jej nenulové riadky sú lineárne nezá-
vislé. (platí to už o trojuholníkových maticiach).

Dôkaz. Nech A je RTM a nech jej nenulové riadky sú ~x1, · · · , ~xr∈Rs. Vedúce prvky
týchto riadkov nech sú v stĺpcoch t1<t2< · · ·<tr. Nech by boli ~x1, · · · , ~xr lineárne
závislé. Teda existuje i∈{~x1, · · · , ~xr} : ~xi=α1~x1+ · · ·+αi−1~xi−1. Ale ti-tá zložka
v ~xi je 1, kým ~x1, · · · , ~xi−1 majú ti-tú zložku nulovú. Teda má platiť 1=0 spor.

Príklad.




1 2 3 −1
1 1 −1 1
2 −1 1 0


≈




1 2 3 −1
0 −1 −4 2
0 −5 −5 2


≈




1 2 3 −1
0 1 4 −2
0 0 15 −8


≈
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≈



1 2 3 −1
0 1 4 −2
0 0 1 − 8

15


≈




1 0 0 1
3

0 1 0 2
15

0 0 1 − 8
15




Veta 7.6. Každá matica je riadkovo ekvivalentná s nejakou RTM-ou.

Dôkaz. Indukcia vzhľadom na počet riadkov v matici.
1◦ Ak A má jeden riadok, tak ak je nulový tak OK.
Keď nenulový: (0, · · · , 0, c 6= 0, · · · )≈(0, · · · , 0, 1, · · · ) RTM.
2◦ Predpokladajme, že veta platí pre všetky matice, ktoré majú k riadkov. Nech A
je matica, ktorá má k+1 riadkov. Ak A je nulová, tak OK. Nech A6=0. Nech jej prvý

nenulový stĺpec je p-tý. A=




0 ··· 0 ···
...

. . .
... ···

0 ··· aip 6=0 ···
...

. . .
... ···

0 ··· · ···


. Je jasné, že A≈B=

( 0 ··· b1p ···

0
. . .

... ···
0 ··· · ···

)
≈

≈




0 ··· 1 c1,p+1 ··· c1s
0 ··· 0 c2,p+1 ··· c2s

...
. . .

...
...

. . .
...

0 ··· 0 ck+1,p+1 ··· ck+1,s


=C. Ozn. C′=

( c2,p+1 ··· c2s

...
. . .

...
ck+1,p+1 ··· ck+1,s

)
. Matica C′ má

iba k riadkov, konečným počtom ERO sa upraví na RTM ozn. ju D′. Teda:

D=




0 ··· 0 1 d1,p+1 d1,p+2 ··· d1,s−1 d1s

0 ··· 0 0 d′2,p+1 d
′
2,p+2 ··· d′2,s−1 d′2s

0 ··· 0 0 0 d′3,p+2 ··· d′3,s−1 d′3s
...

. . .
...

...
...

...
. . .

...
...

0 ··· 0 0 0 0 ··· d′k,s−1 d′ks
0 ··· 0 0 0 0 ··· 0 d′k+1,s




.

Definícia 7.9. Nech A∈Mk,s(R). Potom číslo dim(SA) sa nazýva hodnosť matice
A, ozn. h(A)= dim(SA).

Platí. : h(A) = počet lineárne nezávislých riadkov matice A.

Tvrdenie 7.2. Ak A≈B, tak h(A)=h(B).

Dôkaz. Keďže každú maticu A môžeme konečným počtom ERO upraviť na RTM
A′≈A, tak h(A)=h(A′)= počet nenulových riadkov v A′.

Príklad. Výpočet hodnosti:

1. A=
(

1 2 3
−1 1 2

)
≈
(

1 2 3
0 3 5

)
h(A)=2.

2. B=
(

1 2 3
2 4 6

)
≈
(

1 2 3
0 0 0

)
h(B)=1.

Veta 7.7. Nech A,B∈Mk,s(R) sú RTM. Ak SA=SB , tak A=B.

Dôkaz. Máme h(A)=h(B)=r. Nech ~a1, · · · ,~ar resp. ~b1, · · · ,~br sú nenulové ri-
adky v A resp. v B. Nech teraz s1<s2< · · ·<sr sú stĺpcové indexy vedúcich
prvkov riadkov ~a1, · · · ,~ar , podobne nech t1<t2< · · ·<tr sú stĺpcové indexy vedú-
cich prvkov riadkov ~b1, · · · ,~br. Keďže SA=SB , máme [~a1, · · · ,~ar]=[~b1, · · · ,~br]∈Rs.
Každé bj má jediné vyjadrenie v tvare ~bj=α1~a1+ · · ·+αr~ar. Pre ~bj nech q je na-
jmenšie také, že αq 6=0. Teda ~bj=αq~aq+ · · ·+αr~ar. bj má prvú nenulovú zložku
(tj)-tú. Vektor vpravo má prvú nenulovú zložku (=αq) sq-tú. Z rovnosti dostá-
vame, že 1=αq, tj=sq. Pre s1<s2< · · ·<sr, t1<t2< · · ·<tr máme, že každé si sa
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rovná dákému tv. To je možné iba tak, že s1=t1, · · · , sr=tr. Teda máme, že
~bj=aq+αq+1~aq+1+ · · ·+αr~ar. V RTM sú v stĺpci obsahujúcom vedúci prvok ri-
adku ostatné prvky 0, preto: 1·αq+1 = 0 ⇒ αq+1 = 0. Podobne pre ostatné, tj.
αq+2= · · ·=αr=0. Teda pre ∀q : ~bq=~aq. Záver A=B.

Dôsledok. Každá matica je riadkovo ekvivalentná s jedinou RTM.

Dôkaz. Nech A je ľubovoľná matica. Vieme, že existuje RTM A′: A≈A′. Nech by
aj B′ bola RTM, B′≈A. Potom A′≈A≈B′,teda A′≈B′, teda SA′=SB′ . Z pred-
chádzajúcej vety vieme, že A′=B′.

Veta 7.8. Nech A,B∈Mk,s(R) sú ľubovoľné. Potom platí: A≈B⇔ SA=SB .

Dôkaz.
⇒: V eta 7.7
⇐: Predpokladajme, že SA=SB . Nech A′ je RTM taká, že A≈A′. Nech B′ je
RTM taká, že B≈B′. Potom SA′=SA=SB=SB′ . Teda SA′=SB′ . Ale A′,B′ sú
RTM, teda z V ety 7.7: A′=B′. A≈A′=B′≈B, teda A≈B.

Tvrdenie 7.4. Nech A,B∈Mk,s(R). Potom A≈B ⇔ A,B sa dajú konečným
počtom ERO upraviť na tú istú RTM.

Dôkaz.
⇒: Predpokladajme, že A≈B. Nech A′ je RTM, B′ je RTM, A≈A′ a B≈B′.
Potom SA′=SA=SB=SB′ . Keďže A′,B′ sú RTM, máme že A′=B′.
⇐: Predpokladajme, že A,B: A≈A′, B≈A′ kde A′ je RTM. Z toho: A≈A′≈B⇔
A≈B.

Príklad. Rozhodnite, či reálne matice
(

1 2
1 1

)
a
(

1 −1
1 1

)
sú riadkovo ekvivalentné.(

1 2
1 1

)
≈
(

1 2
0 1

)
≈
(

1 0
0 1

)
.
(

1 −1
1 1

)
≈
(

1 −1
0 −2

)
≈
(

1 −1
0 1

)
≈
(

1 0
0 1

)
. Sú riadkovo ekviva-

lentné.

VIII. LINEÁRNE ZOBRAZENIE

Definícia 8.1.
Nech V,W sú vektorové priestory nad poľom R. Potom lineárne zobrazenie z V
do W je zobrazenie f : V→W také, že f(α~x+β~y)=αf(~x)+βf(~y) pre ∀α, β∈R a
∀~x, ~y∈V .

Tvrdenie 8.1. Ak f : V→W je lineárne zobrazenie, tak f(~0)=~0.

Dôkaz. f(~0)=f(~0+~0)=f(~0)+f(~0) z toho: f(~0)=~0.

Príklady.
1. f : R2→R3, f(a, b)=(2a + b, a + b − 1, a + 2b) nie je lineárne zobrazenie, lebo
f(~0)=f(0, 0)=(0,−1, 0)6=~0.
2. p1 : R3→R, f(x1, x2, x3)=x1 je lineárne zobrazenie. (Nazýva sa projekcia na
prvú zložku). p1(α(x1, x2, x3)+β(y1, y2, y3))=p1(αx1+βy1, αx2+βy2, αx3+βy3)=
=αx1+βy1=αp1(x1, x2, x3)+βp1(y1, y2, y3).
3. O : V→W , O(~v)=~0∈W pre všetky ~v∈V je lineárne zobrazenie.
4. idV : V→V , idV (~x)=~x je lineárne zobrazenie.
5. g : R2→R2, g(x, y)=(2x, 3x− y) je lineárne zobrazenie.
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Veta 8.1. Nech f : V→W je lineárne zobrazenie.
1. Ak S⊂V je vektorový podpriestor, tak f(S)⊂W je vektorový podpriestor vo W .
(Špeciálne: Im(f)=f(V ) je vektorový podpriestor vo W .)
2. Ak P⊂W je vektorový podpriestor vo W , tak jeho vzor pri zobrazení f je vek-
torový podpriestor. tj.: f−1(P )={~a∈V, f(~a)∈P}⊂V .
(Špec. f−1({~0})={~x∈V , f(~x)=~0}=Ker(f), tj. jadro lineárneho zobrazenia je vek-
torový podpriestor vo V .)

Dôkaz.
1. f(~0)=~0∈f(S)⇒ f(S)6=∅. Kritérium vektorového podpriestoru: Nech ~a,~b∈f(S),
α, β∈R chceme ukázať, že α~a+β~b∈f(S). Máme ~a=f(~x),~b=f(~y) pre dáke ~x, ~y∈S.
Potom f(α~a+β~b︸ ︷︷ ︸

∈S

)=αf(~x)+βf(~y)=α~a+β~b. A teda α~a+β~b∈f(S). Ukázali sme, že

f(S) je vektorový podpriestor.
2. ~0∈P , pričom f(~0)=~0∈P ⇒ ~0∈f−1(P ), preto f−1(P ) 6=∅. Použijeme kritérium
vektorového podpriestoru: Nech ~x, ~y ∈ f−1(P ), α, β ∈ R. Chceme ukázať, že
α~x+β~y∈f−1(P ). Rátajme: f(α~x+β~y)=αf(~x)︸︷︷︸

∈P

+β f(~y)︸︷︷︸
∈P

, preto α~x+β~y∈f−1(P ).

Veta 8.2. Lineárne zobrazenie f : V→W je injektívne ⇔ Ker(f)={~0}. f je
surjektívne ⇔ Im(f)=W .

Dôkaz. Podobne ako pre grupy.

Definícia 8.2. Lineárne zobrazenie f : V→W sa nazýva lineárny izomorfizmus ak
f je bijektívne. Ak pre dané vektorový priestory V,W existuje lineárny izomor-
fizmus g : V→W , tak hovoríme, že vektorový priestor V je lineárne izomorfný
s vektorovým priestorom W . Píšeme: V∼=W
Veta 8.3. Ak f : V→W je lineárny izomorfizmus, tak aj f−1 : W→V je lineárny
izomorfizmus.

Dôkaz. Vieme, že f−1 : W→V existuje a je bijekcia. Chceme ukázať, že je aj
lineárne. Nech ~a,~b∈W , α, β∈R. Nech ~x∈V je ten jediný, pre ktorý f(~x)=~a, podobne
~y∈V jediný, pre ktorý f(~y)=~b. Potom: f(α~x+β~y)=αf(~x)+βf(~y)=α~a+β~b. Z toho:
f−1(α~a+β~b)=αf−1(~a)+βf−1(~b).

Poznámka. Teda ak V∼=W , tak aj W∼=V .

Veta 8.4. Ak f : V→W , g : W→S sú lineárna zobrazenia, tak aj g◦f : V→S je
lineárne zobrazenie. Špeciálne zloženie dvoch lineárnych izomorfizmov je lineárny
izomorfizmus.

Dôkaz. g◦f(α~x+β~y)=g(αf(~x)+βf(~y))=α·g◦f(~x)+β·g◦f(~y).

Príklad. V =vektorový priestor orientovaných úsečiek v Oxy so začiatkom v O.
f : V→R2. f(orient. úsečky)=(1.súr. konc.bodu, 2.súr.konc. bodu). f : V→R2 je
lineárny izomorfizmus.

Nech S je vektorový podpriestor priestoru V (R). Už vieme, že V/S je komu-
tatívna grupa, s operáciou + : [~x]+[~y]=[~x+~y]. Definujme zobrazenie R×V/S→V/S,
(α, [~x])7→α[~x], kde α[~x]=[α~x]. Je to dobrá definícia, lebo ak [~x]=[~y], tak vieme, že
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~x−~y∈S. Potom, keďže S je vektorový podpriestor, máme pre ∀α∈R: α(~x−~y) =
α~x−α~y∈S. Teda [α~x] = [α~y]. Potom V/S je vektorový podpriestor nad R. (napr.
overme α([~x]+[~y])=α[~x+~y]=[α(~x+~y)]=[α~x+α~y]=[α~x]+[α~y]=α[~x]+α[~y], podobne
sa overia ostatné axiómy vektorový podpriestoru.)

Príklady.
1. V/V={~0}
2. Nech f : V→W je lineárne zobrazenie. Vieme, že Ker(f) je vektorový pod-
priestor vo V , máme priestor V/Ker(f).

Definícia 8.3. Ak V je vektorový priestor nad R a S⊂V je vektorový podpriestor,
tak V/S sa nazýva faktorový vektorový priestor.

Veta 8.5. Nech V je konečne generovaný vektorový priestor nad R a nech S⊂V
je vektorový podpriestor. Potom dim(V/S)= dim(V )− dim(S).

Dôkaz.
Nech (~a1, · · · ,~ar) je báza v S. Doplňme ju na bázu (~a1, · · · ,~ar,~br+1, · · · ,~bn)
priestoru V . Potom vektorový priestor V/S je generovaný vektormi [[~br+1], · · · ,
[~bn]]. Pre ľubovoľný [~x]∈V/S. Máme ~x∈V , teda ~x=α1~a1+ · · ·+αr~ar+βr+1

~br+1+
+ · · ·+βn~bn pre αi, βi ∈ R. Z toho: [~x] = [α1~a1]+ · · ·+[αr~ar]+[βr+1

~br+1]+ · · ·+
+[βn~bn] = α1[~a1] + · · ·+ αr[ ~ar] + βr+1[~br+1] + · · ·+ βn[~bn], teda ~0 ∈ V/S, [~x] =
=βr+1[~br+1]+ · · ·+βn[~bn]. Teda V/S⊂[[~br+1], · · · , [~bn]], obrátená inklúzia je zrejmá.
Navyše [~br+1], · · · , [~bn]∈V/S sú lineárne nezávislé, lebo nech δr+1[~br+1]+ · · ·+
+δn[~bn]=~0∈V/S. Potom [δr+1

~br+1+ · · ·+δn~bn]=[~0], teda δr+1
~br+1+ · · ·+δn~bn∈S.

Potom δr+1
~br+1+ · · ·+δn~bn=γ1~a1+ · · ·+γr~ar, z toho: δr+1

~br+1+ · · ·+δn~bn−γ1~a1−
− · · ·−γr~ar=~0∈V . Ale ~a1, · · · ,~ar,~br+1, · · · ,~bn sú nezávislé, preto δr+1= · · ·=δn=0.
Ukázali sme, že ([~br+1], · · · , [~bn]) je báza vo V/S, teda dim(V/S)=n−r.
Veta o faktorovom izomorfizme. Nech f : V→W je surjektívne lineárne zob-
razenie. Potom V/Ker(f)∼=W .

Dôkaz. Definujme ϕ : V/Ker(f)→W , ϕ([~x])=f(~x). Z vety o faktorovom izomor-
fizme pre grupy vieme, že ϕ je dobre definovaný homomorfizmus abelovských grúp;
tiež ϕ je bijkecia. Aby sme ukázali, že ϕ je aj lineárny izomorfizmus, stačí ukázať, že
ϕ(α[~x]) pre α∈R, [~x]∈V/Ker(f). Takto: ϕ(α[~x])=ϕ([α~x])=f(α~x)=αf(~x)=αϕ([~x]).
Zistili sme, že ϕ je lineárny izomorfizmus medzi V/Ker(f)∼=W .

Príklad. p1 : R3 → R, p1(x1, x2, x3) = x1 je lineárne zobrazenie, je aj surjektívne.
Ker(p1) = {(x1, x2, x3) ∈ R3, x1 = 0} = {(0, x2, x3), x2, x3 ∈ R}. Z vety:
R3/{(0, x2, x3)∈R3, x2, x3∈R}∼=R
Veta 8.6. (základná veta o lineárnych zobrazeniach) Nech V je konečne gene-
rovaný vektorový priestor nad poľom R a nech W je vektorový priestor nad R.
Potom existuje jediné lineárne zobrazenie f : V→W také, že f zobrazí bázové
vektory ~a1, · · · ,~an priestoru V na predpísané obrazy ~b1, · · · ,~bn∈W , teda také, že
f(~a1)=~b1, · · · , f(~an)=~bn. Zobrazenie f funguje takto: ak ~x=α1~a1+ · · ·+αn~an, tak
f(~x)=α1

~b1+ · · ·+αn~bn.

Dôkaz.
Jednoznačnosť: Ak také f existuje, tak jediné: nech by f, g : V→W boli dve
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také lineárne zobrazenia. Teda f(~a1)=~b1, · · · , f(~an)=~bn, g(~a1)=~b1, · · · , g(~an)=~bn.
Ľubovoľný x∈V má jednoznačné vyjadrenie: ~x=α1~a1+ · · ·+αn~an. Z lineárnosti f
a g: f(~x)=f(α1~a1+ · · ·+αn~an)=α1

~b1+ · · ·+αn~bn a g(~x)=g(α1~a1+ · · ·+αn~an)=
=α1

~b1+ · · ·+αn~bn. Teda f=g.
Existencia: Videli sme, že ak také f existuje, tak pre ∀x∈V , ~x=α1~a1+ · · ·+αn~an
musí byť f(~x)=α1

~b1+ · · ·+αn~bn. Teda definujme f : V→W takto: f(~x)=α1
~b1+

+ · · ·+αn~bn, ak ~x=α1~a1+ · · ·+αn~an. Potom f(~a1)=~b1, · · · , f(~an)=~bn; treba už len
overiť lineárnosť f : ~x, ~y∈V , α, β∈R, ~x=α1~a1+ · · ·+αn~an, ~y=β1~a1+ · · ·+βn~an ⇒
f(α~x+β~y)=f(α(α1~a1+ · · ·+αn~an)+β(β1

~b1+ · · ·+βn~bn)=f((αα1+ββ1)~a1+ · · ·+
+(ααn+ββn)~an)=(αα1+ββ1)~b1+ · · ·+(ααn+ββn)~bn=α(α1

~b1+ · · ·+αn~bn)+
+β(β1

~b1+ · · ·+βn~bn)=αf(~x)+βf(~y).

Lineárne zobrazenia Rk → Rs, kde R je pole.

Definícia 8.4. Nech f :Rk→Rs je lineárne zobrazenie. Zo základnej vety o li-
neárnych zobrazeniach vieme, že f je úplne určené obrazmi bázových vektorov.
Špeciálne: obrazmi štandardných bázových vektorov ~e1, · · · , ~ek∈Rk. Ak tieto obra-
zy ( tj. f(~e1), · · · , f(~en)∈Rs) zapíšeme (poradie zachováme) do matice, tak dostane-
me maticu typu k × s nad poľom R. Ozn.:Mf . Matica Mf sa nazýva matica
lineárneho zobrazenia f . f(1, 0, · · · , 0)=(a11, · · · , a1s)∈Rs, · · · , f(0, 0, · · · , 1)=

=(ak1, · · · , aks)⇒Mf=

( a11 ··· a1s

...
. . .

...
ak1 ··· aks

)
∈Mk,s(R).

Príklad. g : R2→R2, g(x1, x2)=(2x1−x2, x1+x2), Mg=
(
g(1,0)
g(0,1)

)
=
(

2 1
−1 1

)
.

Definícia 8.5. Nech je daná matica A∈Mk,s(R). Potom zo základnej vety o lineár-
nych zobrazeniach vieme, že existuje jediné zobrazenie Rk→Rs,ktoré ~e1∈Rk zobrazí
na prvý riadok matice A, atď, ~ek na k-tý riadok matice A. Toto lineárne zobrazenie
označíme fA : Rk→Rs; nazýva sa lineárne zobrazenie patriace k matici A.

Príklad.
B=

(
1 −1 2
1 1 3

)
∈M2,3(R), gB : R2→R3, gB(1, 0)=(1,−1, 2), gB(0, 1)=(1, 1, 3).

gB(x1, x2)=gB((1, 0)x1+(0, 1)x2)=x1(1,−1, 2)+x2(1, 1, 3)=(x1+x2,−x1+x2, 2x1+
+3x2). Je jasné: MgB=B

Veta 8.7. Priradenie matice lineárnemu zobrazeniu Rk→Rs definuje bijektívnu
korešpondenciu medzi množinou všetkých lineárnych zobrazení Rk→Rs a množinou
matíc Mk,s(R).

Dôkaz. Jasné!

Nech f : R2→R2, g : R2→R3 sú lineárne zobrazenia. Potom g◦f : R2→R3 je

tiež lineárne zobrazenie. Nech Mf=
( a11 a12

a21 a22

)
a Mg=

(
b11 b12 b13

b21 b22 b23

)
. Aký je vzťah

medzi Mg◦f na jednej strane a maticami Mg,Mf na druhej strane?
Rátame: f(1, 0)=(a11, a12), f(0, 1)=(a21, a22), g(1, 0)=(b11, b12, b13), g(0, 1)=(b21,
b22, b23), g◦f(1, 0) = g(a11(1, 0)+a12(1, 0)) = a11(b11, b12, b13)+a12(b21, b22, b23) =
=(a11b11+a12b21, a11b12+a12b22, a11b13+a12b23), g◦f(0, 1)=g(a21(0, 1)+a22(0, 1))=
= · · ·=(a21b11+a22b21, a21b12+a22b22, a21b13+a22b23), Mg◦f=Mf ·Mg.
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Tvrdenie 8.2. Ak f :Rk→Rs je lineárne zobrazenie s maticou Mf=(aij)∈Mk,s(R)
a g : Rs→Rt je lineárne zobrazenie s maticou Mg=(bij)∈Ms,t(R), tak lineárne
zobrazenie g◦f : Rk→Rt má maticu Mg◦f∈Mk,t(R), ktorej prvok i-teho riadku
a j-teho stĺpca dostaneme ako skalárny súčin i-teho riadku z Mf a j-teho stĺpca
z Mg.

Definícia 8.6. Nech A∈Mk,s(R), B∈Ms,t(R); potom súčin matíc A a B ozn. AB
sa definuje takto: AB=C=(cij)∈Mk,t(R), kde cij=ai1b1j+ · · ·+aisbsj .
Tvrdenie 8.3. Ak f : Rk→Rs je lineárne zobrazenie s maticou Mf a g : Rs→Rt
je lineárne zobrazenie s maticou Mg, tak Mg◦f=Mf ·Mg

Príklad. (
1 −2 3
1 1 2

)( 1
−1
0

)
=
(

3
0

)

Niektoré vlastnosti súčinu matíc.

1. A∈Mk,s(R) In=




1 0 ··· 0
0 1 ··· 0
...

...
. . .

...
0 0 ··· 1


∈Mn,n(R)⇒ IkA=A=AIs kde Is=Mid(Rs).

2.A∈Mk,s, B∈Ms,t, C∈Mt,z potom (AB)C=A(BC). Dôkaz: A=MfA ,B=MfB ,
C=MfC . Potom A(BC)=MfA(MfBMfC )=MfA(MfC◦fB )=M(fC◦fB)◦fA=
=MfC(fB◦fA)=MfB◦fAMfC=(MfAMfB )MfC .
3. distributivita: A(B+C)=AB+AC, keď to má zmysel, (A+B)C=AC+BC.

4. AB 6=BA napr.:
(

1 2
−1 1

)(
1 1
−1 1

)
=
(−1 3
−2 0

)
, ale

(
1 1
−1 1

)(
1 2
−1 1

)
=
(

0 3
−2 −1

)
.

(Mn,n(R),+, •, 1=In) je okruh s 1.

Definícia 8.7. Elementárna matica stupňa k patriaca k danej ERO je matica,
ktorú z Ik dostaneme tak, že na Ik urobíme túto ERO.

Príklad. ERO- prirátanie α-násobku druhého riadku k prvému. Príslušná elemen-

tárna matica stupňa 3 je: E =

(
1 α 0
0 1 0
0 0 1

)
.

Veta 8.8. Nech B∈Mk,s(R) vznikne z A∈Mk,s(R) vykonaním práve jednej ERO.
Potom ak E je elementárna matica stupňa k patriaca k tejto ERO, tak B=EA.

Dôkaz. Ak C∈Ma,b(R) je ľubovoľná matica, tak i-tý riadok matice C sa rovná

(0, · · · , 0, 1, 0, · · · , 0)C=~eiC, (0, · · · , 0, 1, 0, · · · , 0) ·




c11 ··· c1b
· ··· ·
ci1 ··· cib
· ··· ·
ca1 ··· cab


=(ci1, · · · , cib).

A=(aij)k,s. Nech napr. ERO spočíva v tom, že α-násobok j-teho riadku prirátame

k prvému. Teda: B =



a11+αaj1 ··· a1s+αjs

a21 ··· a2s

...
. . .

...
ak1 ··· aks


. Elementárna matica E vznikne z Ik

vykonaním tej istej ERO. Teda riadky matice E budú ~e1+α~ej , ~e2, · · · , ~ek. Prvý
riadok v EA je ~e1(EA)=(~e1E)A=(~e1+α~ej)A=~e1A+α~ejA=(a11, · · · , a1s)+α(aj1,
· · · , ajs)=(a11+αaj1, · · · , a1s+αajs)= prvý riadok v B. Druhý riadok v EA je
~e2(EA)=(~e2E)A=~e2A=(a21, · · · , a2s)= druhý riadok v B. . . . podobne všetky os-
tatné. Teda B=EA.
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Príklad. A=
(

1 1
−1 1

)
∈M2,2(R). K druhému riadku prirátame prvý.

B=
(

1 1
0 2

)
E=

(
1 0
1 1

)
EA=

(
1 1
0 2

)
=B.

Tvrdenie 8.4. Nech A∈Mk,s(R), nech fA : Rk→Rs je lineárne zobrazenie mati-
cou A. Potom fA(x1, · · · , xk)=(x1, · · · , xk)·A pre všetky (x1, · · · , xk)∈Rk. Pre
lineárne zobrazenie g : Rk→Rs máme: g(x1, · · · , xk)=(x1, · · · , xk)·Mg pre všetky
(x1, · · · , xk)∈Rk.

Dôkaz. Zo základnej vety o lineárnych zobrazeniach vieme, že g je úplne určené
obrazmi: ~e1, · · · , ~ek. Predpis h(x1, · · · , xk)=(x1, · · · , xk)·Mg definuje lineárne zob-
razenie z Rk→Rs. h(α(x1, · · · , xk)+β(y1, · · · , yk))·Mg=α(x1, · · · , xk)·Mg+
+β(y1, · · · , yk)·Mg=αh(x1, · · · , xk)+βh(y1, · · · , yk). g(~e1)=1. riadok matice Mg.
h(~e1)=~e1·Mg=1.riadok v Mg.
Všeobecne: g(~ei)=i-tý riadok v Mg. h(~ei)=~eiMg pre i=1, · · · , k. Z toho: h=g, a
teda g(x1, · · · , xk)=(x1, · · · , xk)·Mg.

Príklad. f : R2→R2, f(x1, x2)=(−x1+x2,−x1), Mf =
(
f(1,0)
f(0,1)

)
=
(
−1 −1
1 0

)
,

(x1, x2)
(
−1 −1
1 0

)
=(−x1+x2,−x1).

Poznámka. Prvky z Rk chápme ako riadky. Ale niekedy sa prvky z Rk chápu aj
ako stĺpce. Potom pri takom chápaní sa matica lineárneho zobrazenia f : Rk→Rs

definuje ako matica M̃f je typu s×k nad R, ktorej i-tý stĺpec je f




0
···
0
1
0
···
0


.

g : Rk→Rs, g

( x1

...
xk

)
=g(x1, · · · , xk)=M̃f ·

( x1

...
xk

)
.

Definícia 8.8. A=(aij)∈Mk,s(R) k nej transponovaná matica je matica
AT∈Ms,k(R) pričom (aT

ij)=aji. Teda AT dostaneme z A tak, že ”vymeníme riadky
za stĺpce”.

Príklad. A=
(

1 2 3
2 4 5

)
AT=

(
1 2
2 4
3 5

)
.

Tvrdenie 8.5. Ak A=(aij)∈Mk,s, B=(bij)∈Ms,t(R), tak (AB)T=BTAT.

Dôkaz. Prvok i-teho riadku a j-teho stĺpca v BTAT je
s∑
p=1

bTipa
T
pj=

s∑
p=1

ajpbpi.

Prvok z i-teho riadku a j-teho stĺpca v (AB)T=prvok j-teho riadku a i-teho stĺpca

v AB, teda
s∑
p=1

ajpbpi.

Poznámka. (AT)T=A.

Injektívnosť a surjektívnosť lineárnych zobrazení.
f : V→W vieme, že f je injektívne⇔ Ker(f)={~0}, f je surjektívne⇔ Im(f)=

=f(V )=W .
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Veta 8.9. Nech f : V→W je lineárne zobrazenie a nech (~a1, · · · ,~ak) je báza vo V .
Potom:
1. f je injektívne ⇔ f(~a1, · · · , f(~an) sú lineárne nezávislé.
2. f je surjektívne ⇔ [f(~a1), · · · , f(~an)]=W .

Dôkaz.
1. ⇒ f : je injektívne. Nech α1f(~a1)+ · · ·+αnf(~an)=~0. Chceme ukázať, že αi=0.
Z toho: f(α1~a1+ · · ·+αn~an)=f(~0). Podľa predpokladu: α1~a1+ · · ·+αn~an=~0, z li-
neárnej nezávislosti ~a1, · · · ,~an ⇒ ∀αi=0.
⇐: Nech ∀f(~ai) sú lineárne nezávislé. Nech ~x∈Ker(f). Teda f(~x)=~0. Máme jed-
noznačne ~x=β1~a1+ · · ·+βn~an. Potom f(~x)=β1f(~a1)+ · · ·+βn~an, keďže: f(~x)=~0 :
f(~a1), · · · , f(~an) sú lineárne nezávislé máme, že β1= · · ·βn=0 a teda ~x=~0. Preto
Ker(f)={~0}, teda f je injektívne.
2. ⇒: Predpokladajme, že f je surjektívne. Nech ~y∈W je ľubovoľný. Zo surjek-
tívnosti: existuje ~x∈V : f(~x)=~y. Máme, ~x=α1~a1+ · · ·+αn~an, teda f(α1~a1+ · · ·+
+αn~an) = ~y ⇒ α1f(~a1) + · · ·+ αnf(~an). Takže ~y ∈ [f(~a1), · · · , f(~an)] máme
W⊂[f(~a1), · · · , f(~an)]. Obrátená inklúzia je zrejmá.
⇐: Predpokladajme, že W=[f(~a1), · · · , f(~an)]. Nech ~b∈W je ľubovoľný, potom
~b=β1f(~a1)+ · · ·+βnf(~an)=f(β1~a1+ · · ·+βn~an︸ ︷︷ ︸

∈V

). ~b má vzor f je surjektívne.

Dôsledok. Ak V a W sú konečne generované vektorový priestory nad R, tak
lineárne zobrazenie f : V→W je lineárny izomorfizmus ⇔ f zobrazuje bázu pries-
toru V na bázu priestoru W .

Poznámka. Ak V∼=W , tak dim(V )= dim(W ).

Dôsledok.
Každý n-rozmerný (n≥1) vektorový priestor nad R je lineárne izomorfný s Rn.

Dôkaz. Nech V 6={~0} má nejakú bázu (~a1, · · · ,~an). V Rn zoberme štandardnú
bázu (~e1, · · · , ~en). Zo základnej vety o lineárnych zobrazeniach vieme, že existuje
práve jedno lineárne zobrazenie f : V→Rn také, že f(~ai)=~ei, i=1, 2, · · · , n. Podľa
predchádzajúceho dôsledku f je lineárny izomorfizmus, teda V∼=Rn.

Veta 8.10. Nech f : Rk→Rs je lineárne zobrazenie. Potom:
1. f je injektívne ⇔ h(Mf )=k.
2. f je surjektívne ⇔ h(Mf )=s.
3. f je lineárny izomorfizmus ⇔ k=s a h(Mf )=k.

Dôkaz. Mf∈Mk,s(R) má riadky f(~e1), · · · , f(~ek). To znamená, že f : Rk→Im(f)
je surjekcia, teda z vety 8.9 vyplýva, že priestor Im(f) je generovaný Im(f) =
=[f(~e1), · · · , f(~ek)]. Teda dim(Im(f))= dim[f(~e1), · · · , f(~ek)]=h(Mf ). Z vety
o faktorovom izomorfizme: Rk/Ker(f) ∼= Im(f). Teda k − dim(Ker(f)) =
= dim(Im(f)) = h(Mf ).
1. f je injektívne ⇔ Ker(f)={~0} ⇔ dim{Ker(f)}=0⇔ h(Mf )=k.
2. f je surjektívne ⇔ Im(f)=Rs ⇔ [f(~e1), · · · , f(~en)]=Rs ⇔ dim[f(~e1), · · · ,
f(~ek)] = s = h(Mf ).
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Lema 8.1.
Nech S je vektorový podpriestor priestoru V . Potom S=V ⇔ dim(S)= dim(V ).

Dôkaz. ⇒: Ak S=V , tak dim(S)= dim(V )
⇐: Predpokladajme, že dim(S)= dim(V ). Nech teraz S 6=V . Nech (~a1, · · · ,~ap) je
báza v S. Existuje ~x∈V−S. Potom vektory ~a1, · · · ,~ap, ~x sú lineárne nezávislé, a
teda dim(V ) je aspoň p+1, kým dim(S)=p; spor s tým, že dim(S)= dim(V ).

Definícia 8.9. Lineárne zobrazenie f : Rk→Rk sa volá transformácia priestoru
Rk. Lineárna transformácia f : Rk→Rk sa nazýva regulárna, ak f je lineárny
izomorfizmus.

Veta 8.11. Lineárna transformácia f : Rk→Rk je regulárna ⇔ h(Mf )=k.

Dôkaz. Vyplýva to z vety 8.10

Definícia 8.10. Matica A∈Mk,k(R) sa nazýva regulárna, ak h(A) = k.

Potom Veta 8.11 znie takto: Lineárna transformácia f : Rk→Rk je regulárna ⇔
jej matica Mf je regulárna.

Definícia 8.11. Inverzná matica k danej matici A∈Mk,k(R) je taká matica
B∈Mk,k(R), že platí AB=BA=Ik. Pretože binárna operácia • na Mk,k(R) je
asociatívna a Ik je neutrálny prvok vieme, že ak taká matica B existuje, tak je
jediný. Označíme ju A−1.

Pre aké matice A∈Mk,k(R) existuje A−1 ?
Nutná podmienka: ak A−1 existuje, tak AA−1=A−1A=Ik. Z toho potom vieme,
že fAA−1 :Rk→Rk, fAA−1(x1, · · · , xk)=(x1, · · · , xk)AA−1=((x1, · · · , xk)A)A−1=
=fA−1((x1, · · · , xk)A)=fA−1fA(x1, · · · , xk)=fA−1◦fA(x1, · · · , xk)⇒ fAA−1=
=fA−1◦fA. Podobne fA−1A=fA◦fA−1 , teda fA◦fA−1 = fA−1A = fIk = idRk =
= fA−1◦fA. To znamená, že (fA)−1=fA−1 .

Veta 8.12. K matici A∈Mk,k(R) existuje inverzná ⇔ A je regulárna.

Dôkaz.
⇒ už máme.
⇐ Predpokladajme, že A je regulárna. Teda fA : Rk→Rk je regulárna lineárna
transformácia, tj. fA je lineárny izomorfizmus. Potom existuje k nemu inverzný
lineárny izomorfizmus g : Rk→Rk. Teda g◦fA=fA◦g=idRk . Pritom g=fMg . To
znamená, že fMg◦fA=fA◦fMg=idRk . To je to isté ako: fAMg=fMgA=fIk . Z ko-
rešpondencie: AMg=MgA=Ik, teda Mg=A−1. Zároveň máme:A−1=M(fA)−1 .

Definícia 8.12. Ak matica nie je regulárna, tak je singulárna.
A∈Mk,k(R), A je singulárna ⇔ h(A)<k.

Nech A∈Mk,k(R) je regulárna matica. Ako vypočítať A−1? A=

( a11 ··· a1k

...
. . .

