[\

N oUW

II.
III.
IV.

VI
VII.
VIIL
IX.
. Euklidovsky vektorovy priestor
XI.
XII.
XIII.
XIV.
XV.
XVI.

LINEARNA ALGEBRA

I.ROCNIK

Fakulta matematiky, fyziky a informatiky
Univerzita Komenského

CONTENTS

Zobrazenia medzi mnozinami

Okruh, teleso, pole

Vektorové priestory

Systémy linearnych rovnic

Lineédrna zavislost a nezavislost vektorov
Linearne a direktné stcty

Matice

Linearne zobrazenie

Systémy linearnych rovnic 2

Afinny priestor (nad R)

Linearne transformécia vektorovych priestorov
Kvadratické formy

Homogénne bilinearne formy

Krivky 2.radu

10
13
15
19
20
24
32
42
48
69
81
86
89

Dualny vektorovy priestor a zéklady multilinearnej algeb-

ry

REFERENCES

. M.Hejny, V.Zatko, P.Krsnak, Geometria 1, SPN, Bratislava, 1985.
. T.Katrindk, M. Gavalec, E.Gedeonova, J.Smital, Algebra a teoretickd aritmetika, Univerzita

Komenského, Bratislava, 1999.

91

. G.Birkhoff, S.MacLane, Prehlad modernej algebry, ALFA, Bratislava, 1979.

A.I.Kostrikin, Y.I.Manin, Linear Algebra and Geometry, Gordon & Breach, New York, 1989.
A .K.Faddejev, J.S.Sominskij, Zbierka uloh z vyssej algebry, ALFA, Bratislava, 1968.

. L.V.Proskurjakov, Problems in Linear Algebra, Mir, Moscow, 1978.
. A.L.Kostrikin, Ezercises in Algebra; A Collection of Exercises in Algebra; Linear Algebra and

Geometry, Gordon & Breach, New York, 1996.

Typeset by ApS-TEX



2 I.ROCNIK

I. ZOBRAZENIA MEDZI MNOZINAMI

Definicia 1.1. Nech A, B st mnoziny. Zobrazenie z A do B je predpis, ktory
kazdému prvku z A priradi préve jeden prvok z B. Ak tento predpis oznacime f,
tak hovorime f: A — B. f(a) = b znamend, Ze sme priradili prvku a€A — beB.
a je tzv. vzor prvku b. f:a—b. f(A)=obrazzobrazenia f. Im(f) je obraz mnoZziny
A pri zobrazeni Im(f) = {yeB JzcA: f(z)=y}

Definicia 1.2. Zobrazenia f : A—B, g : A—B sa rovnaju (f=g), ak pre Va€A je
fla)=g(a). f,g:N-N; f(z)=2+az; g(x)=2z

Definicia 1.3. Nech f : A— B je zobrazenie a nech Ac A Predpis, ktory kazdému
prvku a€ A priradi f(a) sa nazyva zuZenie zobrazenia f na podmnozinu A. Oznade-

nie: f [ 4 A-Baf i (x)=f(x)

Definicia 1.4. f: A—DB sa nazyva surjektivne ak f(A)=DB. Zobrazenie f : A—B
je surjektivne <= VyeB JzecA: f(z)=y.

Definicia 1.5. Zobrazenie f: A— B sa nazyva injektivne ak z toho, Ze
f(a)=f(a) vyplyva, Ze a=d

Definicia 1.6. Zobrazenie f : A— B sa nazyva bijekcia ak je surjektivne aj injek-
tivne.

Definicia 1.7. Nech f : A—B, g : B—C st dve zobrazenia, potom predpis
x€A — g(f(z)) definuje zobrazenie A—C oznac¢ime ho gof:A—C, gof(x)=g(f(z))
pre Vx€A. Zobrazenie gof : A—C' sa nazyva zobrazenie zloZen€ z f a g resp. kom-
pozicia zobrazeni f a g.

Tvrdenie 1.1.
1) Ak f: A—B, g: B—C su injekcie, tak aj gof : A—C je injekcia.
2.4 Ak f: A—B, g : B—C st surjekcie, tak aj gof : A—C je surjekcia.

Dokaz. Predpokladajme, ze gof(a)=gof(d). Chceme ukazat, ze a=d.
Ale g(f(a))=g(f(d)), lebo g je injektivne. Z toho: f(a)=f(a). Aleaj f je injektivne
= a=a.

Tvrdenie 1.2. Ak f: A—B, g: B—C, h: C—D st zobrazenia,
tak ho(gof)=(hog)of. To je tzv. asociativnost skladania zobrazeni.

Dékaz. ho(gof)(x) = h((gof)(x))=h(g(f(x)));
(hog)of(z)=(hog)(f(x))=h(g(f(x)) : VacA

Veta 1.1 a Definicia 1.8. Nech f : A—B je bijekcia. Potom existuje zobrazenie
B— A, ktoré kazdému prvku b€ B priradi len jediny prvok a€A, pre ktory f(a)=b.
Toto je inverzné zobrazenie k f, ozna¢ime ho f=t. Teda f=(b)=a < f(a)=b .
Zobrazenie f~1: B—A je tieZ bijektivne a plati: f~lof=ida, fof l=idg.

Dokaz.

1yf~" je injekcia: nech a=f~1(b)=f"1(b) Potom f(a)=b a f(a)=b = b=b. f~* je
injekcia.

2.)f*1 je surjekcia: Tubovolné ac€A, f~1(f(a))=a, f~! je bijekcia.
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Tvrdenie 1.3. Ak f: A—B, g: B—A st zobrazenia také, ze gof=id,, tak f je
injekcia a g je surjekcia.

Dokaz.

[ je injekcia: Predpokladajme, zZe f(a) = f(a) = g(f(a)) = g(f(4)) = (g0 f)(4) =
=ida(d) = a.

g je surjekcia: lubovolné a€A = f(a)eB, a=g(f(a)) = f(a) je vzor k prvku a pri
zobrazeni g.

Veta 1.2. Zobrazenie f : A—B je bijektivne < ked existuje g : B—A také, Ze
gof:idA a ng:idB

Dékaz. Predpokladajme, Ze f je bijektivne. Potom vieme, 7e 3f ! : B—A s tym, Ze
f~Yof=id4. Predpokladajme, ze 3g : B—A : gof=id a fog=idg. Z tvrdenia 1.3
dostavame, ze f je injektivne aj surjektivne = bijektivne.

Binarne operacie.

Definicia 1.9. Bindrna operdcia na mnozine M#() je zobrazenie M xM—DM.
Bindrne operécie oznacujeme roznymi sposobmi. Obraz dvojice (a,b)eM x M po-
tom ozna¢ujeme obyc¢ajne a+b= + (a,b) - -

Definicia 1.10. Nech * : M x M —M je bindrna operacia na M. Prvok ec M taky,
ze mxe=m=exm pre VmeM sa nazyva neutrdlny prvok operacie .

Pozn.. Bindrna operdcia nemusi mat neutralny prvok.

Tvrdenie 1.4. Ak bindrna operacia * : M x M —M ma neutralny prvok, tak ho
ma jediny.
Dokaz. Keby eq,eo€M boli neutralne, tak e;=ejxes=eq = e1=es.

Definicia 1.11. Nech * : M xM—M je bindrna operéicia a nech mé neutralny
prvok eeM. Ak pre nejaké xeM : JyeM také, ze xxy=y+r=e, tak y sa vola
inverzny prvok k x.

Oznacenie. Inverzny prvok k prvku z z predchidzajicej definicie oznacime 1.

Definicia 1.12. Binarna operacia je asociativna, ak pre vSetky a,b, c€ M mame:
ax(bxc)=(axb)xc

Tvrdenie 1.5. Nech o : M xM— M je asociativna binarna operacia a nech e€ M
je neutr. prvok tejto operacie. Potom ak pre x€M existuje inverzny prvok, tak je
jediny.

Dokaz. Nech pre xeM by inverzné prvky boli dva: acM, be M. Teda: ar=za=e,
br=xb=e. Chceme ukézaf, ze a=b. Takto: a=ae=a(xb)=(ax)b=eb=b.

Definicia 1.13. Nech G#0 je mnozina a nech * : GxG—G je bin4rna operacia na
G s tymito vlastnostami:

1.y binérna operécia * je asociativna

2.y v G existuje neutralny prvok operécie *, ozna¢ime ho e, teda pre kazdé r€G:
EXT=T*e=XT

3.y Vxe( existuje v G inverzny prvok, vieme uz, Ze to je jediny prvok r71eG taky,

1 1

7e Txx = "xxr=e€.
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Potom hovorime, Ze dvojica (G, *) je grupa. (alebo G s operéciou * je grupa). Ak
je operacia * jasnd, niekedy hovorime, ze G je grupa.

Priklad. Nech meN je pevne zvolené. Oznacéme Z,, mnozinu zvyskov po deleni
celych ¢isel ¢islom m. Teda Z,,={0,1,--- ,m — 1}. Definujme pre =, y€Z,,:

@y je zvysok po vydeleni x+y ¢islom m. Potom @ je bindrna operacia na Z,,.
Je asociativna, neutralny prvok je 0, inverzny prvok k x€Z,, je zvysok po vydeleni
¢isla m—z ¢islom m. (Z,,, ®) je grupa.

Definicia 1.14. Binarna opericia *:M x M — M na mnozine M#( je komutativna,
ak pre Va,beM : axb=bxa. Ak tuto vlastnost nem4 tak je nekomutativna.

Definicia 1.15. Ak (G, *) je grupa a opericia * je komutativna, tak grupa G sa
nazyva komutativna (alebo tiez Abelovskd).

Priklady.

Ly(R\ {0}, ) je komutativna grupa.

2.)G={e}, exe=e to je tzv. trividlna grupa.

3)(Z,+), (Zm, D) st komutativne grupy.

4.y Nech M#( je mnozina. Oznacme Sp;:= mnozinu vsetkych bijekcii M—M.

Skladanie zobrazeni definuje binarnu operaciu * na Sy, tj. fxg=gof pre Vf, g€Sn.

Potom (Sy, *) je grupa. Nie je komutativna.

5y Ak M z 4.y je M={1,2,--- ,n} co je vlastne Sps? S(12... »} je vlastne mnozina

permutécii prvkov 1,2, .- n mnoziny {1,2,--- ,n}. Permutéciu

f:4{1,2,--- ,n}—{1,2,--- ,n} modZeme prehladne zapisat ako f= (

Napr. pre S{1,233 je (S(1,2,3},*) grupa, ktord ma 6 prvkov.
(123 123\ _ (123 . 123 123\ _ (123

Napr..(132> * (213)*(231) kym (213) * (132)*<312)'

S{1,2,3) je komutativna grupa.

1 2 ....n
F) £(2) - f(n)>

Veta 1.3. Nech (G, ) je grupa. Potom:
1y(z~Y)~'=x pre VzeG
2. (vey)~l=y lex~! pre Vux,ycG

Dokaz.

L, (x71)~1 je inverzny prvok k 1. Ale mame zex~
prvok k 27! je x. Pretoze inverzny prvok je jeding mame: (z~!)~l=z.
2.) Ratajme (zey)e(y tex )=re(yey 'ex '=reler =1
Podobne (y~tex~!)e(zey)=y 'e(z tox)ey=y leley=1 = 2.,

l—g~lexr=1 a teda inverzny

Podgrupa.

Definicia 1.16. Nech (G, e) je grupa. Nech U#{) je podmnozina v G s bindrnou
operaciou * : UxU—U takou, Ze pre kazdé x,ycU plati xxy=zey. Ak (U,x) je
grupa, tak hovorime, Ze (U, %) je podgrupa grupy (G, e). Volnejsie tiez hovorime, ze
grupa U je podgrupou grupy G. Teda ak (U, ) je podgrupou v (G, e) tak zobrazenie
o |yxy: UxU—G je vlastne U teda (trochu nepresne) mozeme povedat, Ze v tejto
situacii je binarna operacia * podgrupy U z(zZenim binarnej operacie e grupy G.

Veta 1.4. (kritérium podgrupy). Nech U#( je podmnozina mnoziny G, pricom
nech (G,e) je grupa. Potom U je podgrupou grupy G prdve vtedy, ked plati
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ktordkolvek z nasledujucich dvoch ekvivalentnych podmienok:
(I): pre Vz,yeU je rey~teU
(II): pre Vz,ycU je reyclU ay~'ecU.

Dékaz. U je podgrupa potom (I) A (I1)
Najskor ukdzeme, ze (U, *) je podgrupa v (G,e). Oznacme 1y neutrdlny prvok

grupy U, 1 je neutralny prvok grupy G. Mame: 1U*1U:1U:. Vyna-
sobenim rovnosti —— zlava prvkom 151 dostavame: 1y=1. Teraz pre lubovolny
prvok yeU oznac¢me y{]l k nemu inverzny prvok v podgrupe (U, *). (y~! je inverzny
prvok k y v grupe (G,e)). Mame: yU*y{]l:yonal:1U=l:y51*yU:ygloyU.
Teda z toho, ¢o je podc¢iarknuté vidime, ze k y je v G inverzny prvok y[_]l. Ale
tiez je to y~!. KedZe inverzny prvok k prvku grupy je prave jeden, dostavame:
y,}lzy’l. Teda pre ,y€U méame aj =,y *€U. Pretoze (U, *) je podgrupa, mame
Yy l=xey~lelU. To je prave (I). Analogicky sa dokéze, ze ak (U, *) je podgrupa,
tak plati (I7).

Teraz predpokladajme, Ze je splnend podmienka (I). Chceme ukézat , Ze potom
(U, ) je podgrupa. Pretoze U#() mame dalej prvok acU. Z (I) potom dosta-
vame, 7e aea '=1€U Dalej, ak ycU je fubovolné, tak z podmienky (I) vyplyva
ley l=y~leU. Teraz pre Iubovolné x,ycU bude tiez x,y '€U. Z (I) potom
mame, 7e aj ve(y~!) '=reyclU. Ini¢ povedané, predpis z+y=zey pre lubovolné
(z,y)eUxU definuje binarnu operaciu * : UxU—U. Operacia * je asociativna
(lebo e je takd), neutralny prvok je, inverzny prvok gJ,}lzgfl7 teda (U, ) je grupa.
Je to podgrupa v (G, e).

Homomorfizmy grap.

Definicia 1.17. Nech (G, e),(H,*) st grupy. Homomorfizmus z (G, e) do (H,*)
je zobrazenie f: G—H také, ze f(xey)=f(x)*f(y) pre vSetky x,yeG.

Veta 1.5. Nech f : (G,e) — (H,*) je homomorfizmus grip. Potom

L, f(H=L1.
2y fla™h)=(f(=))~"
Dokaz.

LyLef(1)=f(1e1)=f(1)xf(1) & f1(1)xLef(I)=f 1 (1)=f()=f (1) & f(1)=1

2.y Nech &G je lubovolné. Potom zxz~'=z~'xx=1. Pretoze f je homomorfiz-
mus a plati f(1)=1 mame, ze f(zex~1)=f(z)*f(z~1)=f(a~1)*f(x)=f(1)=1 z ¢oho
(f(@)~'=f(z™).

Veta 1.6. Nech f : (G,e) — (H,x*) je homomorfizmus grip. Ak S#0 je podgrupa
grupy G tak f(S) je podgrupa grupy H.

Dokaz. Pretoze S je podgrupa vieme, ze 1€S. Potom f(1)=1€S, teda f(S)#0.
Dalej overime (napr.) podmienku (I) z kritéria podgrupy pre f(S). Nech z,ye f(S)
st Tubovolné . Teda z=f(a) a y=f(b) pre a,beS. Potom y~1=(f(b)) " t=f(b"1)
z predchadzajicej vety. Z toho xxy~t=f(a)*f(b~1)=f(aeb=1)c f(S) totiz aeb—1cS
kedze a,beS a S je podgrupa. Podmienka (I) je splnend a teda f(S) je podgrupa.
Definicia 1.18. Majme zobrazenie f : M—N a nech ACN. Vzor mnoziny A pri
zobrazeni f ozna¢ime f~1(A) pritom f~1(A)={zeM; f(x)cA}



6 I.ROCNIK

Veta 1.7. Nech f : (G,e)—(H,e) je homomorfizmus griip a nech SCH je podgrupa
grupy H. Potom f~1(S) je podgrupa grupy G.

Dokaz. Vieme, Ze f(1)=1 pritom 1€, lebo S je podgrupa. Teda 1€ f~1(S) a preto
f~1#£0. Teraz pouzijeme kritérium podgrupy. Nech z,y€f~1(S) st Iubovolné.
Chceme ukazat, ze zey '€ f~1(S). Takto: pretoze z,ycf (S) mame f(x)ES,
f(y)€S. Pretoze S je podgrupa, potom aj f(z)e(f(y))~'€S. Pritom vsak vieme,
ze f(y~1)=(f(y))~!. Teda méme f(z)eof(y~1)eS = f(zvey~1)€S. To znamens, ze
zey~lef~1(S). O

Definicia 1.19. Nech f : (G,e)—(H,e) je homomorfizmus grip. Vieme, ze
{1}CH je podgrupa grupy H. Podgrupu f~1({1}) grupy G nazyvame jadro ho-
momorfizmu f, oznacuje sa Ker(f). Teda Ker(f)={zeG; f(z)=1}

Veta 1.8. Nech f : (G,e)—(H,e) je homomorfizmus griup. Potom f je injekcia
& Ker(f)={1}

Dokaz.

[=] Nech f je injektivne zobrazenie. Chceme ukazat, ze Ker(f)={1}. Takto:
mame f(1)=1, a teda zrejme {1}CKer(f). Ak xeKer(f), tak f(z)=1=f(1). Z in-
jektivnosti f vyplyva, ze x=1. Teda tiez Ker(f)C{1}. Vcelku: Ker(f)={1}.
[<] Predpokladajme, ze Ker(f) = 1. Chceme ukazaf, ze f je injektivne. Takto:
nech f(z) = f(y) pre dédke z,y€G. Potrebujeme ukazat, ze x = y. Z toho, Ze
f(x)=f(y) dostavame f(z)e(f(y)) '=1. Ale vieme, ze f(y~1)=(f(y))~!. Teda
plati: f(z)ef(y~!)=1. Pretoze f je homomorfizmus, z toho dostaneme:
f(zey=1)=1. Teda: zey 'eKer(f)={1}. To znamend, %e rey '=1. Z toho
dostaneme, ze x=y.

Definicia 1.20. Injektivny homomorfizmus grip sa nazyva monomor fizmus.
Surjektivny homomorfizmus grap sa nazyva epimor fizmus. Homomorfizmus gruap,
ktory je bijektivny sa vold izomor fizmus. Ak (G,e) a (H,e) st grupy a existuje
izomorfizmus f : (G, e)—(H, e) tak hovorime, Ze grupy G a H st izomorfné. Vtedy
stru¢ne piseme: f:G = H, alebo G=H.

Veta 1.9. Nech f : (G,e)—(H,e) je izomorfizmus grip. Potom aj inverzné zob-
razenie f~1 : (H,e)—(G, e) je izomorfizmus grip.

Dékaz. Vieme, 7ze f~! : H—G existuje a ze je bijekcia. Este treba ukazat, ze f~!
je aj homomorfizmus grup. Takto: nech z,ycH st lubovolné. Potom existuju
jednoznacne uréené a,beG také, ze f(a)=z, f(b)=y. KedZze f je homomorfizmus

méme f(a)ef(b)—f(asb)=zey; 7 toho: [~ (vey)—asb—F~1(z)ef 1 (y).

Veta 1.10. Zlozenie dvoch homomorfizmov grip je znova homomorfizmus grup.
Zlozenie dvoch izomorfizmov grup je znova izomorfizmus.

Dokaz. Nech f: (G,e)—(H,e),t: (T, 8)—(S,e) st homomorfizmy grip. Potom pre
V,y€G je tof (zey)=t(f(zey))=t(f(x)ef(y))=t(f(x))et(f(y))=(tof(z))e(tof (y))-

Relacie na mnozinach a faktorové grupy komutativnych grap.

Definicia 1.21. Reldcia na mnoZine M#( je hocijakd podmnozina RCM x M.
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Definicia 1.22. Reldcia R na mnoZine M#( sa vold reldcia ekvivalencie ak ma
tieto vlastnosti:

Ly(z,z)eR VazeM (reflexivnost relcie R)

2.y ak (z,y)€R tak aj (y,z)€R (symetrickost)

3.y ak (z,y)eR a (y, 2)€R tak aj (v, z)€R (tranzitivnost)

Definicia 1.23. Nech ~ je relacia ekvivalencie na mnozine M#(Q. Potom pre
lubovolné yeM oznaéime [y|={z€M;x~y}. [y] sa vola trieda ekvivalencie uréena
(reprezentovand) prvkom y, y sa vold reprezentant triedy ekvivalencie [y].

Veta 1.11. Nech ~ je reldcia ekvivalencie na mnozine M=) a nech [y] pre ye M
znamena triedu reprezentovanu prvkom y. Potom:
Ly[yl#0 Yye M
2, [x]=ly] & z~y Va,yeM
3.y ak [z]#[y], tak [z]N[y]=0
4y | bl=M

reM
Dokaz.
Lyy~y a vtedy yeM.
2.)[=] Nech x~y. Chceme ukédzaf, Ze [x]=[y]. Nech ac[z]. Potom a~x, ale z~y,
preto a~y, a teda a€ly]. Teda [x]C[y]. Analogicky sa dokéze [y]C[z], teda [x]=]y].
[= ] Predpokladajme, ze [x]=[y]. Potom z€[z]=[y], teda z€[y|, preto z~y.
3.y Predpokladajme, ze [z]N[y]#0. Teda existuje a€[z]N[y]. Potom a~z a a~y,
teda x~y.
4.y Je zrejmé, ze U [x]CcM. Nech teraz zeM. Potom z€(x], teda z€ U [z],

zeEM xeM
ukéazali sme tiez, ze MC U [x]. Teda M= U [x].
zeM xeM

Veta 1.12. Nech (G, +) je komutativna grupa a nech H je jej podgrupa. Definujme
relaciu ~ na G takto: pre x,yeG plati x~y < x—yeH. Potom ~ je relacia
ekvivalencie.

Dokaz.

Reflexivnost: x—x=0€H, teda x~x YzeG

Symetrickost: nech x~y. Potom x—yeH. Ale H je podgrupa a preto aj —(z—y)eH
teda y~x.

Tranzitivnost: nech z~y a y~z. Potom: x—yceH a y—z€H. Pretoze H je podgrupa
mame, ze (z—y)+(y—z)€H. Teda x~z.

Oznacenie. Mnozinu tried ekvivalencie na grupe G vzhladom na reldciu ekvivalen-
cie z predchadzajicej vety oznac¢ime G/H.(G podla H)

Tvrdenie 1.5. Nech pre [z|eG/H a [y|eG/H je [z]®[y]=[z+y]. Potom

®:G/HxG/H—G/H je dobre definované zobrazenie a teda & je bindrna operdcia
na mnozine G/H.

Dokaz. Treba ukazat, Zze [z+y] nezdvisi od vyberu reprezentant tried [x] resp.
[y]. Nech [z]=[a], [y]=[b]. Chceme ukazaf, Ze [a+b]=[z+y]. Takto: z toho, Ze
[x]=]a], [y]=[b] vieme, Ze x~a,y~b. Teda x—a€H,y—beH. Pretoze H je podgrupa
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grupy G, méame tiez (z—a)+(y—b)eH < (x+y)—(a+b)€H. Z toho z+y~a+b, teda
[z+y]=[a+b].

Veta 1.13 a Definicia 1.24. Nech G je komutativna grupa a H je jej podgrupa.
Na mnozine G/H definujme bindrnu operaciu @ ako v predchddzajicom tvrdeni.
Potom (G/H;®) je komutativna grupa. Tato grupa sa vola faktorovd grupa grupy
G podla podgrupy H.

Dékaz. G/H#0, lebo [0]eG/H. Asociativnost operdcie @: [z]®([y]®[z])=[z+(y+
+2)=[(z+y)+z]=[z+y|o[z]=([z]o[y])®[z] pre V]z], [y], ]G/ H. Existencia neut-
ralneho prvku: pre kazdé [z]€G/H méame [z]®[0]=[z+0]=[z]=[0+z]=[0]®[z] Teda
[0] je neutrdlny prvok operacie @. Existencia inverzného prvku: nech [z]€G/H je
lubovoIné, potom: [z]®[—z]=[z—x]=[0]=[—x]®[x], teda inverzny prvok k [z]eG/H
je [-x]eG/H. (G/H,®) je komutativna grupa: [z]®[y|=[z+y]|=[y+z]=[y]B[z].

Priklad. Nech meN je pevne zvolené. Zoberme G=Z s operaciou séitovania a
H=mZ. Z/mZ={[0],[1],--- , [m—1]}, [z]®ly|=[z+y] Vz,y€Z, (Z/mZ,D) je komu-
tativna grupa.

Tvrdenie 1.6. Nech H#{0} je podgrupa grupy (Z,+). Potom ImeN také, ze
H=mZ.
Dokaz.

k—kréat
Nech m je najmensie celé ¢islo patriace do H. Potom aj k-m=m+---+mecH
pre VkeN \ {0}. Pretoze H je podgrupa, mame tiez k-meH pre Vk€Z. Teda
mZCH. Este ukidzeme, ze HCmZ. Nech x€H je Iubovolny kladny prvok z H,
ukazeme, Ze x€mZ (to staci). Vieme, %e x=q¢-m+r, pre jednoznacne uréené q,r
pricom 0<r<m. Z toho: r=x—q¢-meH. Keby >0, tak by r bolo kladné ¢islo z H,
mensie ako najmensi kladny prvok z H —to je nemozné. Preto r=0, a teda x=¢-m
tj. xeémZ. Tym sme ukazali, ze aj HCmZ. Vcelku: H=mZ.

Veta 1.14. (o faktorovom izomorfizme): Nech (G,+) a (H,+) su komutativne
grupy a nech f : G—H je homomorfizmus griup. Potom G/Ker(f)=Im(f).
Specialne, ak f je epimorfizmus, tak G/Ker(f)=H.

Dékaz. Predpis, ktory Tubovolnému [z]eG/Ker(f) priradi f(z)eIm(f)=f(G),
dobre definuje zobrazenie f:G/Ker(f)—Im(f). Treba ukézat, ze ak [v]=[a], tak aj
f(x)=f(a). Takto: ak [z]=]a], tak x~a, teda x—acKer(f). Z toho f(r—a)=0€H
tj. f(x) — f(a) =0, a teda f(z) = f(a). Ukézali sme, ze f : G/Ker(f) — Im(f);
([z]) = f(x) je dobre definované zobrazenie. f je aj homomorfizmus grip:

[

([2] + [v]) = f(lz +y]) = flz +y) = f(2) + fy) = f([2]) + F([y]) pre vietky
7], [y] € G/Ker(f). f je monomorfizmus grip: Nech f([z]) = f([y]). Potom
f

f
f

|
f(x)=f(y), a teda f(x)—f(y)=0, tj. f(z—y)=0tj. z—ycKer(f). Teda z~y, preto
r]=[y]. f je epimorfizmus grip: pre lubovolné beIm(f) mame z€G : f(x)=b.
Potom f([z])=f(z)=b = f je izomorfizmus grip.