...
ak1 ··· akk

)
.

fA(1, 0, · · · , 0)=(a11, · · · , a1k), · · · , fA(0, 0, · · · , 1)=(ak1, · · · , akk). Treba nájsť in-
verzné zobrazenie f−1

A . Pretože fA : Rk→Rk je lineárny izomorfizmus ((a11, · · · ,
a1k), · · · , (ak1, · · · , akk)) je tiež báza v Rk. Preto zobrazenie (f−1

A ) : Rk→Rk je
úplne určené tým, že (f−1

A )(a11, · · · , a1k)=(1, 0, · · · , 0) až (f−1
A )(ak1, · · · , akk)=
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=(0, · · · , 0, 1). Aby sme dostali maticu zobrazenia f−1
A , potrebujeme vyrátať, na

čo f−1
A zobrazí ~e1, · · · , ~ek.

( a11 ··· a1k 1 ··· 0
...

. . .
...

...
. . .

...
ak1 ··· akk 0 ··· 1

)
∼
( 1 ··· 0 b11 ··· b1k

...
. . .

...
...

. . .
...

0 ··· 1 bk1 ··· bkk

)
. Stručne:

(A|Ik)∼(Ik|A−1).

Príklad. A−1 =? ak A =
(

1 2
−1 1

)
∈Mk,k(R)(

1 2 1 0
−1 1 0 1

)
∼
(

1 2 1 0
0 3 1 1

)
∼
(

1 2 1 0
0 1 1

3
1
3

)
∼
(

1 0 1
3 − 2

3
0 1 1

3
1
3

)
⇒ A−1=

(
1
3 − 2

3
1
3

1
3

)
.(

1 2
−1 1

)(
1
3 − 2

3
1
3

1
3

)
=
(

1 0
0 1

)
=
(

1
3 − 2

3
1
3

1
3

)(
1 2
−1 1

)
.

IX. SYSTÉMY LINEÁRNYCH ROVNÍC

Majme systém S s rovníc s n neznámymi nad R: (S)





a11x1+ · · ·+a1nxn=b1
· · ·
as1x1+ · · ·+asnxn=bs

.

Matica A=

( a11 ··· a1n

...
. . .

...
as1 ··· asn

)
∈Ms,n(R) sa nazýva matica systému (S). Matica

A′=

(
a11 ··· a1n b1
...

. . .
...

...
as1 ··· asn bs

)
∈Ms,n+1(R) sa nazýva rozšírená matica systému (S). Oz-

načme ďalej B=

(
b1
···
bs

)
, to je tzv. matica pravých strán. Potom systém (S) môžeme

napísať takto: A ·
(
x1

···
xn

)
=

(
b1
···
bs

)
. tj. ak označíme X=

(
x1

···
xn

)
máme: AX=B. Toto

je maticový zápis systému (S). Riešením systému AX=B je každé K=(k1, · · · , kn)
také, že AKT=B. Ak matica A′′ vznikla z rozšírenej matice A′ systému (S)
konečným počtom ERO, tak systém, ktorého rozšírená matica je A′′ je ekvivalentná
so systémom (S). AX=B ⇔ (AX)T=BT ⇔ XTAT=BT ⇔ fAT(XT)=BT,
kde fAT : Rn→Rs je lineárne zobrazenie s maticou AT. Teda systém AX=B
je riešiteľný ⇔ keď BT∈Im(fAT). Množina riešení systému AX=B je vlastne
(fAT)−1({BT}).
Napríklad:

{
x1 + x2 = 1

x1 − x2 = 0
A=

(
1 1
1 −1

)
A′=

(
1 1 1
1 −1 0

)
X=

( x1

x2

)
B=

(
1
0

)

(
1 1
−1 1

) ( x1

x2

)
=
(

1
0

)
. Riešenia sú také (x1, x2)∈R2, pre ktoré fA·(x1, x2)=(1, 0).

Riešenie je napr. ( 1
2 ,

1
2 ). Iné riešenie nemôže mať, lebo matica A je regulárna, teda

lineárna transformácia fA : R2→R2 je lineárny izomorfizmus.

Homogénne lineárne systémy.

Definícia 9.1. Systém (H)





a11x1+ · · ·+a1nxn=0
...

as1x1+ · · ·+asnxn=0

sa volá homogénny, jeho ma-

ticový zápis je AX=0, kde A je matica toho systému.

Veta 9.1. Množina všetkých riešení homogénneho lineárneho systému (H) je vek-
torový priestor v Rn.
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Dôkaz. Označme S=množinu riešení (H). Potom S 6=∅, lebo (0, · · · , 0)∈S. Použi-
jeme kritérium vektorového podpriestoru. Nech α, β∈R, K,L∈S sú ľubovoľné.
Chceme ukázať, že αK+βL∈S. Vieme, že AKT=0, ALT=0. Potom A(αKT+
+βLT)=αAKT+βALT=α0+β0=0. Teda naozaj αKT+βLT∈S.
Iný dôkaz: AX=0 ⇔ XTAT=0T=0 ⇔ fAT(XT)=0 ⇔ XT∈Ker(fAT). Teda
S=Ker(fAT), fAT : Rn→Rs. Vieme, že [Ker(fAT)] jadro lineárneho zobrazenia je
vektorový podpriestor.

Nech h(A)=r. Vieme, že konečným počtom ERO sa tá matica A upraví na RTM,
ktorá má r nenulových riadkov. Povedzme, že tá RTM má vedúce prvky v stĺpcoch
t1<t2< · · ·<tr. Premenovaním neznámych y1=xt1 , · · · , yr=xtr , yi=xi v ostatných

prípadoch, dostaneme lineárny systém (H ′)





y1 + c1,r+1yr+1 + · · ·+ c1nyn = 0
...

yr + cr,r+1yr+1 + · · ·+ crnyn = 0

.

Spätným preznačením neznámych sa od (H ′) dostaneme k systému s neznámymi
x1, · · · , xn, ktorého vektorový priestor riešení je priestor riešení systému (H). Vek-
torový priestor riešení systému (H ′) je lineárne izomorfný s vektorovým priestorom
riešení systému (H). (Lineárny izomorfizmus g : S′ → S, g(y1, · · · , yn) = (xt1 , · · · ,
xtr , xr+1, · · · , xn).) Teda dim(S′)= dim(S). Teda stačí určiť dim(S). V (H ′) máme
viazané neznáme y1, · · · , yr, kým yr+1, · · · , yn sú voľné (nadobúdajú ľubovoľné
hodnoty z R). Pre yr+1=1, yr+2= · · ·=yn=0 dostaneme riešenie systému (H ′).
dr+1=(−c1,r+1, · · · ,−cr,r+1, 1, 0, · · · , 0) atď. Pre yr+1= · · ·=yn−1=0, yn=1 dosta-
neme riešenie dn=(−c1n, · · · ,−crn, 0, · · · , 0, 1). Takto sme dostali n−r riešení sys-
tému (H ′).

Tvrdenie 9.1. (dr+1, · · · , dn) je báza priestoru (S′), ktorý je priestorom riešení
systému (H ′). Teda dim(S′) = dim(S) = n−r.

Dôkaz. dr+1, · · · , dn sú zrejme lineárne nezávislé. Zostáva ukázať, že dr+1, · · · , dn
generujú priestor (S′). Nech s=(s1, · · · , sn)∈S′ je ľubovoľné riešenie systému (H ′).
Chceme ukázať, že s je lineárnou kombináciou dr+1, · · · , dn. Takto: (s1, · · · , sn)=
=sr+1dr+1+ · · ·+sndn. s1=(−c1,r+1sr+1− · · ·−c1nsn). 1.zložka vpravo:
−sr+1c1,r+1− · · ·−snc1n. 1.zložka vľavo: −c1,r+1sr+1− · · ·−c1nsn. Podobne pre
ostatné zložky.
Dimenzia priestoru riešení homogénneho lineárneho systému = počet neznámych
− hodnosť matice systému.

Príklad. Nad R vyriešte:





4x1 + 5x2 + 6x3 − 3x4 + 3x5 = 0

x1 + 2x2 + 3x3 + 4x4 + 5x5 = 0

2x1 + 3x2 + 4x3 + 5x4 + x5 = 0

3x1 + 4x2 + 5x3 + x4 + 2x5 = 0

x1 + 3x2 + 5x3 + 12x4 + 9x5 = 0

A=




1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
1 3 5 12 9
4 5 6 −3 3


∼ · · ·∼




1 2 3 4 5
0 1 2 3 9
0 0 0 −1 1
0 0 0 0 0
0 0 0 0 0


. RTM ekvivalentná s A:




1 0 −1 0 −15
0 1 2 0 12
0 0 0 1 −1
0 0 0 0 0
0 0 0 0 0



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Teda daný systém je ekvivalentný s týmto:





x1 − x3 − 15x5 = 0

x2 + 2x3 + 12x5 = 0

x4 − x5 = 0
x3, x5 sú voľné. x3=s∈R, x5=t∈R. Pomocou nich vyjadríme x1, x2, x4 : x4=t,
x2=−2s−12t, x1=s+15t. Teda vektorový priestor všetkých riešení je S={(s+15t,
−2s−12t, s, t, t)}s, t∈R. Báza priestoru S pre s=1, t=0 : (1,−2, 1, 0, 0), pre s=0,
t=1 : (15,−12, 0, 1, 1).
Báza priestoru S je ((1,−2, 1, 0, 0), (15,−12, 0, 1, 1)).

Veta 9.2. Pre ľubovoľnú maticu A∈Mk,t(R) : h(AT)=h(A).

Dôkaz. Nech h(A)=r. Uvažujme o lineárnom systéme AX=0. Vektorový priestor
riešení je Ker(fAT). fAT : Rt→Im(fAT), Rt/Ker(fAT)∼=Im(fAT).
t−dim(Ker(fAT))= dim(Im(fAT)). t−(t−h(A))=h(AT)⇔ h(A)=h(AT).

Nehomogénny systém lineárnych rovníc.

(N)





a11x1 + · · ·+ a1nxn = b1
...

as1x1 + · · ·+ asnxn = bs

Aspoň jedno bi 6=0, tak nehomogénny systém s lineárnych rovníc s n neznámymi.

Veta 9.3. (Frobeniova,Kroneckerova−Capelliho)
Nehomogénny systém lineárnych rovníc je riešiteľný ⇔ hodnosť matice systému sa
rovná hodnosti rozšírenej matice systému.

Dôkaz. Maticový zápis: B =

(
b1
···
bs

)
X =

(
x1

···
xn

)
A =

( a11 ··· a1n

...
. . .

...
as1 ··· asn

)
AX=B⇔

XTAT=BT ⇔ fAT(XT)=BT. Z toho je jasné, že systém (N) je riešiteľný ⇔
keď BT∈Im(fAT). Označme ai i-tý stĺpec matice A. Potom AT má riadky
aT

1 , · · · , aT
n . Systém (N) je riešiteľný ⇔BT∈Im(fAT)⇔ BT∈[aT

1 , · · · , aT
n ]=

=[aT
1 , · · · , aT

n ,B
T] ⇔ dim[aT

1 , · · · , aT
n ]= dim[aT

1 , · · · , aT
n ,B

T] ⇔ dimenzia priesto-
ru generovaného riadkami matice AT= dimenzia priestoru generovaného riadkami
matice (A|B)T ⇔ h(AT)=h((A|B)T)⇔ h(A)=h(A|B).

Príklad.

{
x1 + x2 = 1

x1 + x2 = 4
nad R nie je riešiteľný, lebo h

(
1 1
1 1

)
=1 ale h

(
1 1 1
1 1 4

)
=2

Veta 9.4. Uvažujme o nehomogénnom systéme (N). Nech P je množina všetkých
jeho riešení. Potom: ak d∈P je nejaké riešenie systému (N), tak každé riešenie
systému (N) je tvaru d+c pre vhodné c z vektorového priestoru riešení príslušneho
homogénneho systému AX=0. Obrátene, d+c– kde c je riešením príslušneho ho-
mogénneho systému– je riešením systému (N). Teda ak S je vektorový priestor
riešení príslušneho homogénneho systému, tak P=d+S

Dôkaz. Ak p∈P je ľubovoľné, tak p=d+(p−d). (p−d)∈S. [ApT=B, AdT=B ⇒
A(p−d)T=A(pT−dT)=ApT−AdT=B−B=0]. Teda P⊂d+S. Ľubovoľné d+S,
kde s∈S, tak d+s∈P , lebo A(d+s)T=AdT+AsT=B+0=B. Teda tiež d+S⊂P .
Vcelku: P=d+S.
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Príklad. Systém nad R:





x1 + 5x2 + 4x3 + 3x4 = 1

2x1 − x2 + 2x3 − x4 = 0

5x1 + 3x2 + 8x3 + x4 = 1

.




1 5 4 3 1
2 −1 2 −1 0
5 3 8 1 1


∼




1 5 4 3 1

0 11 6 7 2
0 0 0 0 0




Viazané: x1, x2, voľné: x3=u, x4=v.

P = {( 1
11
− 14

11
u+

2
11
v,

2
11
− 6

11
u− 7

11
v, u, v)∈R4, u, v∈R} =

= (
1
11
,

2
11
, 0, 0) + {(−14

11
u+

2
11
v,− 6

11
u− 7

11
v, u, v)∈R4, u, v∈R}

kde {(−14
11
u +

2
11
v,− 6

11
u − 7

11
v, u, v)∈R4 u, v∈R} je vektorový priestor riešení

príslušneho homogénneho systému.

Poznámka. Po úprave rozšírenej matice nehomogénneho systému na trojuholníkový
tvar považujeme za viazané tie neznáme, ktoré zodpovedá vedúcim prvkom
nenulových riadkov rozšírenej matice (v trojuholníkovom tvare). Ostatné sú voľné.

Determinanty.
{1, 2, · · · , n} permutácia tejto množiny je každá bijekcia ϕ : {1, 2, · · · , n} →

{1, 2, · · · , n}. ϕ =
(

1 2 ··· n

ϕ(1) ϕ(2) ··· ϕ(n)

)
.

Napr.:
(

1 2 3
2 1 3

)
je permutácia množiny {1, 2, 3}.

Definícia 9.2. S{1,2,··· ,n} = množina všetkých permutácií množiny {1, 2, · · · , n}.
Ak ϕ=

(
1 2 ··· n

ϕ(1) ϕ(2) ··· ϕ(n)

)
∈S{1,2,··· ,n}, tak hovoríme, že dvojica (ϕ(i), ϕ(j)) tvorí

inverziu vo ϕ, ak i<j, ale ϕ(i)>ϕ(j).

Príklad. V permutácii
(

1 2 3
2 1 3

)
sú 2 a 1 v inverzii.

Definícia 9.3. Počet inverzií v permutácii ϕ∈S{1,··· ,n} označíme s(ϕ). Permutácia
ϕ je párna, ak (−1)s(ϕ)=1 a ϕ je nepárna, ak (−1)s(ϕ)=− 1.

Definícia 9.4. Nech A∈Mnn(R), kde R je hocijaké pole. Determinant matice A
je prvok poľa R, definovaný takto: det(A)=

∑

ϕ∈{1,2,··· ,n}
(−1)s(ϕ)a1ϕ(1) · · · anϕ(n).

Príklady.
1. A=(a11)∈M11(R) : det(A)=a11.

2. A=
( a11 a12

a21 a22

)
, det(A) = (−1)

s
� 1 2

1 2

�
a11a22 + (−1)

s
� 1 2

2 1

�
a12a21 = a11a22 +

(−1)1a12a21 = a11a22 − a12a21.

3. A=

(
a11 a12 a13

a21 a22 a23

a31 a32 a33

)
, potom det(A) = · · · = a11a22a33 + a12a23a31 + a13a21a32−

−a11a23a32 − a12a21a33 − a13a22a31.
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Definícia 9.5. Vyňatím prvkov i-teho riadku (i=1, 2, · · · , n) dostaneme

det(A)=ai1 · (súčty súčinov bez ai1)︸ ︷︷ ︸
Ai1

+ · · ·+ain · (súčty súčinov bez ain)︸ ︷︷ ︸
Ain

)

Aij sa nazýva algebraický doplnok k prvku aij .

Uvidíme, že Aij sa dá vyjadriť pomocou determinantu vhodnej matice stupňa
n−1 odvodenej z A.

Lema 9.1. Ak ϕ,ψ∈S{1,··· ,n} tak platí, že (−1)s(ϕ◦ψ)=(−1)s(ϕ)+s(ψ). Z toho

máme, že: (−1)s(ϕ)=(−1)s(ϕ
−1).

Dôkaz. Pevne zvoľme x1, · · · , xn∈R navzájom rôzne. Označme P =
∏

i<j

(xi − xj).

Pre ϕ∈S{1,··· ,n} a ľubovoľné k∈Z definujme ((−1)kP )ϕ=(−1)k
∏

1≤i<j≤n
(xϕ(i)−xϕ(j))

Je jasné, že (−1)k(−1)s(ϕ)P = ((−1)kP ). Pre ϕ,ψ∈S{1,··· ,n} : Pϕ◦ψ = (Pϕ)ψ =
=((−1)s(ϕ)P )ψ=(−1)s(ϕ)(−1)s(ψ)P=(−1)s(ϕ)+s(ψ)P ⇒ (−1)s(ϕ◦ψ)=(−1)s(ϕ)+s(ψ).

Vlastnosť 1. Pre každú maticu A∈Mnn(R) máme det(A)= det(AT).

Dôkaz. Prvok i-teho riadku a j-teho stĺpca v AT bude aT
ij=aji. Podľa definície

determinantu vieme, že det(A) =
∑

ϕ∈S
(−1)s(ϕ)a1ϕ(1)a2ϕ(2) · · · anϕ(n) =

=
∑

ϕ∈S
(−1)s(ϕ)aϕ−1(1)ϕ−1(ϕ−1(1)) · · · aϕ−1(n)ϕ−1(ϕ−1(n)) =

=
∑

ϕ∈S
(−1)s(ϕ)aϕ−1(1) · · · aϕ−1(n)n =

∑

ϕ−1∈S
(−1)s(ϕ)aT

1ϕ−1(1)· · ·aT
nϕ−1(n)=

=
∑

ϕ−1∈S
(−1)s(ϕ

−1)aT
1ϕ−1(1)· · ·aT

nϕ−1(n)= det(AT).

Vlastnosť 2. Ak matica B∈Mnn(R) vznikne z matice A∈Mnn(R) jednou vzájom-
nou výmenou ľubovoľných dvoch riadkov, tak det(B)=− det(A).

Dôkaz. Napr. nech B vznikne z A vzájomnou výmenou prvého a druhého riadku.

Teda, ak A=




a11 a12 ··· a1n

a21 a22 ··· a2n

...
...

. . .
...

an1 an2 ··· ann


 , tak B=




a21 a22 ··· a2n

a11 a12 ··· a1n

...
...

. . .
...

an1 an2 ··· ann


. Označme

ψ=
(

1 2 ··· n
2 1 ··· n

)(
1 2 ··· n

ϕ(1) ϕ(2) ··· ϕ(n)

)
=
(

1 2 ··· n

ϕ(2) ϕ(1) ··· ϕ(n)

)
,

(−1)s(ψ)=(−1)

�
1 2 ··· n

ϕ(2) ϕ(1) ··· ϕ(n)

�
(−1)s(ϕ) = −(−1)s(ϕ). Z definície determinantu:

det(B)=
∑

ϕ∈S
(−1)s(ϕ)b1ϕ(1)b2ϕ(2) · · · bnϕ(n)=

∑

ϕ∈S
(−1)s(ϕ)a2ϕ(1)a1ϕ(2) · · · anϕ(n) =

=
∑

ϕ∈S
(−1)s(ϕ)a1ϕ(2)a2ϕ(1) · · · anϕ(n) =

∑

ψ∈S
(−1)s(ϕ)a1ψ(1)a2ψ(2) · · · anψ(n) =

= −
∑

ψ∈S
(−1)s(ψ)a1ψ(1)a2ψ(2) · · · anψ(n)=− det(A).
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Vlastnosť 3. Nech A=aij∈Mnn(R). Potom pre ľubovoľné r, s∈{1, · · · , n} algeb-
raický doplnok k prvku ars je Ars=(−1)r+s det(Mrs). Kde matica Mrs je matica
typu r−1×s−1, ktorá vznikne vynechaním r-teho riadku a s-teho stĺpca z matice A.

Príklad. A =

(
a11 a12 a13

a21 a22 a23

a31 a32 a33

)
A23 = (−1)5 det

( a11 a12

a31 a32

)

Dôkaz. Z definície determinantu: det(A)=
∑

ϕ∈S
(−1)s(ϕ)

n∏

i=1

aiϕ(i) =

=
ϕ(1)=1∑

ϕ∈S
(−1)s(ϕ)a11a2ϕ(2) · · · anϕ(n)+

ϕ(1) 6=1∑
ϕ∈s

(−1)s(ϕ)a1ϕ(1)a2ϕ(2) · · · anϕ(n).

Z toho: A11=
ϕ(1)=1∑

ϕ∈S
(−1)s(ϕ)a2ϕ(2) · · · anϕ(n)=

∑

ψ∈S′
(−1)s(ψ)a2ψ(2) · · · anψ(n) =

= det

( a22 ··· a2n

...
. . .

...
an2 ··· ann

)
= det(M11) = (−1)1+1 det(M11).

Teraz rátame Ars pre ľubovoľné r, s∈{1, · · · , n} :

A =




a11 · · · a1s−1 a1s a1s+1 · · · a1n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar−11 · · · ar−1s−1 ar−1s ar−1s+1 · · · ar−1n

ar1 · · · ars−1 ars ars+1 · · · arn
ar+11 · · · ar+1s−1 ar+1s ar+1s+1 · · · ar+1n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1 · · · ans−1 ans ans+1 · · · ann




Vzájomná výmena r−1 riadkov:

B =




ar1 · · · ars−1 ars ars+1 · · · arn
a11 · · · a1s−1 a1s a1s+1 · · · a1n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar−11 · · · ar−1s−1 ar−1s ar−1s+1 · · · ar−1n

ar+11 · · · ar+1s−1 ar+1s ar+1s+1 · · · ar+1n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
an1 · · · ans−1 ans ans+1 · · · ann




Vzájomná výmena s−1 stĺpcov:

C =




ars ar1 · · · ars−1 ars+1 · · · arn
a1s a11 · · · a1s−1 a1s+1 · · · a1n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ar−1s ar−11 · · · ar−1s−1 ar−1s+1 · · · ar−1n

ar+1s ar+11 · · · ar+1s−1 ar+1s+1 · · · ar+1n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ans an1 · · · ans−1 ans+1 · · · ann




Z toho čo sme dokázali vieme, že det(C)=ars det(Mrs)+členy bez ars. Z 1. a 2.
vlastnosti: (−1)s−1 det(B)[= det(C)]=(−1)s−1·(−1)r−1 det(A)=(−1)r+s det(A).
det(A)=ars(−1)r+s det(Mrs) + (−1)r+s · členy bez ars ⇒ Ars=(−1)r+s det(Mrs).
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Veta 9.5. (Laplaceova o rozvoji determinantoch)
Pre A∈Mnn(R) máme: det(A)=ai1(−1)i+1 det(Mi1)+ · · ·+ain(−1)i+n det(Min).
Toto vyjadrenie sa nazýva Laplaceov rozvoj determinantu matice A podľa i-teho
riadku. Tiež: det(A)=a1j(−1)j+1 det(M1j)+· · ·+anj(−1)n+j det(Mnj) pre všetky
j∈{1, · · · , n} tzv. rozvoj podľa j-teho stĺpca.

Dôkaz. Dôsledok vlastnosti 3. Máme det(A)=ai1Ai1+ · · ·+ainAin. Z vlastnosti
3 dosadíme vyjadrenia Aik=(−1)i+k det(Mik). S využitím vlastnosti 1 stĺpcový
rozvoj. (tj. det(AT)= det(A).)

Príklad. det

(
1 2 3
0 −1 1
0 1 3

)
=1· det

(
−1 1
1 3

)
+0=− 4.

Vlastnosť 4. Ak sú v matici A∈Mnn(R) dva riadky rovnaké (príp. dva stĺpce),
tak det(A)=0.

Dôkaz. Indukcia vzhľadom na n. Pre n=2: det
(
a b

a b

)
=ab− ab=0.

Indukčný predpoklad: Predpokladajme, že tvrdenie platí pre také matice typu
n−1×n−1. Nech A∈Mnn(R). Nech r-tý a s-tý riadok (r<s) v A sú rovnaké.
Rozviňme determinant matice A podľa i-teho riadku, kde i6=r, i6=s. Potom
det(A)=ai1(−1)i+1(Mi1)+ · · ·+ain(−1)i+nMin. Mij sú matice stupňa n−1, ktoré
majú dva rovnaké riadky. Potom z indukčného predpokladu: det(A)=0.

Vlastnosť 5. Nech B∈Mnn(R) vznikne z A∈Mnn(R) prirátaním ľubovoľného ná-
sobku ľubovoľného riadku v A k inému riadku v A. Potom det(A)= det(B).

Dôkaz. Nech napríklad B vznikne z A tak, že k 1.riadku prirátame α-násobok
2.riadku. Rozviňme determinant B podľa prvého riadku:
det(B)=(a11+αa21)(−1)1+1 det(M11)+ · · ·+(a1n+αa2n)(−1)1+n det(M1n)=
=a11(−1)2 det(M11)+ · · ·+a1n(−1)1+n det(M1n)+α(a21(−1)2 det(M11)+ · · ·+
+a2n(−1)1+n det(M1n))= det(A)+α det(matice, ktorá má rovnaký 1. a 2.riadok)
= det(A).

Vlastnosť 6. Nech B vznikne z A∈Mnn(R) tak, že i-tý riadok (iba tento) vyná-
sobíme α∈R− {0}. Potom det(B)=α det(A).

Dôkaz. Rozvinieme determinant matice B podľa i-teho riadku:
det(B) = αai1(−1)i+1 det(Mi1) + · · ·+ αain(−1)i+n det(Min) =
= α[ai1(−1)i+1 det(Mi1) + · · ·+ ain(−1)i+n det(Min)] = α det(A).

Vlastnosť 7.

det




~a1

···
~ai−1

~ai+~bi
···
~an


= det




~a1

···
~ai−1

~ai
···
~an


+ det




~a1

···
~ai−1
~bi
···
~an




Dôkaz. Rozvoj podľa i-teho riadku.

Vlastnosť 8. Ak matica A∈Mnn(R) má nulový riadok, tak det(A)=0.

Dôkaz. Priamo z definície.
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Ak maticu A∈Mnn(R) upravíme pomocou ERO na trojuholníkovú maticu:

T=




t11 t12 · · · t1n
0 t22 · · · t2n
...

...
. . .

...
0 · · · 0 tnn




tak buď niektorý z prvkov t11, · · · , tnn je 0 (to je vtedy, keď h(T)<n tj. ak T
je singulárna), alebo všetky t11, · · · , tnn sú nenulové (to je vtedy, keď h(A)=n).
Z Laplaceovej vety o rozvoji determinantu (ale aj priamo z definície) je jasné, že
det(T)=t11·t22· · ·tnn.

Príklad. Jedna z metód výpočtu det(A): A postupne upravujeme na trojuhoníkovú
maticu, ak zohľadníme vplyv jednotlivých ERO na determinant a fakt, že determi-
nant trojuholníkovej matice je súčin prvkov hlavnej diagonály, tak ľahko vyrátame
det(A).

det

(
1 −1 1
−1 1 1
1 1 −1

)
= det

(
1 −1 1
0 0 2
0 2 −2

)
=− det

(
1 −1 1
0 2 −2
0 0 2

)
=− 4· det

(
1 −1 1
0 1 −1
0 0 1

)
=− 4.

Tvrdenie 9.2. Matica A∈Mnn(R) je regulárna ⇔ det(A) 6=0.

Dôkaz. Vieme, že A je regulárna ⇔ je riadkovo ekvivalentná s nejakou trojuhol-

níkovou maticou T, pričom tii 6=0 čiže
n∏

k=1

6=0. Z toho aký vplyv majú jednotlivé

ERO na determinant vieme, že musí existovať α∈R−{0} také, že det(A)=α· det(T).
Vcelku máme, že A je regulárna ⇔ det(T)6=0⇔ det(A)6=0.

Príklad. Reálna matica

(
1 −1 1
−1 1 1
1 1 −1

)
je regulárna, lebo jej determinant je nenulový.

Príklad.

det




1 1 1 · · · 1
1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0




= det




1 1 1 · · · 1
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
0 0 0 · · · −1




= (−1)n−1

Príklad. Vandermondov determinant

det

( 1 1 1 1
a b c d

a2 b2 c2 d2

a3 b3 c3 d3

)
= det

( 1 1 1 1
0 b−a c−a d−a
0 b2−a2 c2−a2 d2−a2

0 b3−a3 c3−a3 d3−a3

)
= det

(
b−a c−a d−a
b2−a2 c2−a2 d2−a2

b3−a3 c3−a3 d3−a3

)
=

= det

(
b−a c−a d−a
b2−ab c2−ac d2−ad
b3−a2b c3−a2c d3−a2d

)
= (b−a)(c−a)(d−a)·det

(
1 1 1
b c d

b2+ab c2+ac d2+ad

)
=

=(b−a)(c−a)(d−a)· det

(
1 1 1
b c d

b2 c2 d2

)
=(b−a)(c−a)(d−a)· det

(
1 1 1
0 c−b d−b
0 c2−b2 d2−b2

)
=

=(b−a)(c−a)(d−a)· det
(

c−b d−b
c2−b2 d2−b2

)
=(b−a)(c−a)(d−a)(c−b)(d−b)(d−c).
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Veta 9.6. Pre ľubovoľné A,B∈Mnn(R) : det(AB)= det(A) det(B).

Dôkaz. Ak A, alebo B je singulárna, tak veta zrejme platí. fAB : Rn→Rn je
lineárny izomorfizmus s maticou AB. Vieme, že fAB=fB◦fA. Ak A je sin-
gulárna, tak fA zobrazí nejaký vektor ~a∈Rn, ~a6=~0 na nulový. Teda fA(~a)=~0.
Potom fB◦fA(~a)=~0=fAB(~a) a teda AB je singulárna, teda det(AB)=0. Podobne
ak B je singulárna a A je regulárna. Ak A aj B sú singulárne, tak tiež platí.
Ďalej: Predpokladajme, že A aj B sú regulárne. Keďže A je regulárna, dá sa

konečným počtom ERO upraviť na trojuholníkovú maticu T=

(
t11 ··· t1n
··· tii tin
0 ··· tnn

)
, pričom

tii 6=0. Každá ERO sa dá realizovať tak, že danú maticu zľava vynásobíme takzva-
nou elementárnou maticou, ktorá prislúcha k tej ERO. Teda: E1·E2 · · ·Ek·A=T,
kde Ei sú elementárne matice prislúchajuce k použitým ERO. Pretože A je regu-
lárna, na jej úpravu na T stačí použiť iba prirátavanie násobkov riadkov k iným
riadkom. Teda det(A)= det(EkA)= det(Ek−1EkA)= · · ·= det(E1 · · ·EkA)=T. A-
nalogicky ako ERO sa definujú aj ESO, k nim prislúchajú elementárne matice
(taká matica vznikne z jednotkovej tak, že na nej urobíme tú ESO). Matica B sa
konečným počtom ESO (zas vystačíme iba s prirátavaním násobkov stĺpcov k iným

stĺpcom, keďže B je regulárna) upraví na trojuholníkovú maticu T′=



t′11 ··· t′1n
...

. . .
...

0 ··· t′nn




pričom
∏

t′ii 6=0. Urobiť nejaké ESO je to isté, ako danú maticu sprava vynásobiť

príslušnou elementárnou maticou. Teda: BF1 · · ·Fp=T′, kde Fi sú príslušné ele-
mentárne matice. Pritom F1, · · ·Fp zodpovedajú iba prirátavaním násobku stĺpca
k inému stĺpcu. Potom: det(B)= det(BF1)= · · ·= det(BF1 · · ·Fp)= det(T′). Teraz

det(TT′)= det







t11 t12 · · · t1n
0 t21 · · · t2n
...

...
. . .

...
0 0 · · · tnn







t′11 t′12 · · · t′1n
0 t′22 · · · t′2n
...

...
. . .

...
0 0 · · · t′nn





=

= det




t11t
′
11 · · · · · · · · ·

0 t22t
′
22 · · · · · ·

...
...

. . .
...

0 0 · · · tnnt
′
nn


=t11t

′
11 · · · tnnt′nn=t11 · · · tnnt′11 · · · t′nn=

= det(T)· det(T′). Potom det(A·B) = det(E1 · · ·EkA ·B) =
= det(E1 · · ·EkA ·BF1 · · ·Fp)= det(TT′)= det(T) det(T′)= det(A) det(B).

Iverzná matica pomocou determinantu.
Nech A=(aij)∈Mnn(R) je regulárna. Vieme, že existuje inverzná matica A−1.

Definujme tzv. adjungovanú maticu k A ako maticu:

adj(A)=




A11 A21 · · · An1

A12 A22 · · · An2
...

...
. . .

...
A1n A2n · · · Ann




Nech Aij je algebraický doplnok k prvku aij . Teda Aij=(−1)i+j det(Mij).
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Veta 9.7. Ak A=(aij)∈Mnn(R) je regulárna, tak A−1=
adj(A)
det(A)

.

Dôkaz. Rátajme C=A·adj(A)
det(A)

?
= In. Matica

1
det(A)

·A·adj(A) má na hlavnej

diagonále prvky: cii=
1

det(A)
·(ai1Ai1+ · · ·+ainAin︸ ︷︷ ︸

det(A)

)=1 a mimo hlavnej diagonály

prvky (tj. pre i6=j) cij= 1
det(A)

(ai1Aj1+ · · ·+ainAjn)=0. Teda C=In.

Príklad. A =
(

1 2
−1 1

)
adj(A) =

(
1 −2
1 1

)
A−1 = 1

3 ·
(

1 −2
1 1

)

Systémy n rovníc s n neznámymi.

Fredholmova alternatíva.
Nech AX=B je systém n lineárnych rovníc s n neznámymi. Potom sú dve

možnosti:
1. Systém AX=B má jediné riešenie bez ohľadu na to, aká je pravá strana B
(to nastane vtedy, keď h(A)=n, tj. vtedy, keď det(A)6=0) a zároveň príslušný
homogénny systém AX=0 má iba triviálne riešenie.
2. Nehomogénny systém AX=B je riešiteľný už nie pre všetky B, ale iba pre také,
pre ktoré h(A | B)=h(A), to sa stane vtedy, keď h(A)<n tj. det(A)=0, a zároveň
príslušný homogénny lineárny systém má aspoň jedno triviálne riešenie.

Cramerovo pravidlo. Majme nehomogénny lineárny systém n rovníc s n nezná-

mymi nad R: AX=B, kde A=

( a11 ··· a1n

...
. . .

...
an1 ··· ann

)
X =

( x1

...
xn

)
B =

( b1
...
bn

)
.

Predpokladajme, že A je regulárna. Potom systém AX=B má jediné riešenie:
X=A−1B.( x1

...
xn

)
=

1
det(A)

( A11 ··· An1

...
. . .

...
A1n ··· Ann

)( b1
...
bn

)
, teda xi=

1
det(A)

(A1ib1+ · · ·+Anibn)=

=
1

det(A)
det(matice, ktorá vznikne tak, že i-tý stĺpec nahradíme

( b1
...
bn

)
.

Označme Ai =




a11 ··· a1i−1 b1 a1i+1 ··· a1n

...
. . .

...
...

...
. . .

...
an1 ··· ani−1 bn ani+1 ··· ann


, tak potom jediné riešenie systému

AX = B je

(
det(A1)
det(A)

; · · · ;
det(An)
det(A)

)
.

Príklad. Lineárny systém nad Z5:




3x1 + 4x2 = 1

x1 + x2 + 2x3 = 1

3x1 + 4x2 + x3 = 0




3 4 0
1 1 2
3 4 1





x1

x2

x3


 =




1
1
0




det(A)=4, det(A1)=4, det(A2)=3, det(A3)=1. Jediné riešenie systému daného je:
(4·4−1, 3·4−1, 1·4−1) = (1, 2, 4)∈Z5.
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Príklad. Využitím Cramerovho pravidla riešte:
{
x1 + 5x2 + 4x3 + 3x4 = 1

2x1 − x2 + 2x3 − x4 = 0
det

(
1 5
2 −1

)
= −11 6= 0

Rovnice sú lineárne nezávislé, x1, x2 budú viazané x3, x4 budú voľné neznáme.
{
x1 + 5x2 = 1− 4u− 3v

2x1 − x2 = −2u+ v
⇒ det(A) =

(
1−4u−3v 5
−2u+v −1

)
=− 1+14u−2v

det(A2) =

(
1 1− 4u− 3v
2 −2u+ v

)
= −2 + 6u+ 7v

Potom všeobecné riešenie daného systému je:
(

1
11
− 14

11
u+

2
11
v;

2
11
− 6

11
u− 7

11
v;u; v

)

X. EUKLIDOVSKÝ VEKTOROVÝ PRIESTOR

Definícia 10.1. Nech V je vektorový priestor nad R. Potom skalárny súčin na V
je zobrazenie g : V×V→R pre ktoré platia tieto podmienky:
1. g(~x+ ~y, ~z)=g(~x, ~z) + g(~y, ~z) pre ∀~x, ~y, ~z∈V .
2. g(~y, ~x)=g(~x, ~y) pre ∀~x, ~y∈V .
3. g(α~x, ~y)=αg(~x, ~y) pre ∀~x, ~y∈V, α∈R.
4. Ak ~x6=~0, tak g(~x, ~x)>0.
Ak g je nejaký skalárny súčin na V , tak V sa nazýva euklidovský vektorový priestor
(presnejšie je to euklidovský vektorový priestor (V, g)).

Poznámka. Ak g je skalárny súčin na V , tak namiesto g(~x, ~y) sa často píše 〈~x, ~y〉.
〈 , 〉 : V×V→R. Potom vlastnosti skalárneho súčinu sa prepíšu takto:
1. 〈~x+ ~y, ~z〉=〈~x, ~z〉+ 〈~y, ~z〉.
2. 〈~y, ~x〉=〈~x, ~y〉.
3. 〈α~x, ~y〉=α〈~x, ~y〉.
4. Ak ~x∈V−{~0}, tak 〈~x, ~x〉>0.

Príklad. Pre Rn zoberme zobrazenie 〈 , 〉 : Rn×Rn→R,
〈(x1, · · · , xn), (y1, · · · , yn)〉=x1y1+ · · ·+xnyn.
1. 〈(x1, · · · , xn)+(z1, · · · , zn), (y1, · · · , yn)〉=〈(x1+z1, · · · , xn+zn), (y1, · · · , yn)〉 =
= (x1+z1)y1+ · · ·+(xn+zn)yn=〈(x1, · · · , xn), (y1, · · · , yn)〉+〈(z1, · · · , zn),
(y1, · · · , yn)〉=〈~x, ~y〉+〈~z, ~y〉. Zistili sme, že vyššie definované zobrazenie 〈 , 〉 :
Rn×Rn→R, 〈(x1, · · · , xn), (y1, · · · , yn)〉=x1y1+ · · ·+xnyn je tzv. štandardný ska-
lárny súčin na Rn. (Existujú aj iné skalárne súčiny.)

Príklad. Euklidovský priestor nemusí byť konečne generovaný. V=C(〈0, 1〉)= pries-
tor spojitých funkcií na 〈0, 1〉. Definujme zobrazenie: 〈 , 〉 :V×V→R takto:
〈f, g〉= ∫ 1

0 f(x)g(x)dx. (C〈0, 1〉, 〈 , 〉) je euklidovský vektorový priestor nie konečne
generovaný.

Poznámka. Nech V je vektorový priestor nad C. Skalárny súčin na V je zobrazenie
〈 , 〉 : V×V→C, ktoré spĺňa:
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1. 〈~x+ ~y, ~z〉=〈~x, ~z〉+〈~y, ~z〉.
2. 〈~y, ~x〉=〈~x, ~y〉. (komplexne združené)
3. 〈α~x, ~y〉=α〈~x, ~y〉.
4. Ak ~x∈V−{ ~0}, tak 〈~x, ~x〉>0.

Príklad. V=Cn (n≤1). Definujme: 〈 , 〉 : Cn×Cn→C
〈(x1, · · · , zn), (w1, · · · , wn)〉=z1w̄1+ · · ·+znw̄n. Ak V je vektorový priestor nad C a
〈 , 〉 : V×V→C je skalárny súčin, tak (V, 〈 , 〉) sa volá unitárny (alebo hermitovský)
priestor.

V ďaľšom už iba reálne euklidovské priestory uvažujeme!

Definícia 10.2. Nech (V, 〈 , 〉) je euklidovský vektorový priestor. Potom dĺžka
ľubovoľného vektora ~x∈V sa definuje ako reálne číslo: |~x|=

√
〈~x, ~x〉.

Príklad. V R3 so štandardným skalárnym súčinom: |(1, 1, 1)|=√12+12+12=
√

3.

Veta 10.1. Nech (V, 〈 , 〉) je euklidovský priestor. Potom:
1. |α · ~x|=|α| · |~x| pre ∀α∈R, ∀~x∈V .
2. |~x|=0⇔ ~x=~0.
3. |〈~x, ~y〉|≤|~x||~y|. (Cauchyho-Schwarzova-Bunjakovského nerovnosť).
4. |~x+~y|≤|~x|+ |~y| pre ľubovoľné ~x, ~y∈V (trojuholníkova nerovnosť).

Dôkaz.
1. |α~x|=

√
〈α~x, α~x〉=

√
α2〈~x, ~x〉=|α|

√
〈~x, ~x〉=|α||~x|.

2. Ak ~x=~0, tak |~x|=|0 · ~x|=0 · |~x|=0; ak by ~x6=~0, tak by sme mali |~x|=
√
〈~x, ~x〉>0

–spor s predpokladom.
3. ~x, ~y ľubovoľné pevne zvolené. Pre ľubovoľné α∈R utvorme vektor α~x−~y. Potom
〈α~x−~y, α~x−~y〉≥0⇒ 〈α~x, α~x〉−〈~y, α~x〉−〈α~x, ~y〉+〈~y, ~y〉=α2〈~x, ~x〉−α〈~y, ~x〉−α〈~x, ~y〉+
+〈~y, ~y〉=α2〈~x, ~x〉−2α〈~x, ~y〉+〈~y, ~y〉≥0.
Zistili sme, že pre všetky α∈R je 〈~x, ~x〉α2−2α〈~x, ~x〉+〈~y, ~y〉≥0 kvadratický člen v pre-
mennej α. Graf tohto trojčlena leží v nezápornej polrovine (x2≥0) pričom nepretína
os x1. Teda tento trojčlen nemá dva rôzne reálne korene. Preto diskriminant
D=4〈~x, ~y〉2−4〈~x, ~x〉 · 〈~y, ~y〉≤0. Z toho: 4 · 〈~x, ~y〉2≤4〈~x, ~x〉 · 〈~y, ~y〉 tj. |〈~x, ~y〉|≤|~x| · |~y|.
4.) |~x+~y|2=〈~x+~y, ~x+~y〉=〈~x, ~x〉+〈~x, ~y〉+〈~y, ~x〉+〈~y, ~y〉=〈~x, ~x〉+2〈~x, ~y〉+〈~y, ~y〉=
=|~x|2+2〈~x, ~y〉+|~y|2≤|~x|2+2|~x|·|~y|+|~y|2=(|~x|+|~y|)2. Z toho |~x+~y|≤|~x|+|~y|.

Z 3.vlastnosti z vety 10.1. máme: ak ~x6=~0 6=~y, tak −1≤ 〈~x, ~y〉|~x|·|~y|≤1.

Definícia 10.3. Ak (V, 〈 , 〉) je euklidovský vektorový priestor a ~x, ~y∈V−{~0}, tak

uhol vektorov ~x, ~y definujeme ako také α∈〈0, π〉 pre ktoré cosα=
〈~x, ~y〉
|~x|·|~y| . Ak ~x=~0,

alebo ~y=~0, tak definujeme uhol vektorov ~x, ~y ako
π

2
.

Definícia 10.4. Nech (V, 〈 , 〉) je euklidovský vektorový priestor. Hovoríme, že

~x, ~y∈V sú na seba kolmé, ak ](~x, ~y)=
π

2
. (ortogonálne).
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Tvrdenie 10.1. Ak (V, 〈 , 〉) je euklidovský vektorový priestor, tak ∠(~x, ~y)=
π

2
⇔

〈~x, ~y〉=0.

Dôkaz. ∠(~x, ~y)=
π

2
⇔ ~x=~0 alebo ~y=~0 alebo ~x, ~y∈V−~0 a 〈~x, ~y〉=0.

Príklady.
1. Nech R3 je euklidovský vektorový priestor so štandardným skalárnym súčinom.
Potom ~e1=(1, 0, 0), ~e2=(0, 1, 0), ~e3=(0, 0, 1) sú navzájom ortogonálne.
2. V R2 so štandardným skalárnym súčinom. Na (a, b)∈R2 je vektor (−b, a) kolmý.

Veta 10.2. Nech (V, 〈 , 〉) je euklidovský vektorový priestor a nech vektory
~a1, · · · ,~an sú nenulové a navzájom kolmé vektory. Potom sú aj lineárne nezávislé.

Dôkaz. Nech α1~a1+ · · ·+αn~an=~0. Chceme ukázať, že α1 = · · · = αn = 0.
〈~a1, α1~a1 + · · ·+αn~an〉 = α1 〈~a1,~a1〉︸ ︷︷ ︸

>0

+α2 〈~a1,~a2〉︸ ︷︷ ︸
=0

+ · · ·+αn 〈~a1,~an〉︸ ︷︷ ︸
=0

= 0 = 〈~0,~a1〉 ⇒

⇒ α1=0. Podobne všeobecne 0=〈α1~a1+ · · ·+αn~an,~ai〉=αi|~ai|2 ⇒ αi=0.

Dôsledok. Ak (V, 〈 , 〉) je n-rozmerný euklidovský vektorový priestor a vektory
~a1, · · · ,~an∈V−{~0} sú navzájom kolmé, tak (~a1, · · · ,~an) je báza priestoru V .

Definícia 10.5. Ak (~a1, · · · ,~an) je báza euklidovského vektorového priestoru V
taká, že ~ai ⊥ ~aj pre ∀i6=j, tak tá báza sa nazýva ortogonálna báza. Ak naviac
|~ai|=1 pre i=1, · · · , n, tak tá báza sa nazýva ortonormálna.

Príklad. (~e1, ~e2, ~e3) je ortogonálna a ortonormálna báza euklidovského vektorového
priestoru (R3, 〈 , 〉).
Veta 10.3. Nech (V, 〈 , 〉) je ľubovoľný euklidovský vektorový priestor a nech S
je ľubovoľný jeho vektorový podpriestor (nenulový). Ak V je konečne generovaný,
tak v S existuje ortonormálna báza.

Dôkaz. Nech dim(V )=n, nech (~x1, · · · , ~xk) (k≤n) je dajaká báza v S. Veta bude
dokázaná, ak dokážeme, že existujú nenulové vektory ~y1, · · · , ~yk∈S také, že pre ne
platí: ~y1 = ~x1, ~y2 = ~x2+β21~x1, ~y3 = ~x3+β31~x1+β32~x2, · · · , ~yk = ~xk+βk1~x1+ · · ·+
+βkk−1~xk−1, pričom ~yi ⊥ ~yj pre i 6=j. Je jasné, že potom ~y1, · · · , ~yk sú v S sú
lineárne nezávislé. Keďže dim(S)=k, tak (~y1, · · · , ~yk) je báza, a je ortogonálna.

Potom ortonormálna báza v S bude takáto:

(
~y1

|~y1| , · · · ,
~yk
|~yk|

)
.

〈 ~yi|~yi| ,
~yj
|~yj | 〉=

1
|~yi||~yj | ·〈~yi, ~yj〉=0. Existenciu vektorov ~yi dokážeme indukciou:

Ak k=1: S má bázu (~x1), ortonormálna bude:

(
~x1

|~x1|
)

. Predpokladajme, že veta

platí pre k=s−1. A teraz nech S má bázu (~x1, · · · , ~xs). Teda máme systém
~y1=~x1, · · · , ~ys−1=~xs+ · · ·+βs−1s−2~xs−2. Podľa indukčného predpokladu máme
vektory ~y1, · · · , ~ys−1 potrebného tvaru. Treba už len ukázať, ako vyrátať vektor
~ys 6=~0 potrebného tvaru a taký, že 〈~ys, ~yi〉=0 pre všetky i≤s−1. Hľadajme ~ys v tvare:
~ys = ~xs+δs1~y1+ · · ·+δss−1~ys−1. Má byť: 0 = 〈~ys, ~y1〉 = 〈~xs, ~x1〉+δs1〈~x1, ~x1〉+
+δs2 〈~y2, ~x1〉︸ ︷︷ ︸

=0

+ · · ·+δss−1 〈~ys−1, ~x1〉︸ ︷︷ ︸
=0

⇒ 〈~xs, ~x1〉+δs1〈~x1, ~x1〉=0 ⇒ δs1=−〈~xs, ~x1〉
〈~x1, ~x1〉 .

Z toho, že 〈~ys, ~y2〉=0 vyrátame δs2 atď.
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Poznámka. Metóda dôkazu je konštruktívna; ukazuje induktívny postup na hľada-
nie ortogonálnej, ortonormálnej bázy. Je to tzv. Gramov − Schmidtov ortogonali-
začný proces.

Príklad. Nech S je podpriestor v R4 so štandardným skalárnym súčinom. Treba
nájsť ortonormálnu bázu podpriestoru S.
S=[~x1, ~x2, ~x3]=[(1,−1, 0,−1), (0, 1, 0, 2), (0, 0, 1,−2)]. Najskôr ortogonálnu bázu:
~y1 = ~x1 = (1,−1, 0,−1), ~y2 = ~x2 + α~y1; 〈~y1, ~y2〉 = 0⇒ α = 1, ~y2=(1, 0, 0, 1);
~y3=(0, 0, 1, 2)+δ1(1,−1, 0,−1)+δ2(1, 0, 0, 1). Potom: 〈~y3, ~y1〉=0 ∧ 〈~y2, ~y1〉=0 ⇒
0=〈(δ1+δ2,−δ1, 1,−2−δ1+δ2), (1,−1, 0,−1)〉=δ1+δ2+δ1+2+δ1−δ2=0 · · · ⇒
⇒ δ1=− 2

3
, δ2=1⇒ ~y3=(0, 0, 1, 2)−2

3
(1,−1, 0,−1)+(1, 0, 0, 1)=(

1
3
,

2
3
, 1,−1

3
).

Ortonormálna báza:

(
(

1√
3
,− 1√

3
, 0,− 1√

3
), (

1√
2
, 0, 0,

1√
2

),

√
3√
5

(
1
3
,

2
3
, 1,−1

3
)

)
.

Definícia 10.6. Nech (V, 〈 , 〉) je euklidovský vektorový priestor a nech M⊂V ,
M 6=∅. (M nemusí byť podpriestor). Potom ortogonálny doplnok (komplement)
množiny M vo V je množina M⊥ : ={~x∈V ; 〈~x, ~m〉=0 ∀~x∈M}
Veta 10.4. Nech (V, 〈 , 〉) je euklidovský vektorový priestor. Potom:
1. M 6=∅, M⊂V ⇒M⊥ je vektorový podpriestor priestoru V .
2. Ak M,N 6=∅ M,N⊂V a M⊂N tak N⊥⊂M⊥.
3. Ak S, T sú vektorové podpriestory vo V , tak (S+T )⊥=S⊥∩T⊥.

Dôkaz.
1. M⊥ 6=∅, lebo ~0∈M⊥. Kritérium vektorového podpriestoru: pre ∀~x, ~y∈M⊥,
∀α, β∈R. Potom pre ľubovoľné ~m∈M : 〈α~x+β~y, ~m〉=α 〈~x, ~m〉︸ ︷︷ ︸

=0

+β 〈~y, ~m〉︸ ︷︷ ︸
=0

=0. Teda

α~x+β~y∈M⊥. Z toho M⊥ je vektorový podpriestor vo V .
2. M⊂N . Ak ~x∈N⊥, tak 〈~x, ~n〉=0 pre všetky ~n∈N a teda tiež 〈~x, ~m〉=0 pre všetky
~m∈M . Teda ~x∈M⊥.
3. Nech ~x∈(S+T )⊥. Teda 〈~x,~s+~t〉=0 pre všetky ~s∈S,~t∈T . Špeciálne 〈~x,~s+~0〉=
= 〈~x,~0〉 = 0 pre ľubovoľný ~s ∈ S. Takisto 〈~x,~t〉 = 0 pre ∀~t ∈ T . To znamená, že
~x∈S⊥∩T⊥. Teda máme: (S+T )⊥⊂S⊥∩T⊥.
Obrátene: nech ~x∈S⊥∩T⊥. Potom 〈~x,~s〉=0 pre všetky ~s∈S; 〈~x,~t〉=0 pre všetky
t∈T ; potom 〈~x,~s+~t〉=0 pre všetky ~s∈S,~t∈T . Teda ~x∈(S+T )⊥

tj. S⊥∩T⊥⊂(S+T )⊥. Vcelku: S⊥∩T⊥=(S+T )⊥.

Veta 10.5. Nech (V, 〈 , 〉) je euklidovský vektorový priestor, nech S⊂V je vek-
torový podpriestor. (V je konečne generovaný). Potom každý vektor z V sa dá
jediným spôsobom vyjadriť ako súčet vektora z S a vektora z S⊥. To znamená, že
V=S⊕S⊥.

Dôkaz.
Existencia vyjadrenia: Pre S = {~0} jasné. Predpokladajme, že S 6= {~0}. Nech
(~a1, · · · ,~ak) je ortonormálna báza v S (taká existuje – proces Gramov-Schmidtov).
Doplňme ju na bázu (~a1, · · · ,~ak,~bk+1, · · · ,~bn) priestoru V . Gramovým-Schmidto-
vým procesom prejdeme k ortonormálnej báze (~a1, · · · ,~ak︸ ︷︷ ︸

∈S

,~ak+1, · · · ,~an︸ ︷︷ ︸
∈S⊥

) priestoru
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V . Potom ľubovoľný vektor ~x∈V má jediné vyjadrenie v tvare:
~x=x1~a1+ · · ·+xk~ak︸ ︷︷ ︸

∈S

+xk+1~ak+1+ · · ·+xn~an︸ ︷︷ ︸
∈S⊥

. Označme x1~a1+ · · ·+xk~ak=~xS ,

xk+1~ak+1+ · · ·+xn~an=~xS⊥ . Máme ~x=~xS+~xS⊥ .
Jednoznačnosť vyjadrenia: Nech by tiež ~x=~a+~b, pričom ~a∈S,~b∈S⊥. Chceme uká-
zať, že ~a=~xS a ~b=~xS⊥ . Máme ~xS+~xS⊥=~a+~b, z čoho ~xs−~a︸ ︷︷ ︸

∈S

=~b−~xS⊥︸ ︷︷ ︸
∈S⊥

. Rátajme:

0≤〈~xS − ~a,~b− ~xS⊥〉 = 〈~xS ,~b〉︸ ︷︷ ︸
=0

−〈~a,~b〉︸ ︷︷ ︸
=0

−〈~xS , ~xS⊥〉︸ ︷︷ ︸
=0

+ 〈~a, ~xS⊥〉︸ ︷︷ ︸
=0

. Teda 0 = 〈~xS−~a,

~b−~xS⊥〉=〈~xS−~a, ~xS−~a〉=〈~b−~xS⊥ ,~b−~xS⊥〉. Potom ~xS−~a=~0∧~b−~xS⊥=~0⇒ ~xS=~a∧
~b=~xS⊥ .

Veta 10.6. Nech (V, 〈 , 〉) je konečne generovaný euklidovský vektorový priestor.
Potom:
1. Ak S⊂V je vektorový podpriestor, tak (S⊥)⊥=S.
2. Ak S, T⊂V sú vektorový podriestory, tak (S∩T )⊥=S⊥+T⊥.

Dôkaz.
1. Pre ľubovoľné ~x∈S máme 〈~x, ~y〉=0 pre ľubovoľný ~y∈S⊥. Teda ~x∈(S⊥)⊥. Zistili
sme, že S⊂(S⊥)⊥. Z vety 8.24. vieme, že V=S⊕S⊥ a V=(S⊥) ⊕ (S⊥)⊥. Z toho:
dim(V )= dim(S)+ dim(S⊥)= dim(S⊥)+ dim((S⊥)⊥). Teda dim(S)= dim((S⊥)⊥).
Keďže aj S⊂((S⊥)⊥),máme S=(S⊥)⊥.
2. ((S⊥+T⊥)⊥)⊥=(S⊥+T⊥)=((S⊥)⊥∩(T⊥)⊥)⊥=(S∩T )⊥.

Definícia 10.7. Nech (V, 〈 , 〉) je euklidovský vektorový priestor a {~0}6=S⊂V je
vektorový podpriestor. Potom každý vektor ~x∈V má jediné vyjadrenie v tvare
~x=~xS+~xS⊥ , kde ~xS∈S a ~xS⊥∈S⊥. Teda predpis, ktorý každému ~x∈V priradí ~xS
definuje zobrazenie p : V→V , p(~x)=~xS . Potom p sa nazýva zobrazenie ortogonálnej
projekcie na podpriestor S.

Tvrdenie 10.3. Ak ~x∈S, tak p(~x)=~x.

Dôkaz. Jediné také vyjadrenie je: ~x= ~x︸︷︷︸
∈S

+ ~0︸︷︷︸
∈S⊥

. Teda p(~x)=~x.

Tvrdenie 10.4. p(V ) = S.

Tvrdenie 10.5. p ◦ p = p.

Dôkaz. Pre ľubovoľný ~x ∈ S: p ◦ p(~x) = p(p(~x)︸︷︷︸
∈S

) = p(~x).

Tvrdenie 10.6. p : V→V je lineárne zobrazenie.

Dôkaz. Ľubovoľné ~x, ~y∈V , α, β∈R. Potom vieme, že ~x=~xS+~xS⊥ a ~y=~yS+~yS⊥ sú
jediné vyjadrenia svojho druhu. Potom α~x+β~y=α(~xS+~yS)︸ ︷︷ ︸

∈S

+β(~xS⊥+~yS⊥)︸ ︷︷ ︸
∈S⊥

je jediné

vyjadrenie vektora α~x+β~y ako súčet vektora z S a vektora z S⊥. Podľa definície
8.24.: p(α~x+β~y)=α(~xS+~yS)=α~xS+β~yS=αp(~x)+βp(~y).
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Príklad. Treba nájsť zobrazenie ortogonálnej projekcie na podpriestor S.
S=[(1, 1,−1), (1,−1, 0)]⊂R3 so štandardným skalárnym súčinom. Doplníme orto-
gonálnu bázu ((1, 1,−1), (1,−1, 0)) podpriestoru S na ortogonálnu bázu priestoru
R3. Nájdeme vektor (k1, k2, k3)∈R3 taký, že 〈(k1, k2, k3), (1, 1,−1)〉=0 a tiež:
〈(k1, k2, k3), (1,−1, 0)〉=0. Z toho: k1+k2−k3=0 a k1−k2=0. Vyriešime, zoberieme
napríklad (−1,−1,−2). Teda ((1, 1,−1), (1,−1, 0)︸ ︷︷ ︸

∈S

, (−1,−1,−2)︸ ︷︷ ︸
∈S⊥

) je ortogonálna

báza v R3.

R3 3 (x1, x2, x3)= a(1, 1,−1)+b(1,−1, 0)︸ ︷︷ ︸
∈S

+ c(−1,−1,−2)︸ ︷︷ ︸
∈S⊥

⇒





a+b−c=x1

a−b−c=x2

−a− 2c=x3

Vyriešime: c=− 1
6 (x1+x2+2x3), b=− 1

2 (x1−x2), a= 1
3 (x1+x2−x3). Teda pre ľubo-

voľný (x1, x2, x3)∈R3 platí:

(x1, x2, x3)=
x1+x2−x3

3
·(1, 1,−1)+

x1−x2

2
·(1,−1, 0)

︸ ︷︷ ︸
∈S

− x1+x2+2x3

6
·(−1,−1,−2)

︸ ︷︷ ︸
∈S⊥

Teda p(x1, x2, x3)=
x1+x2−x3

3
·(1, 1,−1)+

x1−x2

2
·(1,−1, 0);

p(x1, x2, x3)=(
5x1−x2−2x3

6
;
−x1+5x2−2x3

6
;
−x1−x2+x3

3
). Matica zobrazenia p:

Mp=




5
6 − 1

6 − 1
3

− 1
6

5
6 − 1

3
− 1

3 − 1
3

1
3


 Mp je symetrická. Súčet na diagonále: dim(S).

Definícia 10.8. Nech (V, 〈 , 〉) a (W, 〈 , 〉) sú euklidovské vektorové priestory.
Euklidovský izomorfizmus z V na W je lineárny izomorfizmus f : V→W taký, že
〈f(~x), f(~y)〉=〈~x, ~y〉 pre všetky ~x, ~y∈V .

Veta 10.7. Nech (V, 〈 , 〉) je n-rozmerný euklidovský vektorový priestor. Potom
existuje euklidovský izomorfizmus z V na Rn so štandardným skalárnym súčinom.

Dôkaz. Nech (~v1, · · · , ~vn) je nejaká ortonormálna báza vo V . Nech (~e1, · · · , ~en) je
štandardná báza v Rn (tá je tiež ortonormálna). Zo základnej vety o lineárnych
zobrazeniach vieme, že existuje jediné lineárne zobrazenie f : V→Rn také, že
f(~vi)=~ei, i=1, · · · , n. Z inej vety vieme, že f je lineárny izomorfizmus. f je aj
euklidovský izomorfizmus, lebo: 〈f(x1~v1+ · · ·+xn~vn), f(y1~v1+ · · ·+yn~vn)〉=
=〈x1f(~v1)+ · · ·+xnf(~vn), y1f(~v1)+ · · ·+ynf(~vn)〉=〈x1~e1+ · · ·+xn~en, y1~e1+
+ · · ·+yn~en〉=x1y1+ · · ·+xnyn. Ale aj 〈x1~v1+ · · ·+xn~vn; y1~v1+ · · ·+yn~vn〉=
=x1y1〈~v1, ~v1〉+ · · ·+xnyn〈~vn, ~vn〉=x1y1+ · · ·+xnyn.

Príklad. Rn, euklidovský izomorfizmus: f : Rn→Rn je napr. fA : Rn→Rn, kde
A∈Mnn(R) a AAT=In.
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XI. AFINNÝ PRIESTOR (nad R)

Poznámka. afinita = spriaznenosť

Definícia 11.1. Nech A=(B, V ) kde B6=∅ je množina, ktorej prvky budeme oz-
načovať A,B, · · · , X a budeme ich nazývať bodmi, a V je vektorový priestor nad
R. A sa nazýva afinný priestor, ak body z B a vektory z V sú ”spriaznené” podľa
nasledujúcich pravidiel:
1◦ Pre každú usporiadanú dvojicu (X,Y )∈B×B existuje jediný vektor z V , ktorý
potom označíme

−−→
XY (nazýva sa vektor prislúchajúci k dvojici (X,Y )∈B×B).

2◦ Pre každý X∈B a každý ~x∈V existuje jediný bod Y ∈B taký, že ~x=
−−→
XY .

3◦ Pre každé X,Y, Z∈B:
−−→
XY+

−→
Y Z=

−→
XZ.

Ak A=(B, V ) je afinný priestor a dim(V )=n, tak hovoríme, že dim(A)=n. (Ináč:
A je n-rozmerný afinný priestor.)

Príklady.
1. B={B}, V={~0}. A=(B, V ) je nularozmerný afinný priestor.
2. B= množina bodov Oxy, V= vektorový priestor orientovaných úsečiek so za-
čiatkom v O. (X,Y )∈B×B priradíme jediný vektor ~x∈V , ktorý dostaneme tak,
že orientovanú úsečku

−−→
XY posunieme do bodu O. Axiómy afinného priestoru:

1◦
√

2◦
√

3◦
√

.
B je bodová, V je vektorová zložka afinného priestoru.
3. Nech B=Rn, V=Rn. 1◦: Usporiadanej dvojici (A,B)∈B×B, kdeA=(a1, · · · , an),
B=(b1, · · · , bn) priradíme vektor

−→
AB=(b1−a1, · · · , bn−an). 2◦: Pre ľubovoľný bod

X=(x1, · · · , xn)∈B a ľubovoľný ~a=(a1, · · · , an)∈V je Y=(x1+a1, · · · , xn+an)∈B
ten jediný bod, pre ktorý platí ~a=

−−→
XY . 3◦: X=(x1, · · · , xn), Y=(y1, · · · , yn),

Z=(z1, · · · , zn).
−−→
XY+

−→
Y Z=(y1−x1, · · · , yn−xn)+(z1−y1, · · · , zn−yn)=(z1−x1,

· · · , zn−xn)=
−→
XZ

√
. Teda A=(Rn,Rn) je n-rozmerný afinný priestor.

4.

Nech (N)





a11x1+ · · ·+a1nxn=b1
...

as1x1+ · · ·+asnxn=bs

je riešiteľný nehomogénny systém lineárnych

rovníc nad R. B = množina všetkých riešení systému (N). V =vektorový priestor
všetkých riešení príslušného homogénneho systému. 1◦: pre (X,Y )∈B×B defi-
nujeme

−−→
XY=Y−X∈V je to riešenie príslušneho homogénneho systému. 2◦: pre

ľubovoľný A∈B a ľubovoľný ~a∈V bude A+~a=B∈B jediný bod taký, že
−→
AB=~a.

3◦:
−−→
XY+

−→
Y Z=Y−X+Z−Y=Z−X=

−→
XZ.

Teda A=(B, V ) je afinný priestor dimenzie n−h(matice systému).

Veta 11.1. Nech A=(B, V ) je afinný priestor. Potom:
1.
−−→
XX=~0∈V pre ∀X∈B.

2. Ak
−−→
XY=

−→
ST , tak

−→
XS=

−→
Y T .

3.
−−→
XY=−−−→Y X pre ľubovoľné X,Y ∈B.

Dôkaz.
1.
−−→
XX+

−−→
XX =

−−→
XX, preto

−−→
XX =

−→
0 .
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2. Predpokladajme, že
−−→
XY=

−→
ST . Potom

−→
XS=

−−→
XY+

−→
Y S=

−→
ST+

−→
Y S=

−→
Y S+

−→
ST=

−→
Y T .

3.
−−→
XY+

−−→
Y X=

−−→
XX=~0. Preto

−−→
XY=−−−→Y X.

Iná definícia afinného priestoru:

Definícia 11.1*. Afinným priestorom rozumieme trojicu: A=(B, V,+), kde B6=∅
je množina (jej prvky sú body) a V je vektorový priestor nad R (jeho prvky sú vek-
tory) a + je zobrazenie z B×V→B, ktoré každej usporiadanej dvojici (X,~a)∈B×V
priradí jediný prvok z B, ktorý potom označíme X+~a, pričom musia byť splnené
podmienky:
1∗: X+(~a+~b)=(X+~a)+~b pre každé X∈B a každé ~x, ~y∈V .
2∗: X+~x=X ⇔ ~x=~0.
3∗: pre ľubovoľné Y,X∈B existuje jediný ~a∈V taký, že X+~a=Y .

Obidve definície afinného priestoru sú ekvivalentné. tj. A=(B, V ) je afinný
priestor v zmysle def 11.1⇔ keď A=(B, V,+) (s vhodne definovaným +) je afinný
priestor podľa def 11.1∗.
Dôkaz. Predpokladajme, že A=(B, V ) je afinný priestor podľa def 11.1. Potom
pre X∈B a ~a∈V podľa podmienky 2◦ z def 11.1(∗) existuje jediný Y ∈B taký, že−−→
XY=~a. Položíme: Y=X+~a. Tým sme definovali + : B×V→B. Overíme 1∗ 2∗ 3∗.
1∗: (X+~a)+~b=Y+~b=Z podľa def.: ~a=

−−→
XY , ~b=

−→
Y Z. Potom X+(~a+~b)=X+(

−−→
XY+

+
−→
Y Z)=X+

−→
XZ=Z. Teda naozaj X+(~a+~b)=X+(~a+~b) 2∗: X+~x=X ⇔ ~x=

−−→
XX=~0

(použili sme vetu 11.1). 3∗: pre ľubovoľný X∈B a ~a∈V je Y=X+~a ten jediný bod.
Teda A=(B, V,+) je afinný priestor v zmysle def 11.1.
Predpokladajme, že A=(B, V,+) je afinný priestor v zmysle def 11.1∗. Chceme
ukázať, že A=(B, V ) spĺňa 1◦, 2◦ a 3◦ z def 11.1.
1◦: Pre ľubovoľné X,Y ∈B definujeme

−−→
XY ∈V ako ten jediný vektor z V (podľa 3∗),

pre ktorý X+
−−→
XY=Y .

2◦: Pre každý bod X∈B a každé ~a∈V existuje jediný vektor Y=X+~a taký, že−−→
XY=~a.
3◦: X+(

−−→
XY+

−→
Y Z)

1∗
= (X+

−−→
XY )+

−→
Y Z=Y+

−→
Y Z=Z=X+

−→
XZ ⇒ −−→XY+

−→
Y Z=

−→
XZ pre

ľubovoľné X,Y, Z∈B.

Pevne zvoľme bod O∈B v afinnom priestore A=(B, V ). Potom môžeme definovať
zobrazenie h : B→V , h(x)=

−−→
OX.

Tvrdenie 11.1. Zobrazenie h je bijekcia.

Dôkaz. Definujme g : V→B, g(~a)=len jediný A∈B, pre ktorý ~a=
−→
OA. Potom

g◦h=idB , h◦g=idV , g◦h(X)=g(
−−→
OX)=X a h◦g(~a)=h(A)=~a.

Definícia 11.2. Nech A=(B, V ) je afinný priestor. Afinný podpriestor priestoru A
je afinný priestor A′=(B′, V ′), taký, že B′⊂B, V ′ je vektorový podpriestor priestoru
V , a body z B′ sú s vektormi z V ′ spriaznené podľa tých istých pravidiel, ako sú
spriaznené body s vektormi v A.

Príklad.
1. A=(B, V ) je afinný podpriestor samého seba.
2. Ak A′=(B′, V ′), A′′=(B′′, V ′′) sú afinné podpriestory v A=(B, V ), tak A′∩A′′=
=(B′∩B′′, V ′∩V ′′) je afinný podpriestor v A′ ,A′′ aj A.
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Definícia 11.3. Nech An=(Bn, Vn), n∈N je n-rozmerný afinný priestor. Potom
1-rozmerný afinný podpriestor v An sa nazýva priamka v An, 2-rozmerný afinný
podpriestor v An sa nazýva rovina v An a (n − 1)-rozmerný afinný podpriestor
v An sa volá nadrovina v An.

Súradnice v afinnom priestore.

Definícia 11.4.
Nech An=(Bn, Vn) je afinný priestor. Potom (n+1)-tica (O,~a1, · · · ,~an), kde O∈Bn
je pevne zvolený bod a (~a1, · · · ,~an) je pevne zvolená báza priestoru Vn; sa nazýva
súradnicový systém v An.

Príklad.
V An=(Rn,Rn) (n+1)-tica ((0, · · · , 0), (1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, · · · , 0, 1))
je súradnicový systém.

Priradenie súradníc.
Nech (O,~a1, · · · ,~an) je súradnicový systém v n-rozmernom afinnom priestore

An=(Bn, Vn). Pre ľubovoľný bod X∈Bn existuje jediný vektor
−−→
OX∈Vn. Potom

existuje jediná n-tica (x1, · · · , xn)∈Rn taká, že
−−→
OX=x1~a1+ · · ·+xn~an. Potom us-

poriadaná n-tica (x1, · · · , xn) je n-tica súradníc bodu X vzhľadom na súradni-
cový systém (O,~a1, · · · ,~an).

−−→
OX sa nazýva aj polohový vektor bodu X. Teda

vlastne súradnice bodu sú súradnice jeho polohového vektora vzhľadom na bázu
(~a1, · · · ,~an). Stručne píšeme X≡(x1, · · · , xn). Pre vektor ~b∈Vn jeho súradnice
vzhľadom na súradnicový systém (O,~a1, · · · ,~an) sú jeho súradnice vzhľadom na
bázu (~a1, · · · ,~an). ~b=b1~a1+ · · ·+bn~an, ~b ≡ (b1, · · · , bn).

Tvrdenie 11.2. Nech (O,~a1, · · · ,~an) je súradnicový systém v afinnom priestore
An=(Bn, Vn). Ak X ≡ (x1, · · · , xn), Y ≡ (y1, · · · , yn) tak vektor

−−→
XY má súradnice:−−→

XY ≡ (y1−x1, · · · , yn−xn).

Dôkaz. Máme
−−→
OX=x1~a1+ · · ·+xn~an, ~OY=y1~a1+ · · ·+yn~an.

−−→
XY =

−−→
XO +

−→
OY =

=
−→
OY−−−→OX=(y1−x1)~a1+ · · · (yn−xn)~an.

Príklad. Pre A2=(R2,R2) súradnicový systém ((0, 0), (1, 0), (0, 1)). X=(x1, x2).−−→
OX=(x1, x2)=x1~e1+x2~e2. X ≡ (x1, x2).

Afinné zobrazenie.

Definícia 11.5.
Nech A=(B, V ) a A′=(B′, V ′) sú afinné priestory. Potom afinné zobrazenie z A do
A′ je dvojica (f, ϕ), kde f : B→B′ a ϕ : V→V ′ sú lineárne zobrazenia a okrem toho

ϕ(
−−→
XY )=

−−−−−−−→
f(X)f(Y ). f je tzv. bodová zložka, ϕ je tzv. lineárna zložka afinného

zobrazenia (f, ϕ) : A→A′.
Poznámka. Nech A=(B, V,+) je afinný priestor v zmysle def 11.1∗. Potom vieme,
že pre ľubovoľnú (X,Y )∈B×B existuje jediný ~x∈V taký, že X+~x=Y . Potom oz-

načme ~x=Y−X=
−−→
XY . Potom podmienku ϕ(

−−→
XY )=

−−−−−−−→
f(X)f(Y ) z def 11.5 môžeme

napísať ϕ(Y−X)=f(Y )−f(X).
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Príklad. V afinnom priestore An=(Bn, Vn) zvoľme pevne súradnicový systém
(O,~a1, · · · ,~an). Definujme f : Bn→Rn, f(X)=(x1, · · · , xn), kde (x1, · · · , xn) sú
súradnice bodu X. Podobne definujme ϕ : Vn→Rn, ϕ(~b)=(b1, · · · , bn), kde (b1,
· · · , bn) sú súradnice vektora ~b. Potom (f, ϕ) : (Bn, Vn)→(Rn,Rn) je afinné zob-
razenie.