Priklad. meN pevne zvolené. Zobrazenie ¢, : Z—Zy,. @m(x)= zvysok po vydeleni
x ¢islom m. ¢, je epimorfizmus z grupy (Z,+) na (Z,, ®).
Ker(pm)={x€Z;m|x}=mZ. Z vety o faktorovom izomorfizme: Z/mZ>=Z,y,.
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II. OKRUH, TELESO,POLE

Definicia 2.1. Nech R je mnozina v ktorej st aspon dva prvky. Nech st na R
definované dve bindrne operacie: + : RxR—R ("sCitovanie ”) a e : RxR—R
("nésobenie”). Hovorime, Ze (R, +, o) je okruh, ak:

1.y(R,+) je komutativna grupa.

2.)e je asociativna: we(yez)=(vey)ez Vr,y,2€R

3.ye je distributivna vzhladom na scitovanie: xe(y+z)=rey+zez
(v+y)ez=rez+yez Ak e je komutativna, potom (R, +, e) s vlastnostami 1.),2., 3.,
je komutativny okruh. Ak e mé neutrdlny prvok, hovorime o okruhus 1, (R, +,,1).

Definicia 2.2. Okruh (R, +, ), v ktorom operécia e je komutativna sa vola komu-
tativny okrubh.

Definicia 2.3. Nech (R, +,e) je okruh s 1, ak e g+, kde R*=R \ {0} nadobtda
hodnoty v R, tj. ak e |g« definuje bindrnu operaciu v R*, a R* s touto operaciou
je grupa, tak (R, +,e, 1) sa nazyva teleso. Komutativny okruh, ktory je telesom sa
nazyva pole.

Veta 2.1. Nech (R,+,) je lubovolny okruh. Potom v iiom platia tieto pravidla
pre ratanie:

1,0-z=x-0 pre VzeR

2.)(—x)-y=a-(—y)=—(x-y) pre Va,yeR

3.y Ak R ma 1, tak 1#0.

4.y Ak R je teleso, tak z toho, Ze x-y=0 vyplyva, Zze v=0 V y=0.

5.y Ak R je teleso, tak =1 =1V 2r=—1.

Dokaz.

1.)0-2=(0+0)-r=0-2+0-2 < 0=0-z.

2,)(z+(—=))-y=0y=0

zy+(=2)y=0 & —(z-y)=(-2)y.

3.y Pretoze R méa aspon 2 prvky, existuje z€R, 27#0. Ak R mé 1, tak 2-0=0 podla
L.y a 2-1=1, kedZe x#0 = 15#0.

4.y Ak x#0 a y#0, tak treba dokazaf x-y#0. Takto: x#0,y7#0, tak x€cR* a yeR*,
ale R* je grupa ( vzhladom na - |g+) a preto z-y€R* tj. z-y#0.

4.
5,[=] Predpokladajme, ze 2?=1. Teda 22—1=0, tj.(z—1)(x+1)=0 = p+1=0V
z—1=0 & z=—1V z=1.

Pomocou 2.y. O

Lema 2.1.
Nech p,geN. Potom mnozina {p-x+q-y€Z; x,y€Z} je podgrupou v (Z,+), pricom
{p-x+q-y€Z;x,yeZ}=rZ, kde r je najvacsi spoloény delitel ¢isel p, q.

Dokaz. {p-x+qyeZ}#£D. Kritérium podgrupy: p-x+ qy— (p-&+qy) = p-(x — &)+
+q-(y—y)e{pz+qy, x,yeZ}. V (Z,+) sa vsetky podgrupy tvaru: kZ, (pre ne-
jaké keN). Teda {p-xz+qy; x,ycZ}=rZ. Treba eSte ukazat, Ze r je najvicsi
spoloény delitel ¢isel p,q. pe{p-xz+qy; x,yeZ}, p=r-k, teda r|p. q€{p-z+qy;
x,y€Z}, q=r-l, teda r|qg. Nech ¢ je nejaky spolo¢ny delitel ¢isel p,q. Chceme
ukdzat, ze c|r. Ak c|p a c|q, tak c|p-x+q-y pre Va,y€Z, a teda c je delitelom
kazdého prvku z {p-z+q-y; x, y€Z}=rZ, teda c|r-1 t.j. c|r.
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Veta 2.2. Nech meN, m>2. Potom (Z/mZ,®,®) je pole < m je prvocislo.

Dokaz.

[=] Predpokladajme, ze Z/mZ je pole. (To znamend, ze nenulové prvky tvoria
grupu.) Keby m nebolo prvoéislo, tak by m=m1-mg, kde mi, ma€N, 1<mi<m
1<mg<m. Potom [m1]#£0, [m2]#£0, ale [m1]-[mz]=[m1-mo]=[m]=[0]=0. Je to spor
s tym, ze (Z/mZ)* je grupa.

[<] Predpokladajme, Ze m je prvocislo. Chceme ukazat, ze (Z/mZ,®) je grupa.
Na to staci ukdzat, ze pre lubovolné nenulové 0£x€Z/mZ existuje v (Z/mZ)*
inverzny prvok vzhladom na nasobenie. Takto: pre [z]€(Z/mZ)* mame miz, z toho:
najvicsi spoloény delitel m, x je 1. Potom z Lemy 2.1 vieme, ze 1=a-z+b-y pre dake
a,b€Z. 7 toho [1|=1=[a-z+b-y]|=[a-z]+[b-y]|=[a]-[z]+]0] < [1]=[a]®[x] tj. inverzny
prvok k [z] vzhladom na nésobenie je [a]€(Z/mZ)*.

III. VEKTOROVE PRIESTORY

Definicia 3.1. Nech V#{) je mnozina, jej prvky budeme oznadovat: d,--- ,Z. Nech
R je pole. Nech na V je definovana bindrna operdcia + : VxV—=V (budeme jej
hovorit s¢itovanie prvkov z V') a nech okrem toho je dané zobrazenie RxV —V:
(o, ) — a-Z (hovorime mu nasobenie prvkov z V prvkami z R.) V sa nazjyva
vektorovy priestor nad polom R ak spliia axiémy:

1.y(V,+) je komutativna grupa.

2.ya(Z+y)=ai+ay pre vietky a€R, 7, jeV.

3. (a+p)T=ai+Fy pre Vo, BeR a VicV

4y0(B)=(aB)T pre Yo, BER, VZEV.

5.41.7=%, pre VTeV.

Ak V je vektorovy priestor, prvky z V sa volaju vektory, prvky z R sa volaju
skaldry.

Poznamka.
Neutrélny prvok vo vektorovom priestore (V, +) sa nazyva nulovy vektor, ozn.: 0.
Ak aeR, F€V, tak a-Z nazyvame a-nasobok vektora FeV.

Veta 3.1. Nech V je vektorovy priestor nad polom R. Potom VTV, Yac€R:
1.,0-7=0.

2.5 (—1)-2=-2.

3.)04-6:6

Dokaz. .

1) #=1-#=(1+0)F=17+07=7+0% < 07=0.

2.)(1+(~1))7=07=0. 17+(—1)F=7+(—1)7. Teda F+(—1)#'=0, z éoho —i=(—1)7.
3.y a0=a(Z+(—7))=a(1i+(-1)7)=a(1+(~1))F=a07=07=0.

Definicia 3.2. Nech V je vektorovy priestor nad polom R a nech D#{) je pod-
mnozina vo V. D je vektorovy podpriestor priestoru V', ak D je vektorovy priestor
nad R, pricom s¢itovanie v D a nasobenie prvkov z D skaldrmi z R je ztzenim
sCitovania vo V resp. nasobenia prvkov z V skalarmi z R.
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Veta 3.2. (kritérium podpriestoru):

Nech V je vektorovy priestor nad polom R a nech D#(), DCV. D je vektorovy
podpriestor priestoru V préave vtedy, ked je splnend hociktora z tychto dvoch ekvi-
valentnych podmienok:

(I.) VZ,yeD : Z+y€D a pre lubovolné a€ R, Z€D je afeD.

(I1.) VZ,yeD aVa,BER je ai+PyeD.

Dokaz. Predpokladajme, ze D je vektorovy podpriestor. Potom (I) je splnend
(z definicie vektorového podpriestoru). Teraz predpokladajme, Ze je splnena (7).

+ 2 V je zGZené na D definuje na D binarnu operaciu +. Podla (I) : 07=0
patri do D. 0 je neutrdlny prvok operdcie + na D. Pre ZeD podla (I) tiez
(=1)Z=—Z€D. + je asociativne, komutativne, vcelku (D, +) je komutativna grupa.
Okrem toho z (I) vyplyva, Ze mame definované zobrazenie Rx D—D. Operacia +
a nasobenie prvkov z D prvkami z R maju potrebné vlastnosti (zdedené z V'); D
je teda vektorovy podpriestor priestoru V. Na ukonéenie dokazu vety stadi ukézat

(I) & (II). Nech plati (I), nech a, 3€R a 7,§eD. Potom aZeD a fjeD =
aZ+pyeD. Teda (I) = (II). Nech plati (II). Potom pre V¥, y€D mame, ze
1Z241y=7+y€D. Pre lubovolné a€R a Iubovolné Z€D, podla (I1) : aZ+0TX=azeD
tj. aj (II) = (I).

Veta 3.3. Nech S, T sti vektorové podpriestory vektorového priestoru V' nad polom
R. Potom SNT je takisto vektorovy podpriestor priestoru V.

Dékaz. SNT#0, lebo 0eSNT. Ukézeme, 7e SNT splita podmienku (I7). Nech
a, BER, pre VI, € SNT st lubovolné. Potom aZ + 7€ S aaf+ByeT =
= o+ pye SNT. Cize S aj T splhaji podmienku (I7).

Veta 3.4. Nech {S,,a€A} (A indexovd mnozina.) je lubovolny systém vek-

torovych podpriestorov vektorového priestoru V nad polom R. Potom ﬂ Sa je

acA
vektorovy podpriestor priestoru V.

Dokaz. Podobne ako vo Vete 3.3.

Definicia 3.3. Nech V je vektorovy priestor nad polom R a nech A#( je pod-
mnozina vo V. Najmensi vektorovy podpriestor priestoru V obsahujuci A je vek-
torovy podpriestor S taky, zZe:

1)ACS

2.y Ak T je vektorovy podpriestor vo V' taky, ze ACT, tak SCT.

Veta 3.5. Nech V je vektorovy priestor nad polom R a nech A je podmnozina
vo V. Potom najmensi vektorovy podpriestor vo V obsahujici A existuje a je
jediny.

Dokaz.

Jednoznacénost: Nech by S a T boli najmensie podpriestory obsahujice A. Potom
TcS a SCT, teda S=T.

Existencia: Nech ¢ je systém vSetkych vektorovych podpriestorov obsahujucich A.
p#0, lebo Veyp. Potom ﬂ S je najmensi podpriestor vo V obsahujuci A, lebo:

Sep
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VS€p mame ACS, a preto AC m S, tj. je splnend aj podmienka 2.y z Def 3.3.

Sep
Teda S4= ﬂ S.
Seyp
Definicia 3.4. Nech 71, , T} st vektory z vektorového priestoru V nad polom
R, nech ay, - ,ar€R. Potom oy - T1+ - - - +ay, - Tj sa nazyva linedrna kombindcia
vektorov &y, -+, T s koeficientmi aq,---,ar. Ak a;=---=a;=0, tato linearna

kombinacia sa nazyva trividlna (a je to 6) Ak niektoré «a;#0, tak linedrna kom-
binacia je netrividlna.

Veta 3.6. Nech Z1,--- , T} su vektory z vektorového priestoru V nad R. Potom
M ={a @1+ - +arZreV, a,€R} je vektorovy podpriestor vo V.

Dokaz. Danéd mnozina je neprazdna, lebo 0eM. Dalej kritérium vektorového pod-

priestoru. Nech o, B€ER, a1T1+ - +apZy, b1T1+ - +PkZTk sU z tej mnoziny. Po-
k

k k
tom o+ Y @i +B- Y Bidi= Y (aai+pB:)E,EM, lebo aa;+BBiER.
=1 =1

i=1

Oznadenige. V situdcii z predchadzajicej vety oznacime: [Z1,--- , Tg]={o1 @1+ -+
+arZLeV; o €RY.

Veta 3.7. Nech1,--- , Ty st vektory z vektorového priestoru V nad R anech TCV
je vektorového podpriestor taky, ze {Z1,--- ,Zx}CT. Potom aj [Z1,- -+ ,Zk|CT.

Dokaz. Indukcia vzhladom na maximélny pocdet nenulovych koeficientov linearnej
kombinacie vektorov Ty, - -- ,Zr. Ak linedrna kombinécia o171+ - - - +ap 2, ma ma-
ximélny pocet nenulovych koeficientov, tak patri do T, lebo je to bud 0, alebo
nenulovy nasobok spomedzi 77, -+ , T, v kazdom pripade tato linedrna kombina-
cia patri do T. Predpokladajme, ze kazd4 linedrna kombinacia vektorov 71, - -« , Tk
s maximdlne s — 1 (< k — 1) nenulovymi koeficientmi patri do T'. Nech 21+

+ -+ +0s%s je linearna kombinécia s maximalne s nenulovymi koeficientmi. Potom
B1Z1+ - +BsBs=(01T1+ - - +Bs—1%s—1)+0s2s€T; T je vektorovy podpriestor.

Veta 3.8.

Nech V je vektorovy priestor nad R a nech {Z1,--- ,Z}} je lubovolnd kone¢nd pod-
mnozina vo V. Potom najmensi vektorovy podpriestor je S¢z, ... z.3=[T1, -, Tk].
Dokaz. Staci ukdzat, Ze [Z1,- - - , Z1] ma obidve vlastnosti najmensieho vektorového
podpriestoru obsahujiceho mnozinu {Z1, -, Zx}.

1 {&y, -, B }C[Zy, -, Tl

2. Ak T'CV je Iubovolny podpriestor vo V' obsahujici {Z1,- - ,Zx}, tak

[£1,---, 2] CT plati podla Vety 3.7. Z jednoznacnej urcenosti vlastnostami 1., 2.
vyplyva, ze naozaj Sz, ... .3 =1, - , Tk].

Definicia 3.5. Nech V je vektorovy priestor nad R a nech {Z,---,Z;}CV. Po-
tom vektorovy priestor [Z1, - -, Zx|CV sa nazyva linedrny (vektorovy) obal mnoZiny
{#1, - ,Zx}. Vektory &y,--- T sa nazyvaju generdtory vektorového priestoru

[Z1,- -+, Tkl
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Veta 3.9. Nech V je vektorovy priestor nad R a nech [Z1,---,Zk,d]€V. Po-
tom [Zy,- - , T, d|=[T1, -+ , Tk] prave vtedy, ked @ je linedrna kombindcia vektorov
T, T

Dokaz.

[= ] Predpokladajme, ze [¥1,--- , %] = [#1,--- , %k, d]. Potom

[Z1, -+ , &g, d] C [Z1,- -, Tk teda d@ je linedrna kombinécia vektorov 1, - - , Z.
[<] Predpokladajme, ze @ je lineArnou kombinaciou &1, - - -, #}. Chceme ukazat,
ze [fla T 7:?]6] = [fla T 7516;6]' Je zrejmé, zZe {fla T 7fk} - [fla e 7fk76] a
[Z1,--+ , @] C [T1, -, Tk, d]. Okrem toho, pretoze d je linedrna kombinécia

Xy, , T méme, ze {T1,- - , Ty, d}C[T1, -, Tx), teda [Ty, -, Tk, d|C[T1, -+, Tg].
Veelku: [Zy,- -, T, @|=[T1, -, Tk].

Z toho vyplyva, Ze najjednoduchsi zapis linedrneho obalu [¢, - , k] dostaneme

postupnym vynechavanim tych vektorov, ktoré st linedrnou kombinéaciou ostatnych.

IV. SYSTEMY LINEARNYCH ROVNIC

Definicia 4.1. Systém rovnic S:

a11%1 + -+ a1p %y = by

05121 + -+ + AspTy = bs

(vSetky rovnice musia byt splnené sicasne) je systém s linedrnych rovnic s n
nezndmymi x1,--- ,%,, ak a;;€R (i€[l,s],j€[l,n]) a b;eR, kde R je dané pole.
Prvky pola a;; sa nazyvaju koeficienty, bi,--- ,b, sa nazyvaja absolitne cleny
systému S.

Definicia 4.2. Usporiadand n-tica (ry,--- ,r,)ER™ je rieSenie systému S, ak
ri,- -+, 7, po dosadeni x;=r; vyhovuje vSetkym rovniciam S. Vyriesit systém zna-
mené najst vietky jeho rieenia. Ak Ziadna n-tica z R™ nie je rieSenim systému S,
hovorime, Ze je neriesitelns.

Definicia 4.3. Dva systémy linedrnych rovnic st ekvivalentné ak maja ta ista
mnozinu rieSeni. VyrieSit dany linedrny systém potom znamend vyriesit hocijaky
s nim ekvivalentny systém.

Definicia 4.4. Fkvivalentné upravy su také, ktoré nemenia mnozinu rieSeni.

Veta 4.1. Nasledujiice upravy su ekvivalentné:

1.y Vzdjomnd vymena dvoch rovnic systému.

2.y Vynasobenie Iubovolnej rovnice v S prvkom a#0, a€R.
3.y Pripocitanie Iubovolnej rovnici v S inej rovnici v S.

Dokaz. trividlny.

Zdmer pri rieSent systému S. :
Pomocou ekvivalentnych tiprav ho prevedieme na jednoduchy ekvivalentny systém,
ktory uz nie je problém vyriesit.
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Gaussova elimina¢na metdéda.

Predpokladajme, Ze niektory z koeficientov pri x; v S je nenulovy. Mozeme
priamo predpokladat, ze a1170.
1.krok. Pomocou prvej rovnice vyluc¢ime z1 z druhej --- , s-tej rovnice. Takto:
k druhej rovnici prirdtame —(aj; az;)-nasobok prvej rovnice, --- atd, az k s-tej
rovnici prirdtame —(aﬁl as1)-nasobok prvej rovnice. Dostaneme ekvivalentny sys-
tém S* tvaru:

a1121+012T2+ - - - FaA1pTyp=b1

Q22T+ - - - +G2n Tr=b

Aso2To+ - - - +a/snxn:bn

V S* mézu byt rovnice s lavou aj pravou stranou nulovou, tie vynechdme. V S* sa
moze vyskytnit rovnica s lavou stranou nulovou, kym jej prava strana je nenulova.
Ak sa stane takéto nieco, potom systém S* a teda aj S je neriesitelny.

Po kone¢nom pocte opakovani prvého kroku dostaneme systém V tvaru:

criyi+cioyot - HCiYrt - FeinyYn=d1
CooYa+ - FCa Ykt - - FHCanyYn=dz

CrkYkt - TChnYn=dk

Kdewyy, -+ ,yn vznikli (prip. viacndsobnym) premenovanim nezndmych 1, -+ , Ty,
pritom k<s a k<n. NavySe c11#0, -+ ,¢;;#0, -+ , cprF#0.
Ak k=n, tak V vyzera takto:

cuyi+ - FeinyYn=d1
Co1Y2+ - Feanyn=ds

Cnfl,nflynfl+Cn71,nyn:dn71
Cnnyn:dn

a teda vyratame z poslednej rovnice y,=d,c;}, dosadime do predposlednej, z nej

vyratame y,_1,-- - atd, az napokon vy;. Vtedy V ma prdve jedno rieSenie. Spétnym
premenovanim dostaneme tu jedninu n-ticu v R, ktora je rieSenim systému S.
Ak k<n, takyi,-- -,y SU viazané rovnicami systému V , kym nezname yp41, - , Yn

povazujeme za tzv. volné nezndme (parametre), nadobtudaji lubovolné hodnoty
z R. Zo systému V potom postupne, pocniic od poslednej rovnice, vyratame
Yk, Yk—1," - ,Y1 pomocou parametrov Yipii,--- ,Yn. lakto dostaneme vsSeobecné
vyjadrenie rieSenia systému V pomocou parametrov yiii,:--- ,Yn. Spdtnym pre-
menovanim neznamych dostaneme z toho vSeobecné vyjadrenie riesenia systému S
pomocou n—k parametrov.
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V. LINEARNA ZAVISLOST A NEZAVISLOST VEKTOROV

Definicia 5.1. Nech V je vektorovy priestor nad R a nech 71,--- , T €V st dané
vektory. Hovorime, ze Z1, - - - , Tk sU linedrne zdvislé, ak 0 sa da vyjadrit ako netriv-
idlna linearna kombinacia vektorov #p,--- ,Tk. Vektory Zy,---,Zr sa nazyvaju

linedrne nezavislé ak nie su linedrne zavislé.

Veta 5.1. Nech ¥y, - , ¥} st navzajom rozne nenulové vektory vektorového pries-
toru V nad R, nech k > 2. Potom plati: Z1,--- , T} su linedrne zavislé < niektory
z nich je linedrna kombinacia ostatnych.

Dokaz.

Predpokladajme, Ze &, - - - , &j st linedrne zavislé. Teda existuja aq,--- , ax€R nie

k
vsetky nulové, také, ze 0 = E ;- Z;. Povedzme, Ze «; # 0, teda ay Z1+ - - - +a; T+
i=1

—+ .. +Ozkfk:0 7Z toho: aifi:—alfl— s 70[1‘_13_3'1‘_17061‘_._151'4_17 s 7Oék-.’fk, teda:
k
1 Z -
Ti=—0; Q;Tj.
j=1,5#i
Opacne: Predpokladajme, Ze napr. Z; je linearnou kombinéciou ostatnych.
k
Teda ;= E B;%; = BT+ +Bic1Ti—1—BiTi+Biv1Tigp1+ - - - 0T =0.
j=1.5#i
Teda Z1,--- ,Zx su linearne zavislé.

Veta 5.2. Nech V je vektorovy priestor nad R, nech {Zy,--- ,:Ek}CV—{ﬁ}. Po-

tom Ty, , Ty st linedrne zavislé prave vtedy, ked niektory z tychto vektorov je
linearnou kombinaciou tych, ¢o st napisané pred nim.

Dokaz.

Predpokladajme, ze &7, - - - , @ st linedrne zavislé. Teda existuju aq,- - , ap€R nie

k
vietky nulové také, ze 0= Z a;Z;. Nech j je najvyssi index taky, ze «;#0. Teda
i=1

J
OZZ a;T;. pricom a;7#0. Potom j>2, lebo keby j=1, tak by sme mali a;%;=0,

i=1
170, teda ;=0 —spor.
Opacne: Nech niektory z &, - - - , Zx je linedrnou kombinaciou tych, ¢o st napisané
pred nim. Potom je linedrnou kombinéciou aj ostatnych, lebo staci tie, ¢o su za
nim zobraf s koeficientom 0. Z Vety 5.1 s0 linedrne zévislé.

Dosledok. Nech V je vektorovy priestor nad R, nech {&y,--- ,Z;}CV — {0}. Po-
tom T, -+ , T st linedrne zavislé prave vtedy, ked existuje je{1,2,--- ,k}, Ze
[T, @p)=[T0, 0 B, T, 0, Tl

Dokaz. Zrejmy.

Poznamka. 7 dosledku vyplyva néavod na hladanie najkratsieho zépisu linedrneho
obalu. Ak Z,---, &) st linedrne nezavislé, tak zapis [Z1, - -, Zx] je najkratsi. Ak
1, , Tk su linedrne zavislé, tak niektory z nich je linedrnou kombinéciou ostat-
nych, ten vynechdme, pricom linedrny obal zvySnych: [Z,--- ,Zk], ak tie zvysné
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vektory su linedrne nezavislé, tak sme skoncili; ak st linearne zavislé tak opakujeme
predchédzajuci krok. Po kone¢nom poéte krokov dostaneme vyjadrenie [Z1, - - - , Z]
pomocou linedrne nezavislej podmnoziny mnoziny {&y, -, Zx}.

Steinitzova veta. Nech vektorovy priestor V # {0}, V = [#1,--- ,#}]. Nech
{%1,--+,y;}CV je linedrne nezavisla podmnozina. Potom platia:

1° j<k

2° Spomedzi &1, - , &) existuje k—j vektorov, ktoré spolu s ¢1,--- ,¥; generuji
cely priestor V.

Dokaz. Indukcia vzhladom na j.

1° Pre j=1: i je linedrne nezavisly prave vtedy, ked #;£0, pretoze V#{ﬁ},
méme j=1<k. Teda 1° plati. Mame V=[Zy, - ,Z}], ale 1€V tj. 71 je linedrna
kombinacia &, -+ , &k, teda mnozina {¢,Z1, - ,Zx} je linedrne zavisld. Potom
V=[#1, -, Zk|=[th, %1, - ,Zk|. Vektory #1,Z1, -+, T st linedrne zavislé, teda
niektory z nich je linedrna kombinécia tych, ¢o st napisané pred nim. ¥ to nemoze
byt, teda je to niektory spomedzi ¥1,---,T. Povedzme, Ze to je T,. Potom
V=[Z1, -, Zk]=[th, T1, -+ , Tr—1]- Tym sme overili, ze plati 2°.

2° Predpokladajme, Ze veta plati pre j=s—1. Nech teraz {#1, -, ¥} je lubovolna
linedrne nezavisld podmnozina vo V. Chceme ukézat, ze veta plati aj pre j=s.
Aj mnozina {¢, -+ ,¥s—1} je linedrne nezéavisld. Podla indukéného predpokladu
1° plati: s—1<k a 2° ¢1,--- ,¥s—1 sa daji k—(s—1) vektormi spomedzi #1,-- - , T
doplnit tak, Ze spolu generuju cely priestor V. Povedzme, Ze tie ”dopliujice”
vektory su fl, cee 7fk:—s+1- Teda Vz[fl, s ,fk]z[gl, s ,ig_l,fl, cee ;fk—s+1]-
Chceme ukéazat, ze s<k. Ukéazeme, ze s—1<k. Keby s—1=k tak by sme mali, ze
V=[Z1, -, Z]=[01, - ,Js—1]. Ale §s€V, teda by mal byt linedrnou kombinédciou
vektorov i1, -+ ,¥s—1, to je sSpor s tym, Ze ¥, - -,y su linedrne nezévislé. Dalej:
V=[Z1, -, Ze]=[t1, -, Usy T1y -+, Th—st1). Teraz ¢s€V, teda ¥ je linedrna kom-
binacia vektorov i1, - ,Ys—1, %1, "+ s Th—s+1. Leda i, -, Y5, L1, , Tr_sq1 SU
linearne zavislé. Z vety vieme, zZe niektory z nich je linearna kombinacia tych, ¢o st
pred nim. Nemoze to byt ziadny spomedzi 41, - - - , ¥s, lebo st linedrne nezavislé a
teda je to miektory spomedzi &1, -, T_s41, povedzme, Ze to je posledny Zj_sy1.
Ten mozeme vynechat a podla vety 5.2: V=[g, - ,¥s, T1, - ,Tp—s]. Teda aj 2°
je pre 41, -+, Ys v poriadku.