Definícia 11.6. Afinné zobrazenie (f, ϕ) : (B, V )→(B′, V ′) je afinný izomorfizmus,
ak f je lineárny izomorfizmus.

Veta 11.2. Afinné zobrazenie (f, ϕ) : (B, V )→(B′, V ′) je afinný izomorfizmus ⇔
keď ϕ je lineárny izomorfizmus.

Dôkaz.
⇒ : Pevne zvoľme bod P∈B. Označme P ′=f(P ). Predpokladajme, že (f, ϕ)

je afinný izomorfizmus. Chceme ukázať, že ϕ : V→V ′ je lineárny izomorfizmus.

Stačí ukázať, že ϕ je bijektívne. Surjektívnosť: Nech ~b∈V . Potom ~b=
−−→
P ′B pre

jednoznačne určený bod B. Keďže f je bijekcia, existuje jediný bod Y ∈B taký,

že f(Y )=B, teda ~b=
−−−−−−→
f(P )f(Y )=ϕ(

−→
PY ). Teda ~b má vzor

−→
PY ∈V . Injektívnosť:

Nech ϕ(~a)=ϕ(~b). Chceme ukázať, že ~a=~b. Máme ~a=
−→
PA, ~b=

−→
PB pre jednoznačne

určené P∈B. Teda ϕ(
−→
PA)=ϕ(

−→
PB) ⇔ −−−−−−→f(P )f(A)=

−−−−−−→
f(P )f(B). Z toho f(A)=f(B)

je bijekcia, preto A=B. Vcelku: ~a=~b.
⇐ : Predpokladajme, že ϕ : V→V ′ je lineárny izomorfizmus. Chceme ukázať, že

f je bijekcia. Surjektívnosť: Nech Y ∈B′ je ľubovoľný. Potom
−→
PY má jediný vzor,

povedzme ϕ(~a)=
−−→
P ′Y . Pritom: ~a =

−→
PA pre jediné A∈B.

−−−−→
P ′f(A) =

−−−−−−→
f(P )f(A) =

=ϕ(
−→
PA)=

−−→
P ′Y z toho: Y=f(A). Injektívnosť: Predpokladajme, že f(A)=f(B).

Chceme ukázať, že A=B. ϕ(
−→
PA) =

−−−−−−→
f(P )f(A) =

−−−−→
P ′f(A) =

−−−−→
P ′f(B) =

−−−−−−→
f(P )f(B) =

=ϕ(
−→
PB) a preto A=B.

Poznámka. Afinné zobrazenie (f, ϕ) určené zavedením súradnicového systému
(O,~a1, · · · ,~an) v An=(Bn, Vn) má bijektívne f , a preto je to aj afinný izomorfizmus
z An na (Rn,Rn).

Definícia 11.7. Ak existuje afinný izomorfizmus (f, ϕ) : A→A′ tak hovoríme, že
afinný priestor A je afinne izomorfný s afinným priestorom A′. Ak A je afinne
izomorfný s A′, tak tiež je A′ afinne izomorfný s A. V takom prípade môžeme
povedať, že A a A′ sú navzájom izomorfné.

Príklad.
Zavedením súradnicového systému (O,~a1, · · · ,~an) v n-rozmernom afinnom pries-
tore An=(Bn, Vn) vlastne definujeme afinný izomorfizmus z (Bn, Vn) na (Rn,Rn).
Teda každý n-rozmerný afinný priestor je afinne izomorfný s afinným priestorom
(Rn,Rn).

Veta 11.3. Nech (f, ϕ) : (Rk,Rk)→(Rn,Rn) je afinné zobrazenie. Potom pre
(x1, · · · , xk)∈Rk máme f(x1, · · · , xk) = (x1, · · · , xk) ·Mϕ + f(0, · · · , 0). Pritom
v (Rk,Rk) máme súradnicový systém ((0, · · · , 0), ~e1, · · · , ~ek) v (Rn,Rn) súradnicový
systém: ((0, · · · , 0), ~e1, · · · , ~en).

Dôkaz. Vieme, že ϕ(x1, · · · , xk) = (x1, · · · , xk) ·Mϕ pre každé (x1, · · · , xk)∈Rk:

(x1, · · · , xk)=
−−−−−−−−−−−−−−−→
(0, · · · , 0)(x1, · · · , xk), (x1, · · · , xk)·Mϕ=ϕ(

−−−−−−−−−−−−−−−→
(0, · · · , 0)(x1, · · · , xk))=
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=
−−−−−−−−−−−−−−−−−−→
f(0, · · · , 0)f(x1, · · · , xk). f(x1, · · · , xk)−f(0, · · · , 0)=(x1, · · · , xk)·Mϕ.

Teda f(x1, · · · , xk)=(x1, · · · , xk)·Mϕ+f(0, · · · , 0).

Barycentrický súradnicový systém.
Budeme používať def 11.1∗.

Nech A=(B, V ) je afinný priestor. Vieme, že pre ľubovoľné X,Y ∈B existuje jediný
vektor ~x∈V taký, že X+~x=Y . Označili sme ~x=Y−X. Platí:
1. (A−B)+(B−C)=A−C ⇔ −→BA+

−→
CB=

−→
CA=A−C.

2. X−X=
−→
0 ∀X∈B.

3. (X+~x)−(A+~y)=(X−A)+~x−~y.

Definícia 11.8. Nech A=(B, V,+) je afinný priestor, nech A0, A1, · · · , As∈B sú

ľubovoľné body a nech x0, x1, · · · , xs∈R také, že
s∑

i=0

xi=1. Potom definujeme bod

z B:
s∑

i=0

xiAi:=A+
s∑

i=0

xi(Ai−A), kde A∈B je ľubovoľný bod. Bod
s∑

i=0

xiAi sa

nazýva barycentrická kombinácia bodov A0, · · · , As s koeficientmi x0, · · · , xs.
Ukážeme, že def 11.8 barycentrickej kombinácie bodov je dobrá, tj. že nezávisí

od voľby A. Takto: Nech B∈B je ľubovoľný bod. Potom vieme, že existuje jediný

~x∈V taký, že B=A+~x. Potom B+
s∑

i=0

xi(Ai−B)=A+~x+
s∑

i=0

xi((Ai−A)−~x)=

=A+~x+
s∑

i=0

xi(Ai−A)−
s∑

i=0

xi~x=A+
s∑

i=0

xi(Ai−A)+~x−
(

s∑

i=0

xi

)
~x=

=A+
s∑

i=0

xi(Ai−A).

Veta 11.4 a Definícia 11.9. Nech A0, A1, · · · , An sú body n-rozmerného afinného
priestoru An=(Bn, Vn). Potom: (A0, A1−A0, · · · , An−A0) je súradnicový systém
afinného priestoru An (v zmysle definície) práve vtedy, keď každý bod X∈Bn sa dá

jediným spôsobom vyjadriť ako barycentrická kombinácia X=
n∑

i=0

xiAi. Ak je toto

splnené, potom (A0, A1, · · · , An) sa volá barycentrický súradnicový systém priestoru
An; (x0, · · · , xn) sú barycentrické súradnice bodu X.

Dôkaz.
⇒ : Predpokladajme, že (A0, A1−A0, · · · , An−A0) je súradnicový systém. Nech
X∈Bn je ľubovoľný bod. Potom existuje jediný vektor ~x∈Vn taký, že X=A0+~x.
Keďže (A1−A0, · · · , An−A0) je báza vo Vn, preto existujú jednoznačne určené

x1, · · · , xn∈R: ~x=
n∑

i=0

xi(Ai−A0). Z toho: X=A0+
n∑

i=0

xi(Ai−A0). Zoberme

x0=1−
n∑

i=1

xi. Potom X=A0+
n∑

i=0

xi(Ai−A0)=
n∑

i=0

xiAi. Jednoznačnosť: Nech by

X=
n∑

i=0

xiAi=
n∑

i=0

x′iA
′
i. Máme vlastne: A0+

n∑

i=0

xi(Ai−A0)=A0+
n∑

i=0

x′i(Ai−A0).
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Z toho:
n∑

i=0,1

xi(Ai−A0)=
n∑

i=0,1

x′i(Ai−A0). Pretože (A1−A0, · · · , An−A0) je báza,

musí platiť xi=x′i pre i=1, · · · , n. Potom tiež x0=1−
n∑

i=1

xi=1−
n∑

i=1

x′i=x
′
0.

⇐ : Predpokladajme, že každý bod z Bn sa dá jediným spôsobom vyjadriť ako
barycentrická kombinácia bodov A0, · · · , An. Chceme ukázať, že (A0, A1−A0, · · · ,
· · · , An−A0) je súradnicový systém v An=(Bn, Vn). Stačí ukázať, že (A1−A0, · · · ,
· · · , An−A0) je báza vo Vn. Pretože vieme, že dim(Vn)=n, stačí ukázať, že A1−A0,

· · · , An−A0 generujú celé Vn. Nech ~b∈Vn je ľubovoľný vektor. Z axióm afinného
priestoru vieme, že k bodu A0 a vektoru ~b existuje jediný bod B∈Bn taký, že
~b=B−A0. Z nášho predpokladu vyplýva, že existuje jediné vyjadrenie B v tvare

B=
n∑

i=0

yiAi (kde
n∑

i=0

yi=1.) Z toho: ~b=

(
n∑

i=0

yiAi

)
−A0=A0+

n∑

i=0

yi(Ai−A0)−

−A0=
n∑

i=1

yi(Ai−A0). Teda naozaj [A1−A0, · · · , An−A0]=Vn.

Veta 11.5. Nech (f, ϕ) : (B, V )→(B′, V ′) je afinné zobrazenie. Potom pre ľubovoľ-

nú barycentrickú kombináciu
n∑

i=0

xiAi ľubovoľných bodov A0, · · · , An∈B máme

f

(
n∑

i=0

xiAi

)
=

n∑

i=0

xif(Ai).

Dôkaz. Označme B=
n∑

i=0

xiAi. Body A0, B určujú jediný vektor ~x∈V taký, že

B=A0+~x, teda ~x=B−A0. Potom ϕ(B−A0)=f(B)−f(A0). Pritom B−A0=

=A0+
n∑

i=0

yi(Ai−A0)−A0=
n∑

i=0

xi(Ai−A0).

f(B)−f(A0)=ϕ(B−A0)=
n∑

i=0

xiϕ(Ai−A0)=
n∑

i=0

xi(f(Ai)−f(A0))⇔

⇔ f(
n∑

i=0

xiAi)=f(B)=f(A0)+
n∑

i=0

xi(f(Ai)−f(A0))=
n∑

i=0

xif(Ai).

Veta 11.6. (o afinných zobrazeniach):
Nech An=(Bn, Vn) je n-rozmerný afinný priestor a nech (A0, · · · , An) je barycent-
rický súradnicový systém v ňom. Nech B0, · · · , Bn sú ľubovoľné body afinného
priestoru A′n=(B′n, V ′n). Potom existuje jediné afinné zobrazenie (f, ϕ) : A→A′n
také, že f(Ai)=Bi pre i=0, · · · , n.

Dôkaz. Vieme, že každý bod X∈Bn má jediné vyjadrenie v tvare X=
n∑

i=0

xiAi.

Ak existuje afinné zobrazenie (f, ϕ) : A→A′ také, že f(Ai)=Bi, i=0, · · · , n tak

musí byť f(X)=f(
n∑

i=0

xiAi)=
n∑

i=0

xif(Ai)=
n∑

i=0

xiBi. Teraz definujme zobrazenie



54 I.ROČNÍK

(f, ϕ) : (Bn, Vn)→A′ práve takto: f(
n∑

i=0

xiAi)=
n∑

i=0

xiBi. Treba ešte ukázať, že f

(a ním určené ϕ : V→V ′) je afinné zobrazenie. Pre X=
n∑

i=0

xiAi, Y=
n∑

i=0

biAi je

ϕ(Y−X):=f(X)−f(Y )=
n∑

i=0

(xi−bi)Bi. Stačí ukázať, že ϕ je lineárne. Ľubovoľné

dva vektory ~a,~c∈Vn, ∀α, β∈R, ~a=A−A0, ~c=C−A0. Potom ϕ(αA+βC)=

=ϕ(α(A−A0)+β(C−A0))=ϕ(α(
n∑

i=0

aiAi−A0)+β(
n∑

i=0

ciAi−A0))=

=ϕ(α(
n∑

i=0

ai(Ai−A0))+β(
n∑

i=0

ci(Ai−A0)))=αϕ(~a)+βϕ(~c).

Poznámka. barycenter = ťažisko.
V n-rozmernom afinnom priestore An=(Rn,Rn) body A0, · · · , An; pričom každý
z nich má jednotlivú hmotnosť, predpokladjme, že A1−A0, · · · , An−A0 nech sú
lineárne nezávislé. Teda (A0, A1, · · · , An) je barycentrický súradnicový systém.
Bod, ktorého barycentrické súradnice sú ( 1

n+1 , · · · , 1
n+1 ) je ťažisko sústavy hmot-

ných bodov A0, · · · , An. Napríklad pre n=2: 1
2A0+ 1

2A1=A0+ 1
2 (A1−A0).

Definícia 11.10. V afinnom priestore (Rn,Rn) majme body A0=(1, 0, · · · , 0) až

An−1=(0, · · · , 0, 1). Potom množina 4n={
n−1∑

i=0

xiAi;
∑

xi=1;xi≥0} sa nazýva

n-rozmerný simplex. Simplexy sa používajú v topológii, geometrii, v optimalizač-
ných metódach.

Parametrické vyjadrenie afinného podpriestoru.

Veta 11.7. V n-rozmernom afinnom priestore An=(Bn, Vn) majme pevne zvolený
súradnicový systém (O,~a1, · · · ,~an). Nech Ãk=(B̃n, Ṽn) je k-rozmerný afinný pod-
priestor v An. Nech A ≡ (a1, · · · , an) je dajaký bod z Ãk, nech (~b1, · · · ,~bk) je báza
vo Ṽk pričom ~b1 ≡ (b11, · · · , b1n), . . . , ~bk ≡ (bk1 , · · · , bkn). Potom pre ľubovoľný bod
X∈Ãk platí

−−→
OX=

−→
OA+~b1t1+ · · ·+~bktk pre vhodné t1, · · · , tk∈R. Obrátene, ak pre

dajaký vektor ~x∈Vn platí ~x=
−→
OA+s1

~b1+ · · ·+sk~bk pre dajaké s1, · · · , sk∈R, tak ~x
je polohový vektor dajakého bodu z Ãk. Z toho: bod X ≡ (x1, · · · , xn) patrí do Ãk

práve vtedy, keď (R)





x1 = a1 + b11t1 + · · ·+ bk1tk

· · ·
xn = an + b1n + · · ·+ bkntk

, t1, · · · , tk∈R. Čísla t1, · · · , tk

sa volajú parametre. Systém R je tzv. parametrické vyjadrenie Ãk.

Dôkaz. Nech X∈Ãk. Máme A∈Ãk. K dvojici (A,X)∈B̃k×B̃k patrí jediný vek-
tor
−→
AX∈Ṽk. Vo Ṽk máme bázu (b1, · · · , bk) preto

−→
AX=t1~b1+ · · ·+tk~bk pre jed-

noznačne určené t1, · · · , tk∈R.
−→
AX=

−→
AO+

−−→
OX=

−−→
OX−−→OA=t1~b1+ · · ·+tk~bk. Z toho−−→

OX=
−→
OA+t1~b1+ · · ·+tk~bk.

Obrátene: nech ~x=
−→
OA+s1

~b1+ · · ·+sk~bk. Chceme ukázať, že ~x=
−→
OY pre dajaké

Y ∈Ãk. Pretože
−→
OA∈Ṽk ale aj s1

~b1+ · · ·+sk~bk∈Ṽk máme: ~x∈Ṽk. Zároveň A∈B̃k.
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Z axióm afinného priestoru existuje jediný bod Y ′∈B̃k taký, že
−−→
AY ′=

−→
OA+s1

~b1+

+ · · ·+sk~bk. tj.
−−→
AY ′−−→OA=s1

~b1+ · · ·+sk~bk. K bodu A∈B̃k a vektoru s1
~b1+ · · ·+

+sk~bk∈Ṽk existuje jediný bod Y ∈B̃k taký, že s1
~b1+ · · ·+sk~bk=

−→
AY . Z toho

−−→
AY ′=

=~x=
−→
OA+

−→
AY=

−→
OY .

Poznámka. V situácii ako vo vete sa Ṽk nazýva smerový priestor afinného pod-
priestoru Ãk, a bázové vektory ~b1, · · · ,~bk sú smerové vektory afinného podpriestoru
Ãk. Z vety je jasné, že afinný podpriestor Ãk je úplne jednoznačne určený jedným
bodom A a smerovými vektormi (~b1, · · · ,~bk).

Všeobecné (analytické) vyjadrenie afinného podpriestoru.
Nech je daný k-rozmerný afinný podpriestor Ãk=(B̃k, Ṽk) n-rozmerného afinného

podpriestoru Ãk=(B̃k, Ṽn) s pevne zvoleným súradnicovým systémom. Nech Ãk je
určený bodom A ≡ (a1, · · · , an) a smerovými vektormi ~b1 ≡ (b11, · · · , b1n), . . . ,
~bk ≡ (bk1 , · · · , bkn). Teda parametrické vyjadrenie je:

Ãk ≡





x1=a1+b11t1+ · · ·+bk1tk
· · ·
xn=an+b1nt1+ · · ·+bkntk

ti∈R

Matica B=




b11 ··· bk1
...

. . .
...

b1n ··· bkn


má k lineárne nezávislých stĺpcov (lebo~b1, · · · ,~bk sú lineár-

ne nezávislé.) Teda h(B)=k z toho B má k lineárne nezávislých riadkov, nech sú
to riadky s indexmi i1, · · · , ik∈{1, · · · , n}.

(P ) =





b11t1+ · · ·+bk1tk=x1−a1

· · ·
b1nt1+ · · ·+bkntk=xn−an

⇔ (∗)





b1i1t1+ · · ·+bki1tk=xi1−ai1
· · ·
b1ikt1+ · · ·+bkiktk=xik−aik

Máme h




b1i1
··· bki1

...
. . .

...
b1ik
··· bkik


=k ⇒. Systém (∗) má jediné riešenie, vyrátame ho z Crame-

rovho pravidla:

t1=

det

(
xi1−ai1 b2i1

··· bki1
. . . . . . . . . . . . . . .
xik−aik b2ik ··· b

k
ik

)

det




b1i1
··· bki1

...
. . .

...
b1ik
··· bkik




=`1(xi1 , · · · , xik) · · · tk=
det( )
det( )

=`k(xi1 , · · · , xik)

`i(xi1 , · · · , xik) sú lineárne funkcie. Teraz dosadíme t1, · · · , tk do zvyšných n−k
rovníc parametrického vyjadrenia. {j1, · · · , jn−k} nech je doplnok ku {i1, · · · , ik}
v {1, · · · , n}. Dostaneme: b1j1`1(xi1 , · · · , xik)+ · · ·+bkj1`k(xi1 , · · · , xik)=xj1−aj1 . . .
b1jn−k`1(xi1 , · · · , xik)+ · · ·+bkjn−k`k(xi1 , · · · , xik)=xjn−k−ajn−k . tj. systém n−k
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lineárnych rovníc s n neznámymi x1, · · · , xn. Matica tohto systému má hodnosť
n−k. Teda ľubovoľný bod X ≡ (x1, · · · , xn) z Ãk spĺňa (svojimi súradnicami)
lineárny systém tvaru:

(V )





c11x1+ · · ·+c1nxn=d1

· · ·
cn−k1x1+ · · ·+cn−knxn=dn−k

kde cij , dj∈R a h

( c11 ··· c1n
...

. . .
...

cn−k1 ··· cn−kn

)
=n−k

Jedno riešenie je: (a1, · · · , an). Potom sú riešeniami aj n -tice: (a1+b11, · · · , an+b1n),
· · · , (a1+b1k, · · · , an+bkn). Báza je k lineárne nezávislých riešení homogénneho sys-
tému patriaceho k (V ): ((b11, · · · , b1n), · · · , (b1k, · · · , bkn)).
(x1, · · · , xk)=(a1, · · · , an)+s1(b11, · · · , b1n)+ · · ·+sk(bk1 , · · · , bkn)= množina bodov
vyhovujúcich (P ) tj. súradnice bodov z Ãk.

Veta 11.8. (o všeobecnej rovnici nadroviny)
Nech α=(B(α),V(α)) je nadrovina v n-rozmernom afinnom priestore An=(Bn,Vn)
(s pevne zvoleným súradnicovým systémom v An.) Ak P ≡ (p1, · · · , pn) je bod z α
a ~b1 ≡ (b11, · · · , b1n), · · · ,~bn−1 ≡ (bn−1

1 , · · · , bn−1
n ) sú smerové vektory (teda tvoria

bázu) priestoru V(α). Potom všeobecná rovnica nadroviny α je:

α ≡ det




x1−p1 · · · xn−pn
b11 · · · b1n
...

. . .
...

bn−1
1 · · · bn−1

n


=0

Dôkaz. Nech X=(x1, · · · , xn) je ľubovoľný bod z α. Potom (P,X)∈B(α)×B(α)
jednoznačne určuje vektor

−−→
PX=V(α). Vieme, že

−−→
PX ≡ (x1−p1, · · · , xn−pn) je

lineárna kombinácia (b11, · · · , b1n), · · · , (bn−1
1 , · · · , bn−1

n ).

Preto: det




x1−p1 · · · xn−pn
b11 · · · b1n
...

. . .
...

bn−1
1 · · · bn−1

n


 = 0

Obrátene:

Nech X∈Bn, X ≡ (x1, · · · , xn) je taký bod, že det



x1−p1 ··· xn−pn
b11 ··· b1n
...

. . .
...

bn−1
1 ··· bn−1

n


=0. Chceme

ukázať, že X∈B(α). Ekvivalentne máme: det




b11 ··· b1n
...

. . .
...

bn−1
1 ··· bn−1

n

x1−p1 ··· xn−pn


=0. Z toho

(x1−p1, · · · , xn−pn) je lineárna kombinácia (b11, · · · , b1n), · · · , (bn−1
1 , · · · , bn−1

n ).

Teda vektor
−−→
PX je lineárnou kombináciou ~b1, · · · ,~bn−1, teda

−−→
PX∈V(α). K bodu

P∈B(α) a vektoru
−−→
PX∈V(α) existuje jediný bod X ′∈B(α) taký, že

−−→
PX=

−−→
PX ′.

Z toho: X=X ′. Teda X∈B(α).
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Vzájomné polohy afinných podpriestorov.

Definícia 11.11. Nech α=(B(α),V(α)) a β=(B(β),V(β)) sú afinné podpriestory
v afinnom priestore An=(Bn,Vn), dim(An)=n. Potom hovoríme, že:
1. α a β sú rovnobežné (α ‖ β), ak V(α)⊂V(β) alebo V(β)⊂V(α).
2. α a β sú rôznobežné, ak B(α)∩B(β) 6=∅ a B(α) * B(α), B(β) * B(α).
3. α a β sú mimobežné, ak B(α)∩B(β)=∅ a V(α)∩V(β)={~0}.
Poznámka. V aspoň 4-rozmernom afinnom priestore uvedené tri nie sú všetky
možné vzájomné polohy afinných podpriestorov α, β.

Príklad. A4=(B4,V4), nech V4 má bázu (~a1,~a2,~a3,~a4). Zvoľme bod A∈B4. Vieme,
že k bodu A a vektoru ~a1 ∃!B∈B4 : ~a1=

−→
AB. Zoberme dve roviny α, β v A4

takéto: α je určené bodom A a smerovými vektormi ~a2,~a3; β je určené bodom B
a smerovými vektormi ~a3,~a4. Potom α a β nie sú rovnobežné, lebo V(α)*V(β)
ani V(β) ⊆ V(α); nie sú ani mimobežné, lebo {~a3} ⊂ V(α)∩V(β)6={~0}. Nie
sú ani rôznobežné, lebo α∩β=∅. Nech by α∩β 6=∅. Teda existuje X∈α∩β. Po-
tom

−→
AX∈V(α) tj.

−→
AX=α2~a2+α3~a3;

−−→
XB∈V(β) tj.

−−→
XB=β3~a3+β4~a4. Z toho:

~a1=
−→
AX+

−−→
XB=α2~a2+(α3+β3)~a3+β4~a4 – nemožné, lebo ~a2,~a3,~a4,~a1 sú lineárne

nezávislé.
V An pre n≥4 sú možné javy, ktoré si nevieme predstaviť. Napr. v A4 sú

α ≡
{
x1=0

x2=0
β ≡

{
x3=0

x4=0
roviny, ktoré sa pretínajú v jedinom bode: (0, 0, 0, 0).

Veta 11.9. Nech α = (B(α),V(α)) a β = (B(β),V(β)) sú afinné podpriestory
v An=(Bn,Vn).
1. Ak dim(α)= dim(β), tak v prípade, že α ‖ β máme α=β alebo α∩β=∅.
2. Ak dim(α) 6= dim(β), tak v prípade, že α ‖ β máme buď α∩β=∅ alebo α ⊂ β
alebo β ⊂ α.

Dôkaz.
1. Nech dim(α)= dim(β), α ‖ β. Predpokladajme, že α∩β 6=∅. Teda existuje
bod A∈B(α)∩B(β). Máme V(α)⊂V(β) alebo V(β)⊂V(α). Z rovnosti dimenzie
V(α)=V(β). Teda α a β sú určené bodom A a tým istým smerovým priestorom
V(α)=V(β) preto α=β.
2. Povedzme, že dim(α)< dim(β). α ‖ β; ak α∩β 6=∅, tak existuje A∈B(α)∩B(β).
Z toho, že α ‖ β a V(α)⊂V(β). Jasné, že α⊂β.

Veta 11.10. Nech α = (B(α),V(α)), β = (B(β),V(β)) sú afinné podpriestory
v An=(Bn,Vn) nech 2≤ dim(α)≤ dim(β). Potom: α ‖ β ⇔ každá priamka v α je
rovnobežná s β.

Dôkaz.
⇒ : Predpokladajme, že α ‖ β. Teda V(α)⊂V(β). Nech p=(B(p),V(p)) je

ľubovoľná priamka v α. Teda B(p)⊂B(α), V(p)⊂V(α) potom V(p)⊂V (β). Z definí-
cie rovnobežnosti: p ‖ β.
⇐ : Zoberme ľubovoľný vektor ~a∈V (α). Chceme ukázať, že ~a∈V(β). NechA∈B(α)

je ľubovoľný bod. Potom A a ~a určia priamku q=(B(q),V(q)) v α; A∈B(q),
V(q)=[~a]. Podľa terajšieho predpokladu každá priamka v α je rovnobežná s β.
Teda q ‖ β tj. ~a∈V(q)⊂V(β) a teda ~a∈V(β). Zistili sme, že V(α)⊂V(β), teda α ‖ β.
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Zmena súradníc pri zmene súradnicového systému.
V o vektorovom priestore :

Nech (~a1, · · · ,~an), (~a′1, · · · ,~a′n) sú dve bázy dajakého vektorového priestoru V .
Máme jednoznačné vyjadrenie: ~a1=p11~a

′
1+ · · ·+p1n~a

′
n až ~an=pn1~a

′
1+ · · ·+pnn~a′n.

Potom P=

( p11 ··· p1n

...
. . .

...
pn1 ··· pnn

)
sa nazýva matica prechodu od bázy (~a′1, · · · ,~a′n) k báze

(~a1, · · · ,~an).
Obrátene máme jednoznačné vyjadrenie: ~a′1=p′11~a1+ · · ·+p′1n~an až ~a′n=p′n1~a1+

+ · · ·+p′nn~an. P′=




p′11 ··· p′1n
...

. . .
...

p′n1 ··· p′nn


 je matica prechodu od bázy (~a1, · · · ,~an) k báze

(~a′1, · · · ,~a′n). Máme: ~ai=
n∑

j=1

pija
′
j , ~a
′
j=

n∑
s=1

p′js~as. Z toho: ~ai=
n∑

j=1

pija
′
j=

=
n∑

j=1

pij

n∑
s=1

p′js~as=
n∑
s=1

n∑

j=1

pijp
′
js~as. Z jednoznačnosti vyjadrenia ~ai v tvare lineár-

nej kombinácie ~a1, · · · ,~an dostávame, že
n∑

j=1

pijp
′
js=

{
1, ak i=s

0, ak i6=s Teda PP′=In.

Zistili sme, že P je regulárna a P′=P−1.

Veta 11.11. Matica prechodu od jednej bázy k druhej je regulárna, pričom matica
opačného prechodu je k nej inverzná.

Veta 11.12. Nech (~a′1, · · · ,~a′n) je báza priestoru V a matica P=(pij)∈Mnn(R) je
regulárna. Definujme vektory ~a1, · · · ,~an takto: ~a1=p11~a

′
1+ · · ·+p1n~a

′
n až

~an=pn1~a
′
1+ · · ·+pnn~a′n. Potom (~a1, · · · ,~an) je báza priestoru V .

Dôkaz. Vzhľadom na to, že vieme dim(V )=n, stačí dokázať, že ~a1, · · · ,~an sú lineár-
ne nezávislé. Nech α1~a1+ · · ·+αn~an=0. Chceme ukázať, že ∀i : αi=0. Máme:
α1(p11~a

′
1+ · · ·+p1n~a

′
n) + · · ·+αn(pn1~a

′
1+ · · ·+pnn~a′n)=0. (α1p11+ · · ·+αnpn1)~a′1 +

· · ·+ (α1p1n+ · · ·+αnpnn)~a′n=0. Ale (~a′1, · · · ,~a′n) je báza, preto:

(∗)





α1p11+ · · ·+αnpn1=0

· · ·
α1p1n+ · · ·+αnpnn=0

Matica systému je: PT=



p11 · · · pn1
...

. . .
...

p1n · · · pnn




Pretože h(PT)=h(P) a P je podľa predpokladu regulárna, je aj PT regulárna.
Preto (∗) má iba nulové riešenie, tj. α1= · · ·=αn=0.

Zmena súradníc vektora.
Vo V majme dve bázy (~a1, · · · ,~an) a (~a′1, · · · ,~a′n). Nech ~x∈V je ľubovoľný vektor,

nech ~x ≡ (x1, · · · , xn) vzhľadom na (~a1, · · · ,~an) a ~x ≡ (x′1, · · · , x′n) vzhľadom na
(~a′1, · · · ,~a′n). Aký je vzťah medzi (x1, · · · , xn) a (x′1, · · · , x′n)?
Nech P=(pij) je matica prechodu od (~a′1, · · · ,~a′n) k (~a1, · · · ,~an). Máme vlastne:

~x=
n∑

i=1

xi~ai=
n∑

i=1

x′i~a
′
i. Vieme, že ~ai=

n∑

j=1

pija
′
j . Z toho:

n∑

i=1

xi

n∑

j=1

pija
′
j=
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=
n∑

i=1

x′i ~a′i ⇔
n∑

j=1

(
n∑

i=1

xipij

)
~a′j=

n∑

j=1

x′j~a
′
j . Z jednoznačnosti vyjadrenia vyplýva,

že x′j=
n∑

i=1

xipij ⇒ (x′1, · · · , x′n)=(x1, · · · , xn)·P. Stručnejšie: X=(x1, · · · , xn) a

X′=(x′1, · · · , x′n)⇒ X′=XP⇒ X=X′P−1=X′P′.
V afinnom priestore: Súradnicový systém (O,~a1, · · · ,~an) v n-rozmernom afin-

nom priestore An=(Bn,Vn), kde O∈Bn a (~a1, · · · ,~an) je báza vo Vn. Iný súrad-
nicový systém v An: (O′,~a′1, · · · ,~a′n). Aký je vzťah medzi súradnicami vektora
resp. bodu vzhľadom na prvý a druhý súradnicový systém v An. Pre vektory je
to jasné: súradnice sú v takom vzťahu, ako sme to opísali vyššie vo vektorovom
priestore. tj. ak ~x∈Vn, ~x ≡ (x1, · · · , xn) v súradnicovom systéme (O,~a1, · · · ,~an);
~x ≡ (x′1, · · · , x′n) v (O′,~a′1, · · · ,~a′n), tak (x′1, · · · , x′n)=(x1, · · · , xn)P, kde P je ma-
tica prechodu od (~a′1, · · · ,~a′n) k (~a1, · · · ,~an).
Pre body : 1.krok: O=O′. (Zmenia sa len bázy vo Vn). Súradnice bodu X sa rov-

najú súradnice polohového vektora
−−→
OXi. Vzťah medzi súradnicami v (O,~a1, · · · ,

~an) a v systéme (O,~a′1, · · · ,~a′n) je určený vzťahom X′=XP, kde P je matica pre-
chodu od ”čiarkovanej” k ”nečiarkovanej”.
2.krok: Zmeníme len začiatok, tj. od súradnicového systému (O,~a1, · · · ,~an) prej-
deme k (O′,~a1, · · · ,~an). Nech O má v ”novom” súradnicovom systéme (O′,~a1, · · · ,
~an) súradnice (b1, · · · , bn). Teda

−−→
O′O=b1~a1+ · · ·+bn~an. Bod X≡(x1, · · · , xn)

v súradnicovom systéme (O,~a1, · · · ,~an) a X≡(x′1, · · · , x′n) v ”novom”

(O′,~a1, · · · ,~an)⇒ −−→OX=
n∑

i=1

xi~ai;
n∑

i=1

x′i~ai=
−−→
O′X.

Aký je vzťah medzi (x1, · · · , xn) a (x′1, · · · , x′n) ?

Máme
−−→
O′X=

n∑

i=1

x′i~ai=
−−→
O′O+

−−→
OX ⇒

n∑

i=1

x′i~ai=
n∑

i=1

bi~ai+
n∑

i=1

xi~ai=
n∑

i=1

(xi+bi)~ai.

Teda: (x′1, · · · , x′n)=(x1, · · · , xn)+(b1, · · · , bn). X′=X+B.
V šeobecne: spojením týchto dvoch krokov dostaneme prechod od (O,~a1, · · · ,~an)
k (O′,~a′1, · · · ,~a′n). Zmena súradníc potom je zložením dvoch čiastkových zmien.
Nech X=(x1, · · · , xn) súradnice bodu z Bn v súradnicovom systéme (O,~a1, · · · ,~an);
a nech X′=(x′1, · · · , x′n) sú jeho súradnice v súradnicovom systéme (O′,~a′1, · · · ,~a′n).
Nech P je matica prechodu od (~a′1, · · · ,~a′n) k (~a1, · · · ,~an). Nech B=(b1, · · · , bn)
sú súradnice bodu O v (O′,~a′1, · · · ,~a′n). Potom platí: X′=XP+B.

Orientácia reálneho vektorového resp. afinného priestoru.
Orientácia reálneho vektorového priestoru:

Definícia 11.12. Nech U je množina všetkých báz n-rozmerného reálneho vek-
torového priestoru V .Potom povieme, že dve bázy (~v1, · · · , ~vn) a (~w1, · · · , ~wn) sú
v relácii ∼ zapíšeme (~v1, · · · , ~vn)∼(~w1, · · · , ~wn), ak matica prechodu od (~v1, · · · , ~vn)
k (~w1, · · · , ~wn) má kladný detetrminant.

Tvrdenie 11.3. ∼ je relácia ekvivalencie na U .

Dôkaz. Reflexivita: (~v1, · · · , ~vn) ∼ (~v1, · · · , ~vn) pre ľubovoľnú (~v1, · · · , ~vn)∈U , lebo
matica prechodu je In a det(In)=1. Symetrickosť: nech (~v1, · · · , ~vn)∼(~w1, · · · , ~wn).
Matica prechodu od (~v1, · · · , ~vn) k (~w1, · · · , ~wn) nech je P. Vieme, že P∈Mnn(R)
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je regulárna, z tohto det(P)>0. Matica prechodu od (~w1, · · · , ~wn) k (~v1, · · · , ~vn)
je P−1. Ale det(PP−1)= det(P) det(P−1) ⇒ det(P−1)>0. Teda (~w1, · · · , ~wn) ∼
(~v1, · · · , ~vn). Tranzitívnosť: Nech (~v1, · · · , ~vn)

P∼ (~w1, · · · , ~wn), (~w1, · · · , ~wn)
Q∼

(~z1, · · · , ~zn). Chceme ukázať, že (~v1, · · · , ~vn) ∼ (~z1, · · · , ~zn). Nech P=(pij),

Q=(qij)∈Mnn(R). Máme ~wi=
n∑

j=1

pij~vi pre i=1, · · · , n a ~zk=
n∑

i=1

qki ~wi

pre k=1, · · · , n. Z toho: ~zk=
n∑

i=1

qki

n∑

j=1

pij~vj=
n∑

j=1

(
n∑

i=1

qkipij

)
~vi. V zátvorke

je prvok i-teho riadku a j-teho stĺpca matice QP. Teda matica prechodu od
(~v1, · · · , ~vn) k (~z1, · · · , ~zn) je QP. Potom det(QP)= det(Q) det(P)>0.
U sa rozloží na triedy ekvivalencie vzhľadom na ∼. Budú dve triedy ekvivalencie.

Definícia 11.13. Vektorový priestor V orientujeme tým, že jednu z dvoch tried
ekvivalencie U1,U2 vyhlásime za kladnú (privilegovanú). Urobíme to tak, že jednu
bázu priestoru V vyhlásime za kladnú. Potom kladnú triedu báz tvoria práve tie,
ktoré sú v ∼ s touto kladnou bázou.

Príklad. Rn štandardne orientujeme tak, že za kladnú vyhlásime štandardnú bázu:
(~e1, · · · , ~en).

Veta 11.13. Nech (~v1, · · · , ~vn) je báza reálneho vektorového priestoru V , nech
π∈S{1,··· ,n}. Potom báza (~vπ(1), · · · , ~vπ(n)) je ekvivalentná s pôvodnou bázou práve
vtedy, keď je permutácia párna.

Dôkaz. Nech napr. π=
(

1 2 ··· n
2 1 ··· n

)
. Potom (~vπ(1), · · · , ~vπ(n)) je (~v2, ~v1, · · · , ~vn).

Máme: ~v2=0~v1+1~v2+ · · ·+0~vn; ~v1=1~v1+0~v2+ · · ·+0~vn až ~vn=0~v1+ · · ·+1~vn. Po-
tom matica prechodu je: 



0 1 0 · · · 0
1 0 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




Matica prechodu od (~v1, ~v2, · · · , ~vn) k (~vπ(1), ~vπ(2), · · · , ~vπ(n)) vznikne z In tak, že
jej riadky permutujeme podľa π. Potom determinant matice prechodu je (−1)s(π),
kde s(π) je počet inverzií v π. Teda je kladný práve vtedy, keď π má párny počet
inverzií.

Orientácia afinného priestoru:

Definícia 11.14. Nech An=(Bn, Vn) je (reálny) afinný priestor. An orientujeme
tak, že orientujeme vektorový priestor Vn.

Afinno-euklidovské priestory.

Definícia 11.15. Afinný priestor A=(B, V ) sa nazýva afinno-euklidovský priestor,
ak V (s pevne zvoleným skalárnym súčinom) je euklidovský priestor.

Príklad.
(Rn,Rn) so štandardným skalárnym súčinom je afinno- euklidovský priestor.
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Definícia 11.16. Nech A=(B, V ) je afinno-euklidovský priestor, pričom nech 〈 , 〉
je skalárny súčin na V . Ak A,B∈Bn sú dva body, tak ich vzdialenosť (označíme ju

ρ(A,B)) definujeme ako ρ(A,B)=|−→AB|=
√
〈−→AB,−→AB〉.

Veta 11.14. Nech A=(B, V ) je afinno-euklidovský priestor, potom ρ(A,B)≥0 pre
všetky A,B∈B.
1. ρ(A,B)=ρ(B,A).
2. ρ(A,B)=0⇔ A=B.
3. ρ(A,B)+ρ(B,C)≥ρ(A,C). (trojuholníkova nerovnosť)

Dôkaz. ρ(A,B)≥0 jasné.
1. ρ(A,B)=|−→AB|=| − −→BA|=|−→BA|=ρ(B,A).
2. ρ(A,B)=0⇔ |−→AB|=0⇔ A=B.
3. ρ(A,C)=|−→AC|=|−→AB+

−→
BC|≤|−→AB|+|−→BC|=ρ(A,B)+ρ(B,C).

Poznámka. Definovaním vzdialenosti medzi bodmi v afinno-euklidovskom priestore
A=(B, V ) sme vlastne definovali zobrazenie ρ : B×B→R s vlastnosťami z pred-
chádzajúcej vety. ρ je tzv. metrika na B; B je teda metrický priestor.

V ďaľšom budeme uvažovať o n-rozmernom afinno-euklidovskom priestore s pev-
ne zvoleným súradnicovým systémom: (O,~e1, · · · , ~en), kde O je bod toho priestoru
a (~e1, · · · , ~en) je pevne zvolená ortonormálna báza vektorovej zložky tohto priesto-
ru. Tento afinno-euklidovský priestor budeme označovať En. Súradnicový systém
(O,~e1, · · · , ~en) taký, že (~e1, · · · , ~en) je ortonormálna báza sa nazýva karteziánsky.
Pretože báza vo Vn je ortonormálna, pre vektory ~x=x1~e1+ · · ·+xn~en a ~y=y1~e1+
+ · · ·+yn~en ich skalárny súčin je x1y1+ · · ·+xnyn. ~x≡(x1, · · · , xn) a ~y≡(y1, · · · ,
yn). 〈x, y〉=x1y1+ · · ·+xnyn.

Veta 11.15. Nech A,B sú dva body v En pričom A má súradnice (a1, · · · , an), B
má súradnice (b1, · · · , bn). Potom ρ(A,B)=

√
(a1−b1)2+ · · ·+(an−bn)2.

Dôkaz.
−→
AB ≡ (b1−a1, · · · , bn−an).

−→
AB = (b1−a1)~e1 + · · ·+ (bn−an)~en, kde

(~e1, · · · , ~en) je ortonormálna báza. 〈−→AB,−→AB〉=(b1−a1)2+ · · ·+(bn−an)2=|−→AB|=
=
√
〈−→AB,−→AB〉=

√
(b1−a1)2+ · · ·+(bn−an)2=ρ(A,B).

Kolmosť vektora na afinný podpriestor.

Definícia 11.17. Nech En=(Bn, Vn). Hovoríme, že vektor ~a∈En je kolmý na a-
finný podpriestor α=(B(α), V (α)) priestoru En ak ~a⊥~x pre všetky ~x∈V (α). (teda
~a∈V (α)⊥).

Veta 11.16 a Definícia 11.18. Nech α≡a1x1+ · · ·+anxn=0 je nadrovina v En.
Potom vektor ~n≡(a1, · · · , an) je kolmý na α. Vektor ~n sa nazýva normálový vektor
nadroviny α.

Dôkaz. Nech ~x∈V (α) je ľubovoľný vektor. Nech X≡(x1, · · · , xn) je ľubovoľný bod
z α. Vieme, že existuje jediný bod Y≡(y1, · · · , yn)∈α taký, že ~x=

−−→
XY . Pritom

súradnice
−−→
XY=(y1−x1, · · · , yn−xn). Máme, keďže X,Y ∈α: a1x1+ · · ·+anxn=0 a

a1y1+ · · ·+anyn=0. Potom a1(y1−x1) + · · ·+ an(yn−xn) = 0. Teda 〈~n,−−→XY 〉=
=〈~n, ~x〉=~0 tj. ~n je kolmý na ľubovoľný vektor z V (α). Pre ľubovoľné c∈R máme
〈c~n, ~x〉=c〈~n, ~x〉=0.
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Veta 11.17. Rovnica nadroviny α∈En obsahujúcej bod B≡(b1, · · · , bn) a majúce
normálový vektor ~n≡(c1, · · · , cn) je α ≡ c1(x1−b1)+ · · ·+cn(xn−bn)=0.

Dôkaz. NechX≡(x1, · · · , xn)∈En je ľubovoľný bod z α. Potom
−−→
BX∈V (α). Pritom:

~n⊥−−→BX teda 〈~n,−−→BX〉=0. ~n≡(c1, · · · , cn),
−−→
BX≡(x1−b1, · · · , xn−bn). Teda musí

platiť c1(x1−b1)+ · · ·+cn(bn−xn)=0. Vieme, že nadrovina je určená jednou line-
árnou rovnicou, teda c1(x1−b1)+ · · ·+cn(xn−bn)=0 je rovnica nadroviny α.

Kolmosť afinných podpriestorov.

Definícia 11.19. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú dva afinné podpries-
tory v En. Hovoríme, že podpriestor α je kolmý na β, ak V (α)⊂V (β)⊥. (teda každý
smerový vektor podpriestoru α je kolmý na každý smerový vektor podpriestoru β.)
Ak je táto podmienka splnená, napíšeme α⊥β.

Tvrdenie 11.4. Ak α⊥β, tak β⊥α. (môžeme povedať, že α a β sú navzájom
kolmé.)

Dôkaz. Nech α⊥β. Teda V (α)⊂V (β)⊥. Ale potom (V (β)⊥)⊥⊂V (α)⊥ ⇔
⇔ V (β)⊂V (α)⊥ ⇔ β⊥α. Roviny Oxy, Oyz v E3 nie sú na seba kolmé v zmysle našej
definície. Lebo V (α)⊂V (β)⊥, lebo dim(V (α))=2, dim(V (β)⊥)=1. Teda podľa
našej definície: Oxy nie je kolmý na Oyz.

Veta 11.18. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú dva afinné podpriestory
v En. Ak α⊥β, tak dim(α)+ dim(β)≤n.

Dôkaz. Nech α⊥β, teda V (α)⊂V (β)⊥. V (β)⊕V (β)⊥=V (n); kde En=(Bn, Vn).
Môžeme predpokladať, že dim(α)≤dim(β). V (α)⊕V (β)⊂V (β)⊕ V (β)⊥=V (n) ⇒
dim(V (α)⊕V (β))= dim(α)+ dim(β)≤ dim(V (n))=n.

Tvrdenie 11.5. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú dva afinné podpriestory
v En. Ak α∩β 6=∅ a α⊥β, tak α∩β pozostáva z jediného bodu.

Dôkaz. Nech α⊥β. Teda V (α)⊂V (β)⊥. Nech α∩β=B(α)∩B(β) 6=∅. Nech P,Q

sú dva body z B(α)∩B(β). Potom
−→
PQ∈V (α)∩V (β)⊂V (β)∩V (β)⊥={~0}. Z čoho:−→

PQ=~0 a preto P=Q.

Veta 11.19. Nech α=(B(α), V (α)) je k-rozmerný (k≤n). Afinný podpriestor v En.
Potom pre ľubovoľný daný bod A∈En existuje jediný (n−k)-rozmerný afinný pod-
priestor v En obsahujúci bod A. Tento podpriestor označíme Π⊥α (A), a nazýva sa
kolmopremietací afinný podpriestor bodu A do α.

Dôkaz. Nech A≡(a1, · · · , an) a vo V (α)⊥ zvoľme bázu (~w1, · · · , ~wn−k), kde ~w1=
=(w1

1, · · · , w1
n) až ~wn−k=(wn−k1 , · · · , wn−kn ) Potom podpriestor

γ=





x1=a1+w1
1t1+ · · ·+wn−k1

· · ·
xn=an+w1

nt1+ · · ·+wn−kn tn−k

má dimenziu n−k a je kolmý na α.

(V (γ)=[~w1, · · · , ~wn−k]=V (α)⊥). Tým sme ukázali existenciu takého podpriestoru
ako sa tvrdí vo vete. Jednoznačnosť: Nech δ=(B(δ), V (δ)) je (iný) (n−k)-rozmerný
afinný podpriestor v En, kolmý na α obsahujúci bod A. Potom V (δ)⊂V (α)⊥. Ale
dim(V (δ))=n−k, dim(V (α)⊥)=n−k. Teda musí: V (δ)=V (α)⊥. Tj. V (δ)=V (γ).
Pretože A∈B(δ), A∈B(γ) musí byť δ=γ.
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Veta 11.20. Nech α=(B(α), V (α)) je k-rozmerný afinný podpriestor v En. Po-
tom Π⊥α (A)∩α pozostáva z jediného bodu, označíme ho A⊥ a nazývame ho kolmý
priemet bodu A do afinného podpriestoru α.

Dôkaz. A≡(a1, · · · , an); nech (~v1, · · · , ~vn) je ortonormálna báza priestoru V (α),
pričom ~v1=(v1

1 , · · · , v1
n) až ~vk=(vk1 , · · · , vkn). Vieme, že V (Π⊥α (A))=V (α)⊥. Nech

(~z1, · · · , ~zn−k) je ortonormálna báza priestoru V (α)⊥, pričom ~z1=(z1
1 , · · · , z1

n) až
~zn−k=(zn−k1 , · · · , zn−kn ). Nech B∈Π⊥α (A), B≡(b1, · · · , bn). Potom

α≡





x1=a1+v1
1t1+ · · ·+v1

nt1

· · ·
xn=an+v1

nt1+ · · ·+vkntk
Π⊥α (A)≡





x1=b1+z1
1s1+ · · ·+zn−k1 sn−k

· · ·
xn=bn+z1

ns1+ · · ·+zn−kn sn−k

Bod X≡(x1, · · · , xn)∈Π⊥α (A)∩α spĺňa:





a1+v1
1t1+ · · ·+vk1 tk=b1+z1

1s1+ · · ·+zn−k1 sn−k
· · ·
an+v1

nt1+ · · ·+vkntk=bn+z1
ns1+ · · ·+zn−kn sn−k

pre dajaké ti, si∈R. Teda (t1, · · · , tn, s1, · · · , sn−k) spĺňa:

(∗)





v1
1t1+ · · ·+vk1 tk−z1

1s1− · · ·−zn−k1 sn−k=b1−a1

· · ·
v1
nt1+ · · ·+vkntk−z1

ns1− · · ·−zn−kn sn−k=bn−an

Teda X∈α∩Π⊥α (A) ⇔ systém (*) je riešiteľný. Matica systému má n lineárne
nezávislých riadkov, teda jej hodnosť je n. Teda (∗) má práve jedno riešenie.

Vzdialenosť afinných podpriestorov.

Definícia 11.20. Nech α, β sú dva afinné podpriestory v En. Vzdialenosť α od β
definujeme ako nezáporné reálne číslo ρ(α, β):= inf{ρ(X,Y );X∈A, Y ∈B}.
Veta 11.21. Nech A∈En je bod a nech α=(B(α), V (α)) je afinný podpriestor v En.
Potom ρ(A,α)=ρ(A,A⊥).

Dôkaz. ρ(A,α)= inf{ρ(A,X), X∈α} a ρ(A,A⊥)∈{ρ(A,X), X∈α}, teda ρ(A,α)≤
≤ρ(A,A⊥). Ukážeme, že ρ(A,A⊥) je dolným ohraničením množiny {ρ(A,X);X∈α}
Z toho: ρ(A,A⊥)≤ρ(A,α)= inf{ρ(A,X), X∈α} keďže inf je najväčšie dolné ohra-

ničenie. Rátajme: ρ(A,A⊥)2=|−−→AA⊥|2; ρ(A,X)2=|−→AX|2=|−−→AA⊥+
−−−→
A⊥X|2 =

=〈−−→AA⊥+
−−−→
A⊥X,

−−→
AA⊥+

−−−→
A⊥X〉 = 〈−−→AA⊥,

−−→
AA⊥〉+2〈−−→AA⊥,

−−−→
A⊥X〉+〈−−−→A⊥X,

−−−→
A⊥X〉=

=ρ(AA⊥)2+2·0+ρ(A⊥X)2. Z toho: ρ(A,X)2≥ρ(A,A⊥) preto ρ(A,X)≥ρ(A,A⊥).
Teda naozaj ρ(A,A⊥) je dolným ohraničením.
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Vzdialenosť rovnobežných afinných podpriestorov.

Veta 11.22. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú rovnobežné afinné podpri-
estory v En. Nech dim(α)≤ dim(β). Potom ρ(α, β)=ρ(A, β)=ρ(A,A⊥).

Dôkaz. Z definície ρ(α, β)= inf{ρ(X,Y );X∈α, Y ∈β}. ρ(A,A⊥)∈{ρ(X,Y ), X∈α,
Y ∈β}, a preto ρ(α, β)≤ρ(A,A⊥). Aby sme dokázali obrátenú nerovnosť ukážeme,
že ρ(A,A⊥) je tiež dolným ohraničením množiny {ρ(X,Y )}. Z toho potom dosta-
neme ρ(A,A⊥)≤ρ(α, β). Pre ľubovoľný X∈α existuje jediný vektor

−→
AX∈V (α).

Ale α ‖ β a preto
−→
AX∈V (β). Pretože A⊥ a

−→
AX∈V (β) existuje jediný bod Z∈β:

−→
AX=

−−→
A⊥Z.

−−→
AA⊥=

−→
AX+

−−−→
XA⊥. Ale

−→
AX=

−−→
A⊥Z. Z toho:

−−→
AA⊥=

−−→
A⊥Z+

−−−→
XA⊥=

=
−−−→
XA⊥+

−−→
A⊥Z=

−→
XZ∈V (β)⊥=Π⊥β (X). Máme Z∈β∩Π⊥β (X)={X⊥}. Preto Z=X⊥

a teda
−−→
AA⊥=

−−−→
XX⊥ pre ľubovoľný bod X∈α. Pre ľubovoľný X∈α, Y ∈β máme

ρ(X,Y )=|−−→XY |=|−−−→XA⊥+
−−−→
A⊥Y |. ρ(A,A⊥)=ρ(X,X⊥) pre ľubovoľný bod X∈α. Pre

ľubovoľné X∈α, Y ∈β máme ρ(X,Y )=|−−→XY |=|−−−→XA⊥+
−−−→
A⊥Y |. ρ(A,A⊥)=ρ(X,X⊥)=

=ρ(X,β)≤ρ(X,Y ) pre ľubovoľné Y ∈β, X∈α. ρ(A,A⊥)≤ρ(X,Y ) ,teda ρ(A,A⊥) je
dolným ohraničením množiny {ρ(X,Y ), X∈α, Y ∈β}.
Príklad. Určte vzdialenosť bodu P≡(p1, · · · , pn) v En od nadroviny α ≡ α1x1 +
· · ·+ αnxn + a0 = 0.
Riešenie: Π⊥α (P ) je priamka, jej smerový vektor je vlastne normálový vektor nadro-

viny α, tj. ~n ≡ (a1, · · · , an). Π⊥α (P ) =





x1 = p1 + a1t

· · ·
xn = pn + ant

Určíme jediný bod P⊥ = Π⊥α (P )∩α. a1(p1+a1t)+ · · ·+an(pn+ant)+a0=0⇔
⇔ a0+a1p1+ · · ·+anpn+t(a2

1+ · · ·+a2
n)=0. Z toho: t=− a1p1+ · · ·+anpn+a0

a2
1+ · · ·+a2

n

.

ρ(P, α)=|PP⊥|=|(−a1
a1p1+ · · ·+anpn+a0

a2
1+ · · ·+a2

n

, · · · ,−an a1p1+ · · ·+anpn+a0

a2
1+ · · ·+a2

n

)|=

=

√
(a1p1+ · · ·+anpn+a0)2

(a2
1+ · · ·+a2

n)2
·(a2

1+ · · ·+a2
n)=
|a1p1+ · · ·+anpn+a0|√

a2
1+ · · ·+a2

n

.

Teda: ρ(P, α)=
|a1p1+ · · ·+anpn+a0|√

a2
1+ · · ·+a2

n

.

Vzdialenosť rovnobežných afinných podpriestorov.

Veta 11.23. Nech α≡a1x1+ · · ·+anxn+x0=0 a β≡b1x1+ · · ·+bnxn+b0=0 sú dve

rovnobežné nadroviny v En. Potom ρ(α, β)=
|b0−a0|√
a2

1+ · · ·+a2
n

.

Dôkaz. Z vety 11.22 máme: ρ(α, β)=ρ(P, β), kde P≡(p1, · · · , pn) je ľubovoľný bod

z α. Z príkladu vieme, že ρ(P, β)=
|a1p1+ · · ·+anpn+b0|√

a2
1+ · · ·+a2

n

=
|−a0+b0|√
a2

1+ · · ·+a2
n

.

Vzdialenosť dvoch mimobežných afinných podpriestorov.

Veta 11.24. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú mimobežné afinné podpri-
estory v En. Teda B(α)∩B(β)=∅ a V (α)∩V (β)={~0}. Potom existuje bod P∈α
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a Q∈β také, že
−→
PQ∈V (α)⊥∩V (β)⊥ a platí: ρ(α, β)=ρ(P,Q). (Priamka určená

bodmi P,Q je tzv. stredná priečka afinných podpriestorov α, β.)

Dôkaz. Nech X∈α, Y ∈β sú ľubovoľné. Potom
−−→
XY /∈ V (α)⊕V (β). Keby áno, tak

by
−−→
XY=~a+~b pre jednoznačne určené ~a∈V (α),~b∈V (β). Potom existuje jediný bod

Z∈α: ~a=
−→
XZ a jediný bod W∈β:

−−→
WY=~b. Teda:

−−→
XY=

−→
XZ+

−−→
WY , ale zároveň−−→

XY=
−→
XZ+

−−→
ZW+

−−→
WY , teda

−−→
ZW=~0, čo je ekvivalentný s tým, že Z=W . Teda

Z=W∈α∩β=∅ (keďže α, β sú mimobežné). Spor.
Nech γ je afinný podpriestor určený bodom X, pričom V (γ)=V (α)⊕V (β). Nech γ′

je afinný podprestor určený bodom X a taký, že V (γ′)=V (α)⊕V (β)⊕[
−−→
XY ]. Keďže

[
−−→
XY ] /∈ V (α)⊕V (β), dim(γ′)− dim(γ)=1, a teda (máme γ⊂γ′) γ je nadrovinou v γ′.

Nech ~n nenulový je normálový vektor nadroviny γ v γ′. Teda ~n∈V (γ)⊥=(V (α)⊕
⊕V (β))⊥=V (α)⊥∩V (β)⊥. Nech teraz (~a1, · · · ,~ak) je dajaká ortogonálna báza
vo V (α), nech (~b1, · · · ,~bj) je ortogonálna báza vo V (β). Potom vektory ~a1, · · · ,~ak,
~b1, · · · ,~bj , ~n sú lineárne nezávislé a teda tvoria bázu vo V (γ′). Pretože

−−→
XY ∈V (γ′),

máme
−−→
XY=α1~a1+ · · ·+αk~ak+β1

~b1+ · · ·+βj~bj+δ~n pre jednoznačne určené α1, · · · ,
αk, β1, · · · , βj , δ∈R. Potom δ 6=0, lebo

−−→
XY /∈V (α)⊕V (β). Označme P ten jediný

bod z α, pre ktorý α1~a1+ · · ·+αk~ak=
−−→
XP , označme Q ten jediný bod z β, pre

ktorý β1
~b1+ · · ·+βj~bj=−→QY . Teda máme, že

−−→
XY=

−−→
XP+

−→
PQ+

−→
QY . Teda

−→
PQ=γ~n.

Keďže
−→
PQ∈V (α)⊥∩V (β)⊥, tak priamka, ktorá prechádza bodmi P,Q je kolmá

na α aj β a pretína α v P a β v Q. Ešte treba ukázať, že ρ(P,Q)=ρ(α, β).
Vieme, že ρ(α, β)= inf{ρ(A,B);A∈α;B∈β}. Nech A∈α,B∈β sú ľubovoľné. Potom
A=P+s1~a1+ · · ·+sk~ak zároveň B=Q+t1~b1+ · · ·+tj~bj pre vhodné s1, · · · , sk, t1,
· · · , tj∈R.

−→
AB=B−A=

−→
PQ+t1~b1+ · · ·+tj~bj−s1~a1− · · ·−sk~ak. Potom ρ(A,B)2=

= |−→AB|2 = 〈−→AB,−→AB〉 = 〈−→PQ−s1~a1− · · ·−sk~ak+t1 ~b1+ · · ·+tj~bj ,−→PQ−s1~a1− · · ·−
−sk~ak+t1~b1+ · · ·+tj~bj〉 = 〈−→PQ,−→PQ〉+2〈−→PQ,−s1~a1− · · ·−sk~ak+t1~b1+ · · ·+tj~bj︸ ︷︷ ︸

=0

〉+

+〈−s1~a1 − · · · − sk~ak + t1~b1 + · · ·+ tj~bj ; −s1~a1 − · · · − sk~ak + t1~b1 + · · ·+ tj~bj〉 =
=ρ(P,Q)2+|−s1~a1− · · ·−sk~ak+t1~b1+ · · ·+tj~bj |2. Z toho vidno, že ρ(A,B) sa min-
imalizuje vtedy, keď | − s1~a1− · · ·−sk~ak+t1~b1+ · · ·+tj~bj |=0 tj. práve vtedy, keď
−s1~a1− · · ·−sk~ak+t1~b1+ · · ·+tj~bj=~0⇔ s1= · · ·=sk=t1= · · ·=tj=0, lebo (~a1, · · · ,
~ak,~b1, · · · ,~bj) je báza vo V (α)⊕V (β). Teda ρ(A,B) sa minimalizuje vtedy, keď sa
rovná ρ(P,Q). To znamená, že naozaj ρ(α, β)=ρ(P,Q).

Dôsledok. Nech α=(B(α), V (α)), β=(B(β), V (β)) sú mimobežné afinné podpries-
tory v En. Potom existuje afinný podpriestor β1 taký, že β⊂β1, α‖β1 a ρ(α, β)=
=ρ(α, β1). (= ρ(A,A⊥), pre ľubovoľný bod A∈α, A⊥ je kolmý priemet bodu A
do β1.)

Dôkaz. Zoberme β1, ako afinný podpriestor určený ľubovoľným bodom z β a taký, že
V (β1)=V (α)⊕V (β). Potom je pravda, že β⊂β1 aj to, že α‖β1 (lebo V (α)⊂V (β1)).
Z predchádzajúcej vety vieme, že existujú P∈α, Q∈β také, že

−→
PQ∈V (α)⊥∩V (β)⊥=

=(V (α)⊕V (β))=V (β1)⊥ pričom ρ(α, β)=ρ(P,Q). Máme Q⊂β, a teda tiež Q∈β1

a zároveň
−→
PQ∈V (Π⊥β1

(P )). Z toho: Q∈Π⊥β1
(P )∩β1={P⊥}, a preto P⊥=Q. Teda

ρ(α, β)=ρ(P,Q)=ρ(P, P⊥)=ρ(α, β1).
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Uhly medzi afinnými podpriestormi v En.
1. Uhol dvoch orientovaných priamok:

Nech p, q⊂En sú dve orientované priamky (p 6=q). Teda V (p), V (q) sú dve oriento-
vané vektorové priestory. Z toho ak ~a6=~0 je smerový vektor orientovanej priamky p
a ~a′ 6=~0 je iný smerový vektor, tak ~a′=k·~a pre dajaké k>0. Podobne, ak ~b′,~b sú dva
smerové vektory orientovanej priamky q, tak ~b′=l·~b.

〈~a′,~b′〉
|~a′|·|~b′|

=
〈k~a, l~b〉
|k~a|·|l~b|

=
kl〈~a,~b〉
kl|~a|·|~b|

=
〈~a,~b〉
|~a|·|~b|

Tento výraz nezávisí od výberu smerových vektorov orientovaných priamok p, q.

Zo Schwarzovej nerovnosti vieme, že
〈~a,~b〉
|~a||~b|

∈〈−1, 1〉 ⇒ ∃!ϕ∈〈0, π〉 : cosϕ=
〈~a,~b〉
|~a||~b|

.

ϕ definujeme ako uhol zovretý orientovanou priamkou p a orientovanou priamkou q.
2. Uhol dvoch neorientovaných priamok:
Nech p, q⊂En sú dve neorientované priamky. Potom, ak ~a6=~0, ~a′ 6=~0 sú dva smerové
vektory priamky p, tak ~a′=k·~a, kde k 6=0. Podobne, ak ~b,~b′( 6=~0) sú dva smerové
vektory priamky q, tak ~b′=l~b pre l 6=0. Potom výraz

〈~a′,~b′〉
|~a′|·|~b′|

=
〈k~a, l~b〉
|k~a|·|l~b|

=
kl〈~a,~b〉
|kl||~a|·|~b|

6= 〈~a,
~b〉

|~a|·|~b|

vo všeobecnosti závisí od výberu smerového vektora priamky p resp. q. Ale už výraz∣∣∣∣∣
〈~a,~b〉
|~a||~b|

∣∣∣∣∣ už od výberu nezávisí. Existuje jediné ψ∈〈0, π
2
〉 také, že cosψ=

|〈~a,~b〉|
|~a||~b|

.

ψ potom nazveme uhlom zovretý neorientovaných priamok p a q.
3. Uhol dvoch nadrovín
Nech α, β sú dve nadroviny v En, nech ~nα, ~nβ sú ich normálové vektory. Potom uhol
medzi α a β sa definuje ako uhol neorientovaných priamok so smerovými vektormi
~nα resp. ~nβ . Teda: ak α≡a1x1+ · · ·+anxn+a0=0, β≡b1x1+ · · ·+bnxn+b0=0, tak

~nα=(a1, · · · , an);~nβ=(b1, · · · , bn) a ∠(α, β) je to číslo z intervalu 〈0, π
2
〉 pre ktoré

cos |∠(α, β)|= |a1b1+ · · ·+anbn|√
(a2

1+ · · ·+a2
n)(b21+ · · ·+b2n)

.

Vektorový a zmiešaný súčin v R3.

Definícia 11.21. Nech R3 je štandardne orientovaný tj. nech (~e1, ~e2, ~e3) je kladná
báza tohto priestoru. Nech ~a,~b sú dva vektory z R3. Potom existuje jediný vektor
~c∈R3 taký, že
1. ~c ⊥ ~a,~c ⊥ ~b.
2. |~c|=

√
〈~a,~a〉〈~b,~b〉−〈~a,~b〉2=

√
|~a|2|~b|2−〈~a,~b〉2.

3. Ak ~a,~b sú lineárne nezávislé, tak (~a,~b,~c) je kladná báza v R3.
Vektorový súčin vektorov ~a a ~b je vektor ~c, označuje sa ~a×~b.
Poznámka. Vlastne sme definovali zobrazenie × : R3×R3→R2, ×(~a,~b)=~a×~b.
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Geometrický význam |~a×~b|: je to plošný obsah rovnobežníka určeného ~a,~b.

|~a×~b|=
√
|~a|2|~b|2−(|~a||~b| cos(∠~a,~b))2 =

√
|~a|2|~b|2−|~a|2|~b|2(1− sin2(∠~a,~b) =

=
√
|~a|2|~b|2(sin2(∠~a,~b)) = |~a||~b| sin(∠~a,~b). Plošný obsah rovnobežníka určeného

~a,~b je |~a||~b| sin(∠~a,~b).
Veta 11.25. Nech ~a=(a1, a2, a3), ~b=(b1, b2, b3) sú dva vektory z R3. Potom

~a×~b= det

(
~e1 ~e2 ~e3
a1 a2 a3

b1 b2 b3

)
=~e1·det

( a2 a3

b2 b3

)−~e2 det
( a1 a3

b1 b3

)
+~e3 det

( a1 a2

b1 b2

)
. Pretože ~e1=

=(1, 0, 0), ~e2=(0, 1, 0), ~e3=(0, 0, 1) máme ~a×~b= (det
( a2 a3

b2 b3

)
,− det

( a1 a3

b1 b3

)
,
( a1 a2

b1 b2

))

Dôkaz. Overíme podmienky 1.), 2.) a 3.) z definície.
1.)

〈(a1, a2, a3),
(
det
( a2 a3

b2 b3

)
,−det

( a1 a3

b1 b3

)
, det

( a1 a2

b1 b2

))〉 =

= a1 det
( a2 a3

b2 b3

)−a2 det
( a1 a3

b1 b3

)
+a3 det

( a1 a2

b1 b2

)
= det

(
a1 a2 a3

a1 a2 a3

b1 b2 b3

)
= 0

Podobne pre ~b.
2.) √

det2 ( a2 a3

b2 b3

)
+det2 ( a1 a3

b1 b3

)
+det2 ( a1 a2

b1 b2

)
=

=
√
|(a1, a2, a3)|2|(b1, b2, b3)|2 − 〈(a1, a2, a3)(b1, b2, b3)〉2

3.) Predpokladajme, že ~a=(a1, a2, a3),~b=(b1, b2, b3) sú lineárne nezávislé. To zna-
mená, že (b1, b2, b3) nie je nenulovým násobkom (a1, a2, a3) a preto aspoň jedno
z čísel det

( a2 a3

b2 b3

)
, det

( a1 a3

b1 b3

)
, det

( a1 a2

b1 b2

)
je 6=0. Máme ~a=a1~e1+a2~e2+a3~e3, ~b=

=b1~e1+b2~e2+b3~e3, ~c= det
( a2 a3

b2 b3

)
~e1− det

( a1 a3

b1 b3

)
~e2+ det

( a1 a2

b1 b2

)
~e3. Teda matica

prechodu od bázy (~e1, ~e2, ~e3) k trojici vektorov (~a,~b,~c) je

P =




a1 a2 a3

b1 b2 b3
det
( a2 a3

b2 b3

) −det
( a1 a3

b1 b3

)
det
( a1 a2

b1 b2

)




Potom det2 ( a2 a3

b2 b3

)
+det2 ( a1 a3

b1 b3

)
+det2 ( a1 a2

b1 b2

)
> 0. Z toho (keďže P je regulárna):

(~a,~b,~c) je báza v R3, a pretože det(P)>0 je kladná báza aj (~a,~b,~c). Z jednoznačnej
určenosti ~a×~b: ~a×~b= (det

( a2 a3

b2 b3

)
,−det

( a1 a3

b1 b3

)
,det

( a1 a2

b1 b2

))
.

Veta 11.26. Vektorový súčin v R3 má tieto vlastnosti:
1.)~a×~b = −~b× ~a pre ∀~a,~b∈R3.

2.)(α~a+β~b)×~c=α(~a×~c)+β(~b×~c) a ~a×(β~b+γ~c)=β(~a×~b)+γ(~a×~c) tj. zobrazenie × :
R3×R3→R3 je lineárne v oboch argumentoch.

Dôkaz. 1.)~a×~b:=~c. Pre lineárne závislé ~a,~b 1.) zrejme platí. Pre ~a,~b lineárne

nezávislé máme, že (~a,~b,~c) je kladná báza. Zároveň (~b,~a,~b×~a) je kladná báza
v R3 potom ~a×~b=−~b×~a.
Iný dôkaz: Nech ~a=(a1, a2, a3), ~b=(b1, b2, b3), potom ~a×~b= (det

( a2 a3

b2 b3

)
,

−det
( a1 a3

b1 b3

)
,det

( a1 a2

b1 b2

))
=−

(
det
(
b2 b3
a2 a3

)
,− det

(
b1 b3
a1 a3

)
,det

(
b1 b2
a1 a2

))
=−~b×~a.

2.) Z vlastnosti determinantov jasné.
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Definícia 11.22. Nech R3 je štandardne orientovaný. Nech ~a,~b,~c∈R3 sú dané vek-
tory. Potom ich zmiešaný súčin sa definuje ako reálne číslo 〈~a×~b,~c〉, ozn. 〈~a,~b,~c〉.
Veta 11.27.

Nech ~a=(a1, a2, a3),~b=(b1, b2, b3),~c=(c1, c2, c3). Potom 〈~a,~b,~c〉= det

(
a1 a2 a3

b1 b2 b3
c1 c2 c3

)
.

Dôkaz. 〈~a,~b,~c〉=〈~a×~b,~c〉=〈(det
( a2 a3

b2 b3

)
,− det

( a1 a3

b1 b3

)
, det

( a1 a2

b1 b2

))
, (c1, c2, c3)〉 =

= c1 det
( a2 a3

b2 b3

)− c2 det
( a1 a3

b1 b3

)
+ c3 det

( a1 a2

b1 b2

)
= det

(
a1 a2 a3

b1 b2 b3
c1 c2 c3

)
.

Veta 11.28. Zmiešaný súčin má tieto vlastnosti:
1.) je lineárny v každom argumente.

2.)〈~a,~b,~c〉=〈~b,~c,~a〉=〈~c,~a,~b〉.
Dôkaz. jasné z determinantového vyjadrenia zmiešaného súčinu a vlastností deter-
minantov.

Veta 11.29. Nech ~a,~b sú dva lineárne nezávislé vektory v R3, chápané ako orien-
tované úsečky v Oxyz so začiatkom v O. Nech ~c je vektor, ktorý neleží v smerovom
priestore roviny určenej bodom O a vektormi ~a,~b. Potom |〈~a,~b,~c〉| je objem rovno-
bežnostena určeného bodom O a orientovanými úsečkami ~a,~b,~c.

Dôkaz. ~a=
−→
OA,A≡(a1, a2, a3),~b=

−→
OB,B≡(b1, b2, b3),~c=

−→
OC,C≡(c1, c2, c3). Objem

rovnobežnostena O~a~b~c =(plošný obsah podstavy O~a~b)·výška = |~a×~b|·ρ(C,α), kde
α je rovina určená bodom O a vektormi ~a,~b = |~a×~b|·ρ(C,C⊥).

α≡





x1=O+a1t+b1s

x2=O+a2t+b2s

x3=O+a3t+b3s

Π⊥α (C) ≡





x1=c1+ det ( a2 a3
b2 b3 ) p

x2=c2− det ( a1 a3
b1 b3 ) p

x3=c3+ det ( a1 a2
b1 b2 ) p

p∈R





a1t+b1s− det ( a2 a3
b2 b3 ) p=c1

a2t+b2s+ det ( a1 a3
b1 b3 ) p=c2

a3t+b3s− det ( a1 a2
b1 b2 ) p=c3

p =
det

(
a1 a2 a3

b1 b2 b3
c1 c2 c3

)

− det2 ( a2 a3

b2 b3

)− det2 ( a1 a3

b1 b3

)− det2 ( a1 a2

b1 b2

) =
det

(
a1 a2 a3

b1 b2 b3
c1 c2 c3

)

D

ρ(C,C⊥)=

√
det2 ( a2 a3

b2 b3

) 〈~a,~b,~c〉2
D2

+det2 ( a1 a3

b1 b3

) 〈~a,~b,~c〉2
D2

+det2 ( a1 a2

b1 b2

) 〈~a,~b,~c〉2
D2

...