Baza a dimenzia.
V=[Z, - ,Zx]. Dé sakazdy vektorovy priestor napisat ako linedrny obal konec-
nej mnoziny vektorov? (tj. da sa generovat konenou mnozinou)

Odpoved: NIE.
> .

Priklad. Rt] vSetky polynémy. p(t)= Z a;t’ iba konecne vela a; je nenulovy. R[¢]
i=0

o0
je vektorovy priestor nad R. Stupen Z a;t' je s, ak s#£0, ale az11, - - - st nuly. Keby

=0
existovali polynémy qi(t),- -, qx(t)ER[t] také, ze R[t]=[q1(t), - ,qx(t)], tak po-
tom pre n>max{deg(qi(t)), - ,deg(qr(t))} by polyném t"¢R[t]. Teda vektorovy
priestor R[¢] sa ned4 generovat koneénou mnoZinou.
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Definicia 5.2. Vektorovy priestor V' sa nazyva konecne generovany ak existuje
koneénd mnozina {Z1,--,Zx}CV takd, ze V=[Z1, -+ ,Zk]. Ak V nie je koneéne
generovany, hovorime, Ze je nekonecne generovany.

Definicia 5.3. Nech V#{ﬁ} je konecéne generovany vektorovy priestor nad R.

Potom usporiadand mnoZzina (ds,--- ,dy) vektorov z V sa nazyva bdza priestoru
V, ak:

1°: V=[ay, - ,dk)-

2°: dy,- -+ ,dy su linearne nezavislé.

Veta 5.3. Kazdy konecne generovany vektorovy priestor V#{ﬁ} nad R ma bazu.

Dékaz. Kedze V je konecne generovany, existuje koneénd mnozina {Z1,--- ,Z,}CV,
pre ktora [%,---,Zp|=V. Ak ¥1,---,Z, st linedrne nezdvislé, tak tvoria bazu.
Ak nie, tak niektory z nich je linedarna kombinacia zvysnych, potom linedrny obal
zvy$nych =V. Ak tie zvySné st linedrne nezavislé, tak tieto tvoria bazu priestoru
V', ak s linearne zavislé, tak zas zopakujeme predchadzajiacu tvahu. Po kone¢nom

pocte krokov dostaneme podmnozinu mnoziny {Z1,--- ,Zp}, ktord uz je linearne
nezévisla a jej linedrny obal je celé V. T4 je baza priestoru V.
Priklad.

R™ mé bazu: [(1,0,---,0),(0,1,---,0),---,(0,0,---,1)] = [€1,€2,--- ,€,]. To je
tzv. Standardnd baza v R".

Veta 5.4. Vsetky bazy nenulového konecne generovaného vektorového priestoru
maju rovnaky pocet prvkov.

Dékaz. Nech (dy,--- ,ds), (51, e ,gq) st dve bazy takého vektorového priestoru.
Potom zo Steinitzovej vety: s<q a q<s a teda s=q.

Definicia 5.4. Pocet prvkov (Tubovolnej) bazy kone¢ne generovaného nenulového
vektorového priestoru V' nad R sa nazyva dimenzia priestoru V nad polom R, ozn:
dimg(V) (alebo dim(V') ak je R jasné z kontextu).

Dimenzia nulového priestoru je 0. dim({0})=0
Dimenzia priestoru, ktory je nekonecne generovany je oo. dim(V')=oc.

Priklady.

1. dimcC=1
2.  dimg C=2
3. dimR"=n

4. dimR[t]=cc

Veta 5.5. Kazdu linearne nezavisli mnozinu nenulového konecne generovaného
vektorového priestoru mézeme doplnit na jeho bazu.

Dékaz. Nech V je taky priestor, nech {#,--,¥;}CV je linedrne nezavisla. Kedze
V' je koneéne generovany, existuja &y,--- ,ZR€V. (&1, -+, &) je béza vo V. Zo
Steinitzovej vety : j<k,41,--- ,¥; sa daji doplnit k—j vektormi spomedzi &1, - - -,

T, tak, Ze tychto k vektorov gemeruje celé V. Tieto vektory vSsak musia byt aj
linedrne nezavislé. (Keby boli linedrne zavislé, tak by V mal bazu s nanajvys k—1
prvkami. Spor s dimenziou.) Teda %1, - -, ¥; spolu s tymi, dopliujiacimi vektormi
tvoria bazu priestoru V.
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Veta 5.6. Ak dim(V)=n, tak n+1 vektorov z V je vidy linedrne zgvislych.

Dokaz. dim(V)=n, teda vo V existuje n—prvkova baza (dy,--- ,d,). Keby lubovol-
né n+1-prvkovd mnozina linedrne nezéavisld, tak podla Steinitzovej vety by bolo
n+1<n, ¢o je spor.

Veta 5.7. Nech dim(V)=n. Potom:

1. usporiadand mnozina (dy,--- ,dy,) n vektorov z V je bdzou vo V préve vtedy,
ked {dy,--- ,dy} je linedrne nezavisla.

2. (dy,--- ,dy,) je bdzou vo V préave vtedy, ked V=[dy, - ,dy].

Dokaz.

1.=: jasné.

<: Predpokladajme, ze {@y, - ,d,} je linedrne nezdvisla. Podla vety 5.5 tuto
mnozinu mozeme doplnit n—n=0 vektormi z V' na bazu vo V. tjuz (dy, - ,d,) je
baza.

2.=: jasné

«: Predpokladajme, ze V=[ay, - ,d,]. Chceme ukdzat, Ze dy,---,d, st aj

linearne nezavislé. Keby boli linedrne zavislé, postupnym vynechavanim tych, ktoré
st linearnou kombinéciou zvysnych by sme dostali bazu, ktora by mala nanajvys
n—1 prvkov. Spor s tym, Ze dim(V)=n. Teda vSetky bazy maji n prvkov.

Veta 5.8 a Definicia 5.5. Nech V7é{6} je konecne generovany vektorovy priestor
nad R. Potom mnozina (dy,--- ,dy,) je bdzou vo V préve vtedy, ked kazdy vektor
7z V sa da jedinym spdsobom vyjadrit ako linedrna kombindcia vektorov dy, - - ,dy.
Ak (dy,--- ,dy,) je bdza vo V a pre ZEV mdme F=x1d1+ - - +2,0,. Tak uspo-
riadand n-tica (r1,--- ,,)ER™ sa nazyva n-tica suradnic vektora & vzhladom na
bazu (dy,- -+ ,dy).

Dokaz.

[= ] Predpokladajme, ze (@, -- ,d,) je baza v priestore V. Teda V=[dy,-- ,d,]
tj. pre lubovolny vektor Z€V  3xq,--- ,z,€R také, ze T=x1d1+ - - +x,d,. Keby
T=xyd1+ - - +a],dy, bolo iné také vyjadrenie, tak x1d1+ - - - +rpdp=aid1+ -+
2l dy & (r1—2h)@+ - - - +(zp—2),)@,=0. Ale dy,--- ,d@, tvoria bézu, st aj lineér-
ne nezéwislé preto x1—x4=0,- - ,z,—2,=0 & x;=z}. ¢smd.

: Predpokladajme, ze kazdy vektor z V sa da Jedlnym sposobom vyjadrit ako
hnearna kombindcia dy,- - ,d,. Teda VC|dy,--- ,d,]. ESte ukdzeme, ze al, s Ly
st linedrne nezévislé. Nech aqdi+ - +anan—0. Tiez: 0dq1+ - +0an—0, kedze
vyjadrenie 0 ako linedrna kombinécia vektorov di,---,d, je podla predpokladu
jediné, tak mame: a;="---=a,,=0.
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VI. LINEARNE A DIREKTNE SUCTY
VEKTOROVYCH PRIESTOROV

Ak S, T st vektorové podpriestory vektorového priestoru V', tak SUT nemusi byt
vektorovy podpriestor vo V. Aky je najmensi podpriestor vo V, obsahujiaci SUT?

Veta 6.1 a Definicia 6.1. Nech S, TCV st vektorové podpriestory. Potom

{54teV, 5€S, teT} je vektorovy podpriestor vo V, nazyva sa linedrny sucet S

aT, ozn. S+T.

Dékaz. 0€{5+teV,3eS, teT}+£0, lebo 0+0=0. Ak &, je{5+t,5cS, 1T}, tak

T=51411, J=52+12, potom aZ+Bj=a(51+t1)+8(52a+t2)= (051 +852) + (at1+6t2),
—_——— ———

€s eT
teda ad+pye{s+t,s€S,teT}.
Tvrdenie. S+7T je najmensi podpriestor obsahujici SUT .

Lema 6.1. Ak P je vektorovy podpriestor konecne generovaného vektorového
priestoru V, tak aj P je konecne generovany.

Dokaz. : du.

Veta 6.2. Predpokladajme, ze V je konecne generovany vektorovy priestor nad R,
nech S,T st jeho podpriestory. Potom dim(S+T)=dim(S)+ dim(T")— dim(SNT).

Dokaz.
1. Predpokladajme, Ze SﬂT:{ﬁ}. Nech #y,---,%s je baza v S, (41, ,¥:) je
baza v T. Potom S+T=[#1, - ,Zs, Y1, ,Yt). NavySe (1, -+ ,Zs, U1, " ,Jt) j€

baza v S+T. Sta¢i ukdzat ich linedrna nezavislost. Keby boli linedrne zavislé,
potom jeden z nich by bol linedrna kombinaciou tych, ¢o st pred nim. Nemobze
byt ziadny z %1, -, s, lebo tie tvoria bazu v S. Teda musi to byt dajaké ;:
Yi=a1T1+ -+ +asZs+bigi+ - +bi1yi—1, z toho Yi—biyi— - —bi—1¥i—1 =01 T+

#0,eTNS={0}, spor
+ - o Zs. dim(S+T)=s+t=dim(S)+ dim(T").
2. SﬁT#{ﬁ}: Nech (z1,---,Z.) je badza v .SNT. SNT je podpriestor v S aj v T

Podla Steinitzovej vety dopltime (21, - , Z.) na bézu (21, , 2., &1, -+ ,Ts) v S
resp. na bazu (Z1,- -, Zr, U1, ,¥¢) v T. Teda dim(S)=r+s, dim(7T)=r+t. Mame
S+T:[21a T a'g’!‘aflv o 7537:'-71’ o 7:’;75]' NaVyée 21, e 727‘af17 e 7557 ;1717 e 527t

st linedrne nezavislé, teda tvoria bazu v S+7. Nech by boli linedrne zavislé.
Teda niektory je linedrna kombindcia tych, ¢o st pred nim. Nemoze to byt Zi-
adny spomedzi 71, - , 2., T1, - ,Ts lebo tvoria bazu v S. Teda existuje i:
(%) Gi=viAt Ay star@it o FasTs it HBim1giot
Z toho y;—Pryi— - —ficifici=mZt o H ot os®s €SNT =
€T €s

= N2+ YAt Tt FaZs = 05+ 40,2 & (n—01) A+ (v —
—0p)Zp Q1T+ - - - +asZs=0. Z toho, ze 24, -+, Zp,T1, - , Ts sU linedrne nezavislé
mame, Ze ay=---=as=0. Teda z (x): §i=ynzZ1+ - +VZ+0vi+ - +8i—1¥i-1
sSpor s tymv ze (515 e 757"ag17 e 7271‘) je béza. Tedanaozaj (zla e 727'73]15 e ag‘tvfla

-, @) je baza v S+T. Teda dim(S+7T) = r+s+t = dim(S) +r+t—r = dim(S5)+
+dim(7")— dim(SNT).
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Definicia 6.2. Ak S, T st vektorové podpriestory priestoru V a SﬁT:{ﬁ}, tak
vektorovy podpriestor S+7 sa nazyva direktny sucet vektorovych podpriestorov S
aT. ozn. SPT.

Dosledok formuly dimenzie: Ak S, T st podpriestory konecne generovaného vek-
torového priestoru V a SNT={0}, tak dim(S®T)=dim(S)+ dim(T). Teraz vieme,
ze ak (T1, - ,%s) jebdzav S, a (g1, -+ ,y:) je bdzav T, tak (Z1, -, Zs,J1, " , )
je baza pre (S@T).

Veta 6.3. Nech S, T, P su vektorové podpriestory priestoru V. Potom P je direkt-
nym sictom S a T (P=S®T) prédve vtedy, ked kazdy vektor z P sa da jedinym
sposobom vyjadrit ako sucet vektora z S a vektora z T.

Dokaz.
[= | Predpokladajme, ze P=S®T. Potom je samozrejme pravda, ze kazdy vektor
z P je sucet vektora z S a vektora z T'. Nech by existovali dve takéto vyjadrenia
TEP : T=5+1,=5y+t, 51,5268, 11,t,€T. Potom 5y—5 =1 —toc(SNT)={0} =
§1 :gg a 52{2
[< ] Predpokladajme, Ze kazdy vektor z P mé jediné vyjadrenie v tvare ”vektor
z S + vektor z T”. Teda P=S+T. Teraz nech aeSNT. Potom d=_a + 0 =
~ O~

€s eT

\6/_/ + & , kedZe takéto vyjadrenie je jediné, mame G=0. Dokazali sme, Ze

€s €T
SNT={0}. Vcelku: P=S&T.

VII. MATICE

Definicia 7.1. Matica typu kxs nad polom R je tabulka (obdiznikova), v ktorej
k-s prvkov z R rozmiestiiujeme do k riadkov a s stipcov. Veobecny zapis:

ain - Qs
az1 -+ A2
ag1 v Qks

a;; €R, i—riadkovy index, j—stlpcovy index. Matice oznac¢ujeme: A, B,---. Struc-

nejsi veobecny zapis: A=(a;;)k,s alebo len A=(a;;) ak k,s je jasné z kontextu.
Ak A=(a;j)k,s kde k=s, tak A sa vola Stvorcova matica stupiia k.
Jednotkova matica stupna n:

10 0
0 1 0
L=|. . :
0 0 1

Definicia 7.2. Dve matice toho istého typu nad tym istym polom sa rovnaji, ak na
vSetkych zodpovedajtcich miestach maji rovnaké prvky. A=(a;;)k,s, B=(byv)m,n
obidve nad R. A=B znamen4, ze k=m, s=n, a;;=b;; pre vsetky i=1,--- ,k a
j=1,--- s.

Oznacenie. Mnozina vSetkych matic typu kxs nad R oznacime: My, 4(R).



LINEARNA ALGEBRA 21

Definicia 7.3. Ak A, BeM,, (R), tak definujeme ich stiéet ako maticu, ktora ozn.
A+B:; je typu kxs; jej prvok i—teho riadku a j—teho stlpca je stcet aij+bi;.

Veta 7.1. (My, s, +) je komutativna grupa.

Dokaz. Asociativnost operacie + vyplyva z asociativnosti operacie + v poli R.
Neutralny prvok je matica, ktorej vSetky prvky si 0€R tj. tzv. nulovd matica.
Inverzny prvok k matici A=(a;;) je matica —A=(—a;;). Komutativnost vyplyva
z komutativnosti operacie + v poli R .

Definicia 7.4. Pre a€R, A=(a;;)€My, s(R) definujme a-nidsobok matice A ako
maticu, ktort ozna¢ime aA=(aa;;)eMy s(R)

Veta 7.2. My, ;(R) s vyssie definovanym sc¢itovanim resp. ndsobenim je vektorovy
priestor nad R. a(A+B)=a((ai;)+(bij))=(0(ai;))+(a (b)) =a(ai; ) +a(b).

Tvrdenie 7.1. Ak definujeme E;;€My, ;(R) ako maticu, ktord mé v i-tom ri-
adku a j-tom stlpci 1 a vietky ostatné prvky nulové, tak 9y s(R) je generovany
takymito maticami E;;, i=1,--- ,k j=1,--- ,s. Navyse E;;, i=1,--- ,k j=1,--- s
st linedrne nezdvislé a teda tvoria bazu priestoru My, s(R). Z toho: dim(My, (R))=
=k-s.

a1 - ais
Dokaz. Nech A:( )EDJT;G7S(R). Potom A= Z a;;E;;. Teda E;; ge-

ap1 v G 1<i<k
1<j<s
11 " (1s 0o -0
nerujﬁ mk7g(R) Nech ( ) = E OéUE,Lj: ( ) a teda ay1=---=
Qg1 Qks 1<i<k 0 -0
1<j<s

=Oks = 0.

Definicia 7.5. Nech A=(a;;) je matica typu 9 s(R). Riadky matice A chapme
teraz ako prvky z R®. Oznacime S4 vektorovy podpriestor R°® generovany riadkami
matice A. Sa=[(ai1, -+ ,a15), "+, (a1, -, ags)]-

Definicia 7.6. Elementarna riadkovd operdcia na matici je kazda z tychto tprav
(ERO):

1. Vzajomna vymena dvoch riadkov v matici.

2. Vynésobenie Tubovolného riadku nenulovym skaldrom.

3. Priratanie Tubovolného nésobku riadku k inému riadku.

Definicia 7.7. Nech A,BeMy, ;(R). Hovorime, Ze matica B je riadkovo ekviva-
lentnd s A (piSeme A~B) ak B vznikne z A koneénym poc¢tom ERO.

Veta 7.3. Reldcia riadkovej ekvivalentnosti ~ je relacia ekvivalencie na My, s(R).

Dokaz.

1.Reflexivnost: A=A trividlne.

2.Symetrickost: Nech A~B. Kazdd ERO sa d4 vratif naspit (md inverzni). BrA.
3. Tranzitivnost: A~B,B~C = A~C z definicie jasné.
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Veta 7.4. Nech A,BeMy, ;(R). Ak AxB tak Sy=Sp.

Dokaz. Staci dokazat pre pripad, Ze matica B vznikla z A vykonanim prave jedinej
ERO.

1.Nech B vznikla z A vzdjomnou vymenou i-teho a j-teho riadku (i<j). Riadky
v A oznaCme 21, -, Z.

Teda SB:[fl, s ,fifl, fj,fiJrl, s 7fj717fi7fj+l, s ,fk]. Je jasné, Ze je to to
isté ako linedrny obal [Zy,- - , Z].

2. Nech B vznikla z A tak, Ze sme i-ty riadok #; vynasobili a0, a€R. Teda
Sp=[Z1, - ,aZ;, - ,Zk|. To je to isté ako [¥1, -, &, -+, Tk]=54.

3. B vznikla z A pripo¢itanim a-ndsobok prvého riadku k druhému. tj. ad;+s.
Teda SBZ[fl, ax1+T2, T3, - ,fk]. Ale [fh QT1 + To, T3, - ,fk]Z[fl, e ,fk] =

=S4. Naozaj: inklizia C je zrejma. Majme Iubovolnt linedrnu kombinéciu:
a1+ - Fap =1 T+ (Tot+afl) —aaa®1+az@s+ - - - +ap@r=(1 —aa) T+
+042(:172+0495'1)+a39?3+ s +Oékfk€[fl, 52+afl, s ,fk].

Otdzka. Plati aj obréatené tvrdenie vo vete 7.4 7
Odpoved: Ano.

Definicia 7.8. Hovorime, ze matica A=(a;;)€My s(R)

je v redukovanom trojuholnikovom tvare, ak:

1. Prvy nenulovy prvok (tzv. veduci prvok) kazdého nenulového riadku je 1.

2. V stlpci obsahujiicom vediici prvok niektorého riadku st ostatné prvky nulové.
3. Ak a;; a apq su vedice prvky i-teho a p-teho riadku a pritom i<p, tak potom
7<q.

4. Nulové riadky (ak existuji) st pod vSetkymi nenulovymi.

Priklad. a1
1. Matica (0 10 0) nie je v RTM (redukovana trojuholnikovd matica).
0010
1001
2.Matica (0 10 0) je v RTM.
0010

Pozndmka. Ak A splia len podmienky 3.,4. tak je to matica v tzv. trojuhol-
nikovom tvare. Redukovand trojuholnikova matica typu kxk je bud nulova, alebo
ak neobsahuje nulové riadky, tak je jednotkova matica Ij.

Veta 7.5. Nech AeMy, ;(R) je RTM. Potom jej nenulové riadky su linedrne neza-
vislé. (plati to uz o trojuholnikovych maticiach).

Dokaz. Nech A je RTM a nech jej nenulové riadky su &7, - - - , Z.€R®. Veduce prvky
tychto riadkov nech st v stipcoch t;<to<-- - <t,. Nech by boli Zy,--- ,#, linedrne
zavislé. Teda existuje i€{Z1, - , &} : Ti=on @1+ +a;—1T;—1. Ale t;-t4 zlozka
v Z; je 1, kym &1, .-+ ,Z;_1 maja t;-t0 zlozku nulovi. Teda m4 platift 1=0 spor.

Priklad.

1 1 2 3
11 -1 1 |=|0 -1 -4 2 |=(0 1 4 =-2|=
2 -1 1 0 0 -5 -5 2 0 0
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123 -1 100 1
~[0 1 4 —2|=~|010 2
8
00 1 —g 001 —%

Veta 7.6. Kazda matica je riadkovo ekvivalentna s nejakou RTM-ou.

Dokaz. Indukcia vzhladom na podet riadkov v matici.

1° Ak A ma4 jeden riadok, tak ak je nulovy tak OK.

Ked nenulovy: (0,---,0,¢#0,---)=(0,---,0,1,---) RTM.

2° Predpokladajme, Ze veta plati pre vSetky matice, ktoré maju k riadkov. Nech A
je matica, ktord ma k+1 riadkov. Ak A je nulovi, tak OK. Nech A#0. Nech jej prvy

0 - 0
R S 0 - bip

nenulovy stipec je p-ty. A= | 0 -« ai,#0 - |. Je jasné, ze A~B= <0 U > ~

01 0

B

0 -0 capy1 - cas 2t c2s
~.. . . . . =C. Ozn. C'= . Matica C’ ma

0 -~ 0 Chilpt1 = Chil,s Chtlptl © Chtls

iba k riadkov, koneénym poc¢tom ERO sa upravi na RTM ozn. ju D’. Teda:
0 -+ 01dipt1 di,pt2 - dis—1 dis
0 - OOd/2,p+1 d/2.p+2 d/2,sfl da,
0 00 0 dy, o dy, , dj

D=

000 0 0 o dj .y di,
!
0--00 O 0 0 diy,

Definicia 7.9. Nech A€My, ;(R). Potom éislo dim(S4) sa nazyva hodnost matice
A, ozn. h(A)=dim(S,).

Plati. : h(A) = pocet linedrne nezavislych riadkov matice A.
Tvrdenie 7.2. Ak A~B, tak h(A)=h(B).

Dokaz. KedZe kazd(i maticu A moéZeme koneénym pocétom ERO upravit na RTM
A’~A, tak h(A)=h(A’)= pocet nenulovych riadkov v A’.

Priklad. Vypocet hodnosti:

LAa=(110)=(422) na)=2

2. B= (;jg) ~ (égg) h(B)=1.

Veta 7.7. Nech A, BEM, ,(R) sit RTM. Ak S4=Sp, tak A=B.

Dékaz. Mame h(A)=h(B)=r. Nech @,---,d, resp. by,--- b, st nenulové ri-
adky v A resp. v B. Nech teraz s;<s3<---<s, st stlpcové indexy vedicich
prvkov riadkov @y, --- , @, , podobne nech t; <ty<--- <t, st stipcové indexy vedi-

cich prvkov riadkov 517 cee ,I;r. Kedze S4=Sp, mame [dy,- - ,&’T}:[l_ﬁ, e j)}]ERS.
Kazdé b; ma jediné vyjadrenie v tvare gj:aldl—i— -+ 4qa.. Pre Ej nech ¢ je na-
jmensie také, ze o, #0. Teda gjzaqﬁq—&— .-+ +a,d,.. b; ma prva nenulovi zlozku
(t;)-ta. Vektor vpravo mé prva nenulova zlozku (=cay) s4-t0. Z rovnosti dosta-
vame, ze l=0g,tj=54. Pre s1<so< - <sp,t1<t2<---<t, méme, Ze kazdé s; sa
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rovna dakému t¢,. To je mozné iba tak, ze si=t1,---,s,=t,. Teda mame, ze
Ej:aq+aq+16q+1+ --+4apd,. V RTM st v stlpci obsahujicom vedici prvok ri-
adku ostatné prvky 0, preto: 1l-agy1 = 0 = o441 = 0. Podobne pre ostatné, tj.
Ogy2="--=0a,=0. Teda pre Vg : 5q:&'q. Zéver A=B.

Dosledok. Kazda matica je riadkovo ekvivalentna s jedinou RTM.

Dékaz. Nech A je lubovolnd matica. Vieme, Ze existuje RTM A’: A~A’. Nech by
aj B’ bola RTM, B’~A. Potom A’~A~DB’teda A'’~B’, teda Sy =Sp/. Z pred-
chédzajucej vety vieme, ze A’'=B’.

Veta 7.8. Nech A,BeM;, (R) su lubovolné. Potom plati: AxB < S4=S5.

Dokaz.

=:Veta 7.7

<: Predpokladajme, ze Sp=Sp. Nech A’ je RTM také, ze A~A’. Nech B’ je
RTM takd, ze B~B’. Potom S4=S4=Sg=Sp/. Teda Sy=Sg. Ale A’ B’ su
RTM, teda z Vety 7.7: A’=B’. AxA’=B'~B, teda A~B.

Tvrdenie 7.4. Nech A,BeMy, ((R). Potom A~B < A,B sa daju koneénym
poc¢tom ERO upravit na ta isttt RTM.

Dokaz.

=: Predpokladajme, Zze A~B. Nech A’ je RTM, B’ je RTM, A~A’ a Bx~B'.
Potom Sy =54=S=Sp:. Kedze A’, B’ st RTM, mame ze A'=B’.

<: Predpokladajme, ze A, B: A~A’, B~A'kde A’ je RTM. Z toho: A~A'~B &
A~B.

Priklad. Rozhodnite, ¢i redlne matice (1 f) a (1 _11) su riadkovo ekvivalentné.

12 (12) (10 1-1),_(1-1) __(1-1)_(10 L .
(11)~(01)~(01>. (1 1 )~<072>~(0 1 )~<01). Su riadkovo ekviva-

lentné.

VIII. LINEARNE ZOBRAZENIE

Definicia 8.1.

Nech V, W st vektorové priestory nad polom R. Potom linedrne zobrazenie z V
do W je zobrazenie f : V—W také, Ze f(aZ+p0y)=af(Z)+0f(¥) pre Va, BER a
VI, yeV.

Tvrdenie 8.1. Ak f: V—W je linedrne zobrazenie, tak f(0)=0.

Dékaz. f(0)=f(0+0)=f(0)+£(0) z toho: f(0)=0.

Priklady.

1. f:R2=R3, f(a,b)=(2a + b,a + b — 1,a + 2b) nie je linedrne zobrazenie, lebo
F(8)=£(0,0)=(0, 1,0)0.