V = |~a×~b| · ρ(C,C⊥) = |〈~a,~b,~c〉|
Veta 11.30. Nech × : Rn×Rn→Rn je zobrazenie s týmito vlastnosťami:
1.)× je lineárne v oboch argumentoch.

2.) pre ∀~a,~b∈Rn je (~a×~b)⊥~a, (~a×~b)⊥~b
3.)|~a×~b|=

√
|~a|2|~b|2−〈~a,~b〉2.

Potom n = 3, alebo n = 7.
Bez dôkazu.
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XII. LINEÁRNE TRANSFORMÁCIE VEKTOROVÝCH PRIESTOROV

Definícia 12.1. Lineárna transformácia vektorového priestoru V je lineárne zob-
razenie V→V .

Príklad. f : R3→R3, f(x1, x2, x3)=(2x1+x2−x3, x2,−x1) je lineárna transformácia
priestoru R3.

Definícia 12.2. Nech V je n-rozmerný vektorový priestor nad poľom R. Nech
(~a1, · · · ,~an) je báza vo V . Ak f : V→V je lineárna transformácia priestoru V ,
tak jej matica vzhľadom na bázu (~a1, · · · ,~an) je matica A=(aij)∈Mnn(R) taká, že
f(~ai)=ai1~a1+ · · ·+ain~an; i=1, · · · , n.

Príklad. Matica lineárneho zobrazenia f : R3→R3; f(x1, x2, x3) = (x1 − x2 − x3,

x1+x2, x2+x3) vzhĺadom na bázu (~e1, ~e2, ~e3) je M =

(
1 1 0
−1 1 1
−1 0 1

)
∈M33(R).

Príklad. Nech f : R3→R3 f(x1, x2, x3)=(6x1+4x2−2x3, 2x1+x3, 4x1+4x2). Ma-

tica f vzhľadom na (~e1, ~e2, ~e3) je Mf =

(
6 2 4
4 0 4
−2 1 0

)
. Vektory ~a1=(0, 1, 2), ~a2=(2, 1, 2)

~a3=(2,−3, 2) tiež tvoria bázu v R3. Aká je matica f vzhľadom na bázu (~a1,~a2,~a3)?
Vyrátame: ~e1=(1, 0, 0)=x(0, 1, 2)+y(2, 1, 2)+z(2,−3, 2)⇒ x=− 1

2 , y= 1
2 , z=0. Teda

~e1=− 1
2 (0, 1, 2)+1

2 (2, 1, 2)+0·(2,−3, 2). Podobne: ~e2= 1
4 (2, 1, 2)− 1

4 (2,−3, 2), ~e3=
= 1

2 (0, 1, 2)− 1
8 (2, 1, 2)+(2,−3, 2). Teda matica prechodu od (~a1,~a2,~a3) k (~e1, ~e2, ~e3)

je P =

(
− 1

2
1
2 0

0 1
4 − 1

4
1
2 − 1

8
1
8

)
. Potom f(~a1) = f(0, 1, 2) = 2~e2 + 4~e3 = 2( 1

4~a2 − 1
4~e3)+

+4( 1
2~a1− 1

8~a2+ 1
8~a3) = 2~a1. f(~a2)=6~a2 a f(~a3)=−2~a3. Teda matica f vzhľadom

na bázu (~a1,~a2,~a3) je B =

(
2 0 0
0 6 0
0 0 −2

)
. Pre Mf platí (x1, x2, x3)·Mf=f(x1, x2, x3).

Všeobecne, ak f : Rn→Rn je lineárna transformácia, tak máme f(x1, · · · , xn)=
=(x1, · · · , xn)·Mf , kde Mf∈Mnn(R) je matica f vzhľadom na bázu (~e1, · · · , ~en).
Ale, ak B∈Mnn(R) je matica f vzhľadom na inú bázu (~a1, · · · ,~an) tak už ne-
platí, že f(x1, · · · , xn)=(x1, · · · , xn)·B. Napríklad z predchádzajúceho príkladu:

f(1, 1, 1)=(−1, 2, 2), ale (1, 1, 1)·
(

2 0 0
0 6 0
0 0 −2

)
=(2, 6,−2)6=(−1, 2, 2).

Veta 12.1. Nech f :V→V je lineárna transformácia, nech (~a1,~a2,~a3) je báza vo V a
nech A∈Mnn(R) je matica f vzhľadom na bázu (~a1,~a2,~a3). Potom, ak (x1, · · · , xn)
je n-tica súradníc vektora ~x∈V v báze (~a1,~a2,~a3), tak (x1, · · · , xn)·A je n-tica
súradníc vektora f(~x) v báze (~a1, · · · ,~an).

Dôkaz. Máme ~x=x1~a1+ · · ·+xn~an. Potom f(~x)=f(x1~a1+ · · ·+xn~an)=x1f(~a1)+
+ · · ·+xnf(~an) = x1(a11~a1+ · · ·+a1n~an)+ · · ·+xn(an1~a1+ · · ·+ann~an) =
=(x1a11+ · · ·+xnan1)~a1+ · · ·+(x1a1n+ · · ·+xnann~an. Teda f(~x) má vzhľadom
na (~a1, · · · ,~an) n-ticu súradníc (x1a11+ · · ·+xnan1, · · · , x1a1n+ · · ·+xnann). Ale

(x1, · · · , xn)

( a11 ··· a1n

...
. . .

...
an1 ··· ann

)
=(x1a11+ · · ·+xnan1, · · · , x1a1n+ · · ·+xnann). To je

práve n-tica súradníc f(~x) vzhľadom na bázu (~a1, · · · ,~an).
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Otázka. Nech f :V→V je lineárna transformácia, nech (~a1, · · · ,~an), (~a′1, · · · ,~a′n)
sú dve bázy vo V . Nech f má vzhľadom na (~a1, · · · ,~an) maticu A∈Mnn(R) a
vzhľadom na (~a′1, · · · ,~a′n) maticu B∈Mnn(R). Aký je vzťah medzi A a B?

Odpoveď. Nech P∈Mnn(R) je matica prechodu od (~a′1, · · · ,~a′n) k (~a1, · · · ,~an).
Vieme, že P je regulárna pričom P−1=P′ je matica opačného prechodu. Nech ~x∈V
je ľubovoľné, nech jeho súradnice vzhľadom na (~a1, · · · ,~a1) sú X=(x1, · · · , xn) a
vzhľadom na bázu (~a′1, · · · ,~a′n) sú X′=(x′1, · · · , x′n). Vieme, že X=X′P′, X′=XP.
Nech teraz f(~x) má súradnice Y=(y1, · · · , yn) vzhľadom na (~a1, · · · ,~an) a nech
má súradnice Y′=(y′1, · · · , y′n) vzhľadom na (~a′1, · · · ,~a′n). Zas vieme, že Y′=YP,
Y=Y′P′. Z predchádzajúcej vety tiež vieme, že Y=XA, Y′=X′B. Z toho:
XAP=YP=Y′=X′B=XPB ⇒ XAP=XPB tj. X(AP−PB)=0 pre všetky

X∈Rn. Ak postupne berieme za X n-tice ~e1=(1, 0, · · · , 0), · · · , ~en=(0, · · · , 0, 1),
tak dáva, že prvý až n-tý riadok v matici AP−PB je nulový, a teda AP−PB=0,

z toho AP=PB a teda B=P−1AP .

Definícia 12.3. Nech A,B∈Mnn(R). Hovoríme, že matica B je podobná matici
A, ak existuje regulárna matica Q∈Mnn(R) taká, že B=QAQ−1. (zápis: B ∼ A).

Tvrdenie 12.1. ∼ je relácia ekvivalencie na Mnn(R).

Dôkaz.
Symetrickosť: B∼A ⇒ B=QAQ−1, ale potom aj A=Q−1BQ=Q−1B(Q−1)−1 a
teda A∼B. Reflexivita: A∼A, lebo A=InAI−1

n . Tranzitívnosť: A∼B,B∼C⇒
⇒ A=QBQ−1, B=SCS−1 ⇒ A=QSCS−1Q−1=(QS)C(QS)−1 a preto A∼C.

Riešenie predchádzajúcej otázky môžeme vyjadriť takto: Matice lineárnej trans-
formácie n-rozmerného vektorového priestoru V vzhľadom na rôzne bázy priestoru
V sú navzájom podobné.

Veta 12.2. Existuje lineárna transformácia a vhodná báza priestoru Rn také, že
pre dané podobné matice A,B platí: A je maticou tej lineárnej transformácie
vzhľadom na štandardnú bázu (~e1, · · · , ~en) a B je matica tej istej lineárnej trans-
formácie vzhľadom na (~a1, · · · ,~an).

Dôkaz. Nech A=(aij),B=(bij), nech B=PAP−1 pre dajakú regulárnu maticu
P∈Mnn(R). Predpis f(~ei)=ai1~e1+ · · ·+ain~en podľa základnej vety o lineárnych
zobrazeniach definuje lineárne zobrazenie f : Rn→Rn, pričom f má vzhľadom
na (~e1, · · · , ~en) maticu A. Definujme vektory ~a1, · · · ,~an: ~ai=pi1~e1+ · · ·+pin~en,
i=1, · · · , n. Pretože P=(pij) je regulárna, vektory (~a1, · · · ,~an) tvoria bázu priesto-

ru Rn. (tiež ~ej=
n∑

j=1

p′js~as ∀j.) Aká je matica f vzhľadom na (~a1, · · · ,~an)?

f(~ai)=
n∑

j=1

pijf(~ej)=
n∑

i=1

pijf

(
n∑
s=1

ajs~es

)
=

n∑

j=1

pij

n∑
s=1

ajs~es=

=
n∑

j=1

pij

n∑
s=1

ajs

n∑
t=1

p′st~at=
n∑
t=1




n∑
s=1

n∑

j=1

pijajsp
′
st


~at

V zátvorke je prvok i-teho riadku a j-teho stĺpca B=PAP−1.
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Definícia 12.4. Nech f : V→V je lineárna transformácia. Vlastný vektor lineár-
nej transformácie f je nenulový vektor ~v∈V taký, že pre dáke λ∈R máme f(~v)=λ~v.
V tejto situácii sa λ nazýva vlastná hodnota lineárnej transformácie f patriaca
vlastnému vektoru ~v.

Príklad. idV : V→V pre ∀~v∈V−{~0} platí idV (~v)=1·~v.

Definícia 12.5. Vlastný vektor a k nemu patriaca vlastná hodnota matice
A∈Mnn(R) sa definuje ako vlastný vektor (a k nemu patriaca vlastná hodnota)
lineárnej transformácie fA : Rn→Rn (ktorej maticou vzhľadom na štandardnú bázu
je A.) Ináč povedané: nenulový vektor (x1, · · · , xn)∈Rn je vlastný vektor matice A
ak existuje λ∈R také, že (x1, · · · , xn)·A=λ(x1, · · · , xn). O λ hovoríme ako o vlast-
nej hodnote matice A patriacej k vlastnému vektoru (x1, · · · , xn).

Príklad. (x1, · · · , xn) 6=(0, · · · , 0) (x1, · · · , xn)In=1·(x1, · · · , xn).

Poznámka. Definovali sme tzv. ľavý vlastný vektor matice A. Niekedy sa definuje

aj tzv. pravý vlastný vektor matice A ako taký

( y1

···
yn

)
6=
(

0
···
0

)
pre ktorý existuje

µ∈R také, že A
( y1

···
yn

)
=µ

( y1

···
yn

)
. Transponovaním: (y1, · · · , yn)AT=µ(y1, · · · , yn).

Teda

( y1

···
yn

)
je pravý vlastný vektor matice A práve vtedy, keď (y1, · · · , yn) je ľavý

vlastný vektor matice AT.
V ďaľšom budeme uvažovať iba o ľavých vlastných vektoroch.

Tvrdenie 12.2. Podobné matice (nad R) majú tú istú množinu vlastných hodnôt
(z poľa R).

Dôkaz. Nech A,B∈Mnn(R) a nech sú podobné, teda B=PAP−1 pre dajakú regu-
lárnu maticu P∈Mnn(R). Označme S(A) resp. S(B) množinu vlastných hodnôt
matice A, resp. B. Chceme ukázať, že S(A)=S(B). Nech λ∈S(A) je ľubovoľné.
Vieme, že existuje nenulový vektor ~x∈Rn taký, že ~x·A=λ~x. Máme A=P−1BP.
Teda (~xP)BP=λ~x ⇔ (~xP−1)B=λ(~xP−1). Máme fP−1=~xP−1∈Rn−{(0, · · · , 0)},
keďže lineárna transformácia fP−1 : Rn→Rn je regulárna. Teda λ∈S(B), príslušný
vlastný vektor je ~xP−1. Ukázali sme, že S(A)⊂S(B). Analogicky sa ukáže, že
S(B)⊂S(A). Vcelku S(A)=S(B).

Tvrdenie 12.3. Ak λ∈R je vlastná hodnota matice A∈Mnn(R) a ~v∈Rn−{~0} je
vlastný vektor matice A patriaci k λ, tak c~v pre c∈R−{0} je tiež vlastný vektor
matice A (patriace k vlastnej hodnote λ).

Dôkaz. Máme ~vA=λ~v. Potom (c~v)A=c(~vA)=c(λ~v)=λ(c~v).

Ako závisí vlastný vektor (x1, · · · , xn)∈Rn−~0 od matice A=(aij)∈Mnn(R)?
(x1, · · · , xn)∈Rn−{~0} je vlastný vektor matice A=(aij)∈Mnn(R) patriaci k vlast-
nej hodnote λ∈R práve vtedy, keď (x1, · · · , xn)A=λ(x1, · · · , xn)⇔ (x1, · · · , xn)A=
=(x1, · · · , xn)λIn ⇔ (x1, · · · , xn)(λIn−A)=~0. tj.

(x1, · · · , xn)




λ−a11 −a12 · · · −a1n

−a21 λ−a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · λ−ann


=(0, · · · , 0)⇔



72 I.ROČNÍK

⇔ (∗)





(λ−a11)x1−a21x2− · · ·−an1xn=0

· · ·
−a1nx1−a2nx2− · · · (λ−ann)xn=0

Teda (x1, · · · , xn)∈Rn−{~0} je vlastným vektorom patriacim k vlastnej hodnote
λ∈R práve vtedy, keď (x1, · · · , xn) je netriviálnym riešením lineárneho systému
(∗). Vieme, že (∗) má nenulové riešenie práve vtedy, keď h( matice systému *)<n,
tj. práve vtedy, keď h(λIn−A)<n. Takisto máme, že λ∈R je vlastnou hodnotou
matice A práve vtedy, keď h(λIn−A)<n tj. matica λIn−A je singulárna. Špeciálne
z toho vidno, že 0∈R je vlastnou hodnotou matice A∈Mnn(R) ⇔ h(−A)<n tj.
práve vtedy, keď h(A)<n.

Príklad. Nech f : R2→R2 je lineárne zobrazenie otočenie o uhol ϕ∈〈0, 2π) okolo
začiatku súradnicového systému. fϕ(~v)=λ~v. Aké má vlastné hodnoty a vlastné
vektory? Aká je matica lineárneho zobrazenia fϕ vzhľadom na (~e1, ~e2)? R2≈C.
z=x+iy. fϕ(x, y)=fϕ(x+iy)(cosϕ+i sinϕ)=(x cosϕ− y sinϕ;x sinϕ+ y cosϕ).

Mfϕ=
(

cosϕ sinϕ
− sinϕ cosϕ

)
. Kedy je λ∈R vlastnou hodnotou matice Mfϕ? Práve vtedy,

keď matica λIn−Mfϕ je singulárna ⇔ det
(
λ− cosϕ sinϕ
− sinϕ λ− cosϕ

)
=0⇔ (λ− cosϕ)2+

+ sin2 ϕ=0⇔ λ2−2λ cosϕ+ cos2 ϕ+ sin2 ϕ=0⇔ λ2−2λ cosϕ+1=0. Z toho:

λ12=
2 cosϕ±

√
4 cos2 ϕ−4
2 = cosϕ ±

√
− sin2 ϕ, teda λ∈R ⇔ sinϕ=0 ⇔ ϕ=0 ∨ ϕ=π.

Potom λ1=1, λ2=−1. Teda matica Mfϕ chápaná ako reálna má vlastnú hodnotu
(1 resp. -1) iba vtedy, keď ϕ=0 resp. ϕ=π.
Aké sú vlastné hodnoty matice Mfϕ ak ju chápeme ako komplexnú?
Vtedy vlastné hodnoty: λ1= cosϕ+i sinϕ, λ2= cosϕ−i sinϕ, pre ∀ϕ∈〈0, 2π).

Rozšírenie definície matice resp. determinantu.
Pripustíme, že prvky matíc môžu byť aj prvky ľubovoľného komutatívneho okru-

hu s 1. Rovnosť matíc, násobenie atď. funguje analogicky. Ak A=(aij)∈Mnn(R)
(kde (R,+, ·, 1) je komutatívny okruh s 1) definujeme determinant:

det(A)=
∑

ϕ∈S{1,··· ,n}
(−1)s(ϕ)a1ϕ(1)a2ϕ(2) · · · anϕ(n)

Mnohé z vlastností determinantov nad poľom sa zachovajú aj pre determinanty
nad komutatívnym okruhom s 1. Napr. determinant zmení znamienko na opačné
ak vzájomne vymeníme dva riadky; determinant je nulový ak niektorý riadok je
nulový; det(AB)= det(A) det(B), atď. . .

Definícia 12.6. Charakteristický polynóm matice A∈Mnn(R) (kde R je pole) sa
definuje ako χA(t)= det(tIn−A).

A=(aij)∈Mnn(R) χA(t)= det




t−a11 −a12 · · · −a1n

−a21 t−a22 · · · −a2n
...

...
. . .

...
−an1 −an2 · · · t−ann




Prvkami tejto matice sú prvky okruhu polynómov R[t]. Označme R[t] okruh
polynómov v neurčitej t nad poľom R. Ak p(t)∈R[t], tak jeho koreň je a∈R, pre
ktoré p(a)=0.
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Príklad. p(t)=t2−2t+1 ∈ R[t]. p(1)=0, 1 je koreň.
Z doterajšieho: λ∈R je vlastná hodnota matice A∈Mnn(R) práve vtedy, keď λ

je koreňom charakteristického polynómu χA(t) matice A.

Napr.: A=

(
1 0 2
0 0 1
0 −1 0

)
∈M33(R). χA(t)= det

(
t−1 0 −2

0 t −1
0 1 t

)
=t3−t2+t−1=(t2+1)(t−1)

Má jeden reálny koreň: 1. Matica A chápaná ako reálna matica má jedinú vlastnú
hodnotu: λ=1. Neskôr sa pozrieme, aké sú vlastné hodnoty, ak A chápeme ako
komplexnú maticu.

Definícia 12.7. Stupeň polynómu p(t)=
∞∑

i=0

ait
i∈R[t] je s, ak as 6=0, ale ai=0, pre

i>s v prípade, že p(t)6=0. Ak p(t)≡0, tak stupeň polynómu sa definuje ako −∞.

Veta 12.3. Nech A∈Mnn(R). Potom stupeň χA(t) je n. Okrem toho, koeficient

pri tn−1 v χA(t) je −
n∑

i=1

aii a absolútny člen v χA(t) je (−1)n det(A).

Dôkaz.

χA(t)= det



t−a11 −a12 ··· −a1n

−a21 t−a22 ··· −a2n

...
...

. . .
...

−an1 −an2 ··· −ann


=(t−a11)(t−a22) · · · (t−ann)+členy s tk

kde k≤n−2. Koeficient pri tn a tn−1 získame z (t−a11)(t−a22) · · · (t−ann). Z toho

koeficient pri tn je 1, pri ts, s>n sú nuly. Koeficient pri tn−1 je −
n∑

i=1

aii. Koeficient

pri t0 je χA(0)= det

( −a11 ··· −a1n

...
. . .

...
−an1 ··· −ann

)
= det(−A)=(−1)n det(A).

Definícia 12.8. Pre maticu A=(aij)∈Mnn(R) sa
n∑

i=1

aii nazýva stopa matice A,

ozn. Tr(A);Sp(A). Platí napr. ak A,B∈Mnn(R), tak Tr(AB)=Tr(BA).

Veta 12.4. Podobné matice majú ten istý charakteristický polynóm.

Dôkaz. Majme A,B∈Mnn(R), nech B=PAP−1 pre dáku regulárnu P∈Mnn(R).
Chceme ukázať, že χA(t)=χB(t). Z definície: χB(t)= det(tIn − B)= det(tIn−
−PAP−1)= det(PtInP−1−PAP−1)= det(P(tIn−A)P−1)= det(P) det(tIn−A)·
· det(P−1)= det(P) det(P−1) det(tIn−A)= det(tIn−A) = χA(t).

Definícia 12.9. Charakteristický polynóm lineárnej transformácie f : Rn→Rn
(R je pole) je charakteristický polynóm matice lineárnej transformácie vzhľadom
na ľubovoľnú bázu v Rn.

Definícia je dobrá, lebo ak A je matica transformácie f vzhľadom na jednu bázu
a B je jej matica vzhľadom na inú bázu, tak A,B sú podobné, teda χA(t)=χB(t).

Poznámka. z=a+ib, z̄=a−ib je komplexne združené k z. z∈C je reálne ⇔ z=z̄.
z·z̄=|z|2.
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Definícia 12.10. Nech A=(aij)∈Mks(C). Komplexne združená k nej je matica
Ā=(āij)∈Mks(C).

Zrejme platí: A+B=Ā+B̄; AB=Ā·B̄.

Veta 12.5. Nech A∈Mnn(R) je symetrická (tj. A=AT). Ak A chápeme ako
komplexnú maticu, tak všetky jej vlastné hodnoty sú reálne.

Dôkaz. Nech λ∈C je ľubovoľná vlastná hodnota matice A. Teda existuje nenulový
vektor ~x∈Cn taký, že ~xA=λ~x. Komplexné združenie: ~xA=λ~x tj. ~̄xĀ=λ̄~̄x. Pretože
A má všetky prvky reálne, máme Ā=A, a teda ~̄xA=λ̄~̄x. Transponovanie dáva:
(~̄xA)T=(λ̄~̄x)T, tj. AT~̄x=λ̄~̄x

T
, ale A=AT a preto A~̄x

T
=λ̄~̄x

T ⇔ ~xA~̄x
T

=λ̄~x~̄x
T

.

Máme: ~xA=λ~x; preto λ~x~̄x
T

=λ̄~x~̄x
T

tj. (λ−λ̄)~x~̄x
T

=0. ~x~̄x
T

=(x1, · · · , xn)

(
x̄1

···
x̄n

)
=

=x1x̄1+ · · ·+xnx̄n=|x1|2+ · · ·+|xn|2>0, keďže (x1, · · · , xn)∈Cn−{(0, · · · , 0)}, pre-
to λ−λ̄=0 tj. λ=λ̄ teda λ∈R.

Podobnosť matice s diagonálnou maticou.

Veta 12.6. Matica A∈Mnn(R) je podobná diagonálnej matici práve vtedy, keď
vlastné vektory matice A generujú celý priestor Rn. Ak A je podobná diagonál-
nej matici, tak je podobná matici diag(λ1, · · · , λn), kde λ1, · · · , λn∈R sú vlastné
hodnoty matice A.

Dôkaz.
⇒ : Predpokladajme, že matica A je podobná D=diag(d1, · · · , dn). Pretože

máme ~ei=(0, · · · , 0, 1, · · · , 0) : ~eiD=di~ei, teda d1, · · · , dn sú vlastné hodnoty ma-
tice D (a ~e1, · · · , ~en sú príslušné vlastné vektory). Vieme, že {d1, · · · , dn} je tiež
množinou všetkých vlastných hodnôt matice A. Chceme ukázať, že vlastné vek-
tory matice A generujú Rn. Máme, že D=PAP−1 pre vhodnú regulárnu maticu
P. Teda z ~eiD=di~ei dostaneme: ~eiPAP−1=di~ei (sprava P): (~eiP)A=di(~eiP).
~e1P, · · · , ~enP sú nenulové z Rn, teda sú to vlastné vektory patriace k vlastným
hodnotám d1, · · · , dn matice A. Navyše ~e1P, · · · , ~enP sú lineárne nezávislé, lebo
sú to obrazy bázových vektorov ~e1, · · · , ~en priestoru Rn pri regulárnej lineárnej
transformácie fP : Rn→Rn. Teda ~e1P, · · · , ~enP sú vlastné vektory matice A,
generujúce Rn.
⇐ :Predpokladajme, že vlastné vektory matice A generujú celý priestor Rn. Vy-

berme spomedzi nich bázu (~b1, · · · ,~bn) priestoru Rn. Nech λ1, · · · , λn∈R sú vlastné
hodnoty matice A patriace k ~b1, · · · ,~bn. Teda ~b1A=λ1

~b1=fA(~b1), · · · ,~bnA=λn~bn=
=fA(~bn). tj. máme, že fA(~b1)=λ1

~b1+0~b2+ · · ·+0~bn, · · · , fA(~bn)=0~b1+ · · ·+λn~bn.
Teda lineárna transformácia fA : Rn→Rn (ktorá vzhľadom na (~e1, · · · , ~en) má
maticu A) má vzhľadom na bázu (~b1, · · · ,~bn) maticu diag(λ1, · · · , λn). Potom
z jednej z viet vieme, že A je podobná diag(λ1, · · · , λn).

Príklad. Matica A =
(

1 1
0 1

)
∈Mnn(R) nie je podobná diagonálnej matici.

χA(t) = det
(
t−1 −1

0 t−1

)
= (t−1)2. Keby A bola podobná diagonalnej matici, tak by

bola podobná
(

1 0
0 1

)
. Teda by existovala regulárna matica P taká, že

(
1 1
0 1

)
=

=PAP−1=
(

1 0
0 1

)
– to nie je pravda, preto A nie je podobná diagonálnej matici.
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Vlastné vektory patriace k vlastnej hodnote λ=1: (x1, x2)
(

1 1
0 1

)
=1·(x1, x2).

Z toho: x1=x1 a x1+x2=x2 Potom x1=0. Vlastné vektory sú tvaru: k(0, 1);
k∈R−{0}. Vlastné vektory negenerujú celé R2, podľa vety A nie je podobná di-
agonálnej matici.

Veta 12.7. Nech A∈Mnn(R) a nech λ1, · · · , λr∈R sú také vlastné hodnoty matice
A, ktoré sú navzájom rôzne. Nech~b1, · · · ,~br sú vlastné vektory patriace λ1, · · · , λr.
Potom ~b1, · · · ,~br sú lineárne nezávislé.

Dôkaz. Indukcia podľa r:
1◦ Pre r=1 keďže ~b1 6=~0 je lineárne nezávislé, tvrdenie platí.
2◦ Predpokladajme, že tvrdenie platí pre r−1. Teraz nech λ1, · · · , λr je r navzájom
rôznych vlastných hodnôt, nech príslušné vlastné vektory sú ~b1, · · · ,~br. Nech
α1
~b1+ · · ·+αr~br=~0. Chceme ukázať, že α1= · · ·=αr=0. Sprava (λrIn−A):

α1
~b1(λrIr−A)+ · · ·+αr−1

~br−1(λrIr−A)=~0(λrIr−A)⇔ α1
~b1λrIr−α1λ1

~b1+ · · ·
· · ·+αr−1

~br−1λrIr−αr−1λr−1
~br−1+αr~brλrIr−αrλr~br=~0⇔ α1λr~b1−α1λ1

~b1+ · · ·
· · ·+αr−1λr~br−1+αr−1λr−1

~br−1+αrλr~br−αrλr~br=~0. Teda α1(λr−λ1)~b1+ · · ·+
+αr−1(λr−λr−1)~br−1=~0. Z indukčného predpokladu vieme, že ~b1, · · · ,~br−1 sú
lineárne nezávislé. Preto α1(λr−λ1)=0, · · · , αr−1(λr−λr−1)=0. Ale λi 6=λj pre
i6=j, teda λr−λ1 6=0, · · · , λr−λr−1 6=0, z toho: α1= · · ·=αr−1=0. Zostáva αr~br=~0.
Pretože ~br 6=~0, máme aj αr=0.

Dôsledok. Ak A je taká matica, že má n navzájom rôznych vlastných hodnôt,
tak príslušné vlastné vektory sú lineárne nezávislé, teda generujú celé Rn, a teda je
podobná diagonálnej matici diag(λ1, · · · , λn).

Niektoré fakty o polynómoch.

Veta 12.8. Nech polynóm p(t) je stupňa n≥0; q(t) je stupňa m≥0 nad R. Po-
tom existuje jediný polynóm d(t) a jediný polynóm r(t) (deg(r(t))<m) také, že
p(t)=d(t)q(t)+r(t)

Veta 12.9. Nech p(t)∈R[t],deg(p(t))≥1. Potom α∈R je koreňom p(t) práve vtedy,
keď p(t)=(t−α)q(t), kde deg(q(t))= deg(p(t))−1.

Dôkaz.
⇒ : Predpokladajme, že α∈R je koreň. Teda p(α)=0. Z vety 12.8 vieme, že:
p(t)=(t−α)q(t)+r(t), kde deg(r(t))<1. Keďže p(α)=0=r(α), máme r(t)≡0, teda
p(t)=(t−α)q(t).
⇐ : Ak p(t)=(t−α)q(t), tak p(α)=(α−α)q(t)=0, teda α je koreň.

Definícia 10.11. Hovoríme, že polynóm p(t)=antn+ · · ·+a1t+a0∈R[t] sa nad R
úplne rozkladá na lineárne činitele, ak p(t) sa dá vyjadriť v tvare p(t)=an(t−α1) · · ·
· · · (t−αn) pre dáke α1, · · · , αn∈R. Keď združíme rovnaké činitele, tak dostaneme:
p(t)=an(t−α1)k1 · · · (t−αs)ks , pričom

∑
ki=n.

Príklad. Polynóm t2+1 sa nad R nerozkladá úplne na lineárne činitele, ale nad C
sa rozkladá.

Základna veta algebry.
Každý nekonštantný polynóm z C[t] má v C koreň.
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Dôsledok. Každý polynóm z C[t] sa úplne rozkladá na lineárne činitele nad C.

Tvrdenie 12.4. Každý nekonštantný polynóm s reálnymi koeficientmi sa rozkladá
na súčin polynómov stupňa ≤2.

Dôkaz. Nech p(t)=antn+ · · ·+a1t+a0, αi∈R. Ak p(t) chápeme ako polynóm nad
C a z0∈C je jeho koreň, tak aj z̄0 je koreň, lebo p(z0)=0=anzn0 + · · ·+a1z0+a0,
a teda tiež 0=anzn0 + · · ·+a1z0+a0=anzn0 + · · ·+a1z0+ā0=an(z̄0)n+ · · ·+a1z̄0+a0.
Z dôsledku základnej vety algebry vieme, že p(t)=an(t−z1) · · · (t−zn) pre zi∈C.
Ale ak zi je koreň, tak aj z̄i je koreň, teda pre ∀i∈{1, · · · , n} zi=z̄j pre vhodné
j∈{1, · · · , n}. Teda p(t) obsahuje súčiny (t−zj)(t−z̄j)=t2− (zj+z̄j)︸ ︷︷ ︸

∈R

+ zj z̄j︸︷︷︸
∈R

; ob-

sahuje činitele stupňa 1 ∨ 2.

Tvrdenie 12.5. Ak p(t)∈R[t] má nepárny stupeň, tak p(t) má koreň v R.

Dôkaz. Z predchádzajúcich úvah vyplýva, že ak p(t)∈R[t] nemá reálne korene, tak
má párny stupeň.

Veta 12.10. Nech A∈Mnn(R) má charakteristický polynóm χA(t)∈R[t] taký, že sa
úplne rozkladá nad R na navzájom rôzne lineárne činitele, χA(t)=(t−λ1) · · · (t−λn);
λi 6=λj pre i6=j. Nech ~b1, · · · ,~bn sú vlastné vektory patriace k λ1, · · · , λn, označme
VA(~bi)=[~bi]⊂Rn. Potom matica A je podobná diagonálnej matici diag(λ1, · · · , λn)
a Rn=[~b1]⊕ · · ·⊕[~bn].

Dôkaz. To, že A je podobná diag(λ1, · · · , λn) už vlastne vieme z dôsledku vety 12.7.
Tiež vieme, že ~b1, · · · ,~bn generujú celé Rn. Teda každé ~x∈Rn je tvaru ~x=α1

~b1+ · · ·
· · ·+αn~bn, teda Rn=[~b1]⊕ · · ·⊕[~bn]. Ale [~bi]∩([~b1]⊕ · · ·⊕[~bi−1]⊕[~bi+1]⊕ · · ·⊕[~bn])=
={~0} pre každé i. (keby nie,tak by pre dáke α~bi=β1

~b1+ · · ·+βi−1
~bi−1+βi+1

~bi+1+
+ · · ·+βn~bn, čo je nemožné, lebo ~b1, · · · ,~bn sú lineárne nezávislé.) Teda v skutoč-
nosti: Rn=[~b1]⊕ · · ·⊕[~bn].

Definícia 12.12. Pre A∈Mnn(R) definujme jej k-tú mocninu (k∈Z, k≥0) takto:
A0=In,A1=A,Ak=A·Ak−1.

Veta Cayley-Hamiltonova.
Nech χA(t) = ant

n + · · ·+ a1t+ a0 ∈ R[t] je charakteristický polynóm matice
A ∈ Mnn(R). Potom platí anAn + an−1An−1 + · · · + a1A + a0In = 0. Stručne
χA(A) = 0.

Dôkaz. Ak B=

( b11 ··· b1n
...

. . .
...

bn1 ··· bnn

)
máme

B·adj(B) =

( b11 ··· b1n
...

. . .
...

bn1 ··· bnn

)( B11 ··· Bn1

...
. . .

...
B1n ··· Bnn

)
= diag(det(B), · · · , det(B)) = det(B)In

to platí aj pre matice nad komutatívnym okruhom s 1. Špeciálne:

(∗) (tIn−A)adj(tIn−A)= det(tIn−A)·In)=χA(t)·In
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Ľubovoľnú maticu nad okruhom R[t] môžeme napísať v tvare ”polynóm” s koefi-
cientami z Mnn(R) pri mocninách t. Napr.:

(
t3 t2 −1
0 t 2t

t+t2 t+t2 t3

)
=

(
1 0 0
0 0 0
0 0 1

)
t3+

(
0 1 0
0 0 0
1 1 0

)
t2+

(
0 0 0
0 1 2
1 1 0

)
t+

(
0 0 −1
0 0 0
0 0 0

)

adj(tIn−A) takto napíšeme ako ”polynóm” s konštantnými maticovými koeficient-
mi stupňa ≤n−1. Teda adj(tIn − A) = B0 + B1t + · · · + Bn−1t

n−1 pre vhodné
B0, · · · ,Bn−1∈Mnn(R). Teda (∗) prepíšeme (tIn−A)(B0+B1t+ · · ·+Bn−1t

n−1)=
=(a0+a1t+ · · ·+an−1t

n−1+tn)In. Porovnáme koeficienty na ľavej a pravej strane
pri rovnakých mocninách t.

t0 : −AB0 = a0In /·A0

t1 : B0−AB1 = a1In /·A
t2 : B1−AB2 = a2In /·A2

...
...

...

tn−1 : Bn−2−ABn−1 = an−1In /·An−1

tn : Bn−1 = In /·An

Sčítaním ľavých resp. pravých strán: a0In+a1A+ · · ·+an−1An−1+An=0.

Veta 12.11 a Definícia 12.13. Pre každú maticu A∈Mnn(R) existuje práve
jeden polynóm µA(t)∈R[t] s koeficientom 1 pri najvyššej mocnine t taký, že
”µA(A)=0” a taký, že každý polynóm R[t]3p(t)6=0 s vlastnosťou ”p(A)=0” je
násobkom polynómu µA(t). Polynóm µA(t) sa nazýva minimálny polynóm matice
A.

Dôkaz. Označme NA={p(t)∈R[t]; p(A)=0 a ak p(t)6=0, tak má koeficient 1 pri naj-
vyššej mocnine}. NA 6=∅, lebo z Cayley−Hamiltonovej vety vieme, že χA(t)∈NA.
Zároveň je jasné, že v NA existujú polynómy stupňa ≥0. Nech µA(t) je polynóm
najmenšieho stupňa ≥1 v NA. Nech p(t)6=0 je taký, že p(A)=0. Chceme ukázať,
že p(t) je násobkom µA(t). Vieme, že existuje jediný p(t) a jediný r(t) tak, že
p(t) = µA(t)q(t) + r(t), pričom deg(r(t)) < deg(µA(t)). Máme r(A) = 0 a zároveň
deg(r(t))<deg(µA(t)), to je možné len tak, že r(t)≡0, teda p(t) je q(t)-násobkom
polynómu µA(t). Ešte treba ukázať jednoznačnosť: Nech by boli dva také polynómy
µA(t); µ̄A(t) s potrebnými vlastnosťami. Potom µ̄A(t) je násobkom polynómu µA(t),
ale aj µA je násobkom µ̄A(t). Pretože µA(t) aj µ̄A(t) má koeficient 1 pri najvyššej
mocnine, dostávame µA(t)=µ̄A(t).

Príklad. A=
(

1 1
0 1

)
, χA(t)=(t−1)2. µA(t) by mohol byť (t−1)2 alebo (t−1).(

1 1
0 1

)
−
(

1 0
0 1

)
6=
(

0 0
0 0

)
teda t−1 nie je minimálny polynóm. Teda µA(t)=(t−1)2.
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Jordanov normálny tvar matice (lineárnej transformácie).

Definícia 12.14. Ak f : Rn→Rn je lineárna transformácia a λ∈R je jej vlastná
hodnota, tak (f − λ)k bude označovať lineárnu transformáciu (f − λidRn) ◦ · · · ◦
◦(f−λidRn) : Rn→Rn. Špeciálne: (f−λ)0=idRn . Označme Vf (λ)={~x∈Rn; e-
xistuje n≥0 také, že (f−λ)n(~x)=~0}. Vlastné vektory lineárnej transformácie f
patriace k λ patria do Vf (λ): ak ~v je vlastný vektor patriaci k λ, tak f(~v)=λ~v tj.
(f−λ)(~v)=~0.

Definícia 12.15. Vf (λ) sa nazýva zovšeobecnená vlastná množina patriaca
k vlastnej hodnote λ.

Veta 12.12.
1.)Vf (λ) je vektorový podpriestor v Rn.
2.)f(Vf (λ))⊂Vf (λ) (tomu sa hovorí, že Vf (λ) je f-invariantný podpriestor v Rn.)
3.) Pre ~x∈Rn označme ~xi=(f−λ)i(~x). Ale ~x0, · · · , ~xk−1 sú (pre dáke k) nenulové,

ale už ~xk=~0, tak potom ~x0, · · · , ~xk−1 sú lineárne nezávislé.

Dôkaz.
1.) Vf (λ)6=∅, lebo tam patria vlastné vektory f . Nech ~x, ~y∈Vf (λ) sú ľubovoľné,
nech α∈R, β∈R. Chceme ukázať, že α~x+β~y∈Vf (λ). Máme (f−λ)k(~x)=~0 pre dáke
k≥0; (f−λ)m(~y)=~0 pre dáke m≥0. Potom (f−λ)k+m(α~x+β~y) = (f−λ)m(f−λ)k·
·(α~x+β~y)=(f−λ)m(α(f−λ)k(~x)︸ ︷︷ ︸

~0

+β(f−λ)k(~y))=β(f−λ)m(f−λ)k(~y)=β(f−λ)k·

· (f−λ)m(~y)︸ ︷︷ ︸
~0

= ~0.

2.) Nech ~y∈f(Vf (λ)). Chceme ukázať, že ~y∈Vf (λ). Máme ~y=f(~x) pre dáke ~x∈Vf (λ)
Teda ∃m≥0: (f−λ)m(~x)=~0. Potom (f−λ)m(~y)=(f−λ)m(f(~x))=(f−λ)m◦f(~x) =
f◦ (f−λ)m(~x)︸ ︷︷ ︸

~0

= ~0, teda ~y∈Vf (λ).

3.) Nech α0~x0+ · · ·+αk−1~xk−1=~0, chceme ukázať, že α0= · · ·=αk−1=0. Máme
α0(f−λ)0(~x)+α1(f−λ)1(~x)+ · · ·+αk−1(f−λ)k−1(~x)=~0. Aplikujeme na obe stra-
ny (f−λ)k−1. Potom α0(f−λ)k−1(~x)+α1(f−λ)k(~x)+ · · ·+αk−1(f−λ)2k−1(~x)=~0
α0~xk−1+~0+ · · ·+~0=~0⇔ ~xk−1 6=~0⇒ α0=0.
Zostáva: α1(f−λ)1(~x)+ · · ·+αk−1(f−λ)k−1(~x)=~0 /(f−λ)k−2

α1(f−λ)k−1(~x)+ · · ·+αk−1(f−λ)2k−3(~x)=~0 α1~xk−1+~0+ · · ·+~0=~0 ⇒ α1=0 atď.
αi=0 ∀i.
Dôsledok. ∀~a∈Vf (λ) máme (f−λ)n(~a)=~0.

Dôkaz. Nech ~a∈Vf (λ) je ľubovoľný. Ak (f−λ)n(~a) 6=~0, tak aj ~ai=(f−λ)i(~a)6=~0 pre
i = 0, · · · , n. Z 3.) by sme mali (keďže existuje m≥0 : (f−λ)m(~a)=~0, pretože
~a∈Vf (λ)), že ~a0, · · · ,~an sú lineárne nezávislé. Ale je ich n+1 a sú v Rn–spor.

Definícia 12.16. Jordanova matica typu n×n nad poľom R patriaca k vlastnej
hodnote λ (lineárnej transformácie, resp. matice) je matica, ktorá má na hlavnej
diagonále samé λ, na susednej (zhora) čiare rovnobežnej s hlavnou diagonálou má
samé 1, a inde 0. Ozn. Jn(λ).
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Príklad. J1(λ)=(λ),J2(λ)=
(
λ 1
0 λ

)
,J3(λ)=

(
λ 1 0
0 λ 1
0 0 λ

)
.

Veta 12.13. Nech f : Rn→Rn je lineárna transformácia, ktorá má jedinú a pritom
n-násobnú vlastnú hodnotu λ∈R. Potom Vf (λ)=Rn a vo Vf (λ) existuje báza,
vzhľadom na ktorú má f maticu A(λ)∈Mnn(R), pozostávajúca z Jordanových
matíc Jq1(λ), · · · ,Jqr (λ) (kde q1≥ · · ·≥qr) umiestnených pozdĺž hlavnej diagonály
a okrem toho už iba z núl. q1+ · · ·+qr=n

A(λ)=




Jq1(λ) 0 · · · 0

0 Jq2(λ) · · · 0
...

...
. . .

...
0 0 · · · Jqr (λ)




Veta 12.14. Pre maticu A∈Mnn(R) takú, že má jedinú n-násobnú vlastnú hod-
notu λ∈R platí, že Vf (λ)=Rn a matica A je podobná matici A(λ)∈Mnn(R) po-
zostávajúcej z Jordanových matíc: Jq1(λ), · · · ,Jqr (λ) umiestnených pozdĺž hlavnej
diagonály (q1+ · · ·+qr=n) ináč iba z núl.

Dôkaz. χA(t)=(t−λ)n. Z Cayley − Hamiltonovej vety: (f−λ)n≡0. Tj. pre
∀~x∈Rn : (f−λ)n(~x)=~0; z toho teda Rn=Vf (λ).

Veta 12.15. Nech f : Rn→Rn je lineárna transformácia taká, že jej charakteri-
stický polynóm je: χf (t)=(t−λ1)n1(t−λ2)n2 · · · (t−λs)ns (kde n1+ · · ·+ns=n). Po-
tom Rn=Vf (λ1)⊕ · · ·⊕Vf (λs) a pre každé Vf (λi); i=0, 1 · · · , s existuje jeho báza,
vzhľadom na ktorú má f�Vf (λi) : Vf (λi→Vf (λi) maticu A(λi)∈Mnini(R) pozostá-
vajúcu z Jordanových matíc (súčet stupňov ktroých je ni) umiestnených pozdĺž
hlavnej diagonály a ináč iba z núl. Teda vzhľadom na bázu (B1, · · · , Bs) priestoru
Rn má f maticu tvaru:

A(λ)=




Jq1(λ) 0 · · · 0

0 Jq2(λ) · · · 0
...

...
. . .

...
0 0 · · · Jqr (λ)




(∗)

Potom χA(t)=(t−λ1)n1 · · · (t−λs)ns . (
∑
ni=n) platí, že Rn=Vf (λ1)⊕ · · ·⊕Vf (λs)

a matica A je podobná matici tvaru (∗).
Definícia 12.17. Matica (∗) je tzv. Jordanov normálny tvar matice A.

Poznámka.
1.) Každá matica A∈Mnn(C) spĺňa predpoklady vety a teda k nej existuje nejaký
Jordanov normálny tvar.
2.) Špeciálne, ak matica A∈Mnn(R) je taká, že χA(t)=(t−λ1) · · · (t−λn) kde λi 6=λj
pre i 6= j, tak sme už dávnejšie dokázali, že A je podobná diagonálnej matici
diag(λ1, · · · , λn). Toto je Jordanov normálny tvar takejto matice A.
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Tvrdenie 12.6.
1.) Jordanov normálny tvar je jediný, odhliadnime od permutácie Jordanových
matíc pozdĺž hlavnej diagonály.
2.) Dve matice A,B∈Mnn(R) také, že ich charakteristické polynómy sa nad R
úplne rozkladajú na lineárne činitele sú podobné práve vtedy, keď pripúšťajú ten
istý Jordanov normálny tvar.
3.) Počet Jordanových matíc v Jordanovom normálnom tvare matice A sa rovná
najmenšiemu možnému počtu lineárne nezávislých vlastných vektorov matice A.
4.) Počet Jordanových matíc zodpovedajúcich nejakej vlastnej hodnote matice A
sa rovná maximálnemu počtu lineárne nezávislých vlastných vektorov patriacich k
tej vlastnej hodnote. Ak χA(t)=(t−λ1)m1 · · · (t−λs)ms , kde λ1, · · · , λs∈R; (λi 6=λj
pre i6=j) tak mi=súčet stupňov Jordanových matíc patriacich k λi.
5.) Stupeň najväčšej spomedzi Jordanových matíc patriacich k vlastnej hodnote λ
sa rovná násobnosti λ ako koreňa minimálneho polynómu.
6.) Nech χA(t)=(t−λ1)m1 · · · (t−λs)ms , λi∈R, λi 6=λj pre i6=j. Potom stupeň naj-
väčšej spomedzi Jordanových matíc patriacich k λi určíme takto: vyrátame
A−λiIn, (A−λiIn)2, · · · . Zistíme, že hodnosť matice (A−λiIn)k s rastom k po čase
prestane klesať. Práve najmenšia hodnota k, pre ktorú sa dosiahne najnižšia hod-
nosť sa rovná stupni najväčšej Jordanovej matici patriacej k λi.

Príklad.

A=




6 5 −4 − 11
3

2 3 −2 − 4
3

1 1 0 − 2
3

6 6 −6 −3




χA(t)=(t−1)2(t−2)2

teda existuje jej
Jordanov

normálny tvar.

h(A−2I4)=3;h((A−2I4)2)=2;h((A−2I4)2)=2, · · · Teda v Jordanovom normálnom

tvare bude J2(2)=
(

2 1
0 2

)
. h(A−1I4)=2;h((A−1I4)2)=2, · · · stupeň najväčšej Jor-

danovej matice patrice k 1 bude 1. Z toho Jordanov normálny tvar matice A je:

A(λ)=

( 2 1 0 0
0 2 0 0
0 0 1 0
0 0 0 1

)

Poznámka.
Nech charakteristický polynóm matice A∈Mnn(R) je χA(t)=(t−λ)n. Potom:
(i) Najväčšia Jordanova matica má stupeň k1, kde k1 je najmenšie celé také, že
(A−λIn)k1=0.
(ii)h((A−λIn)k1−1)= počet Jordanových matíc stupňa k1.
(iii)h((A−λIn)k1−2)=(2·počet Jordanových matíc stupňa k1)+(počet Jordanových
matíc stupňa (k1−1)).
(iv)h((A−λIn)k1−3)=(3·počet JM stupňa k1)+2·(počet JM stupňa k1−1)+1·(počet
JM stupňa (k1−2)).
atď.

Príklad.

A=

( 1 −3 0 3
−2 −6 0 13
0 −3 1 3
−1 −4 0 8

)
∈M4,4(R)

χA(t)=(t−1)4, h(A−1I4)=2
h((A−1I4)2)=1, h(A−1I4)3)=0
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Potom počet Jordanových matíc stupňa 3 je h((A−1I4)2)=1.

Jordanov normálny tvar matice A je A(λ)=

( 1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

)

XIII. KVADRATICKÉ FORMY (nad poľom R)

Budeme uvažovať o n (n≥0) premenných x1, · · · , xn, ktoré budú môcť nadobú-
dať reálne hodnoty, pritom bude platiť xixj=xjxi ∀i, j. Potom kvadratická forma

n premenných x1, · · · , xn je výraz tvaru:
∑

1≤i≤j≤n
aijxixj , kde aij∈R sú tzv. koefi-

cienty kvadratickej formy.

Príklad.
1.) 0 je kvadratická forma, kde aij=0 ∀i, j.
2.) x2

1+x2
2 je kvadratická forma dvoch premenných.

3.) x2
1+2x1x2−3x2x3 je kvadratická forma troch premenných.

x2
1+2x1x2−3x2x3= (x1 x2 x3 )




1 1 0
1 0 0
0 −3 0





x1

x2

x3




Kvadratickú formu
∑
aijxixj (n premenných) môžeme napísať v tvare: XAXT,

kde X=(x1, · · · , xn),

A=




a11 a12 · · · a1n

0 a22 · · · a2n
...

...
. . .

...
0 0 · · · ann




Ale takýchto zápisov
v tvare X·matica·XT

je nekonečne veľa
napr. tiež:

X



a11 a12−ε ··· a1n

−ε a22 ··· a2n

...
...

. . .
...

0 0 ··· ann


XT

pre ľubovoľné ε∈R.

Veta 13.1. Pre každú kvadratickú formu
∑
aijxixj existuje jediná symetrická

matica S∈Mnn(R) taká, že
∑

1≤i≤j≤n
aijxixj=XSXT, kde X=(x1, · · · , xn).

Dôkaz. S=sij ; sij=sji. Musí byť
∑

1≤i≤j≤n
aijxixj=

n∑

1=i,j

sijxixj . Z porovnávania:

aii=sii pre i=1, · · · , n a pre i6=j : sij+sji=2sij=aij ⇒ sij= 1
2aij .

S je matica kvadratickej formy.

Príklad.

2x2
1−x1x2+x2

3 ⇔ (x1 x2 x3 )




2 − 1
2 0

− 1
2 0 0

0 0 1





x1

x2

x3



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Definícia 13.1.
Regulárnou lineárnou transformáciou premenných X=(x1, · · · , xn) rozumieme za-
vedenie nových premenných Y=(y1, · · · , yn) takých, že Y=XP pre dáku regulárnu
maticu P∈Mnn(R). Y=XP⇔ X=YP−1.

Kvadratické formy budeme zapisovať v tvare XSXT, kde S = ST ∈Mnn(R),
X = (x1, · · · , xn). Urobme v kvadratickej forme XSXT regulárnu lineárnu trans-
formáciu premenných Y = XP. Keďže P je regulárna, máme X = YP−1, teda
XSXT=YP−1S(YP−1)T=Y P−1S(P−1)T

︸ ︷︷ ︸
B

YT. Máme BT=(P−1S(P−1)T)T=

= P−1S(P−1)T = B, teda B je symetrická. Od formy XSXT premenných
X=(x1, · · · , xn) sme prešli ku kvadratickej forme n premenných Y=(y1, · · · , yn),
YBYT pričom B=P−1S(P−1)T. tj. S=PBPT.

Definícia 13.2. Matice A,B∈Mnn(R) sú kongruentné (nad R) ak existuje regu-
lárna matica Q∈Mnn(R) taká, že A=QBQT.

Poznámka. Ak kvadratickú formu XSXT upravíme regulárnou lineárnou transfor-
máciou premenných na ”novú” kvadratickú formu, tak matice týchto foriem sú
kongruentné.

Veta 13.2. Každú (nenulovú) kvadratickú formu n premenných možno vhodnou
regulárnou lineárnou transformáciou premenných previesť na tvar:
y2

1+ · · ·+y2
k−y2

k+1− · · ·−y2
n, kde s≤n.

Dôkaz. Majme (nenulovú) kvadratickú formu XSXT, kde X=(x1, · · · , xn), S6=0
S=ST=(sij)∈Mnn(R). Vhodnou regulárnou lineárnou transformáciou premenných
môžeme XSXT previesť na ZBZT, kde Z=(z1, · · · , zn),B=BT=(bij)∈Mnn(R),
pričom už b11 6= 0. Ak existuje i∈{1, · · · , n} také, že sii 6= 0, tak zoberieme xi=z1,
x1=zi, xj=zj pre 16=j 6=i. Ak s11= · · ·=snn=0 tak existujú dáke i, j∈{1, · · · , n} i6=j,
sij 6=0. Potom zavedieme nové premenné (y1, · · · , yn), xi=y1+yj ;xj=yi−yj ;xk=yk
pre i6=k 6=j. To je regulárna lineárna transformácia premenných. Dostaneme:
XSXT = 2 sij︸︷︷︸

6=0

xixj+členy bezxixj = 2sij(y2
i−y2

j )+členy bez y2
i =2sijy2

i +členy

bez y2
i , máme XSXT=YCYT, kde C=(cij) má cii=2sij 6=0. Potom zámenou pre-

menných z1=yi; zi=y1; zj=yj pre 1 6=j 6=i prejdeme k forme ZBZT, kde už b11 6=0.
Teraz: XSXT=ZBZT=b11z

2
1+b12z1z2+ · · ·+b1nz1zn+b21z2z1+ · · ·+bn1znz1+

+
∑

2≤i;j≤n
bijzizj=b11z

2
1+2

n∑

j=2

bijz1zj+
∑

2≤i;j≤n
bijzizj=b11(z2

1+2z1

n∑

j=2

b1j
b11

zj)+

+
∑

2≤i;j≤n
bijzizj=b11(z1+

n∑

j=2

b1j
b11

zj)
2+

∑

2≤i,j≤n
bijzizj−b11




n∑

j=2

b1j
b11

zj




2

,

zámena
premenných:

∣∣∣∣∣∣∣∣∣∣

u1=z1+
n∑

j=2

b1j
b11

zj

u2=z2

· · ·
un=zn

∣∣∣∣∣∣∣∣∣∣

−
to je regulárna

lineárna transformácia
premenných, jej matica:




1 0 · · · 0
b12
b11

1 · · · 0
...

...
. . .

...
b1n
b11

0 · · · 1



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je regulárna. Dostaneme: XSXT=ZBZT=b11u
2
1+

∑

2≤i,j≤n
gijuiuj=b11u

2
1+UGUT,

kde G∈Mn−1n−1(R); G=GT,U=(u2, · · · , un). Opakovaním konečného počtu ta-
kýchto krokov dostaneme pomocou regulárnych lineárnych transformácií premen-
ných, že XSXT=d1v

2
1+ · · ·+dsv2

s , kde s≤n. Permutáciou premenných v1, · · · , vn
dostaneme, že XSXT=c1p2

1+ · · ·+ckp2
k+ck+1p

2
k+1+csp2

s, kde c1, · · · , ck sú kladné
a ck+1, · · · , ck sú záporné. Potom urobíme regulárnu lineárnu transformáciu pre-
menných: y1=

√
c1p1, · · · , yk=

√
ckpk, yk+1=

√−ck+1pk+1, · · · , ys=
√−csps.

Potom y2
1+ · · ·+y2

k−y2
k+1− · · ·−y2

s=XSXT; s≤n
Dôsledok. Každá symetrická matica typu n×n nad R je kongruentná s diagonál-
nou maticou, ktorá má na hlavnej diagonále iba prvky z {−1, 0, 1}.
Dôkaz. Ak S=ST∈Mnn(R), tak XSXT je kvadratická forma, ktorá sa regulárnou
lineárnou transformáciou premenných upraví na tvar: y2

1+ · · ·+y2
k−y2

k+1− · · ·−y2
s ,

(s≤n),teda na kvadratickú formu s maticou diag(1, · · · , 1,−1, · · · ,−1, 0, · · · , 0).
Matice tých kvadratických foriem sú kongruentné.

Veta 13.3. (o zotrvačnosti):
Ak danú (nenulovú) kvadratickú formu XSXT n premenných upravíme regulárnou
lineárnou transformáciou premenných Y=XQ na y2

1+ · · ·+y2
k−y2

k+1− · · ·−y2
s ,

(s≤n) a regulárnou lineárnou transformáciou premenných Z=XH ju upravíme na
z2

1+ · · ·+z2
r−z2

r+1− · · ·−z2
t (t≤n), tak k=r a s=t.

Poznámka. Táto veta odôvodňuje, prečo sa tvar y2
1+ · · ·+y2

k−y2
k+1− · · ·−y2

s (s≤n)
nazýva aj kanonický tvar kvadratickej formy XSXT.

Dôkaz. 1.) s=t : D1=diag(1, · · · , 1︸ ︷︷ ︸
k

,−1, · · · ,−1︸ ︷︷ ︸
s−k

, 0, · · · , 0) je matica y2
1+ · · ·+y2

k−

−y2
k+1− · · ·−y2

s . Vieme, že S=QD1QT. D2=diag(1, · · · , 1︸ ︷︷ ︸
r

,−1, · · · ,−1︸ ︷︷ ︸
t−r

, 0, · · · , 0)

je matica z2
1+ · · ·+z2

r−z2
r+1− · · ·−z2

t . Tiež S=HD2HT. Pre hodnosť máme:
h(S) = h(QD1QT)= dim(ImfQTD1Q)= dim(ImfQTfD1fQ) = dim(ImfQTfD1) =
= dim(ImfD1) = h(D1) = s (pretože Q aj QT je lineárny izomorfizmus.)
2.) k=r : Nech by r<k. fQ : Rn→Rn, fH : Rn→Rn sú lineárne izomorfizmy.
Označme S1=[~e1, · · · , ~ek], S2=[~er+1, · · · , ~en] podpriestory v Rn. Teda dim(S1) = k,
dim(S2)=n−r. Označme T1=f−1

Q (S1), T2=f−1
H (S2). Pretože fQ, fH sú lineárne

izomorfizmy, máme dim(T1)=k,dim(T2)=n−r. Tvrdíme, že T1∩T2 6={~0}.
dim(T1+T2)= dim(T1)+ dim(T2)− dim(T1∩T2)= dim(T1)+ dim(T2)=k+n−r. Ale
z predpokladu k−r>0, teda by bolo, že dim(T1+T2)>n spor s tým, že T1+T2⊂Rn.
Nech teraz ~c∈T1∩T2,~c6=~0. Máme D1=diag(1, · · · , 1︸ ︷︷ ︸

k

,−1, · · · − 1︸ ︷︷ ︸
s−k

, 0, · · · , 0),

D2=diag(1, · · · , 1︸ ︷︷ ︸
r

,−1, · · · ,−1︸ ︷︷ ︸
s−r

). Vieme, že S=QD1QT,S=HD2HT. Rátajme:

~c·S·~cT=~c·QD1QT·~cT=(~c·Q)D1(~c·Q)T=fQ(~c)D1(fQ(~c))T. Keďže fQ(~c)∈S1 máme:
fQ(~c)=(c̃1, · · · , c̃k, 0, · · · , 0), kde (c̃1, · · · , c̃k)6=(0, · · · , 0). Teda ~c·S·~cT=
=(c̃1, · · · , c̃k, 0, · · · , 0)·diag(1, · · · , 1︸ ︷︷ ︸

k

,−1, · · · ,−1, 0, · · · , 0)(c̃1, · · · , c̃k, 0, · · · , 0)T=



84 I.ROČNÍK

=(c̃1, · · · , c̃k, 0, · · · , 0)(c̃1, · · · , c̃k, 0, · · · , 0)T=c̃21+ · · ·+c̃2k>0. Zároveň: ~c·S·~cT=
=~c·HD2HT·~cT=fH(~c)D2(fH(~c))T, ~06=fH(~c)=(0, · · · , 0︸ ︷︷ ︸

r

, ˜̃cr+1, · · · , ˜̃cs). Preto

~c·S·~cT=(0, · · · , 0, ˜̃cr+1, · · · , ˜̃cs)diag(1, · · · , 1︸ ︷︷ ︸
r

,−1, · · · ,−1, 0, · · · , 0)(0, · · · , 0, ˜̃cr+1,

· · · , ˜̃cs)T=(0, · · · , 0,−˜̃cr+1, · · · ,−˜̃cn, 0, · · · , 0)(0, · · · , 0, ˜̃cr+1, · · · , ˜̃cs)T=

= −˜̃c
2
r+1 − · · · − ˜̃c

2
s<0 spor.

Podobne sa odvodí spor z predpokladu r>k. Vcelku: r = k.

Definícia 13.3. Kvadratická forma XAXT sa nazýva kladne definitná, ak pre
všetky X 6=0 je XAXT>0. [nazýva sa kladne semidefinitná, ak XAXT≥0 pre
všetky X 6=0; nazýva sa záporne definitná ak XAXT<0 pre všetky X 6=0.]

Definícia 13.4. Symetrická matica A∈Mnn(R) sa volá kladne definitná, ak kvad-
ratická forma XAXT je kladne definitná.

Veta 13.4. Ak kvadratická forma XAXT je kladne definitná a Y=XP je regu-
lárna lineárna transformácia premenných, tak kvadratická forma YBYT získaná
z XAXT uvedenou regulárnou lineárnou transformáciou premenných je tiež kladne
definitná.

Dôkaz. Vieme, že A=PBPT, B=P−1A(P−1)T. Potom pre ľubovoľnú Y 6=0 máme
YBYT=YP−1A(P−1)TYT=(YP−1)A(YP−1)T, ak forma XAXT je kladne defi-
nitná, tak YBYT=(YP−1)A(YP−1)T>0, lebo YP−1 6=0 (keďže P−1 je regulárna
matica). Teda aj forma YBYT je kladne definitná.

Veta 13.5. Kvadratická forma je kladne definitná práve vtedy, keď jej kanonický
tvar je y2

1+ · · ·+y2
n.

Dôkaz. ⇐ : Ak kanonický tvar je y2
1+ · · ·+y2

n, tak pre všetky Y=(y1, · · · , yn)6=0
je y2

1+ · · ·+y2
n>0. Z predchádzajúcej vety vyplýva, že aj pôvodná forma je kladne

definitná.
⇒ : Predpokladajme, že daná kvadratická forma je kladne definitná. Jej kanon-

ický tvar y2
1+ · · ·+y2

k−y2
k+1− · · ·−y2

s ; s≤n. Keby bolo k<s<n, tak hodnota tejto
kvadratickej formy v (0, · · · , 0︸ ︷︷ ︸

k

, 1, 0, · · · , 0) by bola −1, a teda táto kvadratická

forma by nebola kladne definitná tj. ani pôvodná by nebola kladne definitná –spor.

Veta 13.6. Matica A=AT∈Mnn(R) je kladne definitná práve vtedy, keď existuje
regulárna matica P∈Mnn(R) taká, že A=PPT.

Dôkaz.
⇒ : Predpokladajme, že A je kladne definitná. Teda kvadratická forma XAXT

je kladne definitná, teda jej kanonický tvar je y2
1+ · · ·+y2

n=YInYT. Potom vieme,
že A=PInPT, kde Y=XP je regulárna lineárna transformácia premenných, ktorá
XAXT prevedie na YInYT.
⇐ : Predpokladajme, že A=PPT. Potom kvadratická forma určená maticou A je

XAXT=XPPTXT=(XP)(XP)T. Ak X=(x1, · · · , xn)6=0, tak XAXT>0, alebo
XP=(x1, · · · , xn)P je nenulová n-tica (b1, · · · , bn)∈Rn a b21+ · · ·+b2n>0.
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Veta 13.7. (Sylvestrovo kritérium)
Matica A=AT=(aij)∈Mnn(R) je kladne definitná práve vtedy, keď det(a11)>0,

det
( a11 a12

a21 a22

)
>0, · · · ,det

(
a11 ··· a1n

··· ··· ···
an1 ··· ann

)
>0 čo je ekvivalntné s tým, že kvadratická

forma XAXT je kladne definitná.
Stručne: práve vtedy, keď všetky tzv. hlavné rohové determinanty matice A sú
kladné.

Dôkaz. Indukcia vzhľadom na n:
1◦: Pre n=1: a11x

2
1 je kladne definitná práve vtedy, keď a11= det(a11)>0.

2◦: Predpokladajme, že tvrdenie platí pre všetky reálne symetrické matice typu
(n−1)× (n−1). Teraz nech A=AT∈Mnn(R).
Nutnosť podmienky: Predpokladajme, že A je kladne definitná. Chceme ukázať, že
jej hlavné rohové determinanty sú kladné. Vieme, že kvadratická forma XAXT je
kladne definitná. X=(x1, · · · , xn). XAXT=

∑

1≤i,j≤n
aijxixj=

∑

1≤i,j≤n−1

aijxixj+

+2·(a1nx1xn+ · · ·+ann−1xnxn−1)+annx2
n. Uvažujme o kvadratickej forme:

∑

1≤i,j≤n−1

aijxixj . Jej matica je

( a11 ··· a1n−1

··· ··· ···
an−11 ··· an−1n−1

)
. Táto kvadratická forma je

tiež kladne definitná. Keby nie, tak by existovala (n−1)-tica (x̃1, · · · , x̃n−1)6=0
taká, že

∑

1≤i,j≤n
aij x̃ix̃j≤0. Potom (x̃1, · · · , x̃n−1, 0) by bola nenulová n-tica, pričom

∑

1≤i,j≤n
aij x̃ix̃j=

∑

1≤i,j≤n−1

aij x̃ix̃j≤0 –spor s tým, že XAXT je kladne definitná.

Z indukčného predpokladu: det(a11)>0, · · · , det

( a11 ··· a1n−1

··· ··· ···
an−11 ··· an−1n−1

)
>0. Zostáva

ešte ukázať, že det(A)>0. Ale matica A je kladne definitná, a teda podľa vety 13.6
existuje regulárna matica P : A=PPT, preto det(A)= det(P) det(PT)=det2(P)>0
keďže P je regulárna.

Postačujúcosť: Predpokladajme, že det(a11)>0, · · · , det

(
a11 ··· a1n

· ··· ·
an1 ··· ann

)
>0.

Z indukčného predpokladu vyplýva, že kvadratická forma

(x1, · · · , xn−1)




a11 · · · a1n−1
...

. . .
...

an−11 · · · an−1n−1






x1

· · ·
xn−1


=

∑

1≤i,j≤n−1

aijxixj

je kladne definitná. Teda existuje regulárna matica P∈Mnn(R) taká, že regulárna
lineárna transformácia premenných (y1, · · · , yn−1)=(x1, · · · , xn−1)·P prevedie túto
kvadratickú formu na y2

1+ · · ·+y2
n−1. Definujme yn=xn. To znamená, že dostaneme

regulárnu lineárnu transformáciu n premenných (y1, · · · , yn)=(x1, · · · , xn)
(

P 0
0 1

)
.

Táto prevedie kvadratickú formu
∑

1≤i,j≤n
aijxixj na y2

1+ · · ·+y2
n−1+2·(b1ny1yn+ · · ·

· · ·+bn−1nyn−1yn)+bnny2
n pre vhodné bij∈R.
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Upravíme:
∑

1≤i,j≤n
aijxixj=(y1+ · · ·+b1nyn)2+ · · ·+(yn−1+bn−1nyn)2+cy2

n=

=

∣∣∣∣∣∣∣

z1=y1+ · · ·+b1nyn
· · ·

zn−1=yn−1+bn−1nyn
zn=yn

∣∣∣∣∣∣∣
=z2

1+ · · ·+z2
n−1+cz2

n
táto forma
má maticu:




1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 c




Táto je kongruentná s A, teda existuje regulárna matica Q∈Mnn(R) taká, že:
diag(1, 1, · · · , 1, c)=QAQT. Z toho: det(QAQT)=c= det(Q) det(A) det(QT)=
=det2(Q)· det(A)>0, teda c>0.

XIV. HOMOGÉNNE BILINEÁRNE FORMY

Definícia 14.1. Nech sú dané dve skupiny n premenných x1, · · · , xn a y1, · · · , yn.
Potom homogénna bilineárna forma (týchto dvoch skupín premenných) je výraz

tvaru:
n∑

i,j=1

xiaijyj , pričom aij∈R sú koeficienty tejto formy.

Príklad. x1y1+ · · ·+xnyn je homogénna bilineárna forma, ktorá definuje štandard-
ný skalárny súčin v Rn.

Formu
n∑

i,j=1

xiaijyj môžeme zapísať pomocou matíc XAYT, kde X=(x1, · · · , xn)

Y=(y1, · · · , yn),A=(aij)∈Mnn(R). Ak X=Y tak
n∑

i,j=1

xiaijyj je kvadratická forma

premenných X=(x1, · · · , xn).

Definícia 14.2. Nech V je vektorový priestor nad R. Funkcia ϕ : V×V→R je
bilineárna, ak pre každé α, β∈R, ~x, ~y, ~z∈V platí: ϕ(α~x+β~y;~z)=αϕ(~x, ~z)+βϕ(~y, ~z);
ϕ(~x, α~y+β~z)=αϕ(~x, ~y)+βϕ(~x, ~z).

Tvrdenie 14.1. Homogénna bilineárna forma je vlastne súradnicové vyjadrenie
bilineárnej funkcie.

Dôkaz. Nech V je vektorový priestor nad R, nech (~a1, · · · ,~an) a (~b1, · · · ,~bn) sú dve
bázy vo V . Nech ~x=x1~a1+ · · ·+xn~an resp. ~y=y1

~b1+ · · ·+yn~bn. Nech ϕ : V×V→R
je bilineárna funkcia. Potom ϕ(~x, ~y)=ϕ(

n∑

i=1

xi~ai;
n∑

j=1

yj~bj)=
n∑

i,j=1

xiϕ(~ai,~bj)yj . K ϕ

prislúcha homogénna bilineárna forma XAYT kde X=(x1, · · · , xn)Y=(y1, · · · , yn)
A má v i-tom riadku a j-tom stĺpci prvok ϕ(~ai,~bj).

Homogénna kvadratická funkcia.

Definícia 14.3. Nech V je vektorový priestor nad R, nech ϕ : V×V→R je bi-
lineárna funkcia. Potom homogénna kvadratická funkcia prislúchajúca k ϕ sa defin-
uje ako ψ : V→R; ψ(~x)=ϕ(~x, ~x).

Príklad. V=R3, bilineárna funkcia ϕ : R3×R3→R s predpisom ϕ(~x, ~y) = 5x1y1+
+x1y2+3x2y1−x2y2. ϕ určuje kvadratickú funkciu ψ : R3→R, ψ(x1, x2, x3) =
= 5x2

1+4x1x2−x2
2. Tá istá kvadratická funkcia prislúcha aj k bilineárnej funkcii

ϕ̃ : R3×R3→R, ϕ̃(~x, ~y)=5x1y1+3x1y2+x2y1−x2y2.
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Veta 14.1. Homogénna kvadratická funkcia je určená jedinou symetrickou bi-
lineárnou funkciou.

Dôkaz. Nech ϕ : V×V→R je symetrická bilineárna funkcia, ktorá určuje homogén-
nu kvadratickú funkciu ψ : V→R (teda ψ(~x)=ϕ(~x, ~x), ~x∈V ). Pre ľubovoľné
~x, ~y∈V : ϕ(~x+~y; ~x+~y)=ϕ(~x, ~x)+2ϕ(~x, ~y)+ϕ(~y, ~y)⇒ ψ(~x+~y)=ψ(~x)+ψ(~y)+2ϕ(~x, ~y)
z čoho ϕ(~x, ~y)= 1

2 [ψ(~x+~y)−ψ(~x)−ψ(~y)].

Poznámka. Nech V je reálny vektorový priestor, nech je daná kvadratická forma
XAXT n premenných X=(x1, · · · , xn), AT=A. Potom táto kvadratická forma
určuje homogénnu kvadratickú funkciu takto: zvoľme bázu (~a1, · · · ,~an) vo V . Ak
~x=x1~a1+ · · ·+xn~an∈V , tak definujeme ψ(~x)=XAXT. Potom ψ : V→R je ho-
mogénna kvadratická funkcia.

Niektoré fakty z euklidovskej teórie kvadratických foriem.
Pripomeňme si: matica A∈Mnn(R) je ortogonálna, ak AAT=In, tj. jej ri-

adky tvoria ortonormálny systém vektorov v Rn tj. pre všetky ~x, ~y∈Rn máme, že
〈~xA; ~yA〉=〈~x, ~y〉.
Tvrdenie 14.2. Ortogonálne matice typu n×n tvoria grupu; je to tzv. ortogonál-
na grupa; označme ju O(n).

Dôkaz. Ak A,B∈O(n), tak AAT=In,BBT=In potom AB(AB)T=ABBTAT=
=AInAT=In. Teda AB∈O(n). Asociatívnosť:

√
; neutrálny prvok: In∈O(n),

inverzný prvok k A∈O(n) je AT, máme AAT=In a ATA = In = AT(AT)T tj.
AT∈O(n).

Veta 14.2. Matica prechodu od ortonormálnej bázy v Rn (so štandardným skalár-
nym súčinom) k ortonormálnej báze je ortogonálna matica. Tiež: ak od ortonor-
málnej bázy v Rn prejdeme pomocou ortogonálnej matice prechodu k novej báze,
tak aj nová báza bude ortonormálna.