2. pp : R3=R, f(x1, 72, 23)=21 je linedrne zobrazenie. (Nazyva sa projekcia na
prvi zlozku). pi(a(z1, ze, 23)+B(y1, Y2, y3))=p1(az1+0y1, axe+ By, axs+Bys)=
=axy+By1=ap1 (21, T2, 23)+0p1 (Y1, Y2, Y3)-

3. O : VoW, O(0)=0€W pre vietky v€V je linedrne zobrazenie.

4. idy : V=V, idy (Z)== je linedrne zobrazenie.

5. g : R2=R2, g(x,y)=(2z,3x — y) je linedrne zobrazenie.
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Veta 8.1. Nech f: V—W je linedrne zobrazenie.

1. Ak SCV je vektorovy podpriestor, tak f(S)CW je vektorovy podpriestor vo W.
(Specialne: Im(f)=f(V) je vektorovy podpriestor vo W.)

2. Ak PCW je vektorovy podpriestor vo W, tak jeho vzor pri zobrazeni f je vek-
torovy podpriestor. tj.: f~1(P)={aeV, f(a)eP}CV.

(Spec. f~1({0})={ZeV, f(Z)=0}=Ker(f), tj. jadro linedrneho zobrazenia je vek-
torovy podpriestor vo V.)

Dokaz.
1. f(0)=0ef(S) = f(S)#0. Kritérium vektorového podpriestoru: Nech @, be f(S),
a, BER cheeme ukdzat, ze ad+pbe f(S). Mame a=f(Z),b=f(y) pre ddke Z,geS.
Potom f(ad+pb)=af(Z)+0f(§)=ad+pb. A teda ad+pbef(S). Ukédzali sme, Ze
——
es

f(S) je vektorovy podpriestor.
2. 0€P, pricom f(0)=0€P = 0cf~1(P), preto f~*(P)#0. Pouzijeme kritérium
vektorového podpriestoru: Nech Z,7 € f~1(P), o, 3 € R. Chceme ukazat, ze
af+pye f~1(P). Ratajme: f(af+p7)=a f(F)+3 f(¥), preto af+Byef~1(P).

- ~~

ep ep

Veta 8.2. Linedrne zobrazenie f : V—W je injektivne < Ker(f)={0}. f je
surjektivne < Im(f)=W.

Dokaz. Podobne ako pre grupy.

Definicia 8.2. Linedrne zobrazenie f : V—W sa nazyva linedrny izomorfizmus ak
f je bijektivne. Ak pre dané vektorovy priestory V,W existuje linedrny izomor-
fizmus g : V—W, tak hovorime, Ze vektorovy priestor V je lineadrne izomorfny
s vektorovym priestorom W. Piseme: V=W

Veta 8.3. Ak f: V—W je linearny izomorfizmus, tak aj f~! : W—V je linedrny
izomorfizmus.

Dékaz. Vieme, 7ze f~! : W—V existuje a je bijekcia. Chceme ukazaf, Ze je aj
linedrne. Nech @, be W, o, SER. Nech Z€V je ten jediny, pre ktory f(#)=d, podobne
yeV jediny, pre ktory f(7)=b. Potom: f(aZ+py)=af(Z)+Lf(y)=ad+ Sb. Z toho:
fHaa+pb)=af~(@)+8f1(b).

Poznamka. Teda ak V=W, tak aj W=V,

Veta 8.4. Ak f: V—W, g: W—S st linedrna zobrazenia, tak aj gof : V—S je
linedrne zobrazenie. Specialne zloZenie dvoch linedrnych izomorfizmov je linedrny
izomorfizmus.

Dékaz. gof(ai+By)=g(af(E)+6f(§))=a-gof(Z)+5-g0f(¥)-

Priklad. V' =vektorovy priestor orientovanych tseCiek v Oy, so zaciatkom v O.
f: V—R2 f(orient. usecky)=(1.str. konc.bodu, 2.stir.konc. bodu). f: V—R? je
linedrny izomorfizmus.

Nech S je vektorovy podpriestor priestoru V(R). Uz vieme, ze V/S je komu-
tativna grupa, s operaciou + : [Z]+[¢]=[Z+y]. Definujme zobrazenie RxV/S—V/S,
(o, [#])—a]Z], kde a[ZF]=[aZ]. Je to dobra definicia, lebo ak [Z]=[y], tak vieme, Ze
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Z—yeS. Potom, kedZe S je vektorovy podpriestor, mame pre VaeR: «a(Z—7y) =
aZ—ayeS. Teda [aZ] = [ay]. Potom V/S je vektorovy podpriestor nad R. (napr.

overme a([#]-+[7])=al#+7]=la(#+7)]|=[ai-+ag]=[ad]+ag]=a[#]+af7], podobne
sa overia ostatné axiémy vektorovy podpriestoru.)

Priklady.

1. V/vV={0}

2. Nech f : V—>W je linedrne zobrazenie. Vieme, ze Ker(f) je vektorovy pod-
priestor vo V', méme priestor V/Ker(f).

Definicia 8.3. Ak V je vektorovy priestor nad R a SCV je vektorovy podpriestor,
tak V/S sa nazyva faktorovy vektorovy priestor.

Veta 8.5. Nech V je konecne generovany vektorovy priestor nad R a nech SCV
je vektorovy podpriestor. Potom dim(V/S)=dim(V)— dim(S).

Dokaz. . .
Nech (dy,---,d,) je baza v S. Dopliime ju na bazu (di,- - ,dpr,bry1,- - ,bn)
priestoru V. Potom vektorovy priestor V/S je generovany vektormi [[ETH], cee
[b,]]. Pre Tubovolny [Z]€V/S. Mame ZeV, teda F=aydy+ - - -+ +Bri1brp1+
+ -+ +0uby pre oz,-,ﬂi € R. Z toho: [Z] = [omfﬂ—&— o+ B braa ]+ F

H[Bubn] = a1[@1] + - + (@] + Brsr [Bria] + -+ + Balbnl, teda 0 € V/S, (7] =
=0r41[b T+1]—|— +ﬁn[ bn]. Teda V/SC[[bry1],-- - , [bn]], obratens inkltzia je zrejma.
Navyse [le] -, [ba]€V/S st linearne nezévislé, lebo nech 6r+1[ byia]+ - -t
+0,[bp]= OeV/S Potom [5r+1br+1+ - +6,b,]=]0], teda 5T+1br+1+ - +0nbn€S.
Potom 5T+1br+1+ -+, bn 'ylal—f— —|—'yrar, z toho: 5T+1br+1—|— -+, b —y1G1—
— =Y lr= =0€V. Aledy, - ,ayr, br+1, . b st nezavislé, preto §,1="---=0,=0.
Ukazali sme, ze ([byi1],- - , [gn}) je baza vo V/S, teda dim(V/S)=n—r

Veta o faktorovom izomorfizme. Nech f : V—W je surjektivne linearne zob-
razenie. Potom V/Ker(f)=W.

Dékaz. Definujme ¢ : V/Ker(f)—=W, ¢o([Z])=f(Z). Z vety o faktorovom izomor-
fizme pre grupy vieme, ze ¢ je dobre definovany homomorfizmus abelovskych grip;
tiez @ je bijkecia. Aby sme ukézali, Ze ¢ je aj linedrny izomorfizmus, staci ukazat, ze
p([Z]) pre a€R, [F]eV/Ker(f). Takto: p(a[Z])=p([aZ])=f(al)=af(L)=ap([Z]).
Zistili sme, ze ¢ je linedrny izomorfizmus medzi V/Ker(f)=W.

Priklad. py : R — R, py(x1,72,23) = 71 je linedrne zobrazenie, je aj surjektivne.
Ker(p1) = {(z1,72,73) € R®, 21 = 0} = {(0, 22, 23), 72, 73 € R}. Z vety:

R?’/{(O, X9, .Tg)GRS, xa, .TgeR}gR

Veta 8.6. (zakladna veta o linedrnych zobrazeniach) Nech V je konecne gene-

rovany vektorovy priestor nad polom R a nech W je vektorovy priestor nad R.
Potom existuje jediné linedrne zobrazenie f : V—W také, ze f zobrazi bazové

vektory dy,--- ,dy pr1estoru V' na predpisané obrazy by,--- ,b,€W, teda také, ze
fl@y)=b1,---, f(d,)=b,. Zobrazenie f funguje takto: ak T=a1d1+ - - +a,d,, tak
f(f):a1b1+ +05nbn

Dokaz.

Jednoznacnost: Ak také f existuje, tak jediné: nech by f,g : V=W boli dve
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také linedrne zobrazenia. Teda f(c'il):l_;l, e ,f(é’n)zgn,g(&'l):gl, e ,g(&'n):gn.
Lubovolny z€V mé jednoznacné vyjadrenie: F=aydi+ -+ +ay,dy,. Z linedrnosti f
ag: f(@)=f(ardri+--- +Oén5n):06151+ e +angn a g(T)=g(a1a1+ - - - +andy)=
:all;ﬁ— . +oznl;n. Teda f=g.

Existencia: Videli sme, Ze ak také f existuje, tak pre VxeV, ¥=a1d1+ - - +and,
musi byt f(a_c'):a151+ e +an5n. Teda definujme f : V—W takto: f(f)=a151+
RER +an5n, ak ¥=aqdi+ - - - +a,d,. Potom f(&l):gl, _ ,f(d'n):gn; treba uZ len
overit linedrnost f : &, j€V, «a, BER, fia151+~--tand’n,zj'zﬁld'1+-~-+ﬂn&'n =
J(aZ+By)=f(a(ardr+ - +a26n)+6(51b1+ e +ann):f(£aa1+ﬁﬁl)§1+ st
+Haan+B6,)dn)=(ar1+681)bi+ - - - +(aan+68,)bp=a(aibi+ - - - +anby )+

+B(Brbr+ - - +Bubn)=af () +BF (7).
Linearne zobrazenia R* — R*, kde R je pole.

Definicia 8.4. Nech f:RF—R® je linearne zobrazenie. Zo zakladnej vety o li-
nearnych zobrazeniach vieme, Ze f je Uplne uréené obrazmi bazovych vektorov.
Specialne: obrazmi §tandardnych bazovych vektorov €y, - - - ,€,€R*. Ak tieto obra-
zy (tj. f(€1), -, f(€,)€ER?) zapiSeme (poradie zachovame) do matice, tak dostane-
me maticu typu k& x s nad polom R. Ozn..Mj;. Matica M sa nazyva matica
linedrneho zobrazenia f. f(1,0,---,0)=(a11, - ,a15)€R%,---, f(0,0,--- ,1)=

aiil - Q1s
=(ak1, -+, ars) = My= ( S > €My s(R).

Akl v ks

. 1,0 21

Priklad. g:R?*—R?, g(z1,22)=(221—22, x1+72), My= (ggo;li) = (_1 1).
Definicia 8.5. Nech je dand matica A€y, ;(R). Potom zo zakladnej vety o lineér-
nych zobrazeniach vieme, Ze existuje jediné zobrazenie R¥— R* ktoré &; € R* zobrazi
na prvy riadok matice A, atd, €, na k-ty riadok matice A. Toto linearne zobrazenie
oznac¢ime f4 : R¥—R*; nazyva sa linedrne zobrazenie patriace k matici A.

Priklad.
B=(12) eMyy(B), g5 - B2EY, g5(10)=(1,~1,2), g(0.1)=(1.1,3)

gB(xla 2132):93((1, 0)1‘1+(07 1)1‘2):IE1(1, 7]-7 2)+$2(1, ]-7 3):(I1+1‘2, —T1+T2, 2x1+
+3z3). Je jasné: My, =B

Veta 8.7. Priradenie matice linedrnemu zobrazeniu RF—R® definuje bijektivnu
korespondenciu medzi mnozinou vsetkych linearnych zobrazeni R*— R*® a mnozinou
matic My, o(R).

Dokaz. Jasné!

Nech f : R2—-R?, g : R2—-R? st linearne zobrazenia. Potom gof : R2—R3 je
tiez linedrne zobrazenie. Nech M ;= (au am) a My= (b“ b12 blB). Aky je vztah

az1 asz ba1 b2z bas
medzi Mg, s na jednej strane a maticami My, My na druhej strane?
Ratame: f(]., 0):((111, alg), f(O, 1):(0,217 (122), g(l, O)Z(bll, b12, blg), g(O, 1):(b21,
baa, ba3), gof(1,0) = g(a11(1,0)+ai2(1,0)) = a11(b11, bi2, biz)+a12(bay, baa, boz) =
=(a11b11+a12b21, a11bi2+a12ba2, a11b13+a12b23), gof(0,1)=g(a21(0,1)+a22(0,1))=
= =(ag1b11+a22b21, a21b12+a22baa, a21b13+agebaz), Mgor=M;-M,.
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Tvrdenie 8.2. Ak f:R*—R? je linedrne zobrazenie s maticou M y=(a;;)€My, s(R)
a g : R°—R' je linedrne zobrazenie s maticou My=(b;;)€M, (R), tak linedrne
zobrazenie gof : RF—R' md maticu Myo;€IMy, +(R), ktorej prvok i-teho riadku
a j-teho stlpca dostaneme ako skaldrny stcin i-teho riadku z My a j-teho stlpca
z M.

Definicia 8.6. Nech AeMy, ,(R), BEM, ,(R); potom sicin matic A a B ozn. AB
sa definuje takto: AB=C=(c;;)€Ms+(R), kde c;j=a;1b1;+ - - - +a;sbs;.

Tvrdenie 8.3. Ak f: R*—R?® je linedrne zobrazenie s maticou My ag: R°*—R!
Jje linedrne zobrazenie s maticou My, tak Mgy, ;=M;-M,

Priklad. L
G (0)=0)

Niektoré vlastnosti Sfléi{l(l]l m%tic.

01 - 0
1 A€Mys(R) L= ... . |€Mun(R) = L A=A=AL kde I,=M,z-).

00 - 1
2. A€M, ., BEM, ,, CEM, . potom (AB)C=A(BC). Dokaz: A=M;,, B=M;,,
C=Mj,. Potom A(BC)=Mp, (M, M. )=Mp,(Mfcors)=M(scofmofa=
:Mfc(fBOfA):MfBOfAMfc:<MfAMfB)Mfc-

3. distributivita: A(B4+C)=AB+AC, ked to ma zmysel, (A+B)C=AC+BC.

4. AB#BA napr.: (7113) (7111> = (:;3), ale (7111) (ii) = (702 f’l)

(mnﬂl(R)a +7 o, 1:In) je okruh s 1.

Definicia 8.7. Elementdrna matica stupnia k patriaca k danej ERO je matica,
ktora z I dostaneme tak, Ze na I urobime tito ERO.

Priklad. ERO- priratanie a-nasobku druhého riadku k prvému. Prislusna elemen-

1a0
tarna matica stupia 3 je: E = (0 1 0).

001
Veta 8.8. Nech BEM, ;(R) vznikne z A€My, s(R) vykonanim prave jednej ERO.
Potom ak E je elementarna matica stupna k patriaca k tejto ERO, tak B=EA.

Dokaz. Ak CeM, p(R) je Iubovolna matica, tak i-ty riadok matice C sa rovna

C11 *** C1b
(0,-~-,0,1,0,~--,O)C:é}C, (0,“-,0,1,0,'“,0)- Ci1 *** Cib :(ci1,~-~,cib).

Cal *** Cab
A=(ai;)k,s- Nech napr. ERO spo¢iva v tom, Ze a-nésobok j-teho riadku prirdtame
aiitaajr o a1stags
az1 azs
k prvému. Teda: B = . . . . Elementarna matica E vznikne z I,

a ks
vykonanim tej istej ERO. T%da riadkykmatice E budua €1+a€j,é,- -+, €. Prvy
riadok v EA je é'l (EA):(é'lE)A:(é'l+a€j)A:€1A+a€jA:(a11, s ,als)—l—a(aﬂ,
- a55)=(ann+aaji, - - ,a1s+aaj)= prvy riadok v B. Druhy riadok v EA je
e (EA)=(e3E)A=e3A=(aza1," - , azs)= druhy riadok v B. ... podobne vSetky os-
tatné. Teda B=EA.
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Priklad. A= (_11 1) €M3 2(R). K druhému riadku prirdtame prvy.

B-(1)) B-(:1) ®aA=(3})-m

Tvrdenie 8.4. Nech AeOMy,  (R), nech fa : R*—R? je linedrne zobrazenie mati-
cou A. Potom fa(xy, - ,xx)=(x1, -+ ,2)-A pre vsetky (z1,---,x1)ERF. Pre
linedrne zobrazenie g : R*—R*® méame: g(x1,--- ,x)=(z1, -+ ,25)- M, pre vietky
(z1,--- ,zx)ERF.

Dokaz. Zo zakladnej vety o linedrnych zobrazeniach vieme, Ze g je Uplne urcené
obrazmi: €1, --- , €. Predpis h(z1, - ,zx)=(x1, -, zx)- My definuje linedrne zob-
razenie z RF—R*. h(a(z1, -, zk)+B1, -+, yk)) My=a(x1, -+, o5) M+
+0(y1, - s yk)- Mg=ah(z1, - ,zk)+6h(y1, - ,yx). g(€1)=1. riadok matice M.
h(€1):é'1~Mg:1.riadok v Mg.

Vseobecne: g¢(€;)=i-ty riadok v My. h(€;)=e;M, pre i=1,--- k. Z toho: h=g, a
teda g(xq,- -+ ,zp)=(z1, -+, 2x)- M.

Priklad. f:R*>R?, f(z1,22)=(—21422, —21), My = (;Eé:g;) — (—11 —01)7
(z1,22) (_11 _01) =(—z1+x2, —T1).

Pozndmka. Prvky z R* chapme ako riadky. Ale niekedy sa prvky z R* chapu aj
ako stipce. Potom pri takom chépani sa matica lineArneho zobrazenia f : RF—R*

0

definuje ako matica K/Ivj je typu sxk nad R, ktorej i-ty stipec je f

1 1
g:RkHRsv g( >=g(1‘1,'~',$k):Mf'< )
T Tk

Definicia 8.8. A=(a;;)€My s(R) k nej transponovand matica je matica
ATeM, 1 (R) pricom (a5)=aj;. Teda AT dostaneme z A tak, Ze ”vymenime riadky

o = O

za stipce”.

12
Prilad. A=(323)  AT- (2 4>.
35

Tvrdenie 8.5. Ak A=(a;;)€My s, B=(b;;) €M (R), tak (AB)T=BTAT.

S S
Dékaz. Prvok i-teho riadku a j-teho stipca v BTAT je Z b;];aijz Z ajpbpi-
p=1 p=1

Prvok z i-teho riadku a j-teho stipca v (AB)T=prvok j-teho riadku a i-teho stipca
S
v AB, teda Y a;pbpi.
p=1
Pozndmka. (AT)T=A.
Injektivnost a surjektivnost linearnych zobrazeni.

f: V=W vieme, 7e f je injektivne < Ker(f)={0}, f je surjektivne < Im(f)=
=f(V)=W.
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Veta 8.9. Nech f : V—W je linedrne zobrazenie a nech (dy, - - ,dy) je bdza vo V.
Potom:

1. f je injektivne < f(dy,- -, f(@,) st linedrne nezavislé.

2. f je surjektivne < [f(&l) - f(@n))|=W

Dokaz.
1. = f: je injektivne. Nech alf(al)—i— -+, f(@,)=0. Chceme ukézat, 7e ;=0.
Z toho: f(andi+ - +a,d,)=f(0 ) Podla predpokladu: aid+ -« - +a,d,= O z li-
nearnej nezavislosti ay, - - -, d, = Va,=
«: Nech Vf(d;) su linedrne nezévislé. Nech ZeKer(f). Teda f(Z)=0. Mame jed-
noznaéne F=01a1+ - -+ +0ndn. Potom f(Z)=p1 f(d1)+ - +8nln, kedZze: f(f):_‘
f(@), -+, f(@,) sa linedrne nezavislé mame, ze f1=---3,=0 a teda #=0. Preto
Ker(f)={0}, teda f je injektivne.
2. =: Predpokladajme, ze f je surjektivne. Nech y€W je lubovolny. Zo surjek-
tivnosti: existuje Z€V : f(&¥)=y. Mame, F=a1d1+ - - +@pdyp, teda f(a1d1+---+
+Oéna:n) = gé alf(al) +oeet anf(an) Takze ge [f(c_il)a U af(‘_in)} mame
Wc[f(@), -, f(d@n)]- Obratend inklizia je zrejma.
<: Predpokladajme, ze W=[f(d1), -, f(@n)]. Nech beW je Tubovolny, potom
b=P1 f(@1)+ - +Bnf(@n)=f(Brd@1+ - - - +Bndn). b méa vzor f je surjektivne.

ev

Doésledok. Ak V a W st konecne generované vektorovy priestory nad R, tak
linearne zobrazenie f : V—W je linearny izomorfizmus < f zobrazuje bazu pries-
toru V' na bazu priestoru W.

Pozndmka. Ak V=W, tak dim(V)=dim(W).

Daosledok.
Kazdy n-rozmerny (n>1) vektorovy priestor nad R je linedrne izomorfny s R™.

Dékaz. Nech V#{0} ma nejaka bazu (@y,---,d@,). V R" zoberme Standardni
bazu (€1, - ,€y,). Zo zadkladnej vety o linedrnych zobrazeniach vieme, Ze existuje
prave jedno linedrne zobrazenie f : V—R"™ také, ze f(d;)=é;, i=1,2,--- ,n. Podla
predchadzajiceho dosledku f je linedrny izomorfizmus, teda V=R™.

Veta 8.10. Nech f : RF—R?® je linearne zobrazenie. Potom:
1. f je injektivne < h(My)=k.

2. f je surjektivne < h(My)=s

3. f je linedrny izomorfizmus < k=s a h(My)=k.

Dékaz. MMy, s(R) ma riadky f(€1), -, f(€k). To znamena, ze f : R*—Im(f)
je surjekcia, teda z vety 8.9 vyplyva, Ze priestor Im(f) je generovany Im(f) =
/(@) » f(@)]- Teda dim(Tm(f)=dim[f(&r), -, [(&)]=h(M;). Z vety

o faktorovom izomorfizme: R¥/Ker(f) = Im(f). Teda k — dim(Ker(f)) =

— dim(Im(f)) = h(My).

1. f je injektivne < Ker(f)={0} < dim{Ker(f)}=0 < h(M;)=k.

2. f je surjektivne < Im(f)=R* < [f(€1),- -, f(€,)]=R® < dim[f(é1),- -,
f(@)] = s = h(My).
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Lema 8.1.
Nech S je vektorovy podpriestor priestoru V. Potom S=V < dim(S)=dim(V).

Dékaz. =: Ak S=V, tak dim(S)=dim(V)

«: Predpokladajme, ze dim(S)=dim(V'). Nech teraz S#V. Nech (dy,--- ,d,) je
baza v S. Existuje £eV —S. Potom vektory di,--- ,dp, ¥ st linedrne nezavislé, a
teda dim (V') je asponi p+1, kym dim(S)=p; spor s tym, ze dim(S)=dim(V').

Definicia 8.9. Linedrne zobrazenie f : R*—RF sa vola transformdcia priestoru
RF. Linearna transformacia f : RF—R* sa nazyva regulérna, ak f je linedrny
izomorfizmus.

Veta 8.11. Linedrna transformécia f : R¥—RF je reguldrna < h(My)=k.
Dokaz. Vyplyva to z vety 8.10
Definicia 8.10. Matica A€M, ;,(R) sa nazyva reguldrna, ak h(A) = k.

Potom Veta 8.11 znie takto: Linedrna transformécia f : R*—R* je reguldrna <
jej matica My je reguldrna.

Definicia 8.11. Inverznd matica k danej matici A€My, (R) je takd matica
BeMy, 1 (R), ze plati AB=BA=I;. Pretoze binarna operacia e na 9 ,(R) je
asociativna a Ij je neutralny prvok vieme, Ze ak takd matica B existuje, tak je
jediny. Oznacime ju AL,

Pre aké matice A€My, 1 (R) existuje A=t ?
Nutna podmienka: ak A~! existuje, tak AA~'=A~1A=I,. Z toho potom vieme,
7e fan-1:R*—RF, faa-1(z1, - ap)=(21, - o) AAT = ((21, -, 2) A)A "=
=fa-1((z1, - wp)A)=fa-1 fa(@r, - x)=fa-r0fa(@r, - 2k) = faa1=
=fa-1ofa. Podobne fa-ipa=faofa-1, teda faofa-1 = fa-1a = f1, = idgr =
= fa-10fa. To znamena, 7e (fa) l=fa-1.

Veta 8.12. K matici Ae9My, ,(R) existuje inverznd < A je reguldrna.
Dokaz.

= uzZ mame.

< Predpokladajme, Ze A je reguldrna. Teda fs : RF—RF je regulirna linedrna
transformacia, tj. fa je linedrny izomorfizmus. Potom existuje k nemu inverzny
linearny izomorfizmus g : R¥—R*. Teda gofa=faog=idgr. Pritom 9=fm,. To
znamend, ze far,ofa=faofu,=idgr. To je to isté ako: fan,=fm,a=f1,- 7 ko-
respondencie: AMy=M,A=I;, teda My=A""'. Zaroveii mame: A~ '=M;,)-1.

Definicia 8.12. Ak matica nie je reguldrna, tak je singuldrna.
Ay 1 (R), A je singuldrna < h(A)<k.

ayl - G1g
Nech A€My, (R) je reguldrna matica. Ako vypocitat A=17? A= ( )

ag1 - Qkk

fa(1,0,--- ,0)=(a11,- - ,a1k)s -, fa(0,0,--+ ,1)=(ag1,- - ,ar;). Treba najst in-
verzné zobrazenie fgl. Pretoze f4 : RF—R* je linedrny izomorfizmus ((ay1, - ,
aik)s -+ s (art, - ,agk)) je tiez baza v RF. Preto zobrazenie (f;') : RF—R* je
tiplne uréené tym, ze (f; ') (a1, ,a1x)=(1,0,---,0) az (f3 ") (ag1, - ,ark)=
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=(0,---,0,1). Aby sme dostali maticu zobrazenia f;!, potrebujeme vyratat, na
A

11 - aip 1 - 0 1 o 0byy - big
¢o fgl ZObI‘aZi 61,"' ,gk. . '.' Lol '.. . ~ N ',. oo '.. N . Struéne:

0 =+ 1bgr - bk
(A|L)~(Tk|ATY).

ak1 - agpp 0 -+ 1

11

)= a0

Priklad. A=' =7 ak A = ( €M x(R)
(L) ~(oaiy)~(or1 )~ (o
(51 () =0)=(7) (40)

IX. SYSTEMY LINEARNYCH ROVNIC

1121+ - - Fa1p,Tp=b1

W= Ov

1
2
1

[SIEIE
w
Wi

W= W=

1
1
3

-
v
W=

Majme systém S s rovnic s n nezndmymi nad R: (5)

as1T1+--- +asnxn:bs

aii - Qin
Matica A= ( : : > €M, »(R) sa nazyva matica systému (S). Matica
As1 *** Qsn
a1 ain by
A= ( ) €M nt1(R) sa nazyva rozsirend matica systému (5). Oz-
as1 -+ Gsp by
1
na¢me dalej B=( - |, to je tzv. matica pravych stran. Potom systém (S) moZeme
bs
'.'171 by 1
napisat takto: A- < > = ( > tj. ak oznacime X= < > mame: AX=B. Toto
Tn bs Tn
je maticovy zapis systému (.5). RieSenim systému AX=B je kazdé K=(ky, - , k)

také, 7o AKT=B. Ak matica A" vznikla z rozsirenej matice A’ systému (S)
kone¢nym poctom ERO, tak systém, ktorého rozsirend matica je A” je ekvivalentnd
so systémom (S). AX=B & (AX)T=BT & XTAT=BT & f,;+(XT)=BT,
kde far : R"—R® je linedrne zobrazenie s maticou AT. Teda systém AX=B
je riesitelny < ked BTelIm(far). MnoZina rieSeni systému AX=B je vlastne
(far) '({BT}).

g J Tt =1 11 111 1 1
Napriklad: {xl—xzzo Aa=(11) a=(140) x=() B=(,)
(fl i) (2): (é) RieSenia st také (x1,79)ER?, pre ktoré fa-(z1,z2)=(1,0).