Dôkaz. 1.časť: Nech (~a1, · · · ,~an), (~a′1, · · · ,~a′n) sú dve ortonormálne bázy v Rn.
Nech P=(pij)∈Mnn(R) je matica prechodu od (~a′1, · · · ,~a′n) k (~a1, · · · ,~an). Teda

~ai =
n∑

i=1

pij~a
′
j , i = 1, · · · , n. Potom δik = 〈~ai,~ak〉 = 〈

n∑

j=1

pij~a
′
j ,

n∑
s=1

pks~a
′
s〉 =

=
n∑

j=1

n∑
s=1

pijpks 〈~a′j ,~a′s〉︸ ︷︷ ︸
=δjs

=
n∑

j=1

pijpkj , teda
n∑

j=1

pijpkj=

{
1 ak i=k

0 ak i6=k . To znamená, že

každý riadok v P (ako vektor z Rn) má dĺžku 1 a každé dva riadky sú na seba
kolmé, tj. riadky v P tvoria ortonormálnu bázu v Rn, tj. P∈O(n).
2.časť: Nech je daná O(n)3P=(pij) a báza (~a′1, · · · ,~a′n), ktorá je ortonormálna.

Matica P je regulárna, teda vzťahy ~ai=
n∑

j=1

pij~a
′
j definujú bázu (~a1, · · · ,~an). Pritom

však 〈~ai,~ak〉=
n∑

j=1

pijpkj=δik teda (~a1, · · · ,~an) je ortonormálna báza.
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Veta 14.3. (o hlavných osiach) Pre každú reálnu symetrickú maticu A∈Mnn(R)
existuje C∈O(n) taká, že CACT=CAC−1=diag(λ1, · · · , λn), kde λ1, · · · , λn sú
vlastné hodnoty matice A. (Riadky v C sú ortogonálne vlastné vektory patriace
k λ1, · · · , λn.)

Dôkaz. Indukcia vzhľadom na n.
1◦ Pre n=1 tvrdenie platí.
2◦ Indukčný predpoklad: Predpokladajme, že veta je správna pre n−1. Teraz nech
A je symetrická reálna matica typu n×n. Nech λ1∈R je jej vlastná hodnota, k nej
zoberme vlastný vektor ~x1, rovno ho zoberme taký, že |~x1|=1. Doplňme vektor ~x1

na ortonormálnu bázu v Rn; nech to je (~x1, ~x2, · · · , ~xn). Nech P je matica prechodu
od (~e1, · · · , ~en) k (~x1, · · · , ~xn), vieme, že P∈O(n). Nech B je matica lineárnej
transformácie fA : Rn→Rn vzhľadom na (~x1, · · · , ~xn). Matica fA vzhľadom na
(~e1, · · · , ~en) je A, potom vieme, že B=PAP−1=PAPT. Máme BT=B. Tiež:
fA(~x1)=λ1~x1, lebo ~x1 je vlastný vektor matice A patriaci k λ1. To znamená, že

B=
(
λ1 0
0 A′

)
, kde A′∈Mn−1n−1(R) je symetrická. Podľa indukčného predpokladu

existuje ortonormálna matica H∈O(n−1): HA′HT=HA′H−1=diag(λ′2, · · · , λ′n),

kde λ′2, · · · , λ′n sú vlastné hodnoty matice A′. Utvorme: Q=
(

1 0
0 H

)
máme, že

Q∈O(n). Tiež QP∈O(n). Rátajme: QPA(QP)−1=QPA(QP)T=QPAPTQT=

=QBQT=
(

1 0
0 H

)(
λ1 0
0 A′

)(
1 0
0 HT

)
=

(
λ1 0
0 HA′HT

)
=



λ1 0 ··· 0
0 λ′2 ··· 0

...
...

. . .
...

0 0 ··· λ′n


.

Z podobnosti vyplýva {λ1, λ2, · · · , λn}={λ1, λ
′
2, · · · , λ′n}. Za C z tvrdenia zoberie-

me QP. Teda máme C∈O(n) takú, že CACT=CAC−1=diag(λ1, · · · , λn). Z toho:
~eiCAC−1=~eidiag(λ1, · · · , λn). ~eiCA=(0, · · · , λi, · · · , 0)C=λi~eiC. Teda (~eiC)A=
=λi(~eiC) tj. ~eiC je vlastný vektor matice A patriaci k vlastnej hodnote λi zároveň
~eiC je i-tý riadok matice C.

Poznámka.
1. Vieme, že vďaka symetrickosti reálnej matice A sú všetky jej vlastné hodnoty
reálne.
2. AT=A∈Mnn(R) môžeme chápať ako maticu lineárnej transformácie fA:Rn→Rn
Veta vlastne hovorí, že existuje taká báza v Rn vzhľadom na ktorú je A podobná
diagonálnej matici diag(λ1, · · · , λn).
3. Pre kvadratické formy n premenných veta hovorí, že regulárna lineárna trans-
formácia X=YC (tj. Y=XCT=XC−1) prevedie danú kvadratickú formu XAXT

na tvar λ1y
2
1+ · · ·+λny2

n. (Y=(y1, · · · , yn))

Veta 14.4. Nech A=AT∈Mnn(R) je taká, že jej vlastné hodnoty λ1, · · · , λn sú
navzájom rôzne. Nech ~x1, · · · , ~xn sú jednotkové vlastné vektory prislúchajúce
k λ1, · · · , λn. Potom ~x1, · · · , ~xn∈Rn tvoria ortonormálny systém v Rn (a môžeme
ick zobrať ako riadky matice C∈O(n) z vety 14.3).

Dôkaz. Máme: ~xiA=λi~xi (pre i=1, · · · , n ). Vynásobením: ~xiA~xT
j =λi~xi~xT

j ; trans-
ponovaním: ~xjAT~xT

i = λi~xj~x
T
i tj. ~xjA~xT

i = λi~xj~x
T
i ⇔ λj~xj~x

T
i = λi~xj~x

T
i ⇔

⇔ (λj−λi)~xj~xT
i =0. Ale λi 6=λj , teda ~xj~xT

i =0 štandardný skalárny súčin 〈~xi, ~xj〉=0.
fA : Rn→Rn má vzhľadom na bázu (~x1, · · · , ~xn) maticu diag(λ1, · · · , λn).
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Príklad. A=

(
1 0 1
0 1 1
1 1 0

)
∈Mnn(R). Nájsť ortogonálnu maticu C∈O(n),

aby CAC−1=CACT=diag(λ1, λ2, λ3). Kde λ1=1, λ2=− 1, λ3=2.

XV. KRIVKY 2.RÁDU

V afinno-euklidovskom priestore (R2,R2) majme karteziánsku súradnicový sys-
tém (O,~e1, ~e2). Bod X nech má v ňom súradnice X≡(x1, x2). Nech je daná funkcia
f : A→R; f(x1, x2)=a11x

2
1+2a12x1x2+a22x

2
2+2a1x1+2a2x2+d, kde aij , ai, a∈R.

f je tzv. nehomogénna kvadratická funkcia na A, ak a11 6=0 ∨ a12 6=0 ∨ a22 6=0. ozn.
g(x1, x2)=a11x

2
1+2a12x1x2+a22x

2
2.

Otázka: Akú množinu bodov v A vyjadruje rovnica f(x1, x2)=0, ak aspoň jedno
z aij 6=0? Odpoveď: Veta 15.1:

Veta 15.1. {(x1, x2)∈R2; f(x1, x2)=0} je tzv. zovšeobecnená kužeĺosečka; presnej-
šie je to elipsa, hyperbola, parabola, priamka, dvojica priamok, prázdna množina.

Dôkaz. Kvadratická forma g(x1, x2) = a11x
2
1 + 2a12x1x2 + a22x

2
2 má maticu

A=
( a11 a12

a21 a22

)∈M22(R). Z vety o hlavných osiach vieme, že existuje C∈O(2) :

CAC−1=CACT=
(
λ1 0
0 λ2

)
, kde λ1, λ2∈R sú vlastné hodnoty matice A.(

a b

c d

)
∈O(2) : a2+b2=1, c2+d2=1, ac+bd=0. Prvky z O(2) sú tvaru

(
cosϕ sinϕ
− sinϕ cosϕ

)

tj. matica otočenia o uhol ϕ, alebo
(− cosϕ sinϕ

sinϕ cosϕ

)
. (determinant prvej matice je

1 a druhej je -1.) Ale za C z vety o hlavných osiach možno zobrať maticu z O(2)

tvaru
(

cosϕ sinϕ
− sinϕ cosϕ

)
. Takto: nech ~e′1 je vlastný vektor patriaci k λ1. |~e′1|=1. Do-

plňme ~x1 vektorom ~e′2∈R2, |~e′2|=1 na bázu (~e′1, ~e
′
2) v R2 takú, aby matica prechodu

od (~e1, ~e2) k (~e′1, ~e
′
2) –ozn. ju P– mala kladný determinant. Nech B je matica

lineárnej transformácie fA:R2→R2 vzhľadom na (~e′1, ~e
′
2). Máme f(~e′1)=λ1~e

′
1 vieme,

že B=PAP−1=PAPT, lebo P∈O(2). Teda B=BT, B=
(
λ1 0
0 b

)
, b musí byť λ2, za

C zoberieme P. Teda nech C=
(

cosϕ − sinϕ
sinϕ cosϕ

)
∈O(2) je taká, že CACT=CAC−1=

=
(
λ1 0
0 λ2

)
. Ak (x′1, x

′
2) sú súradnice bodu X≡(x1, x2) vzhľadom na bázu (~e′1, ~e

′
2) a

(x1, x2) sú jeho súradnice vzhľadom na (~e1, ~e2), a C je matica prechodu od (~e1, ~e2)
k (~e′1, ~e

′
2), tak (x′1, x

′
2)=(x1, x2)·C, tj. (x1, x2)=(x′1, x

′
2)·C−1 čo je to isté ako

(x1, x2)=(x′1, x
′
2)
(

cosϕ sinϕ
− sinϕ cosϕ

)
. (∗)

{
x1=x′1 cosϕ+x′2 sinϕ

x2=x′2 cosϕ−x′1 sinϕ
. (∗) pre vhodné ϕ je

regulárna lineárna transformácia premenných, ktorá formu a11x
2
1+2a12x1x2+a22x

2
2

prevedie na λ1x
′2
1 + λ2x

′2
2. Týmto otočením prejde (♣) f(x1, x2) = 0 na tvar

(♦) λ1x
′2
1+λ2x

′2
2+2b1x′1+2b2x′2+b=0. λ1, λ2 sú korene charakteristického poly-

nómu χA(t)=det
(
t−a11 −a12

−a12 t−a22

)
= (t− λ1)(t− λ2). Z toho: det(A) = λ1λ2 = :δ.

Rozlíšime dva prípady:
(I): δ 6=0 : λ1λ2 6=0. Máme teda λ1 6=0 6=λ2. (♦) upravíme takto: λ1(x′21+2 b1λ1

x′1)+

+λ2(x′22+2 b2λ2
x′2)+b=0. Upravíme na štvorce: λ1(x′1 + b1

λ1
)2 + λ2(x′2+ b2

λ2
)2 + b−

−λ1
b21
λ2

1
−λ2

b22
λ2

2
=0. Potom regulárna lineárna transformácia:

{
x′′1=x′1+ b1

λ1

x′′2=x′2+ b2
λ2
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tj. posunutie prevedie (♦) na tvar: (♠) λ1x
′′2

1+λ2x
′′2

2+c=0; c∈R.
Ak λ1>0, λ2>0, c<0 ∨ λ1<0, λ2<0, c>0 tak rovnica (♠) a teda aj f(x1, x2)=0
vyjadruje elipsu.
Ak λ1>0, λ2<0, c 6=0 tak je to hyperbola.
Ak c=0 a δ=λ1λ2>0, tak jednobodová množina, ak c=0, δ<0, tak dvojica priamok.
Ak λ1>0, λ2>0, c>0, tak prázdna množina.
(II): δ=0=λ1λ2 Nech napr. λ1=0, λ2 6=0. Teda (♦) je λ2x

′
222+2b1x′1+2b2x′2+b=0.

Ak b1 6=0 : λ2(x′22+2 b2λ2
x2+2b1(x′1+ b

2b1
)=0⇔ λ2(x′2+ b2

λ2
)2+2b1(x′1−c)=0{

x′′1=x′1−c
x′′2=x′2+ b2

λ2

⇒ λ2x
′′2

2+2b1x′′1=0 to je rovnica paraboly.

Ak b=0 : · · ·
Invarianty krivky 2. rádu.

Definícia 15.1. Invariantom krivky druhého rádu vyjadrenej rovnicou
a11x

2
1+2a12x1x2+a22x

2
2+2a1x1+2a2x2+a=0 je taký algebraický výraz závisiaci od

(a11, a12, a22, a1, a2, a), ktorý sa nezmení, ak túto krivku vyjadríme v inom kartezi-
ánskom súradnicovom systéme (ku ktorému prejdeme pomocou otočení a posunutí).

Veta 15.2.
Invariantmi krivky 2.rádu a11x

2
1+2a12x1x2+a22x

2
2+2a1x1+2a2x2+a=0 sú:

s=Tr(A)=a11+a22; δ= det(A)= det

(
a11 a12

a12 a22

)
=λ1λ2; ∆= det

(
a11 a12 a1

a12 a22 a2

a1 a2 a

)

Dôkaz. Urobme transformáciu posunutie:

{
x1=x′1+α

x2=x′2+β
(α, β∈R dané). Dostaneme:

a11x
′2
1 + 2a12x

′
1x
′
2 +a22x

′2
2 + 2(a11α+a12β+a1)x′1 + 2(a12α+a22β+a2)x′2 + (a11α

2+
+2a12αβ + a2β

2 + 2a1α+ 2a2β + a)=0.
Máme: s(x′1, x

′
2)=a11+a22=Tr(A)=s(x1, x2) a δ(x′1, x

′
2)= det

( a11 a12

a12 a22

)
=δ(x1, x2).

∆= det

(
a11 a12 a11α+a12β+a1

a12 a22 a12α+a22β+a2

a11α+a12β+a1 a12α+a22β+a2 a11α
2+2a12αβ+a22β

2+2a1α+2a2β+a

)

Otočenie: od kvadratickej formy XAXT=a11x
2
1+2a12x1x2+a22x

2
2 prejdeme pomo-

cou regulárnej lineárnej transformácie s maticou C=
(

cosϕ sinϕ
− sinϕ cosϕ

)
k forme s mati-

cou CACT. Potom s=Tr(CACT)=Tr(CAC−1)=Tr(CC−1A)=Tr(A)=a11+a22.
δ= det(CAC−1)= det(C) det(A) det(C−1)= det(A).

Invarianty krivky 2.rádu sa dajú využiť pri skúmaní rovnice

a11x
2
1+2a12x1x2+a22x

2
2+2a1x1+2a2x2+a=0 F

Napr. videli sme, že v situácii, keď λ1λ2=δ 6=0 vhodným otočením rovnicaF prejde
na tvar λ1x

′2
1+λ2x

′2
2+c=0, kde c∈R, λ1, λ2 sú vlastné hodnoty matice A. Z in-

variantnosti ∆ máme: ∆= det diag(λ1, λ2, c)=λ1λ2c=δc, teda c=∆
δ . Teda máme

λ1x
′2
1+λ2x

′2
2+∆

δ =0 –z tohto sa už ľahko prejde ku kanonickému tvaru.



LINEÁRNA ALGEBRA 91

δ>0 ∆ 6=0 ak s∆<0, tak elipsa; ak s∆>0, tak ∅
krivka eliptického typu ∆=0 bod, alebo prázdna množina

δ<0 ∆ 6=0 hyperbola

krivka hyperbolického typu ∆=0 dvojica disjunktných priamok

δ=0 ∆6=0 parabola

krivka parabolického typu ∆=0 dvojica rovnobežných priamok

XVI. DUÁLNY VEKTOROVÝ PRIESTOR A
ZÁKLADY MULTILINEÁRNEJ ALGEBRY

Nech V,W sú vektorové priestory nad R. Označme L(V,W ) množinu lineárnych
zobrazení z V do W .L(V,W )6=∅, lebo nulové zobrazenie patrí do L(V,W ). Defi-
nujeme +:L(V,W )×L(V,W )→L(V,W ), (f+g)(~x)=f(~x)+g(~x). Pre f∈L(V,W ) a
α∈R definujeme: αf : V→W , αf(~x)=α(f(~x)), αf∈L(V,W ). Pre f, g∈L(V,W ) je
f+g : V→W naozaj lineárne: (f+g)(α~x+β~y) = f(α~x+β~y)+g(α~x+β~y) = αf(~x)+
+βf(~y)+αg(~x)+βg(~y) = α(f(~x)+g(~x))+β(f(~y)+g(~y)) = α(f+g)(~x)+β(f+g)(~y).
Podobne sa presvedčíme, že pre α∈R, f∈L(V,W ) je αf : V→W naozaj lineárne.
αf(β~v+γ~p)=α(f(β~v+γ~p))=α(βf(~v)+γf(~p))=αβf(~v)+αγf(~p)=βαf(~v)+γαf(~p)=
=β(αf)(~v)+γ(αf)(~p). Ľahko sa overí, že potom L(V,W ) s takto definovaným +
resp. takto definovaním násobením prvkov z L(V,W ) prvkami z R je vektorový
priestor nad R.

Definícia 16.1. Nech f : V→W je lineárne zobrazenie. Nech V a W sú konečne
generované. Pevne zvoľme bázu (~v1, · · · , ~vk) vo V a (~w1, · · · , ~ws) vo W . Potom
matica f vzhľadom na bázy (~v1, · · · , ~vk) resp. (~w1, · · · , ~ws) sa definuje ako ma-
tica A∈Mks(R) taká, že jej i-tý riadok (i=1, · · · , k) tvoria súradnice vektoru f(~vi)
vzhľadom na bázu (~w1, · · · , ~ws).
Veta 16.1.
Nech vektorové priestory V,W nad R sú konečne generované. Potom aj vektorový
priestor L(V,W ) je konečne generovaný, a máme dim(L(V,W ))= dim(V )·dim(W ).

Dôkaz. Definujme zobrazenie Φ : L(V,W )→Mks(R), kde dim(V )=k, dim(W )=s.
Φ(f):= matica f vzhľadom na pevne zvolenú bázu (~v1, · · · , ~vk) vo V respektíve
(~w1, · · · , ~ws) vo W . Toto Φ je lineárny izomorfizmus, keďže Mks(R) je vektorový
priestor dimenzie k·s, z toho vyplýva tvrdenie.

Φ je lineárne: Φ(f)=

(
f(~v1)
···

f(~vk)

)
. (s-tice súradníc vektora f(~vi) v báze (~w1, · · · , ~ws).)

Pre α, β∈R, f, g∈L(V,W ) máme:

Φ(αf + βg) =




(αf + βg)~v1

· · ·
(αf + βg)~vk


 =



αf(~v1) + βg(~v1)

· · ·
αf(~vk) + βg(~vk)


 =

= α



f(~v1)
· · ·
f(~vk)


+ β



g(~v1)
· · ·
g(~vk)


 = αΦ(f) + βΦ(g)
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Φ je surjektívne: Nech A=(aij)∈Mks(R) je ľubovoľná. Potom predpis





f(~v1)=a11 ~w1+ · · ·+a1s ~ws

· · ·
f(~vk)=a1k ~w1+ · · ·+aks ~ws

úplne a jednoznačne definuje, keďže (~v1, · · · , ~vk) je báza lineárneho zobrazenia
f : V→W , z definície je jasné, že f má vzhľadom na bázy (~v1, · · · , ~vk) resp.
(~w1, · · · , ~ws) maticu A, tj. Φ(f)=A.
Φ je injektívne: Nech Φ(f)=Φ(g). To znamená, že f(~vi)=g(~vi), i=1, · · · , k. Pretože
(~v1, · · · , ~vk) je báza vo V , z toho f=g.

Definícia 16.2. Nech V je vektorový priestor nad R. Vektorový priestor L(V,R)
sa nazýva duálny priestor k priestoru V , označíme ho V ∗.

Poznámka. Z vety 16.1 (keďže R je n-rozmerný vektorový priestor nad R) máme,
že ak V je konečne generovaný, tak dim(V ∗)= dim(V ).

Definícia 16.3.
Prvky z V ∗ sa volajú lineárne formy na vektorovom priestore V .

Príklad.
1. V = Rn, pri : Rn→R, pri(x1, · · · , xn) = xi. pri je lineárna forma na Rn
tj. pri∈(Rn)∗.
2. C(〈0, 1〉,R) je vektorový priestor spojitých funkcií 〈0, 1〉→R.

∫ 1
0 :C(〈0, 1〉,R)→R∫ 1

0 (αf+βg)=α
∫ 1

0 f+β
∫ 1

0 g teda
∫ 1

0 ∈C∗(〈0, 1〉,R).

Definícia 16.4+Tvrdenie 16.1.
Zobrazenie ( , ) : V ∗×V→R (V je vektorový priestor nad R); (x∗, ~y)=x∗(~y) pre
každé x∗∈V ∗, ~y∈V , je bilineárne, nazýva sa párovacie zobrazenie V ∗ a V .

Dôkaz.
Lineárnosť v 1.argumente: α, β∈R, x∗, y∗∈V ∗~v∈V , (αx∗+βy∗, ~v)=(αx∗+βy∗)(~v)=
= αx∗(~v)+βy∗(~v) = α(x∗, ~v)+β(y∗, ~v). Lineárnosť v 2.argumente: (x∗, α~a+β~b) =
=x∗(α~a+β~b)=αx∗(~a)+βx∗(~b)=α(x∗,~a)+β(x∗,~b).

Definícia 16.5+Veta 16.2.
Nech vektorový priestor V nad R je konečne generovaný, nech (~b1, · · · ,~bk) je dáka

báza vo V . Potom predpis (b∗i ,~bj)=δij=
{

1,ak i=j

0,ak i6=j pre i, j=1, · · · , k úplne a

jednoznačne definuje lineárne formy b∗1, · · · , b∗k∈V ∗. (b∗1, · · · , b∗k) je potom báza
priestoru V ∗, nazýva sa duálna báza k báze (~b1, · · · ,~bk).

Dôkaz. Vieme, že dim(V ∗)= dim(V )=k. Teda na dôkaz toho, že (b∗1, · · · , b∗k) je báza
vo V ∗ stačí ukázať, že b∗1, · · · , b∗k sú lineárne nezávislé. Nech α1b

∗
1+ · · ·+αkb∗k=0

(tj. nulové zobrazenie V→R). Chceme ukázať, že α1 = · · · = αk = 0. Takto:
(α1b

∗
1+ · · ·+αkb∗k;~bi)=α1(b∗1,~bi)+ · · ·+αi−1(b∗i−1,

~bi)+αi(b∗i ,~bi)+ · · ·+αk(b∗k,~bi)=
= αi·1 = 0 pre i = 1, · · · , k.
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Tvrdenie 16.2. Ak V je konečne generovaný vektorový priestor nad R, tak V ∗∼=V .

Dôkaz. Zoberieme ľubovoľnú bázu (~b1, · · · ,~bk) vo V . Potom priradenie ~bi 7→b∗i
i=1, · · · , k definuje lineárne zobrazenie V→V ∗, keďže zobrazuje bázu na bázu, je
to lineárny izomorfizmus.

Definícia 16.6. Nech V je vektorový priestor nad R. Priestor (V ∗)∗ označíme
V ∗∗, nazýva sa druhý duálny priestor priestoru V .

Veta 16.3. Ak V je konečne generovaný, tak existuje kanonický lineárny izomor-
fizmus V ∗∗∼=V .

Dôkaz. Definujme εV : V→V ∗∗, εV (~v) : V ∗→R, εV (~v)(x∗):=x∗(~v). (ak εV je
naozaj lineárny izomorfizmus, tak je jasné, že je kanonický, lebo nezávisí od výberu.)
1. Overíme, že εV (~v) je pre každé ~v∈V lineárne zobrazenie. εV (~v)(αa∗ + βb∗) =
=(αa∗+βb∗)(~v)=(αa∗)(~v)+(βb∗)(~v)=αa∗(~v)+βb∗(~v)=αεV (~v)(a∗)+βεV (~v)(b∗).

2. Overíme, že εV :V→V ∗∗ je lineárne. εV (α~v+β~z)
?
= αεV (~v)+βεV (~z) pre α, β∈R,

~v, ~z∈V . Stačí ukázať, že ľavá a pravá strana majú rovnaké hodnoty na všetkých
x∗∈V ∗. Ľavá strana: εV (α~v+β~z)(x∗)=x∗(α~v+β~z)=αx∗(~v)+βx∗(~z)=αεV (~v)(x∗)+
+βεV (~z)(x∗)=(αεV (~v)+βεV (~z))(x∗)=pravá strana.
3. Ukážeme, že εV : V → V ∗∗ je bijekcia. Nech (~b1, · · · ,~bk) je báza vo V . Nech
(b∗1, · · · , b∗k) je duálna báza vo V ∗ a nech (b∗∗1 , · · · , b∗∗k ) je duálna báza vo V . Zau-
jíma nás, čo je εV (~bi). Máme εV (~bi)∈(V ∗)∗, rátajme (εV (~bi), b∗j ) = εV (~bi)(b∗j ) =

= b∗j (~bi) =

{
1 ak i=j

0 ak i6=j . Z jednoznačnej určenosti duálnej bázy dostávame, že

εV (~bi)=b∗∗i i=1, · · · , k. Keďže εV zobrazuje bázu na bázu, je to lineárny izomorfiz-
mus.

Veta 16.4. Nech V,W sú vektorové priestory nad R, nech f : V →W je lineárne
zobrazenie. Potom existuje jediné lineárne zobrazenie f∗ : W ∗ → V ∗ také, že
(f∗(w∗), ~v)=(w∗, f(~w)). pre všetky w∗∈W ∗, ~v∈V . Toto f∗ sa volá duálne, alebo
adjungované lineárne zobrazenie k zobrazeniu f .

Dôkaz. Jednoznačnosť: Nech by aj f∗1 : W ∗→V ∗ bolo také ako f z tvrdenia. Potom
(f∗(w∗), ~v)=(w∗, f(~v))=(f∗1 (w∗), ~v). Z toho: (f∗(~w), ~v)=(f∗1 (w∗), ~v) pre všetky
~v∈V,w∗∈W ∗. Z bilineárnosti: (f∗(w∗)−f∗1 (w∗), ~v)=((f∗−f∗1 )(w∗), ~v)=0. Teda
(f∗−f∗1 )(w∗) : V→R je nulové, preto f∗−f∗1 = nulové zobrazenie, teda f∗=f∗1 .
Existencia: Treba, že f∗ definované vlastnosťou (f∗(w∗)~v)=(w∗, f(~w)) je lineárne:

f∗(αw∗+βz∗) ?
= αf∗(w∗)+βf∗(z∗). Treba ukázať, že ľavá a pravá strana majú

(ako lineárne zobrazenie V→R) tú istú hodnotu v ľubovoľnom ~v∈V . Ľavá strana:
(f∗(αw∗+βz∗), ~v) = (αw∗+βz∗, f(~v)) = α(w∗, f(~v))+β(z∗, f(~v)) = α(f∗(w∗), ~v)+
+β(f∗(z∗), ~v)=(αf∗(w∗)+βf∗(z∗), ~v) =pravá strana.

Veta 16.5. Nech V,W sú konečne generované nad R, nech f : V→W má vzhľadom
na bázy (~v1, · · · , ~vk) vo V resp. (~w1, · · · , ~ws) vo W maticu A=(aij)∈Mks(R).
Potom duálne lineárne zobrazenie f∗ : W ∗→V ∗ má vzhľadom na bázu (w∗1 , · · · , w∗s)
vo W ∗ resp. (v∗1 , · · · , v∗k) maticu AT.

Dôkaz. Máme f(~vi)=
s∑

j=1

aijwj pre i=1, · · · , k. Potrebujeme zistiť, čo je f∗(w∗)
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pre t = 1, · · · , s. Máme f∗(w∗t ) =
k∑

j=1

bijv
∗
j , chceme zistiť btj (f

∗(w∗t ), ~vp) =

= (w∗t ,
s∑

j=1

apj ~wj) = =
s∑

j=1

apj(w
∗
t , ~wj) = apt. Pravá strana:




k∑

j=1

btjv
∗
j , ~vp


=

k∑

j=1

btj(v
∗
j , ~vp)=btp; z toho btp=apt teda matica B zobrazenia f∗

je vlastne AT.

Veta 16.6. Ak f, g sú lineárne zobrazenia f, g : V→W , tak
1. (f+g)∗=f∗+g∗

2. Ak f : V→W,α∈R, tak (αf)∗=α(f∗)
3. O : V→W je nulové zobrazenie, potom O∗ : V ∗→W ∗ je tiež nulové; (idV )∗=idV ∗
4. Ak f : V→W , g : W→S sú lineárne zobrazenia, tak (g◦f)∗=f∗◦g∗.
5. Ak f : V→W je lineárne zobrazenie a V,W sú konečne generované, tak (f∗)∗ :
(V ∗)∗→(W ∗)∗ sa stotožní s f , ak stotožní V ∗∗ s V a W ∗∗ s W .

Dôkaz. Priamo z definície: pre prípad zobrazení medzi konečne generovanými pries-
tormi tieto vlastnosti vyplývajú z vlastnosti matíc. Napr. (f+g)∗=f∗+g∗ ⇔
(A+B)T=AT+BT alebo: (g◦f)∗=f∗◦g∗ ⇔ (AB)T=BTAT.

Tenzorový súčin vektorových priestorov.
Nech V,W sú konečne generované vektorové priestory nad R. Potom V×W je

vektorový priestor nad R. Označme M množinu všetkých zobrazení V×W→R,
ktoré nadobúdajú nenulové hodnoty iba v konečnom počte prvkov z V×W . M 6=∅,
lebo nulové zobrazenie patrí do M . Množina G všetkých zobrazení z V×W→R je
vektorový priestor . Pre f, g∈G definujeme f+g : V×W→R; (f+g)(~x, ~y)=f(~x, ~y)+
+g(~x, ~y), podobne pre f∈G,α∈R definujeme αf :V×W→R; (αf)(~x, ~y)=α(f(~x, ~y)).
Je jasné, že G je vektorový priestor nad R. M je vektorový podpriestor v G. (stačí
použiť kritérium vektorového podpriestoru).
Ak f∈M , tak existujú (~v1, ~w1), · · · , (~vk, ~wk)∈V×W také, že f(~vi, ~wi)=αi pre i=1, 2,
3, · · · , k, pričom αi 6=0 a f(~v, ~w)=0 pre (~v, ~w)/∈{(~v1, ~w1), · · · , (~vk, ~wk)}. Pre takéto
f zavedieme symbol α1(~v1, ~w1)+ · · ·+αk(~vk, ~wk). Napr. (~v0, ~w0) (pre ~v∈V, ~w∈W )
znamená funkciu, ktorá má vo (~v0, ~w0) hodnotu 1 a vo všetkých iných má hodnotu
0. Podobne −1·(~v0, ~w0):=−(~v0, ~w0) je funkcia, ktorá má vo (~v0, ~w0) hodnotu −1 a
všade inde 0.
Iný prípad: (~v1 + ~v2; ~w2)− (~v1, ~w2)− (~v2, ~w2) je symbol označujúci zobrazenie
V×W→R, ktorá má vo (~v1+~v2, ~w2) hodnotu 1, vo (~v1, ~w2) a (~v2, ~w2) −1 a všade
inde 0.

Definícia 16.6. Nech S⊂M je vektorový podpriestor v M generovaný prvkami
tvaru (~v1+~v2, ~w)−(~v1, ~w)−(~v2, ~w), (~v, ~w1+~w2)−(~v, ~w1)−(~v, ~w2), (α~v, ~w)−α(~v, ~w)
[pre ľubovoľné ~v,~v1, ~v2∈V, ~w, ~w1, ~w2∈W ] a (~v, α~w)−α(~v, ~w).

Definícia 16.7. Nech V,W,M,S sú ako vyššie. Potom tenzorový súčin priestorov
V a W sa definuje ako faktorový vektorový priestor M/S, označíme ho V⊗W . Teda
V⊗W=M/S. Prvok vo V⊗W reprezentovaný (~v, ~w)∈M označíme ~v⊗~w.
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Trieda ekvivalencie prvku (~v1+~v2, ~w)−(~v1, ~w)−(~v2, ~w) bude (~v1+~v2)⊗~w−~v1⊗~w−
−~v2⊗~w=0∈V×W tj. platí: (~v1+~v2)⊗~w=~v1⊗~w+~v2⊗~w. Podobne:

~v⊗(~w1+~w2)=~v⊗~w1+~v⊗~w2

(α~v)⊗~w=α(~v⊗~w)
~v⊗(α~w)=α(~v⊗~w)

Teda ak definujeme zobrazenie S : V×W→V⊗W , S(~v, ~w)=~v⊗~w, toto S bude
bilineárne.

Veta 16.7.
1. Ak V,W, T sú konečne generované vekt. priestory, tak (V⊗W )⊗T∼=V⊗(W⊗T ).
2. Ak V,W sú konečne generované, tak V⊗W∼=W⊗V .
3. Ak V alebo W je nulový priestor, tak V⊗W∼=0
4. Ak (~v1, · · · , ~vk) je báza vo V , (~w1, · · · , ~ws) je báza vo W , tak báza vo V⊗W
pozostáva z vektorov (~vi ⊗ ~wj), kde 1≤i≤k, 1≤j≤s. Teda dim(V ⊗W ) = k · s =
= dim(V ) · dim(W ).

Veta 16.8. Nech v,W sú konečne generované vektorové priestory nad R. Potom
V ∗⊗W∼=L(V,W ).

Dôkaz. Nech (~v1, · · · , ~vk) je báza vo V , (~w1, · · · , ~ws) je báza vo W . Definujme
lineárne zobrazenie Φ : V ∗⊗W→L(V,W ) takto: Φ(v∗i⊗~wj)(~vs)=v∗i (~vs)·~wj . Teda
Φ(v∗i⊗~vj)(~vs)=δis ~wj . Teda Φ(v∗i⊗~wj) má maticu (vzhľadom na bázu (~v1, · · · , ~vk)
vo V resp. (~w1, · · · , ~ws) vo W .) ktorej i-tý riadok má v j-tom stĺpci 1 a všade inde
sú nuly. Teda Φ(v∗i⊗~wj) je bázový prvok v L(V,W ) tj. Φ je lineárny izomorfizmus.
Je jasné, že pre vektorové priestory V1, · · · , Vk môžeme definovať ich tenzorový
súčin induktívne:

V1⊗V2⊗ · · ·⊗Vk=V1⊗(V2⊗ · · ·⊗Vk).

Definícia 16.8. Nech V je konečne generovaný vektorový priestor nad R. Nech
p, q sú dané nezáporné celé čísla. Potom vektorový priestor

T qp (V )=V ∗⊗ · · ·⊗V ∗︸ ︷︷ ︸
p

⊗V⊗ · · ·⊗V︸ ︷︷ ︸
q

sa nazýva priestor tenzorov p-krát kovariantných a q-krát kontravariantných. Prvky
T qp (V ) sa volajú tenzory typu (p, q) nad V .

Príklad.
1. T 1

0 (V )=V , teda tenzory typu (0, 1) sú vektory z V .
2. T 0

1 (V )=V ∗, teda tenzory typu (1, 0) sú lineárne formy na V .
3. T 1

1 (V )=V ∗⊗V∼=L(V, V ), teda tenzory typu (1, 1) sú vlastne lineárne zobrazenia
z V do V .

Tenzory typu (p, q) sa využívajú v diferenciálnej geometrie a v matematickej
fyzike. Pracuje sa tam s ich súradnicami.
Nech (~v1, · · · , ~vk) je báza vo V . Potom bázu priestoru T qp (V ) tvoria vektory
v∗i1⊗ · · · v∗ip⊗~vj1⊗ · · ·⊗~vjq kde 1≤i1≤ · · ·≤ip≤k a 1≤j1≤ · · ·≤jq≤k. Teda každý
prvok z T qp (V ) má jediné vyjadrenie v tvare:

∑

1≤ii,ji≤k
T
j1,··· ,jq
i1,··· ,ip v

∗
i1⊗ · · ·⊗v∗ip⊗~vj1⊗ · · ·⊗~vjp
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Namiesto v∗s napíšeme vs, potom dostaneme: vj(~vi)=δij .

∑

1≤···≤k
T
j1,··· ,jq
i1,··· ,ip v

i1⊗ · · ·⊗vip⊗~vj1⊗ · · ·⊗~vjq

Einsteinova sumačná konvencia: Ten istý tenzor zapíšeme takto:

T
j1,··· ,jq
i1,··· ,ip v

i1⊗ · · ·⊗vip⊗~vj1⊗ · · ·⊗~vjq

Aj bázové vektory sa v praxi vynechávajú, ten istý tenzor sa označuje T j1,··· ,jqi1,··· ,ip ,
(1≤i1, · · · , ip, j1, · · · , jq≤k).
Dané sú pravidlá ako sa zmení tenzor T j1,··· ,jqi1,··· ,ip , ak od bázy (~v1, · · · , ~vk) vo V prej-
deme k báze (~v′1, · · · , ~v′k). To je obsah tzv. tenzorového počtu.