Riesenie je napr. (%, %) Iné riesenie nemoze mat, lebo matica A je reguldrna, teda

linedrna transforméacia fa : R>—R?2 je linedrny izomorfizmus.
Homogénne linearne systémy.
a11T1+ - +a1,2,=0
Definicia 9.1. Systém (H)} sa volad homogénny, jeho ma-

as1T1+ *+ +asp Ty =0
ticovy zapis je AX=0, kde A je matica toho systému.

Veta 9.1. Mnozina vSetkych rieSeni homogénneho linedrneho systému (H) je vek-
torovy priestor v R".
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Dékaz. Ozna¢me S=mnozinu rieSeni (H). Potom S#(), lebo (0,---,0)€S. Pouzi-
jeme kritérium vektorového podpriestoru. Nech a,3€R, K, LeS st Iubovolné.
Chceme ukazat, ze a K+BLES. Vieme, 7e AKT=0, ALT=0. Potom A(aKT+
+OLT)=aAKT+BALT=00+30=0. Teda naozaj aKT+pLTES.

Iny dokaz: AX=0 < XTAT=0T=0 & for(XT)=0 & XTcKer(far). Teda
S=Ker(fat), fat : R*—=R?. Vieme, ze [Ker(far)] jadro linedrneho zobrazenia je
vektorovy podpriestor.

Nech h(A)=r. Vieme, Ze koneénym po¢tom ERO sa t4 matica A upravi na RTM,
ktora ma r nenulovych riadkov. Povedzme, ze t4 RTM mé vedice prvky v stipcoch
t1<ta<:--<t,. Premenovanim neznamych y;=x,, - ,y,=2,, y;=x; v ostatnych

Y1+ Clpt1¥Yrt1 + -+ CipYn =0

pripadoch, dostaneme linearny systém (H')

Yr + Crr4+1Yr+1 + -t Crnln = 0

Spétnym preznacenim nezndmych sa od (H') dostaneme k systému s nezndmymi
X1, , Ty, ktorého vektorovy priestor rieSeni je priestor rieSeni systému (H). Vek-
torovy priestor rieseni systému (H') je linedrne izomorfny s vektorovym priestorom
rieSeni systému (H). (Linedrny izomorfizmus g : 8" — S, g(y1, - ,yn) = (24, -,
Xt Try1, - ,Ty).) Teda dim(S")=dim(S). Teda staci ur¢it dim(S). V (H’) mame
viazané nezname yi,-- ,Yr, Kym Yr41, - ,Yn s volné (nadobudaju lubovolné
hodnoty z R). Pre y,11=1,yr10="--=y,=0 dostaneme riesenie systému (H’).
dr+1:(70177«+1, oty T Crrdd, 1, 0, s ,0) atd. Pre Yry1=" " :yn_1:0, ynzl dosta-
neme riesenie d,,=(—C1n, "+ , —Cpn, 0, ,0,1). Takto sme dostali n—r rieseni sys-
tému (H').

Tvrdenie 9.1. (dy41, - ,d,) je bdza priestoru (S’), ktory je priestorom rieSeni
systému (H'). Teda dim(S") = dim(S) = n—r.

Dokaz. dyy1,- -+ ,d, st zrejme linedrne nezavislé. Zostéva ukéazat, ze d,11, - ,d,
generuju priestor (S’). Nech s=(s1,- - ,s,)€S” je lubovolné riesenie systému (H').
Chceme ukézaft, Ze s je linedrnou kombindciou d,y1,- - ,d,. Takto: (s1,-+-,sp)=
=$r41dr41+ - +Sndpn. s1=(—C1 r+1Sr41— "+ —C1nSn). l.zlozka vpravo:

—Sp41C1 ;41— - - —SnC1pn. l.zlozka vlavo: —c1,418741— -+ —C1n8,. Podobne pre
ostatné zlozky.

Dimenzia priestoru rieSeni homogénneho linearneho systému = pocet neznamych
— hodnost matice systému.

4xq1 + dx9 + 623 — 34 + 325 =0
T 4 229 + 3x3 + 424 + 525 =0
Priklad. Nad R vyrieste: 201 + 320 +4x3+ 5x4 + 25 =0
31 + 422 4+ 523+ 24 + 225 =0
T + 3x9 + dxgz + 1224 4+ 925 =0

123 4 5 123 4 5 10-10—15
234 5 1 012 3 9 01 2 0 12
A=]|34512 | ~---~|o000-11|. RTM ekvivalentnd s A: 000 1 —1
135129 000 0 0 0000 O

456 —33 000 0 O 00 00 O
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1 —x3 — 15x5 =0
Teda dany systém je ekvivalentny s tymto: < xs + 2x3 + 1225 =0

Ty — Ty = 0
x3,Ts5 s volné. x3=s€R, rs=t€eR. Pomocou nich vyjadrime z1,x2,24 : T4=t,
xo=—25—12t, x1=s+15t. Teda vektorovy priestor vSetkych rieseni je S={(s+15t,
—2s—12t, s,t,t)}s,teR. Béza priestoru S pre s=1,t=0 : (1,—2,1,0,0), pre s=0,
t=1:(15,—12,0,1,1).
Béza priestoru S je ((1,—2,1,0,0),(15,-12,0,1,1)).

Veta 9.2. Pre Iubovolnii maticu A€My, 4(R) : h(AT)=h(A).

Dékaz. Nech h(A)=r. Uvazujme o linedrnom systéme AX=0. Vektorovy priestor
rieSeni je Ker(fat). fat : Ré—=Im(far), R/ Ker(fat)ZIm(far).
t—dim(Ker(far))=dim(Im(far)). t—(t—h(A))=h(AT) < h(A)=h(AT).

Nehomogénny systém linearnych rovnic.

111 + -+ + a1 Ty = by
(V)
as1T1 + -+ + AsnTn = by
Aspon jedno b;£0, tak nehomogénny systém s linedrnych rovnic s n neznadmymi.

Veta 9.3. (Frobeniova, Kroneckerova — Capelliho)
Nehomogénny systém linearnych rovnic je rieitelny < hodnost matice systému sa
rovna hodnosti rozsirenej matice systému.

by o aiyl - Ain
Dokaz. Maticovy zapis: B = () X = () A= ( > AX=B &
bs Tn
- Qs1 *° Qsn
XTAT=BT & for(XT)=BT. Z toho je jasné, ze systém (N) je riesitelny <
ked BTcIm(far). Oznacme a; i-ty stipec matice A. Potom AT m4 riadky

al,---,ar. Systém (N) je riesitelny ©BTelm(far) & BT€[al, - ,al]=
=[aT, - ,aT , BT] & dim[aT,--- ,a¥]=dim[aT, - ,a¥,BT] < dimenzia priesto-

ru generovaného riadkami matice AT= dimenzia priestoru generovaného riadkami
matice (A|B)T < h(AT)=h((A|B)T) < h(A)=h(A|B).

T+ =1

Priklad. { nad R nie je riesitelny, lebo h (1 1) =1 ale h (1 ! 1) =2

IE1+(E2:4 114

Veta 9.4. Uvazujme o nehomogénnom systéme (N). Nech P je mnozina vsetkych
jeho rieseni. Potom: ak d€P je nejaké riesenie systému (N), tak kazdé rieSenie
systému (N) je tvaru d+c pre vhodné c z vektorového priestoru rieSeni prislusneho
homogénneho systému AX=0. Obratene, d+c— kde c je rieSenim prislusneho ho-
mogénneho systému- je rieSenim systému (N). Teda ak S je vektorovy priestor
rieSeni prisluSneho homogénneho systému, tak P=d+S

Dokaz. Ak pEP je lubovolné, tak p=d+(p—d). (p—d)eS. [ApT=B, AdT=B =
A(p—d)T=A(pT—dT)=ApT-AdT=B-B=0]. Teda PCd+S. Lubovolné d+S,
kde s€S, tak d+s€P, lebo A(d+s)T=AdT+AsT=B+0=B. Teda tiez d+SCP.
Vcelku: P=d+S.
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i) —|—5I2—|—45€3—|—3$4 =1
Priklad. Systém nad R: 201 — 29 +2x3 — x4 =0
51 +3x2 +8x3+x4 =1

1 5 4 3 1 5 4 3 1
2 -1 2 -1 0]~ 0672
00 0

5 3 8 1 1 O 0 0 0

Ju—y

Viazané: x1, T2, volné: x3=u, x4=v.

1 14 2 2 6 7
P={(—-— 0, — — —u— — R4 R) =
(g et gvg ot v wveRs, wueR}
1 2 14 2 6 7
= (=, — - Sy, ——— — R* R
(17 7770 0) + (= gqut v —gpu — gv w 0)ERY, u,veR}
kde {( oy 0 )eR? €R} je vektorovy priestor rieseni
e —U — UV, —UuU — —vV,Uu,v u,v € vekKtoro I'1eStOor riesenil
TR A TR T R ’ eV vy P

prislusneho homogénneho systému.

Pozndmka. Po tprave rozsirenej matice nehomogénneho systému na trojuholnikovy
tvar povazujeme za viazané tie nezname, ktoré zodpoveda vediicim prvkom
nenulovych riadkov rozsirenej matice (v trojuholnikovom tvare). Ostatné st volné.

Determinanty.
{1,2,--- ,n} permuticia tejto mnoZiny je kazda bijekcia ¢ : {1,2,--- ,n} —

1 2 - 0n
{1,2,-- .0} o= (so(l) P(2) - ea(n))'

Napr.: (; f g) je permutécia mnoziny {1,2, 3}.

Definicia 9.2. Sy 5,... ») = mnozina vSetkych permutdcii mnoziny {1,2,---,n}.

12 - . . . ) . ,
Ak p= (w(l) o(2) - w?n)) €5(1,2,... n}, tak hovorime, ze dvojica (p(i),¢(j)) tvori
inverziu vo o, ak i<j, ale p(i)>p(j).

Priklad. V permutacii (; i g) su 2 a 1 v inverzii.

Definicia 9.3. Pocet inverzii v permutacii €Sy ... »} oznacime s(p). Permutacia
¢ je pdrna, ak (—1)*¥)=1 a p je nepdrna, ak (—1)*¥)= — 1.

Definicia 9.4. Nech Aed,,,,(R), kde R je hocijaké pole. Determinant matice A

je prvok pola R, definovany takto: det(A)= Z (—1)5(“”)a1g,(1) S lp(n)-
p€{1,2, ,n}

Priklady.

1. A=(a11)eM11(R) : det(A)=aq;. .

ayl a2 5(1 2) S( )
2. A=( ), det(A) = (=1)"\12/ajag + (1) \21/a19a91 = ainagy +

1 az1 a2
(—1)'a12a21 = a11a22 — a12a2:1.

ail ai2 ais

3. A= <a21 az2 a23 ), potom det(A) = .-+ =0a11022033 + Q12023031 + Q13021032 —
a3l az2 ass

—a11G23032 — 012021033 — @13022031 -
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Definicia 9.5. Vytiatim prvkov i-teho riadku (i=1,2,--- ,n) dostaneme

det(A)=a;; - (sGty stfinov bez a;1) + - - - +a;, - (sG¢ty sGdinov bez a;y))

Ail Ain
A;; sa nazyva algebraicky doplnok k prvku a;;.

Uvidime, ze A;; sa da vyjadrif pomocou determinantu vhodnej matice stupia
n—1 odvodenej z A.

Lema 9.1. Ak ¢,v€S(,.. ny tak plati, Ze (—1)seo)=(—1)*)+s(¥) 7 toho

méme, Ze: (—1)5@)=(—1)s(=""),

Dokaz. Pevne zvolme x1,- -+ , 2, €R navzajom rozne. Oznaéme P = H(ch —xj).
i<j
Pre 9€S(1.... »} alubovolné k€Z definujme ((—1)FP),=(—1)* H (T (i) —Tep(5))
1<i<j<n
Je jasné, ze (—1)F(=1)*PW P = ((—1)*P). Pre 0, €81 ... n} : Ppoy = (Pp)y =

:((_1)S(¢)P)¢:(_1)S(<P)(_1)8(111)]3:(_ )e(sa)+s(w)p = (- )s(wﬁ) (_1)5(@)4-5(11)).
Vlastnost 1. Pre kazdi maticu A€M, (R) mame det(A)=det(AT).
Dékaz. Prvok i-teho riadku a j-teho stipca v AT bude a;[;:aji. Podla definicie

determinantu vieme, ze det(A) = Z(—l)s(wam(l)agw(z) e pp(n) =

pEeS

= Z 1)*Pag1(1)p-1(o-1(1)) * Gp-1(mye-1(p-1(m) =

p€eS

s T T

_ Z a 71 1) e a@*I(n)n — Z (71) (W)alv_l(l). . .arw_l(n):

pes p~les

s(o-1

= 2 (U alyage y = det(AT).

p—les

Vlastnost 2. Ak matica BEOM,,,,(R) vznikne z matice A€M,,,,(R) jednou vzajom-
nou vymenou lubovolnych dvoch riadkov, tak det(B)=— det(A).

Dokaz. Napr. nech B vznikne z A vzajomnou vymenou prvého a druhého riadku.

ail aiz2 -t Qin as1 ag2 -+ G2n

azi1 a22 -+ A2n ail ai2 -+ QAin
Teda, ak A= S , tak B= - - . - |. Oznacme

an1 an2 a?"tﬂ 1 a;Ll a?‘L2 1 a'r’né

w‘( n) («ou ) 0(2) - so(n)> (sa(?) (1) - w(n))’
(,1)5(1&):(,1)(@(2) e(1) ol ”)) —(=1)*), Z definicie determinantu:
det(B): Z(_ )S(Lp)blcp 1)b2g0(2) bnga(n)_ Z(_l)sop)aﬁgo(l)alga@) * o Onp(n) =
ApES peS
=D (“1)*Parp@asp0) - tnpmy = Y (1) Pary@yaspz) - tnpm) =
pES Yes

== > ()" Maryyazp)  tngm=— det(A).

pes
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Vlastnost 3. Nech A=a;;€M,,,(R). Potom pre lubovolné r,s€{1,--- ,n} algeb-

raicky doplnok k prvku a,, je A,.s=(—1)""*det(M,,). Kde matica M, je matica
typu r—1xs—1, ktord vznikne vynechanim r-teho riadku a s-teho stlpca z matice A..

asi as2
a3y as2 ass

a1l ai2 ais u u
Priklad. A = (a21 az2 a23) A23 — (_1)5 det( 11 12)

Dékaz. 7 definicie determinantu: det(A)= Z(—l)s(‘P) H Qip(i) =

p€eS
p(1)=1 P(1)#1
= Y ()Panage) anpmt Y (1) Parn)aze) - tngm):
p€eS pEs
p(1)=1
Z toho: Any= Y (=1)*Pagy(a) - = Y_ (~1)*Pasyea) -+ anpn) =
@EeS pes’
a22 azn
= det < > = det(Mn) = (—1)1+1 det(Mu).
An2 *** Qnn
Teraz ratame A, pre lubovolné r,se{l,--- ,n} :
a1 A1s—1 a1s A1s+1 A1n
Ar—11 Ar_1s5—1 Ar_1s Ar_—1s+1 Ar—1n
A= ar1 Ars—1 Arg Ars4+1 Arp
Ar411 Ar41s—1 Ar41s  Ar41s+1 Ar41n
(2%} Aps—1 Aps ans—i—l Apn

Qr1 Ars—1 Ayg Ars+1 Ayn

ail a1s—1 A1s A1s+1 A1n
B = ar—11 Ar_1s5—1 Ar_1s Ar—_1s+1 Ar_1n
Ar411 Ar41s—1 Ar41s Ar41s+1 Ar4+1n

Qan1 Aps—1 Anpg Aps+1 QApn

Vzéajomna vymena s—1 stipcov:

Qpg Apr1 Tt QArg—1 Apg4+1 e Ay,

A1s aii cee A1s—1 A1s+1 T A1n
C= Ar—1s Qpr—11 - Ar—1s—1 QAr—1s+1 - Ar_1n
Ar41s  QAr411 e Ar41s—1 Ar41s+1 o Ar41n

Aps an1 Tt Aps—1 ans+1 e Anpn

Z toho ¢o sme dokédzali vieme, ze det(C)=a,s det(M,;)+Cleny bez a,s. Z 1. a 2.
vlastnosti: (—1)*~1 det(B)[= det( )=(=1)*"1(=1)" "t det(A)=(—1)""* det(A).
det(A)=a,s(—1)""* det(M,s) + (=1)""* - ¢leny bez a,s = A,s=(—1)"1* det(M,.;).
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Veta 9.5. (Laplaceova o rozvoji determinantoch)

Pre AcM,,,,(R) mame: det(A)=a;1(—1)" " det(M;1)+ - - +ai, (1) det(My,,).
Toto vyjadrenie sa nazyva Laplaceov rozvoj determinantu matice A podla i-teho
riadku. Tiez: det(A)=a1;(—1)7 1 det(My;)+- - -+an;(—1)" " det(M,,;) pre vietky
je{l,--- ,n} tzv. rozvoj podla j-teho stipca.

Doékaz. Dosledok vlastnosti 3. Mame det(A)=a;1 A+ +ainAin. Z vlastnosti
3 dosadime vyjadrenia A;pz=(—1)"Fdet(M;;). S vyuzitim vlastnosti 1 stipcovy
rozvoj. (tj. det(AT)=det(A).)

123 -
Priklad. det (0 = 1) —1-det (') +0=—14.

013
Vlastnost 4. Ak st v matici A€IM,,,,(R) dva riadky rovnaké (prip. dva stlpce),
tak det(A)=0.

Dokaz. Indukcia vzhladom na n. Pre n=2: det (Z Z) =ab — ab=0.

Indukény predpoklad: Predpokladajme, Ze tvrdenie plati pre také matice typu
n—1xn—1. Nech AedM,,(R). Nech r-ty a s-ty riadok (r<s) v A s rovnaké.
Rozvifime determinant matice A podla i-teho riadku, kde i#r, i#£s. Potom
det(A)=a;1(—1)"(Mj)+ - - +ain(—1)"T"M,;,. M;; st matice stuptia n—1, ktoré
maji dva rovnaké riadky. Potom z indukéného predpokladu: det(A)=0.

Vlastnost 5. Nech BEM,,,,(R) vznikne z A€M,,,,(R) prirdtanim Iubovolného né-
sobku Iubovolného riadku v A k inému riadku v A. Potom det(A)=det(B).

Dokaz. Nech napriklad B vznikne z A tak, Ze k l.riadku prirdtame a-nasobok
2.riadku. Rozvinime determinant B podla prvého riadku:
det(B)=(a11+aaz )(—1)' Tt det(Miq)+ - - - +(a1n+aag,) (1) det (M, )=
:all(—l)z det(M11)+ s +a1n(—1)1+" det(Mln)+a(a21(fl)2 det(M11)+ cee
+ag, (—1)1T" det(My,,))= det(A)+a det(matice, ktord ma rovnaky 1. a 2.riadok)
=det(A).

Vlastnost 6. Nech B vznikne z A€, (R) tak, Ze i-ty riadok (iba tento) vyna-
sobime a€R — {0}. Potom det(B)=adet(A).

Dokaz. Rozvinieme determinant matice B podla i-teho riadku:

det(B) = aa;1(—1)" det(M;1) + - - + aain(—1)" det(M;,) =

= afa;1(=1)F 1 det(Mi1) + - - - + ain(—1)T" det(M;,,)] = adet(A).

Vlastnost 7.

61 (_7:1 5:1

det | 1 | =det | % det | “i?
a;+b; a; + i
an an an

Dokaz. Rozvoj podla i-teho riadku.
Vlastnost 8. Ak matica AeOM,,,,(R) m4d nulovy riadok, tak det(A)=0.

Dokaz. Priamo z definicie.
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Ak maticu AeM,,,(R) upravime pomocou ERO na trojuholnikovii maticu:

t11 tiz -0 tin

0 oo -+ top
T= . . . .

0 - 0 ty,

tak bud niektory z prvkov ti1,--- ,tn, je 0 (to je vtedy, ked h(T)<n tj. ak T
je singuldrna), alebo vSetky t11,--- ,t,, st nenulové (to je vtedy, ked h(A)=n).
Z Laplaceovej vety o rozvoji determinantu (ale aj priamo z definicie) je jasné, ze
det(T):tn'tgg- . 'tnn.

Priklad. Jedna z metdéd vypoctu det(A): A postupne upravujeme na trojuhonikova
maticu, ak zohladnime vplyv jednotlivych ERO na determinant a fakt, Ze determi-
nant trojuholnikovej matice je stéin prvkov hlavnej diagonély, tak lahko vyratame
det(A).

1 -1 1 1-11 1-1 1 1-1 1
det(l 11 ):det(o 0 2 ):—det(o 2 —2>:—4-det<o 1 —1):—4.

11 -1 02 —2 00 2 00 1
Tvrdenie 9.2. Matica AeM,,,(R) je regularna < det(A)#0.

Dokaz. Vieme, ze A je regularna < je riadkovo ekvivalentna s nejakou trojuhol-
n

nikovou maticou T, pricom t¢;,;#0 ¢ize H #0. 7Z toho aky vplyv maju jednotlivé
k=1

ERO na determinant vieme, Ze musi existovat a€ R—{0} také, ze det(A)=a- det(T).

Veelku mame, ze A je reguldrna < det(T)#0 < det(A)#0.

1 -1 1
Priklad. Realna matica (1 11 ) je regularna, lebo jej determinant je nenulovy.
11 -1
Priklad.
1 11 1 1 1 1 1
1 01 1 o -1 0 --- 0
det|1 1 0 1f=det|0 O -1 - 0 | =(=-1)!
111 --- 0 o o o -+ -1

Priklad. Vandermondov determinant

1111 1 1 1 1 b d
a b c d 0 b—a c—a d—a 270‘2 2670’2 270‘2
det 2,2 2 o | =det 0b2—a? ?—a? d®—a? | = det | b*—a® *—a? d*—a =
b d a” ¢ —a a b2—ad P —ad dP—a®
33 3 g3 3 .3 a ¢ —a a

0b3—a® B—a® d®—a®

b—a c—a d—a 1 1 1
= det ( b2—ab c*—ac d*—ad ) = (b*CL)(C*CL)(d*CL)' det < b c d > =

b2 —a?b 2 —a’c d®—a?d b%2+ab *4ac d®+ad

=(b—a)(c—a)(d—a)- det (i : ¢li>(ba)(ca)(da)~det (3 P )

b2 2 d? 0 c2—b2 d2—p?

c2—b? d?>—p?

:(b—a)(c—a)(d—a)-det( §7b, b ):(b—a)(c—a)(d—a)(c—b)(d—b)(d—c).
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Veta 9.6. Pre lubovolné A,BeM,,,,(R) : det(AB)=det(A)det(B).

Dokaz. Ak A, alebo B je singularna, tak veta zrejme plati. fag : R"—R" je
linedrny izomorfizmus s maticou AB. Vieme, Ze fap=fsofa. Ak A je sin-
gularna, tak fa zobrazi nejaky vektor deR"™, 57&6 na nulovy. Teda fA(d’):(_j.
Potom fpofa(@)=0=fan(d) a teda AB je singulérna, teda det(AB)=0. Podobne
ak B je singuldrna a A je regularna. Ak A aj B st singularne, tak tiez plati.

Dalej: Predpokladajme, Ze A aj B st regularne. KedZe A je reguldrna, da sa

tin1 - tin
koneénym poétom ERO upravit na trojuholnikovii maticu T= < oty tin |, pricom
0 - ton

t;;70. Kazdd ERO sa da realizovat tak, ze dani maticu zlava vynasobime takzva-
nou elementarnou maticou, ktora prislicha k tej ERO. Teda: Eq-Eq---E-A=T,
kde E; st elementarne matice prislichajuce k pouzitym ERO. Pretoze A je regu-
larna, na jej upravu na T staci pouzit iba priratavanie nasobkov riadkov k inym
riadkom. Teda det(A)=det(ExA)=det(E;_1E A)=---=det(E; --- E;A)=T. A-
nalogicky ako ERO sa definuju aj ESO, k nim prisltichaji elementarne matice
(takd matica vznikne z jednotkovej tak, Ze na nej urobime ti ESO). Matica B sa
koneénym poétom ESO (zas vystacéime iba s priratavanim nasobkov stipcov k inym

thy o thy
stipcom, kedZe B je regularna) upravi na trojuholnikovii maticu T'= Do

0 - t;m,
pric¢om Htgﬁéo. Urobit nejaké ESO je to isté, ako danti maticu sprava vynasobit
prislusnou elementdrnou maticou. Teda: BF; ---F,=T’, kde F; st prislusné ele-
mentarne matice. Pritom Fy,---F, zodpovedaju iba prirdtavanim nasobku stlpca

k inému stipcu. Potom: det(B)=det(BF;)="--=det(BF; ---F,)=det(T’). Teraz
tin tiz - tip ty the o Uy
0 to1 -+ to2 0 thy -+ th
det(TT)=det | | . . . " e
0 0 - tun 0 o --- t/nn
tath
0 tooths .
=det : : . : =t1thy  tantpn=t11 - tanthy -, =
0 0 o tantl

=det(T)- det(T'). Potom det(A-B) = det(E;---E;A -B) =
=det(E; ---ExA -BF; - - F,)=det(TT')=det(T) det(T')=det(A) det(B).
ITverznd matica pomocou determinantu.
Nech A=(a;;)€M,,,(R) je regularna. Vieme, Ze existuje inverznd matica A~1.
Definujme tzv. adjungovani maticu k A ako maticu:

All A21 e Anl

3 A12 A22 T An2
adj(A)= . . ) .

Aln A2n o Ann

Nech A;; je algebraicky doplnok k prvku a;;. Teda A;;=(—1)""7 det(M;;).
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dj(A
Veta 9.7. Ak A=(a;;)€M,,,(R) je regulérna, tak Al_ZeiEA;'
dj(A 1
Doékaz. Rétajme C:A-ZeiEA; Z I,. Matica m~A-adj(A) mé na hlavnej
1
djagonéle prvky; Cii:m'(ailAil+ vee —|—amAm):1 a mimo hlavnej diagonély
det(A)
1
prvky (tj. pre i#j) cij:m(aﬂfljl—l— -+ +ainAjn)=0. Teda C=I,.
. (12 . _(1-2 11 (1-2
Privlad. A= (1) adi(a)=(17)  At=1-(172)

Systémy n rovnic s n neznamymi.

Fredholmova alternativa.

Nech AX=B je systém n linearnych rovnic s n neznamymi. Potom st dve
moznosti:
1. Systém AX=B mé jediné rieSenie bez ohladu na to, akd je prava strana B
(to nastane vtedy, ked h(A)=n, tj. vtedy, ked det(A)#0) a zdroven prislusny
homogénny systém AX=0 ma iba trividlne rieSenie.
2. Nehomogénny systém AX=B je rieSitelny uz nie pre vSetky B, ale iba pre také,
pre ktoré h(A | B)=h(A), to sa stane vtedy, ked h(A)<n tj. det(A)=0, a zéroven
prislusny homogénny linearny systém ma aspon jedno trividlne riesenie.

Cramerovo pravidlo. Majme nehomogénny linearny systém n rovnic s n nezna-

ail v Qi z1 b1
mymi nad R: AX=B, kde A:( ) X = ( ) B = ()
Anl "** Ann Tn bn

Predpokladajme, ze A je regularna. Potom systém AX=B ma& jediné riesenie:
X=A"!B.

1 1 A - Ama b1 1

: = N . . = (A, oA =
() amtm () ()t
Tn 1n nn n

by
1
= —— det(matice, ktora vznikne tak, %e i-ty stipec nahradime [ : |.
det(A) ( ’ : y stp ( : )

bn
a1 - a1i—1 by aiiy1r - ain
Oznacme A; = ..+ oot ] tak potom jediné riesenie systému
An1 ** Ani—1 bp Gnit1 = Qnn
. (det(Aq) det(A,)
AX =B b S O b e 24
) <det(A) 7 T det(A)
Priklad. Linearny systém nad Zs:
3r1 +4x5 =1 3 4 0 x1 1
T1+To+ 223 =1 1 1 2 zo | =11
3x1 +4x9 +23=0 3 41 L3 0

det(A)=4, det(A1)=4, det(A2)=3, det(Asz)=1. Jediné rieSenie systému daného je:
(4471,3:471,1.471) = (1, 2,4)€Zs.
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Priklad. Vyuzitim Cramerovho pravidla rieste:

+ 5xo +4da3 4+ 34 =1
{x1 To + 4x3 + 324 det(% _51):_117é0

Rovnice st linedrne nezavislé, 1, ro budt viazané x3, x4 budt volné nezname.

201 —x9 +2x3 — x4 =0

1—4u—3v

1+ 5y =1—4u—3v 5
{ = det(A) = < outw _1> =—1+14u—2v

201 —x9 = —2u+v

11— 4u—
det(As) = (2 721& 5’”) =24 6u+Tv

Potom vseobecné rieSenie daného systému je:

1 14 .2 2 6 7w
SRR SR TR TR § Rkt

X. EUKLIDOVSKY VEKTOROVY PRIESTOR

Definicia 10.1. Nech V je vektorovy priestor nad R. Potom skalarny saéin na V
je zobrazenie g : V xV —R pre ktoré platia tieto podmienky:

1. g(Z+ 7, 2)=9(%,2) + g(y, Z) pre V,y, ZEV.

2. (9, ¥)=g(&,y) pre V7, yeV.

3. g(aZ, §)=ayg(Z,y) pre VZ, g€V, acR.

4. Ak 7#0, tak g(Z,Z)>0.

Ak g je nejaky skaldrny sucin na V, tak V' sa nazyva euklidovsky vektorovy priestor
(presnejsie je to euklidovsky vektorovy priestor (V, g)).

Poznamka. Ak g je skaldrny saéin na V, tak namiesto g(Z, ¢) sa ¢asto pise (Z, 7).
, ) : VxV—R. Potom vlastnosti skaldrneho st¢inu sa prepisu takto:
AT+ Y, 2)=(T, 2) + (7, 7).

-, B)=(Z, 7).

(o, §)=a(Z, 7).
. Ak ZeV—{0}, tak (Z,7)>0.
riklad. Pre R™ zoberme zobrazenie ( , ) : R"XR"—R,

< Ty, axn)a (yla T 7yn)>:$1y1+ e +$nyn

1. <(x17 e ,fEn)-F(Zh e »Zn)7 (1/1, ce ,yn)>=<(961+21, e 7mn+zn)7 (yl» e 7yn)> =

= <$1+Zl)y1+ e +($n+zn>yn:<($1, e ;mn)7 (y17 e »yn)>+<(217 e ,Zn),

(Y1, ,yn))=(Z, 9)+(Z, 7). Zistili sme, Ze vysSie definované zobrazenie ( , ) :

R*xR"—R, (1, - ,zn), (Y1, ,Yn))=21y1+ - - +TpYn je tzv. Standardny ska-

larny sucin na R™. (Existujd aj iné skaldrne stéiny.)

TR

—~

Priklad. Euklidovsky priestor nemusi byt kone¢ne generovany. V=C({0,1))= pries-
tor spojitych funkcii na (0,1). Definujme zobrazenie: ( , ) :VxV—R takto:

g)= fol f(z)g(x)dz. (C{0,1),(, )) je euklidovsky vektorovy priestor nie koneéne
generovany.

Pozndmka. Nech V je vektorovy priestor nad C. Skalarny stcin na V je zobrazenie
(,): VxV—C, ktoré spliia:
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L (% + 5, 2)=(, 2)+ (¥, 2).

2. (¢, Z)=(Z, 7). (komplexne zdruzené)
3. (o, y)= (33 7).

4. Ak ZeV— {O} tak (&, Z)>0.

Priklad. V=C" (n<1). Definujme: (, ): C"xC"—C
(1, y2n), (W1, -+ ,Wy,))=21W1+ -+ - +2pWy,. Ak V je vektorovy priestor nad C a
(, ) : VxV—C je skalarny stacin, tak (V, (, )) sa vola unitdrny (alebo hermitovsky)
priestor.

V dalSom uz iba redlne euklidovské priestory uvazujeme!

Definicia 10.2. Nech (V,{, )) je euklidovsky vektorovy priestor. Potom diZka
lubovoIného vektora €V sa definuje ako redlne islo: |Z|=+/(Z, Z).

Priklad. V R? so standardnym skaldrnym sacinom: |(1,1,1)|=v12+12+12=/3.

Veta 10.1. Nech (V,{, )) je euklidovsky priestor. Potom:
o Z=|al - |x| pre Va€R, VZeV.
2. |#|=0 < #=0.

H

3. (2, 9)|<|Z|]y]. (Cauchyho-Schwarzova-Bunjakovského nerovnost).
4. |Z+y|<|Z| + |y] pre lubovolné Z,§eV (trojuholnikova nerovnost).
Dokaz.

1. \af\:\/ (aF, af)=1/a?(Z, T)=|a|/(Z, T)=|a||Z].

2. Ak 7=0, tak |Z|=|0 - |=0 - |#|=0; ak by ##£0, tak by sme mali |Z|=+/(Z, Z)>0
—spor s predpokladom.

3. Z,y lubovolné pevne zvolené. Pre Tubovolné a€R utvorme vektor af —¢. Potom
<Oéf*g, Oéf*g)ZO = <O‘f7 Oéf>7<g7 Oz:i">*<0ﬁi"7 37>+<,7j, @:OF <fa f>*0£<17, f>70[<f7 37>+
+(F, )=, 2)—20(F, §)+(7, ) >0.

Zistili sme, Ze pre vietky a€R je (F, T)a?—2a(Z, F)+ (7, 7) >0 kvadraticky ¢len v pre-
mennej . Graf tohto troj¢lena lezi v nezapornej polrovine (22>0) pri¢om nepretina
os x1. Teda tento trojclen nema dva rdézne redlne korene. Preto diskriminant
D=A(7, §)2~A(7. ) - (7, 7)<0. Z toho: 4- (7, 7)*<A(7, @) (7, 7) tj. (&, PI<|7]- 7.
4y |T+gP=(T+y, T+7)=(T, L)+ (T, §) (7, ©)+ (7, §)=(T, ©)+2(Z, §) +(7, §) =
=|7|*+2(g, §'>+|y\2<|33|2+2|$| |91-+[91*=(1Z|+|7])*. Z toho |T+7]<|Z|+|g].

)
R

Definicia 10.3. Ak (V,(, )) je euklidovsky vektorovy priestor a &, 7€V —{0}, tak
<x’17_>,|. Ak 7=0,

|||y

Z 3.vlastnosti z vety 10.1. méame: ak F£0+£7, tak —1<

g
=

uhol vektorov &, 7 definujeme ako také a€(0,m) pre ktoré cosa=

alebo §=0, tak definujeme uhol vektorov Z,§ ako g

Definicia 10.4. Nech (V,(, )

e euklidovsky vektorovy priestor. Hovorime, ze
Z,§€V si na seba kolmé, ak £(Z,y

)
9= ;T (ortogondlne).
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Tvrdenie 10.1. Ak (V,(, )) je euklidovsky vektorovy priestor, tak Z(Z, g):g &
(@, 5)=0.
Dokaz. Z(Z,5)=
Priklady.
1. Nech R3 je euklidovsky vektorovy priestor so standardnym skaldrnym stéinom.

Potom €;=(1,0,0), e2=(0,1,0), €5=(0,0, 1) st navzijom ortogondlne.
2. V R? so standardnym skalarnym st¢inom. Na (a,b)€R? je vektor (—b,a) kolmy.

g & 7=0 alebo §=0 alebo &, 7eV -0 a (Z, 7)=0.

Veta 10.2. Nech (V,{(, )) je euklidovsky vektorovy priestor a nech vektory
ai,- -+ , 0y su nenulové a navzajom kolmé vektory. Potom st aj linearne nezavislé.

Dékaz. Nech i@+ - - - +ayd,=0. Cheeme ukézat, ze oy = -+ = a, = 0.
(A1, 001G+ - -+ Qnln) = a1 (A1, d1) +ao (A1, d2) + -+ ay (@1, 0,) = 0= (0,d) =
—— —— ——
>0 =0 —0
= a;=0. Podobne vieobecne 0={a1@1+ - - - +Qpnn, @;)=0;|d@;|? = a;=0.
Déosledok. Ak (V,(, )) je n-rozmerny euklidovsky vektorovy priestor a vektory
dy, -+ ,a,€V—{0} st navzdjom kolmé, tak (di,--- ,d,) je baza priestoru V.

Definicia 10.5. Ak (dy,---,d,) je baza euklidovského vektorového priestoru V
takd, Ze @; L d; pre Vi#j, tak ta baza sa nazyva ortogondlna bdza. Ak naviac
|d@;|=1 pre i=1,--- ,n, tak t4 baza sa nazyva ortonormdlna.

Priklad. (€1, é3,€3) je ortogonalna a ortonorméalna baza euklidovského vektorového
priestoru (R3, (, )).

Veta 10.3. Nech (V,(, )) je Iubovolny euklidovsky vektorovy priestor a nech S
je Iubovolny jeho vektorovy podpriestor (nenulovy). Ak V je konec¢ne generovany,
tak v S existuje ortonormalna baza.

Dokaz. Nech dim(V)=n, nech (Z1,---,Zx) (k<n) je dajakd baza v S. Veta bude
dokéazana, ak dokazeme, zZe existuju nenulové vektory #, - -- ,yix €S také, Ze pre ne
plati: §1 = &1, 1o = Zo+02171, Y3 = T3+FB3181+03222, -+, Yk = T+ B T1+- -+

+0Bkk—1%K—1, pricom ¥; L ¢ pre i#j. Je jasné, Ze potom i, -,y s v S st
linedrne nezévislé. Kedze dim(S)=k, tak (¢i,---, k) je béza, a je ortogonalna.

—

Potom ortonormadlna béaza v S bude takato: (‘7{,1, S ?ik)
|91 |G

2= 1

( i Uiy (i, ¥;)=0. Existenciu vektorov ¥; dokadzeme indukciou:

il g1 17131

—

Ak k=1: S ma bazu (#1), ortonormdlna bude: (m) Predpokladajme, Ze veta

|21 |
plati pre k=s—1. A teraz nech S mé bazu (¥, -+ ,Zs). Teda mame systém
T1=T1, " ,Ys_1=Ts+ +Bs_1s_2Ts_2. Podla indukéného predpokladu mame
vektory 41, - ,¥s_1 potrebného tvaru. Treba uz len ukdzaf, ako vyritat vektor

1,70 potrebného tvaru a taky, Ze (7, 7;)=0 pre vietky i<s—1. Hladajme ¢, v tvare:
?js = fs+6slgl+ te +5ss—1gs—1' Ma byt'j 0= <gsag1> == <f37f1>+5sl<flafl>+

<xs7fl>

<f17 j:1> ’

+0s2 (Yo, Z1) + -+ +H0s5—1 (Ys—1, 1) = (Lo, T1)+051 (L1, L1)=0 = ds1=—
——— ————

=0 =0
Z toho, ze (s, ¥2)=0 vyradtame 5o atd.
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Pozndmka. Metéda dokazu je konstruktivna; ukazuje induktivny postup na hlada-
nie ortogonalnej, ortonormalnej bazy. Je to tzv. Gramov — Schmidtov ortogonali-
zacny proces.

Priklad. Nech S je podpriestor v R* so standardnym skaldarnym stc¢inom. Treba
najst ortonormalnu bazu podpriestoru S.

S=[#, #s, Z3]=[(1,-1,0,-1),(0,1,0,2),(0,0,1,—2)]. Najskdr ortogonilnu bazu:
Y1 =17 = (la —-1,0, _1>7 Yo = Ty + Qij1; <g1,52> =0=a=1, 52:(17())0, 1);
373:(0, 0,1, 2)—|—51(1, —1,0, —1)—}—(52(1, 0,0, 1). Potom: <g3, :'j1>:0 A <(7j2, 271>:0 =
0= (51+52, —01,1, 727(514‘52), (1, —1,0, 71)>:51+52+51+2+51*52:0 e >
rz, L
3°3 3

1 1.1 1.V31 2 1)>

(
2 2
= 61: - §7 62:1 = 3732(05 07 17 2)_§<1a _1?07 _1)+(1?070’ 1):(

ﬁvov _%)7 (ﬁvoaov ﬁ)? ﬁ(gv ga ]-a _g

Definicia 10.6. Nech (V,(, )) je euklidovsky vektorovy priestor a nech MCV,
M#Q. (M nemusi byt podpriestor). Potom ortogondiny doplnok (komplement)
mnoziny M vo V je mnozina M+ : ={FeV; (Z,m)=0 VZc M}

1
Ortonormélna béza: ((7 -
V3

Veta 10.4. Nech (V,(, )) je euklidovsky vektorovy priestor. Potom:
1. M#0), MCV = M je vektorovy podpriestor priestoru V.

2. Ak M,N#) M,NCV a MCN tak N*CcM+*.

3. Ak S, T st vektorové podpriestory vo V, tak (S+T)+=S+NT+*.

Dokaz.

1. M++#0, lebo 0e M+, Kritérium vektorového podpriestoru: pre vV, ge ML,

Vo, BER. Potom pre lubovolné meM: (aZ+py, m)=a (Z,m) 4+ (g, m)=0. Teda
%

aZ+pyeML. Z toho M~ je vektorovy podpriestor vo V.

2. MCN. Ak ZEN*, tak (%, i1)=0 pre vietky 7€ N a teda tiez (¥, m)=0 pre vietky

meM. Teda FeM~*.

3. Nech Z€(S+T)*. Teda (Z,5+t)=0 pre vietky 5€S,1€T. Specidlne (¥, 540)=

= (&, 6) = 0 pre Iubovolny 5 € S. Takisto (Z,£) = 0 pre Vi € T. To znamené, Ze

FeStNT+. Teda mame: (S+T)+CS+NT+.

Obratene: nech Z€STNTL. Potom (Z,5)=0 pre vietky 5€5; (Z,1)=0 pre vietky

teT; potom (7, 54+1)=0 pre vietky 5€5,1€T. Teda F€(S+T)*"

tj. STNTLC(S+T)*. Veelku: StNTH=(S+T)*.

Veta 10.5. Nech (V,( , )) je euklidovsky vektorovy priestor, nech SCV je vek-
torovy podpriestor. (V je konecne generovany). Potom kazdy vektor z V sa da
jedinym spésobom vyjadrit ako stic¢et vektora z S a vektora z S*. To znamena, Ze

V=5@S+.

Dokaz.

Ezistencia vyjadrenia: Pre S = {0} jasné. Predpokladajme, ze S # {0}. Nech

(d1,- -+ ,dx) je ortonormalna béza v S (také existuje — proces Gramov-Schmidtov).

Dopliime ju na bazu (ay, - - ,dk, Dit, - - ,En) priestoru V. Gramovym-Schmidto-

vym procesom prejdeme k ortonormaélnej béze (@1, -« ,dg, Ax+1, - ,an) DPriestoru
——— ————

es S
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V. Potom lubovolny vektor Z€V ma4 jediné vyjadrenie v tvare:
Z=x101+ - +TkA + Trp1Gp+1+ - - +Tpbp. Oznaéme x1d1+ -+ - +Tr0r==Zs,

€s est

xk+15k+1+ -+xpd,=%gr. Mame r= fs—‘r:fsJ_

Jednoznacénost vy]adrema Nech by tiez = a+b pri¢om @€, bESJ‘ Chceme uka-
zat, Ze A=Tgs a b= Zgr. Méame xs—i—xsi—a—f—b z oho Ty—ad=b— Zg1. Ratajme:

M~ N——
€S est
0<<_‘S —da,b— st> = <fs7b> — <6, b> - <fS7fSi> + (6,fsi>. Teda 0 = @5767
—_——— N——
=0 =0 =0 =0
b—Tg1)=(Fs—d, Ts—a)=(b—Fg1,b—Fg1). Potom Fs—ad=0Ab—Fg1=0 = Tg=a A
z

Veta 10.6. Nech (V,(, )) je konecne generovany euklidovsky vektorovy priestor.
Potom:

1. Ak SCV je vektorovy podpriestor, tak (S+)+=S.

2. Ak S, TCV st vektorovy podriestory, tak (SNT)t=S++T-+.

Dokaz.

1. Pre Tubovolné €S méame (&, 7/)=0 pre lubovolny y€S+. Teda F€(S+)*. Zistili
sme, ze SC(S+)L. Z vety 8.24. vieme, ze V=S®S+ a V=(S1) @ (S1)*. Z toho:
dim(V)=dim(S)+ dim(S*)=dim(S*)+ dim((S+)1). Teda dim(S)=dim((S+)*).
Kedze aj SC((S1)1),mame S=(S+)+.

2. ((SH+THH) L =(SE+TH)=((SH)n(TH)H)t=(SnT)*+

Definicia 10.7. Nech (V,(, )) je euklidovsky vektorovy priestor a {0}£SCV je
vektorovy podpriestor. Potom kazdy vektor €V ma jediné vyjadrenie v tvare
T=Fs+Zg1, kde £s€S a g1 €S+. Teda predpis, ktory kazdému F€V priradi Zg
definuje zobrazenie p : V—V, p(Z)==Zs. Potom p sa nazyva zobrazenie ortogondlnej
projekcie na podpriestor S.

Tvrdenie 10.3. Ak Z€S, tak p(Z)=
Dékaz. Jediné také vyj ie je: #= ¥ 0 . T 7)=7.
okaz. Jediné také vyjadrenie je: ¥= & + 0 eda p(Z)==F
€es est

Tvrdenie 10.4. p(V)=S.

Tvrdenie 10.5. pop =p.

—

Dokaz. Pre Iubovolny & € S: p o p(%) = p(p(Z)) = p(Z).
—~—
es
Tvrdenie 10.6. p: V—V je linearne zobrazenie.

Doékaz. Tubovolné Z, 7€V, a, BER. Potom vieme, ze F=Ts+Tg. a §=ijs+ijgL st
jediné vyjadrenia svojho druhu. Potom aZ+67= a(Fs+¥s) + B(Zs. +¥s1 ) je jediné

€S €S+
vyjadrenie vektora af+34 ako sucet vektora z S a vektora z S+. Podla definicie

8.24.: p(ai+py)=a(Zs+ys)=ais+Bis=ap(Z)+0p(¥).
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Priklad. Treba néjst zobrazenie ortogonalnej projekcie na podpriestor S.
S=[(1,1,-1),(1,-1,0)]CR3 so standardnym skaldrnym st¢inom. Doplnime orto-
gonalnu bézu ((1,1,-1),(1,—1,0)) podpriestoru S na ortogonalnu bazu priestoru
R3. Najdeme vektor (ki, ko, k3)€R? taky, ze ((ki1, k2, k3), (1,1, —1))=0 a tiez:
((k1,ka,k3), (1,—1,0))=0. Z toho: k1+ke—k3=0 a k;—ko=0. VyrieSime, zoberieme
napriklad (—1,-1,-2). Teda ((1,1,-1),(1,—1,0),(—1,—1,—2)) je ortogonélna

€S est
béza v R3.
at+b—c=x,
R3 3 (21,20, x3)=a(1,1, =1)4+b(1,—1,0) +-c(—1, -1, -2) = { a—b—c=xy
€s st —a — 2c=x3

VyrieSime: ¢=—§(x1+324223), b=—3(21—22), a=%(x14+x2—3). Teda pre Iubo-
volny (z1, z2, 23)ER? plati:

T1+T2—T3 T1—T2

.(1 1 _1)+ T1+To+2x3
3 b b)

6
es est

(.’171,{E2,(E3): (17_170)_ (_17_17_2)

T1+T2—T3 T1—T2

Teda p(z1, x2, 23)= (1,1, -1)+ (1,-1,0);
5£E1—562—2£E3 . —1:1—|—5x2—2x3 . —T1—T2+x3

6 ’ 6 ’ 3

p(z1, 22, 73)=( ). Matica zobrazenia p:

M,, je symetricka. Stcet na diagonale: dim(S).

Definicia 10.8. Nech (V,(, )) a (W,(, )) su euklidovské vektorové priestory.
Euklidovsky izomorfizmus z V' na W je linedrny izomorfizmus f : V—W taky, ze

(f(@), f(§))=(Z, ) pre vietky T, eV

Veta 10.7. Nech (V,(, )) je n-rozmerny euklidovsky vektorovy priestor. Potom
existuje euklidovsky izomorfizmus z V' na R™ so standardnym skalarnym stcinom.

Dokaz. Nech (¥4, -+ ,U,) je nejakd ortonormalna baza vo V. Nech (€1,-- ,€,) je
Standardnd baza v R™ (t4 je tiez ortonormélna). Zo zékladnej vety o linedrnych
zobrazeniach vieme, ze existuje jediné linedrne zobrazenie f : V—R" také, ze
f(0;)=¢;, i=1,--- ,n. Z inej vety vieme, Ze f je linedrny izomorfizmus. f je aj
euklidovsky izomorfizmus, lebo: (f(z1014 - +x,0n), (1014 - - +yn¥n))=

=(x1 f(01)+ - +2n f(Tn), 1 f(T1)+ - +yn f(Tn))=(@1€14 - - - +20n €, Y161+
A Yn€n)=T1y1+ F Y. Ale aj (2101 F T Uns Y101+ A YnUn)=
=211 (01, V1) + -+ +2nYn (Un, V) =T1Y1+ - +T0Yn-

Priklad. R™, euklidovsky izomorfizmus: f : R®"—=R" je napr. fa : R®*—R"”, kde
AeMm,,,(R) a AAT=L,.
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XI. AFINNY PRIESTOR (NAD R)
Pozndmka. afinita = spriaznenost

Definicia 11.1. Nech A=(B,V) kde B#0D je mnoZina, ktorej prvky budeme oz-
nacovat A, B,---, X a budeme ich nazyvat bodmi, a V je vektorovy priestor nad
R. A sa nazyva afinny priestor, ak body z B a vektory z V s ”spriaznené” podla
nasledujucich pravidiel:
1° Pre kazda usporiadant dvojicu (X,Y)eBxB existuje jediny vektor z V', ktory
potom oznadime XY (nazyva sa vektor prislachajtci k dvojici (X,Y)eBxB).
2° Pre kazdy XeB a kazdy reVv ex1stuje jediny bod Y eB taky, ze 2= XY.
3° Pre kazdé X,Y, ZeB: XY+YZ=XZ.
Ak A=(B,V) je afinny priestor a dim(V)=n, tak hovorime, Ze dim(A)=n. (Ini¢:
A je n-rozmerny afinny priestor.)
Priklady.
1. B={B}, V={0}. A=(B,V) je nularozmerny afinny priestor.
2. B= mnozina bodov O,,, V= vektorovy priestor orientovanych tseciek so za-
¢latkom v O. (X,Y)eBxB priradime jediny vektor Z€V, ktory dostaneme tak,
Je orientovant tsecku XY posunieme do bodu O. Axiémy afinného priestoru:
1° v 20 v 3 .
B je bodova, V je vektorova zlozka afinného priestoru.
3. Nech B=R", V=R". 1°: Usporiadanej dvojici (4, B)eBxB, kde A=(ay, - ,a,),
B=(by,- - ,by) priradime vektor A_B>:(b1—a17 -+ bp—ay). 2°: Pre lubovolny bod
X=(z1, - ,zn)€B a lubovolny a=(ay, - ,a,)€V je Y=(x1+a1, - ,zn+a,)EB
ten jediny bod, pre ktory plati i=XY. 3° X=(x1, - ,xn), Y=(y1, " ,Yn),
Z=(z1,+  2m). XYY Z=(y1—21,  Yn—n)H (2141, -+, 20—Yn)=(z1—21,
,zn—xn)zjfﬁ V. Teda A=(R™,R") je n-rozmerny afinny priestor.
4.
aj1rit - +a1,T,=0b
Nech (N)S : je riesitelny nehomogénny systém linearnych
G511+ - -~ +asnxn:bs

rovnic nad R. B = mnozina vSetkych rieeni systému (N). V =vektorovy priestor
vetkych rieSeni prislusného homogénneho systému. 1°: pre (X,Y)eBxB defi-
nujeme XY=Y-X €V je to riesenie prislusneho homogénneho systémL 2°: pre
l’uboﬂnyigb’ a fubovolny aeV bud_e_{l—l—d’:BEB jediny bod taky, ze AB=d.

3% XYY Z=Y - X+Z-Y=0-X=X7.

Teda A=(B,V) je afinny priestor dimenzie n—h(matice systému).

Veta 11.1. Nech A=(B,V) je afinny priestor. Potom:

1. XX= OEV /_pre VXGB

2. Ak XY= ST tak XS=YT.

3. XY=-YX pre lubovolné X,Y €B.

Dokaz.
—_— — — — —
1. XX+XX =XX, preto XX = 0.
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— = = = = ——

2. Predpokladajme e XY = ST Potom XS5= XY+YS=ST+YS: S+ST=YT.
3. XY +Y X=X X=0. Preto XY=—Y X.

Ina definicia afinného priestoru:

Definicia 11.1*. Afinnym priestorom rozumieme trojicu: A=(B,V,+), kde B#(
je mnozina (jej prvky st body) a V' je vektorovy priestor nad R (jeho prvky si vek-
tory) a + je zobrazenie z BxV —1B, ktoré kaZzdej usporiadanej dvojici (X, a@)eBxV
priradi jediny prvok z B, ktory potom ozna¢ime X +da, pri¢om musia byt splnené
podmienky:
1*: X4(d+b)=(X+a)+b pre kazdé XeB a kazdé Z,jeV.
2% X+7=X « 7=0.
3*: pre lubovolné Y, X €B existuje jediny acV taky, ze X+d=Y.

Obidve definicie afinného priestoru st ekvivalentné. tj. A=(B,V) je afinny
priestor v zmysle def 11.1 < ked A=(B,V,+) (s vhodne definovanym +) je afinny
priestor podla def 11.1x.

Doékaz. Predpokladajme, Zze A=(B,V) je afinny priestor podla def 11.1. Potom
pre XeB a @€V podla podmienky 2° z def 11.1(x) existuje jediny Y €B taky, Ze
XY =d. Polozime: Y=X+da. Tym sme definovali + : BxV—B. Overime 1* 2* 3*.
1% (X+@)+b=Y +b=7 podla def.: &=XY, b=Y Z. Potom X +(a+b)= X+(XY+
+ﬁ):X+X_Z}:Z. Teda naozaj X+(@+b)=X+(a+b) 2*: X+7=X & 7= XX=0
(pouzili sme wvetu 11.1). 3*: pre lubovolny XeB a deV je Y=X+da ten jediny bod.
Teda A=(B,V,+) je afinny priestor v zmysle def 11.1.

Predpokladajme, ze A=(B,V,+) je afinny priestor v zmysle def 11.1x. Chceme
ukéazaf, ze A=(B,V) splia 1°, 2° a 3° z def 11.1.

1°: Pre lubovolné X, Y €8 definujeme XY eV ako ten jediny vektor z V' (podla 3*),
pre ktory X4+ XY=Y.

21} Pre kazdy bod XeB a kazdé deV existuje jediny vektor Y=X+d taky, ze
XY=

3°: X+(XY+YZ) (X+XY)+YZ Y4YZ=Z=X+XZ = XY+YZ=X7Z pre
lubovolné X,Y, ZeB.

Pevne zvolme bod O€B v afinnom priestore A=(B, V). Potom mozeme definovat
—
zobrazenie h : B—V, h(z)=0X.
Tvrdenie 11.1. Zobrazenie h je bijekcia.

Dokaz. Definujme g : V—B, g(d)=len jeding A€B, pre ktory a=0OA. Potom
—
goh=idp, hog=idy, goh(X)=g(OX)=X a hog(d)=h(A)=d.

Definicia 11.2. Nech A=(B,V) je afinny priestor. Afinny podpriestor priestoru A
je afinny priestor A'=(B’, V'), taky, ze B'CB, V' je vektorovy podpriestor priestoru
V, a body z B’ st s vektormi z V' spriaznené podla tjch istych pravidiel, ako st
spriaznené body s vektormi v A.

Priklad.

1. A=(B,V) je afinny podpriestor samého seba.

2. Ak A'=(B', V"), A”=(B",V") st afinné podpriestory v . A=(B, V), tak A/NA"=
=(B'nB",V'NV") je afinny podpriestor v A’ , A" aj A.
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Definicia 11.3. Nech A,=(B,,V,), n€N je n-rozmerny afinny priestor. Potom
1-rozmerny afinny podpriestor v A,, sa nazyva priamka v A,, 2-rozmerny afinny
podpriestor v A,, sa nazyva rovina v A, a (n — 1)-rozmerny afinny podpriestor
v A, sa vola nadrovina v A,,.

Stradnice v afinnom priestore.

Definicia 11.4.

Nech A,,=(B,,V,,) je afinny priestor. Potom (n+1)-tica (O, a1, - ,dy,), kde O€B,
je pevne zvoleny bod a (dy,--- ,dy,) je pevne zvolend baza priestoru V,,; sa nazyva
suradnicovy systém v A,.

Priklad.
V A,=R",R") (n+1)-tica ((0,---,0),(1,0,---,0),(0,1,---,0),---,(0,---,0,1))
je suradnicovy systém.

Priradenie suradnic.

Nech (O, d,- - ,d,) je suradnicovy systém v n-rozmernom afinnom priestore
An=(B,,V,). Pre lubovolny bod X€B,, existuje jediny vektor OX €V,,. Potom
existuje jedina n-tica (z1,--- ,z,)ER" taka, Ze _O—)_():xlﬁl—i- -« +x,d,. Potom us-
poriadand n-tica (z1,---,2,) je n-tica siradnic bodu X vzhladom na suradni-

covy systém (O, dy, -+ ,dp). OX sa nazyva aj polohovy vektor bodu X. Teda
vlastne stradnice bodu st stradnice jeho polohového vektora vzhladom na bazu
(d1,- - ,dp). Strucne pisSeme X=(z1,---,2,). Pre vektor bev, jeho stradnice
vzhladom na suradnicovy systém (O, ds,---,d,) si jeho stradnice vzhladom na
bézu (@1, -+ ,dp). b=b1d@1+ - - - +bpdn, b = (b1, ,by).

Tvrdenie 11.2. Nech (O,dy,- - ,dy,) je suradnicovy systém v afinnom priestore
e

An=Bn, V). Ak X = (z1,-++ ,2,), Y = (Y1, ,Yn) tak vektor XY m4 suradnice:

—

XY = (@W—21,  ,Yn—Tn)-

— - — e —

Dokaz. Mame OX=x1d1+ - +2pdn, OY =y1d1+ - +ynd,. XY = XO+O0Y =
— —

=0Y-0X=(y1—x1)d1+ - (Yn—2n)0n-

Priklad. Pre A;=(R? R?) stradnicovy systém ((0,0),(1,0),(0,1)). X=(z1,2).
—
OXZ(I1,1‘2)217151+$252. X = (1?1,:62).

Afinné zobrazenie.

Definicia 11.5.

Nech A=(B,V) a A'=(B’, V') st afinné priestory. Potom afinné zobrazenie z A do

A’ je dvojica (f, ), kde f : B—=B" a ¢ : V—V" st linedrne zobrazenia a okrem toho
IR _

e(XYV)=f(X)f(Y). f je tzv. bodova zlozka, ¢ je tzv. linedrna zlozka afinného

zobrazenia (f, ) : A—A'.

Pozndmka. Nech A=(B,V,+) je afinny priestor v zmysle def 11.1x. Potom vieme,

Ze pre lubovolnt (X,Y)eBxB existuje jediny Z€V taky, ze X+2=Y. Potom oz-
— —_—

na¢me =Y —-X=XY. Potom podmienku ¢(XY)=f(X)f(Y) z def 11.5 modZzeme

napisat (Y —-X)=f(Y)—f(X).
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Priklad. V afinnom priestore A,,=(B,, V;,) zvolme pevne sturadnicovy systém
(O,dy,- -+ ,dy). Definujme f : B,—R", f(X)=(z1, - ,x,), kde (z1, -+ ,2,) s
stradnice bodu X. Podobne definujme ¢ : V,, —R", @(g)z(bl, <o+, by), kde (b1,

- ,b,) st stradnice vektora b. Potom (f,¢) : (Bn, V,)—(R™,R") je afinné zob-
razenie.
Definicia 11.6. Afinné zobrazenie (f, ¢) : (B,V)—(B',V’) je afinny izomorfizmus,
ak f je linearny izomorfizmus.
Veta 11.2. Afinné zobrazenie (f,p) : (B,V)—(B', V') je afinny izomorfizmus <
ked o je linedrny izomorfizmus.
Dokaz.
[=] Pevne zvolme bod PcB. Ozna¢me P'=f(P). Predpokladajme, Ze (f,¢)
je afinny izomorfizmus. Chceme ukdzat, ze ¢ : V—V' je linedrny izomoiﬁ_z>mus.
Staci ukazaf, Ze ¢ je bijektivne. Surjektivnost: Nech beV. Potom b=P'B pre
jednozna¢ne uréeny bod B. KedZe f je bijekcia, existuje jediny bod YeB taky,

- —— — - —

ze f(Y)=B, teda b=f(P)f(Y)=¢(PY). Teda b ma vzor PY€V. Injektivnost:
Nech ¢(@)=¢(b). Chceme ukazat, ze G=b. Méme EL':P—A, b=PB pre jednoznacne
uréené PeB. Teda p(PA)=¢(PB) < f(P)f(A)=f(P)f(B). Z toho f(A)=f(B)
je bijekcia, preto A=B. Vcelku: a=b.
[<=] Predpokladajme, ze ¢ : V—V' je linedrny izomorfizmus. Chceme ukazaf, ze

f je bijekcia. Surjektivnost: Nech YeB' je Tubovolny. Potom PY mé jediny vzor,
povedzme ga(d'):]T}}. Pritom: @ = PA pre jediné AcB. P'f(A) = f(P)f(A) =
:@(m):ﬁ} z toho: Y=f(A). Injektivnost: Predpokladajme, ze f(A)=f(B).
Chceme ukézaf, ze A=B. <p(P_z>4) =f(P)f(A) =P f(A)=Pf(B)=f(P)f(B) =
:ga(P—B)) a preto A=B.

Pozndmka. Afinné zobrazenie (f,¢) urcené zavedenim suradnicového systému
(O,dq, - ,dn) v Ay=(By, V,,) ma bijektivne f, a preto je to aj afinny izomorfizmus
z A, na (R",R").

Definicia 11.7. Ak existuje afinny izomorfizmus (f, ¢) : A—.A’ tak hovorime, ze
afinny priestor A je afinne izomorfny s afinnym priestorom A’. Ak A je afinne
izomorfny s A’, tak tiez je A’ afinne izomorfny s A. V takom pripade moZeme
povedat, ze A a A’ st navzajom izomorfné.

Priklad.

Zavedenim stradnicového systému (O, dy,- - ,d,) v n-rozmernom afinnom pries-
tore A,=(B,,V,) vlastne definujeme afinny izomorfizmus z (B,,V,,) na (R”,R").
Teda kazdy n-rozmerny afinny priestor je afinne izomorfny s afinnym priestorom
(R™, R™).

Veta 11.3. Nech (f,¢) : (R¥,R¥)—(R" R") je afinné zobrazenie. Potom pre
(w1, ,21)ERY mame f(zy,--- ,ox) = (v1, - ,Tk) - M, + f(0,---,0). Pritom

v (R* R¥) mame stiradnicovy systém ((0,--- ,0),€y,--- , &) v (R?,R™) stiradnicovy
systém: ((0,--+,0),€1,- - ,&n).

Dékaz. Vieme, ze p(z1,- -+ ,x) = (x1,- - ,xk) - M, pre kazdé (z1,--- ,x5)€R?:
(xh... ,xk):(0,~~- ’0)(;51’... 793k)7 (1'1,... ’xk).M(P:@((O’... 70)($17... ,J;k)):
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:f(o,... ,O)f(x1,~-~ ,CUk)~ f(ﬂfl»"' ,:ck)—f(O,--~ 70):(3517... ,Cﬂk)'M@-
Teda f(xq,--- ,z8)=(z1, -+, 2)- My+£(0,---,0).

Barycentricky suradnicovy systém.

Budeme pouzivat def 11.1x.
Nech A=(B, V) je afinny priestor. Vieme, Ze pre lubovolné X, Y €B existuje jediny
vektor £€V taky, ze X+r=Y. Oznacili sme r=Y —X. Plati:

—_— = =

1. (A—B)+(B-(C)=A-C & BA+CB=CA=A-C.
2. X—X=0  VXeB.
3. (X+2)—(A+y)=(X—-A)+Z—7.
Definicia 11.8. Nech A=(B,V,+) je afinny priestor, nech Ag, Ay, -+, As€B su

lubovolné body a nech zg,z1, - ,xsER také, ze Z x;=1. Potom definujeme bod
i=0
z B: inAi::A—i—in(Ai—A), kde A€B je lubovolny bod. Bod inAi sa
i=0 i=0 i=0
nazyva barycentrickd kombindcia bodov Ag,--- , As s koeficientmi xg, - - - , zs.

Ukéazeme, Ze def 11.8 barycentrickej kombinécie bodov je dobra, tj. Ze nezavisi
od volby A. Takto: Nech BeB je lubovolny bod. Potom vieme, Ze existuje jediny
S S

FEV taky, ze B=A+i. Potom B+ Y xi(Ai—B)=A+i+ Y zi((A;—A)—F)=

1=0 =0
1=0 1=0 1=0 1=0

=A+) zi(Ai-A).

i=0
Veta 11.4 a Definicia 11.9. Nech Ag, Ay, - -+ , A, st body n-rozmerného afinného
priestoru A,=(B,,V,). Potom: (Ag, A1—Ay, - ,A,—Ap) je stiradnicovy systém
afinného priestoru A,, (v zmysle definicie) prave vtedy, ked kazdy bod X €B,, sa d&

jedinym sposobom vyjadrit ako barycentrickd kombindcia X = Z x;A;. Ak je toto
i=0

splnené, potom (Ag, A1, - - , A,) sa vola barycentricky siradnicovy systém priestoru
An; (zo,- -+ ,2n) st barycentrické siradnice bodu X.
Dokaz.

[=] Predpokladajme, Ze (Ao, A1—Ao, -, A,—Ap) je siradnicovy systém. Nech
XehB, je lubovolny bod. Potom existuje jediny vektor F€V,, taky, ze X=Aq+T.

Kedze (A1—Ay, - ,A,—Ap) je bdza vo V,, preto existuji jednoznaéne urcené
T, ,Tp€R: T= in(Aion). 7 toho: X=Ay+ Z x;(A;—Ap). Zoberme
i=0 i=0
ro=1— Z x;. Potom X=Ay+ Z x;(A;—Ag)= Z z;A;. Jednoznacnost: Nech by
i=1 i=0 i=0

X= Z T A= Z z; AL, Méame vlastne: Ag+ Z x;(A;i—Ag)=Ao+ Z 2 (A;—Ay).
i=0 i=0 =0 =0



LINEARNA ALGEBRA 53

7 toho: Z x;(A;i—Ag)= Z x(A;—Ap). Pretoze (A1—Ao, -+, A,—Ap) je baza,
i=0,1 i=0,1
musi platit z;=z/ pre i=1,--- ,n. Potom tiez zo=1— Z ri=1— Zx'—x6

=1
[<] Predpokladajme, Ze kazdy bod z B, sa da Jedlnym sposobom vyjadrit ako

barycentrickd kombinacia bodov Ay, - , A,. Chceme ukazat, ze (Ag, A1—Ao, -,

, Ap—Ap) je stradnicovy systém v A, =(B,,V,). Sta¢l ukdzat, ze (41—Agp,- - -,

, An—Ap) je baza vo V,,. Pretoze vieme, zZe dim(V,,)=n, stac¢i ukazat, ze A;— Ao,

, Apn—Ag generuju celé V,,. Nech beV, je lubovolny vektor. Z axiém afinného

priestoru vieme, Ze k bodu Ay a vektoru b existuje jediny bod BeB, taky, ze

ng—AO. 7 nasho predpokladu vyplyva, Ze existuje jediné vyjadrenie B v tvare
n n

B:iyi/&i (kde iyizl.) 7 toho: b= (Z yiAi> _A0:A0+Zyi(Ai_A0>_
i=0 i=0 =0

=0

—Agp= Zyi(Ai—Ao). Teda naozaj [A1—Ag, -+, Ap—Ao|=Vi.

i=1
Veta 11.5. Nech (f,¢) : (B,V)—(B',V') je afinné zobrazenie. Potom pre lubovol-

nti barycentrickli kombinaciu ZmiAi lubovolnych bodov Ag,---,A,€B mame
i=0
f (Z%‘Ai) =Y zif(A
i=0 i=0

Dokaz. Oznacme B:inAi. Body Ag, B urcuju jediny vektor ZeV taky, ze
i=0
B:A0+f, teda f:BfAO Potom @(B*AU):f(B)ff(Ao) Pritom B*AQZ

=Ao+ Y yi(Ai—Ag) — Ao=)_ wi(A;i—A).

=0 z 0

F(B)=f(Ag)=p(B—Ao)= ZwA —Ag)= Z i(f(A)—f(Ao)) &

& FOQwid)=1(B)=f(Ao)+ Z 2i(f(A)—f(A0)=> =i f(A
1=0 =0 1=0

Veta 11.6. (o afinnych zobrazeniach):
Nech A,=(B,,V,,) je n-rozmerny afinny priestor a nech (Ao, -, Ay) je barycent-

ricky stradnicovy systém v niom. Nech By,--- , B, st lubovolné body afinného
priestoru A}, =(B.,,V.!). Potom existuje jediné afinné zobrazenie (f,p) : A—A,

také, ze f(A;)=B; pre i=0,--- ,n

Dokaz. Vieme, ze kazdy bod Xe€B, mé jediné vyjadrenie v tvare X :inAl
=0
Ak existuje afinné Zobrazeme (f, ®) : .A—>A’ také, ze f(A;)=B;, i=0,---,n tak

musi byt f(X sz i le ; —inBi- Teraz definujme zobrazenie
i=0
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n

(fy¢) : (Bn, V,)—A’ prave takto: f(z x; A= leBz Treba este ukazat, ze f

i=0 i=0
n n
(a nim uréené ¢ : V—V") je afinné zobrazenie. Pre X:Za:,»Ai, Y:ZbiA,- je
i=0 i=0
@(YfX)::f(X)ff(Y):Z(xifbi)B,;. Staci ukazat, ze ¢ je linedrne. Lubovolné

i=0
dva vektory d,ceV,, Va, BER, a=A—Aqy, c=C—A,. Potom p(aA+LC)=

=<P(a(A—A0)+5(C—A0)):<P(04(Z az‘Ai—Ao)Jrﬁ(Z ciAi—Ag))=

=p(a(D ai(Ai—40)+B0D_ ci(Ai—Ao)))=ap(@)+8¢(2).

i=0 i=0
Pozndmka. barycenter = tazisko.
V n-rozmernom afinnom priestore A,=(R"™,R™) body Ay, -, An; pricom kazdy
z nich mé jednotlivii hmotnost, predpokladjme, ze A;—Ag, -+, A,—Ay nech st
linedrne nezavislé. Teda (Ag, A1,---,A,) je barycentricky suradnicovy systém.

Bod, ktorého barycentrické stradnice si (%H7 e ,n%rl) je tazisko ststavy hmot-
nych bodov Ag,---, A,. Napriklad pre n=2: %Ao—i—%Al:Ao—&—%(Al—Ao).
Definicia 11.10. V afinnom priestore (R™, R™) majme body Ay=(1,0,---,0) az

n—1
Ap—1=(0,---,0,1). Potom mnozina A":{Z ;A inzl;xiZO} sa nazyva
i=0
n-rozmerny simplex. Simplexy sa pouzivaju v topoldgii, geometrii, v optimalizac-
nych metédach.

Parametrické vyjadrenie afinného podpriestoru.

Veta 11.7. V n-rozmernom afinnom priestore A, =(B,,,V,,) majme pevne zvoleny

siiradnicovy systém (O,dy,--- ,dy,). Nech Ap=(Bn,V,) je k-rozmerny afinny pod-
priestor v A,,. Nech A = (ay,--+ ,ay,) je dajaky bod z Ay, nech (51, -+, bg) je bdza
vo Vi pricom by = (bi,--- ,bL), ..., by = (bF,--- | bF). Potom pre Iubovolny bod

XEA;c plati 04)_():0_/>1+l_))1t1+ - +5ktk pre vhodné ty,--- ,t€R. Obratene, ak pre

dajaky vektor £€V,, plati ;E':O—z>4+8151+ e tspby pre dajaké sq,--- ,sp€R, tak ¥

je polohovy vektor dajakého bodu z Ay,. Z toho: bod X = (1, ,xy,) patri do A
X1 =a1+b%t1+~-~+b’ftk

préave vtedy, ked (R){ --- ,t, - t€R. Cisla ty, -+, ty,
Tp = ap + bl + -+ bkt

sa volaji parametre. Systém R je tzv. parametrické vyjadrenie Ay.

Dékaz. Nech XeA;,. Mame AcAj. K dvojici (A, X)eByx By, patri jeding vek-

tor Zl?(effk. Vo Vi, mame bazu (by,--- ,by) preto Z?(:t151+~-+tkl;k pre jed-

noznacCne urcené tq,--- ,trER. ZR:A‘O@@?:@?—@{:@& s +tk5k. 7 toho

5)?:0_1)4+t151+"'—|'_>tkgk. B B .

Obrétene: nech Z=OA+s1b1+ -+ +skb,. Chceme ukdzat, ze T=0Y pre dajaké

YeA,. Pretoze O_Aef/k ale aj 5151+~-—|—sk5k6f/k méme: TEV,. Zaroven AcB.



LINEARNA ALGEBRA 55

7 axiém afinného prlestoru ex1stuJe Jedlny bod Y'eB;, taky, e AY’ OA+81b1+

4+ 8D t]. AY’ OA= s1b1+4 - - +5xbs. K bodu A€B; a vektoru s1byt -+

—i—skbkev;c existuje jediny bod YeB, taky, ze 51b1—|— e —&—skb;@:AY. 7Z toho Z‘Y—;:
— T — ==

=r=0A+AY =0Y.

Pozndmka. V situacii ako vo vete sa Vj, nazgva smerovy priestor afinného pod-

priestoru A, a bazové vektory bl, gk su smerové vektory afinného podpriestoru

Ai. Z vety je jasné, Ze afinny podprlestor i je tplne jednoznacne urceny jednym

bodom A a smerovymi vektormi (bl, bk)

VsSeobecné (analytické) vyjadrenie afinného podpriestoru.

Nech je dany k- rozmerny afinny podpriestor Ap= (l’g’k, f/k) n-rozmerného afinného
podpriestoru A= (Bk, ) S pevne zvolenym suradmcovym systémom. Nech A je
uréeny bodom A = (a1, - ,a,) a smerovymi vektormi by = (b1, b)), ...,
by, = (bk,---  bE). Teda parametrické vyjadrenie je:

z1=a14bit1+ - - +bity
Ak = s t;eR
Tp=an+bLti+ - +bkt,

bl .. obk
MaticaB= [ : . : | m4 k linedrne nezavislych stipcov (lebo 51, sy l;k su linear-
b, by,
ne nezavislé.) Teda h(B)=k z toho B méa k linedrne nezavislych riadkov, nech sa
to riadky s indexmi i1, --- ,ix€{1, -+ ,n}.

b%tl—i- s +b’ftk:m1—a1 bl t1+-- +bk tp=xi, —Qi,
(P)={ - & ()
bl 1t +b “te=Tp—ap bl t1+-- -H)k L=, —a;,
bl o bF
11 11
Mameh | : -. @ | =k=. Systém () ma jediné riesenie, vyratame ho z Crame-
pl Bk
i i

rovho pravidla:

det( )
—— =0Ty, @) k== (g,
bil b(;1 11 7k) det( ) ( 11 7k)
det )

Bl ph

Tk k
li(z4y, -+ ,x;,) st linedrne funkcie. Teraz dosadime t,--- ,t; do zvySnych n—k
rovnic parametrického vyjadrenia. {j1,- - ,jn—r} nech je doplnok ku {i1,--- ,ix}
v{l,---,n}. Dostaneme: b} f1(x;,, -+ @i, )+ - - +05 Ly (i, - @i, ) =2), —ay, ...
bjln_kgl(xi17"' 7zik)+'"+b§n_k€k(xil7"' 71'7:;@):1'3‘717,&.*04]‘”7]9. tJ systém n—=k
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linedrnych rovnic s n neznamymi zi,--- ,z,. Matica tohto systému ma hodnost
n—k. Teda Iubovolny bod X = (x1,---,2,) z A splia (svojimi stradnicami)
linedrny systém tvaru:

C11T1+ - -+ +Clnxn:d1 c11 Cin

(V) kde Cij,deRah< ) =n—k
Cn—k1x1+ R +Cn—knxn:dn—k Cn—kl " Cn—kn
Jedno riesenie je: (ay,- - ,a,). Potom st rieseniami aj n -tice: (a;+bi, - a,+bl),

. (al—}—b,lc, o ap+bF). Béaza je k linearne nezavislych rieseni homogénneho sys-
tému patriaceho k (V): (b}, ,bL), -+, (b}, -+ ,bF)).
(w1, xk)=(ar, - ,an)+s1(b, - ,bL)+ - +s,(b%, -+, bE )= mnozina bodov
vyhovujtcich (P) tj. stradnice bodov z Ay.
Veta 11.8. (o vSeobecnej rovnici nadroviny)
Nech a=(B(«a),V(a)) je nadrovina v n-rozmernom afinnom priestore A,=(By, Vy,)

(s pevne zvolenym suradnicovym systémom v A,.) Ak P = (p1,--- ,pn) je bod z
aby = (bl bL), - bpy = (71, -+ b7 st smerové vektory (teda tvoria

bézu) priestoru V(a). Potom vSeobecnd rovnica nadroviny o je:

r1—pr - Tn—Pn
bl . bl
a = det . . ,n =0
b?.—l .. bz;l

Doékaz. Nech X=(x1,---,x,) je Tubovolny bod z a. Potom (P, X)eB(a)xB(«)

. . < . = .
jednoznaéne uréuje vektor PX=V(«). Vieme, ze PX = (x1—p1, - ,Tn—pPn) j€
linedrna kombinacia (b1, --- ,bk), -, (B}t .- b0 ).
T1—p1 - Tnpn—Pn
bl pl
Preto: det . ) n =0
b’f'—l bz;l
Obréatene:
T1—pP1 = Tnpn—Pn
by by
Nech Xe€B,,, X = (21, -+ ,x,) je taky bod, Ze det - . =0. Chceme
byt e bn
by e by,
ukédzat, ze XeB(a). Ekvivalentne mame: det Do =0. Z toho
pr=t L prl
3311—171 ot Ty —Pn
(x1—p1,- -+ ,Tn—pn) je linedrna kombinécia (b}, --- ,bL),--- (b7~ -~ b~ 1),

- —

Teda vektor PX je linedrnou kombinaciou 51, <+, by—1, teda PX€V(a). K bodu

4 —_
PeB(a) a vektoru PXeV(a) existuje jediny bod X'eB(«) taky, ze PX=PX'.
Z toho: X=X'. Teda XeB(«).
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Vzajomné polohy afinnych podpriestorov.

Definicia 11.11. Nech a=(B(a),V(a)) a 8=(B(5),V(F)) st afinné podpriestory
v afinnom priestore A,=(By, V,,), dim(A,)=n. Potom hovorime, Ze:

1. « a (3 su rovnobeiné (a || B), ak V(a)CV(B) alebo V(B)CV(a).

2. a a 8 st roznobezné, ak B(a)NB(3)#0 a B(a) € B(a), B(8) € B(w)

3. a a § st mimobezné, ak B(a)NB(B)=0 a V(a)NV(5 ) {0}

Pozndmka. V aspon 4-rozmernom afinnom priestore uvedené tri nie sa vsetky
mozné vzajomné polohy afinnych podpriestorov «, 3.

Priklad. Ay4=(B4,Vy), nech V4 mé bazu (a1, dz, ds, dq). Zvolme bod A€B,. Vieme,
7e k bodu A a vektoru a; 3I'BeB, : ﬁlzzﬁ. Zoberme dve roviny o, v Ay
takéto: « je ur¢ené bodom A a smerovymi vektormi ds, ds; 3 je uréené bodom B
a smerovymi vektormi d@s,ds. Potom « a (3 nie st rovnobezné, lebo V(a)ZV(3)
ani V() C V(«); nie st ani mimobezné, lebo {ds} C V(a)NV(B)# {O} Nie
si1 ani roznobezné, lebo anNB=0. Nech by anB#0. Teda existuje XcanB. Po-
—— — = —

tom AXeV(a) tj. AX=agdrt+asds; XBeV(0) tj. X B=Qf3d3+[4d4. Z toho:
61:Z})+)(—B>:a2d'2+(053+63)d3+64d4 — nemozné, lebo ds,ds, dy,d, st linearne
nezavislé.

V A, pre n>4 st mozné javy, ktoré si nevieme predstavit. Napr. v Ay s

x1=0 x3=0 . ) f e
o= 0 8= roviny, ktoré sa pretinaji v jedinom bode: (0,0,0,0).
To—

Tyg—

Veta 11.9. Nech a = (B(a),V(a)) a 8 = (B(8),V(B)) st afinné podpriestory

v Ap=(B, Vn).

1. Ak dim(a)=dim(S), tak v pripade, zZe a || 3 madme a=03 alebo aNB=0.

2. Ak dim(«)#dim(B3), tak v pripade, Ze « | 8 mdme bud anpB=() alebo o C 3
alebo 3 C «.

Dokaz.

1. Nech dim(a)=dim(3), a || 8. Predpokladajme, ze anf#0. Teda existuje
bod AeB(a)NB(B). Mime V(a)CV(B) alebo V(B)CV(a). Z rovnosti dimenzie
V(a)=V(8). Teda o a B s urcené bodom A a tym istym smerovym priestorom
V(a)=V(5) preto a=0.

2. Povedzme, ze dim(o)< dim(8). « || §; ak anNB#0D, tak existuje AcB(a)NB(B).
Z toho, ze « || B a V(a)CV(B). Jasné, ze aCf.

Veta 11.10. Nech a = (B(a),V(«)), 8 = (B(8),V(8)) st afinné podpriestory
v Ap=(Byn, Vy) nech 2<dim(a)<dim(f). Potom: « || § < kazdd priamka v o je
rovnobezna s 3.

Doékaz.

[=] Predpokladajme, ze o || 8. Teda V(a)CV(B). Nech p=(B(p),V(p)) je
lubovolna priamka v a. Teda B(p)CB(«), V(p)CV(a) potom V(p)CV (). Z defini-
cie rovnobeznosti: p || S.

[<] Zoberme Iubovolny vektor @€V (). Chceme ukazat, ze acV(3). Nech AcB(«)
je Tubovolny bod. Potom A a a urdia priamku ¢=(B(q),V(q)) v «; A€B(q),
V(¢)=[a]. Podla terajsieho predpokladu kazdd priamka v « je rovnobeznd s (.
Teda q || 8 tj. @€V (q)CV(B) a teda aeV(5). Zistili sme, ze V(a)CV(B), teda « || 5.
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Zmena suradnic pri zmene suradnicového systému.
Vo vektorovom priestore :

Nech (@y,---,d,), (@}, - ,d,) st dve bazy dajakého vektorového priestoru V.
Méme jednozna¢né vyjadrenie: d1=p11d@+ - +p1nd,, 8% An=pp1dy+ - +Pnnd,.
P11 - Pin
Potom P= < > sa nazyva matica prechodu od bézy (ay,--- ,dl) k baze
Pn1 = Pnn
(ala o 7an)~
Obratene mame jednoznacné vyjadrenie: @j=pl a1+ - +p},dn a7 a,=p, a1+
/
P11 p’ln
+o APl PI= 0 je matica prechodu od béazy (dy,--- ,d,) k baze
Py P,m
n
_ - L r_
(@, ,a,). Mame: @;= E p”a], a;= E pjsas Z toho: d;= E Pija;=
j=1 s=1 j=1
n
/- . “ . . PN . ,
= E Dij E jojsaS E E PijP;sds- Z jednoznacnosti vyjadrenia @; v tvare linear-
s=1j=1

1, ak i=s
nej kombinécie ay, - - ,d, dostivame, Ze Zpijp;s:{ 0, ak iss Teda PP'=I,,.
=1 :

Zistili sme, Ze P je regularna a P'=P~!.

Veta 11.11. Matica prechodu od jednej bazy k druhej je regularna, pricom matica
opac¢ného prechodu je k nej inverzna.

Veta 11.12. Nech (@}, -- ,d,) je baza priestoru V a matica P=(p;;)€My,,(R) je

? ’I’L

reguldrna. Definujme vektory ay,--- , @, takto: dy=p11dj+- - +pind, az
Gn=pn1dy+ - +ppnd,. Potom (d1,--- ,d,) je bdza priestoru V.
Dokaz. Vzhladom na to, ze vieme dim(V)=n, sta¢i dokdzat, Ze @1, - - , @, st linear-

ne nezavislé. Nech aydi+---+a,d,=0. Chceme ukdzat, ze Vi : a;=0. Mame:
a1(p11@i+ -+ +pindy,) + -+ an(Pa1@+ - - +Pnndy,)=0. (Q1p11+ - +anpn1)d; +
-+ (1pint - Fappun )@, =0. Ale (@}, - ,d,) je baza, preto:

aipiit- - +onpn1=0 Pt Pal
(%) - Matica systému je: PT= : :
a1pint -+ Prn=0 Pin " Pnn
Pretoze h(PT)=h(P) a P je podla predpokladu regulérna, je aj PT reguldrna.
Preto (%) mé iba nulové rieSenie, tj. a;="--=a,=0.

Zmena suradnic vektora.

Vo V majme dve bazy (d1,--- ,d,) a (@}, ,d.,). Nech ZEV je lubovolny vektor,
nech ¥ = (x1,- -+ ,2,) vzhladom na (dy,---,d,) a & = (xf,---,z},) vzhladom na
(@, ,a,). Aky je vztah medzi (z1,--- ,zp) a (2, - ,2})?

Nech P=(p;;) Je matica prechodu od (Zi’l,~ <) k (Eil, -+, dp). Méame vlastne:
n n

:Z aszxa Vieme, ze aifzp”aj Z toho: szzpz] a;=
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n

n
= Zaz a, & Z (Z xlpu> a = Zx;@'; 7 jednoznacnosti vyjadrenia vyplyva,

Jj=1
ze xf= Y wipiy = (), ,2)=(x1, - ,2,)P. Strucnejsie: X=(z1,---,x,) a

X'=(zh, 7)) = X'=XP = X=X'P!=X'P".

V afinnom priestore: Stradnicovy systém (O, dy, -+ ,d,) v n-rozmernom afin-
nom priestore A,=(B,,V,), kde O€B,, a (dy,--- ,d,) je baza vo V,. Iny strad-
nicovy systém v A,: (O, Ei’l, oo, a). Aky je vztah medzi stradnicami vektora
resp. bodu vzhladom na prvy a druhy stradnicovy systém v A,. Pre vektory je
to jasné: stradnice s v takom vztahu, ako sme to opisali vyssie vo vektorovom

priestore. tj. ak Z€V,, ¥ = (x1,--- ,x,) v siradnicovom systéme (O, dy, - ,dy);
Z=(af, - ,a) v (0,ay,---,d,), tak («f, - ,2))=(z1, -+ ,z,)P, kde P je ma-
tica prechodu od (a@},---,a@,) k (@1, - ,dn).

Pre body : 1.krok: O=0'. (Zmenia sa len bazy vo V,,). Stradnice bodu X sa rov-

e
naju stradnice polohového vektora OX;. Vztah medzi suradnicami v (O, dy,- - -,

dn) a v systéme (O,d),---,d,) je uréeny vztahom X'=XP, kde P je matica pre-
chodu od ”¢iarkovanej” k ”neciarkovanej”.
2.krok: Zmenime len zaciatok, tj. od stiradnicového systému (O, dy, -+ ,d,) prej-
deme k (O’,dy, -+ ,d,). Nech O mé& v ”novom” stiradnicovom systéme (O, dy, - - ,
dy,) suradnice (by, -+ ,b,). Teda ()’—)O:b161+---+bnc?n. Bod X=(z1, - ,2p)
v stradnicovom systéme (O, dy,--- ,d,) a X=(«}, - ,z}) v "novom”

n n

SN —_—
(O/, dl, s 7dn) = 0X= Z I,dl, I;&Z:O/X

=1 =1

Aky je vztah med21 (X1, ,2n) a (:cl, s, xh) ?
Mame OX:Z.T OO+OX:>ZQC a;= Zb al—i—Zﬂczal Z x;+b;)d;

i=1 i=1
Teda: (56/17,.1‘/") (Ila"' ) (617"'ab) X/ X+B
Vseobecne: spojenim tychto dvoch krokov dostaneme prechod od (O, dy,--- ,dy,)
k (O',dy, - ,d,). Zmena stradnic potom je zlozenim dvoch ¢iastkovych zmien.
Nech X=(z1,- - , 2,) stradnice bodu z B,, v stradnicovom systéme (O, dy, -+ , @y);
anech X'=(a}, - ,}) st jeho stradnice v siradnicovom systéme (O’,a}, -+ ,a,).

Nech P je matica prechodu od (aj,---,d}) k (@1, - ,d,). Nech B=(by,---,by)
su stradnice bodu O v (O, d},--- ,d,). Potom plati: X'=XP+B.

Orientdcia redlneho vektorového resp. afinného priestoru.
Orientacia realneho vektorového priestoru:

Definicia 11.12. Nech U je mnozina vSetkych baz n-rozmerného redlneho vek-

torového priestoru V.Potom povieme, ze dve bazy (U1, - ,0,) a (W, -+ ,W,) st
v relacii ~ zapiSeme (71, - -+ , Uy )~(Wy, - - - , Wy ), ak matica prechodu od (1, - - - ,Ty)
k (wWy,- - ,w,) ma kladny detetrminant.

Tvrdenie 11.3. ~ je relacia ekvivalencie na U.

Dokaz. Reflexivita: (U1,--- ,0,) ~ (U1, ,Ty,) pre lubovolnd (¥4, - -+, ¥,)€U, lebo
matica prechodu je I, a det(I,)=1. Symetrickost: nech (U, - ,Up)~ (W1, , Wy).
Matica prechodu od (4, -+ ,¥,) k (1, ,,) nech je P. Vieme, Zze PN, (R)
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je reguldrna, z tohto det(P)>0. Matica prechodu od (W, - ,wy,) k (4, ,¥p)
je P71 Ale det(PP~!)=det(P)det(P~!) = det(P~1)>0. Teda (wy,--- ,W,) ~
(T1,--- ). Tranzitivnost: Nech (T, ,Tn) & (@1, @), (Wr,- - ,100) =
(%1, ,Z,). Chceme ukazat, ze (U1, - ,U,) ~ (%1, -+, Zn). Nech P=(p;;),

n n
Q=(¢i;)Mnn(R). Mame ;= sz-jﬂ'i pre i=1,--- ,n a Z= Z%ﬂﬁi

=1 i=1

! n n n n '
pre k=1,---,n. Z toho: Zk:quinijﬁj:Z (Z q;ﬂ»pij> U;.  V zéatvorke

=1 j=1 j=1 \i=1

je prvok i-teho riadku a j-teho stlpca matice QP. Teda matica prechodu od
(U1, ,0n) k (21, , Z,) je QP. Potom det(QP)=det(Q) det(P)>0.
U sa rozlozi na triedy ekvivalencie vzhladom na ~. Budu dve triedy ekvivalencie.

Definicia 11.13. Vektorovy priestor V orientujeme tym, Ze jednu z dvoch tried
ekvivalencie Uy ,Us vyhlasime za kladna (privilegovant). Urobime to tak, Ze jednu
bazu priestoru V' vyhlasime za kladnii. Potom kladni triedu baz tvoria prave tie,
ktoré si v ~ s touto kladnou bazou.

Priklad. R™ standardne orientujeme tak, ze za kladni vyhlasime standardna bazu:
(617 e agn)

Veta 11.13. Nech (¥y,---,¥,) je baza redlneho vektorového priestoru V', nech
m€S(,... ny. Potom baza (Ur(1), - ,Ux(n)) je ekvivalentna s povodnou béazou prave
vtedy, ked je permutécia parna.

Doékaz. Nech napr. 7= (; f Z) Potom (Ur(1)," -, Ur(n)) je (U2,01,- - ,¥n).

Mame: Uo=001+10s+ - - - +0u,,; v1=101+00>+ - - - +00,, az v,,=001+---+14,. Po-
tom matica prechodu je:

0 1 0 0
1 0 0 0
0 0 1 0
o0 o0 --- 1
Matica prechodu od (¥, 2, ,Un) k (Ux(1), Un(2), """ » Un(n)) Vznikne z I, tak, ze

jej riadky permutujeme podla . Potom determinant matice prechodu je (—1)%(™),
kde s() je pocet inverzii v m. Teda je kladny prave vtedy, ked m mé pérny pocet
inverzii.

Orientécia afinného priestoru:

Definicia 11.14. Nech A,=(B,,V,) je (redlny) afinny priestor. .4,, orientujeme
tak, ze orientujeme vektorovy priestor V,,.

Afinno-euklidovské priestory.

Definicia 11.15. Afinny priestor A=(B, V) sa nazyva afinno-euklidovsky priestor,
ak V (s pevne zvolenym skaldrnym st¢inom) je euklidovsky priestor.

Priklad.
(R™,R™) so $tandardnym skaldrnym stéinom je afinno- euklidovsky priestor.
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Definicia 11.16. Nech A=(5,V) je afinno-euklidovsky priestor, pri¢om nech (, )
je skaldrny stéin na V. Ak A, BEB,, st dva body, tak ich vzdialenost (oznacime ju

p(A4, B)) definujeme ako p(A,B):\A—B>|:\/ <A—B>,A—>>

Veta 11.14. Nech A=(B,V) je afinno-euklidovsky priestor, potom p(A, B)>0 pre
vSetky A, BEB.

1. p(A, B)=p(B, A).

Dékaz. p(A, B)>0 jasné.
—= — —
1. p(A,B):|AB|i— BA|=|BA|=p(B, A).
2. p(A,B)=0 < |AB|=0 & A=B.
— —_— — — —
3. p(A4,C)=|AC|=|AB+BC|<|AB|+|BC|=p(A, B)+p(B, ().
Pozndmka. Definovanim vzdialenosti medzi bodmi v afinno-euklidovskom priestore
A=(B,V) sme vlastne definovali zobrazenie p : BXxB—R s vlastnostami z pred-
chadzajacej vety. p je tzv. metrika na B; B je teda metricky priestor.

V dal$om budeme uvazovat o n-rozmernom afinno-euklidovskom priestore s pev-
ne zvolenym stradnicovym systémom: (O, €&y, -- ,&,), kde O je bod toho priestoru
a (€1, ,€,) je pevne zvolend ortonormalna baza vektorovej zlozky tohto priesto-
ru. Tento afinno-euklidovsky priestor budeme oznacovat E™. Stradnicovy systém
(O,é1,--- ,é,) taky, Ze (€1, -+ ,€,) je ortonormélna béza sa nazyva kartezidnsky.
Pretoze baza vo V,, je ortonormalna, pre vektory Z=x1€1+ - +x,€, a y=y1€1+
+ -+ 4yn€, ich skaldrny sGéin je z1y1+ - +TpYn. T=(1, - ,Tn) @ §=(y1, - ,
Yn)- (@, y)=z1y14 - +TpYn.

Veta 11.15. Nech A, B st dva body v E™ pricom A m4 saradnice (a1,--- ,a,), B
mé stradnice (by, -+ ,b,). Potom p(A, B)=+/(a1—b1)%+ - +(a,—bn)2.

—_— —_—
Dokaz. AB = (by—ay, - ,bp—ay). AB = (b1—a1)é1 + - - + (bp—an)&n, kde
—_— — —_—
(€1,-++ ,€n) je ortonormélna baza. (AB, AB)=(b;—a1)?+ - - - +(bp—a,)?=|AB|=
=\/(AB, AB)=\/(b1—a1)?+ - - +(bp—a,)2=p(A, B).
Kolmost vektora na afinng podpriestor.

Definicia 11.17. Nech E"=(B,,,V,,). Hovorime, ze vektor GeE™ je kolmy na a-
finny podpriestor a=(B(a), V(«)) priestoru E® ak a_LZ pre vietky ZeV (o). (teda
acv(a)t).

Veta 11.16 a Definicia 11.18. Nech a=aix1+ - - - +a,x,=0 je nadrovina v E™.
Potom vektor i=(ay,- - ,ay) je kolmy na a. Vektor 7i sa nazyva normdlovy vektor
nadroviny o.

Dékaz. Nech ZeV(a) je Iubovolny vektor. Nech X=(z1,--- ,x,) je lubovolny bod
z . Vieme, Ze existuje jediny bod Y=(y1,---,yn)Ea taky, ze #=XY. Pritom
sturadnice ﬁ:(yl—xl, coo  Yn—Tp). Mame, kedZe X, Yea: ayz1+ - +anz,=0 a
ar1y1+ - ~ja7ly,L:0. Potom a1 (y1—x1) + -+ + an(yn—2n) = 0. Teda (7, ﬁ):
=(7l, Z)=0 tj. 7 je kolmy na Iubovolny vektor z V(a). Pre Iubovolné c€R mame
(crt, Zy=c(n, £)=0.
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Veta 11.17. Rovnica nadroviny a€E"™ obsahujticej bod B=(by, - ,by,) a majiice
normélovy vektor n=(c1, - ,cp) je a = c1(x1—b1)+ -+ - +cp (2, —0,)=0.

Dékaz. Nech X=(z1,- - ,z,)€EE" je lubovolny bod z . Potom B—)XGV(OZ). Pritom:
— -— —

il BX teda (7, BX)=0. 7=(c1, - ,cn), BX=(x1-b1, -+ ,2,—by). Teda musi

platit ¢;(x1—b1)+ - - +¢p(bn—2x,)=0. Vieme, Ze nadrovina je urcend jednou line-

arnou rovnicou, teda ¢y (x1—b1)+ - - - +¢pn(xn—bn)=0 je rovnica nadroviny a.
Kolmost afinngjch podpriestorov.

Definicia 11.19. Nech a=(B(«a),V(a)), 5=(B(8),V(5)) st dva afinné podpries-

tory v E". Hovorime, Ze podpriestor a je kolmy na 3, ak V(a)CV (3)*. (teda kazdy

smerovy vektor podpriestoru « je kolmy na kazdy smerovy vektor podpriestoru [3.)

Ak je tdto podmienka splnend, napiSeme a1 (.

Tvrdenie 11.4. Ak o lf, tak fla. (mézeme povedat, Ze « a (8 si navzdjom

kolmé.)

Doékaz. Nech al 3. Teda V(a)CV(B)*. Ale potom (V(8)1)LtcV(a)t

& V(B)CV(a)t & BLa. Roviny Oy, O, v E3 nie st na seba kolmé v zmysle nasej

definicie. Lebo V(a)CV(B)*, lebo dim(V(a))=2, dim(V(B)+)=1. Teda podla

nasej definicie: Oy nie je kolmy na O,,.

Veta 11.18. Nech a=(B(«a),V(«)), f=(B(B),V(5)) st dva afinné podpriestory

vE". Ak alp, tak dim(a)+ dim(8)<n.

Dékaz. Nech a3, teda V(a)CV(B)L. V(B)@V(B)*=V(n); kde E"=(B,,V,,).

Moézeme predpokladat, ze dim(a)< dim(8). V(a)@V(8)CV(8) @ V(B)1t=V(n) =

dim(V(a)®V (6))=dim(a)+ dim(5) < dim(V'(n))=n.

Tvrdenie 11.5. Nech a=(B(«),V(«)), 8=(B(8),V(5)) st dva afinné podpriestory

v E". Ak anB#) a al B, tak aNB pozostdva z jediného bodu.

Doékaz. Nech alfB. Teda V(a)CV(B)t. Nech anp=B(a)NB(3)#0. Nech P,Q

-5 N

st dva body z B(a)NB(B). Potom PQcV (a)NV(B)CV (8)NV(B)+={0}. Z &oho:

—

PQ=0 a preto P=Q.

Veta 11.19. Nech a=(B(«),V («)) je k-rozmerny (k<n). Afinny podpriestor v E".

Potom pre lubovolny dany bod A€E"™ existuje jediny (n—k)-rozmerny afinny pod-

priestor v E™ obsahujiici bod A. Tento podpriestor oznac¢ime 111 (A), a nazyva sa

kolmopremietaci afinny podpriestor bodu A do «.

Dékaz. Nech A=(ay, -+ ,a,) a vo V(a)t zvolme bazu (W, ,W,_x), kde ;=
=(wl,--- ,wl) az W, _p=(w",---,w*) Potom podpriestor
x1:a1+w}t1+ s +’U}111_k
Y=g .- ma dimenziu n—k a je kolmy na a.
xn:an—l—w}Ltl—l— . —l—wﬁ_ktn,k
(V(y)=[w1, - ,0,—i]=V(a)t). Tym sme ukazali existenciu takého podpriestoru

ako sa tvrdi vo vete. Jednoznacnost: Nech §=(B(9),V(9)) je (iny) (n—k)-rozmerny
afinny podpriestor v E”, kolmy na o obsahujtci bod A. Potom V(§)CV (a)*. Ale
dim(V (8))=n—k, dim(V (a)*)=n—k. Teda musi: V(§)=V(a)t. Tj. V(6)=V (7).
Pretoze AcB(0), AeB(vy) musi byt d=.
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Veta 11.20. Nech a=(B(«a),V(«)) je k-rozmerny afinny podpriestor v E". Po-
tom I} (A)Na pozostava z jediného bodu, ozna¢ime ho A+ a nazyvame ho kolmy
priemet bodu A do afinného podpriestoru c.

Doékaz. A=(ay,---,an); nech (U1, --,7,) je ortonormalna baza priestoru V(«),
pricom o =(vi, - ,v}) az G=(vf, - ,vF). Vieme, ze V(IIZ(A))=V(a)t. Nech
(Z1,+++ ,Zn_x) je ortonormalna baza priestoru V(a)t, pricom 2=(z},---,2l) az

Zp=(207F, -, 2n7F). Nech BellL(A), B=(b1,- - ,bn). Potom

r n

r1=a14viti+ - +opty T1=bi+2isi+ 2 sy,
a=q - Ik (A)=

Tp=a,+viti+- - +okty Tp=bytzisi+- 42" Fs,
Bod X=(z1, -+ ,2,) €Ml (A)Na spliia:

artoiti+ - oltp=bitetsi+ o2 s,

an+vity+ - okt =b,+2ls - 2R,

pre dajaké t;, s;€R. Teda (t1, - ,tn,S1, ", Sn—k) spiﬁa:
vty ot —2is— - - —z?fksn,k:bl—al
(*)
vitit e Fokt—zlsi— o =2t Rs, ik =b,—a,

Teda XcanIli(A) < systém (*) je riesitelny. Matica systému méa n linedrne
nezavislych riadkov, teda jej hodnost je n. Teda (%) mé prave jedno rieSenie.

Vzdialenost afinngch podpriestorov.
Definicia 11.20. Nech «, 8 st dva afinné podpriestory v E"*. Vzdialenost o od 3
definujeme ako nezaporné reélne ¢islo p(a, 8):=inf{p(X,Y); X€A,YeB}.
Veta 11.21. Nech A€E" je bod a nech a=(B(«), V(«)) je afinny podpriestor v E™.
Potom p(A,a)=p(A, AL).

Dokaz. p(A,a)=inf{p(A, X), X€a} a p(A, AL)e{p(A, X), X€a}, teda p(A,a)<
<p(A, At). Ukézeme, Ze p(A, A*) je dolnym ohraniéenim mnoziny {p(A, X); X€a}
7Z toho: p(A, AN)<p(A,a)=inf{p(A, X), X€a} kedze inf je najvicsie dolné ohra-
_— R T —
ni¢enie. Ratajme: p(A, AL)2=|AAL|%; p(A, X)?=|AX|>=|AAL+ AL X% =
=(AAT AL X AAT AL X)) = (AAL AAD) 42(AAL AL X)) H{AL X, AL X)) =
=p(AA1)2+2.0+p(A1L X)2. Z toho: p(A, X)2>p(A, AL) preto p(A, X)>p(A, AL).
Teda naozaj p(A, A) je dolnym ohranicenim.
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Vzdialenost rovnobeZnijch afinngch podpriestorov.

Veta 11.22. Nech a=(B(a),V(«)), 8=(B(5),V(8)) st rovnobezné afinné podpri-
estory v E". Nech dim(a)<dim(3). Potom p(a, 3)=p(A, B)=p(A, AL).
Dokaz. Z definicie p(a, B)=inf{p(X,Y); X€a,YER}. p(A, AL)e{p(X,Y), X€q,
Y€}, a preto p(a, 3)<p(A, A+). Aby sme dokazali obratenti nerovnost ukézeme,
7e p(A, AL) je tiez dolnym ohrani¢enim mnoziny {p(X,Y)}. Z toho potom dosta-
—_
neme p(A, A+)<p(a,3). Pre Iubovolny X€a existuje jediny vektor AX€V ().
— —-—
Ale a || B a preto AX€V(3). Pretoze At a AX€V () existuje jediny bod Z€p:
L, — — ., —5 _ —
AX=AYZ. AAL=AX+XA+. Ale AX=A'Z. 7 toho: AAt=ALZ+XAt=
_— T ——
=XAL+ A+ Z=XZeV(3)"=I15(X). Mame Zefnllz(X)={X"}. Preto Z=X"
_— —
a teda AAT=XX"1 pre Iubovolny bod X€ca. Pre Iubovolny X€a, Y €3 mame
. —_ —
p(X,Y)=|XY|=| XA +ALY|. p(A, AL)=p(X, X') pre lubovolny bod X€a. Pre
Ly — —
Tubovolné X €a, Y €S mame p(X,Y)=|XY |=| X AL+ ALY|. p(A, AL)=p(X, X1)=
=p(X,8)<p(X,Y) pre lubovolné Y€B, X€a. p(A, AL)<p(X,Y) teda p(A, AL) je
dolnym ohranienim mnoziny {p(X,Y"), X€a,Y€S}.

Priklad. Uréte vzdialenost bodu P=(p1, - ,p,) v E" od nadroviny a = ayz +
s+ apx, +ag = 0.
Riesenie: 11X (P) je priamka, jej smerovy vektor je vlastne norméalovy vektor nadro-
r1 =p1+ait
viny a, tj. @ = (a1, ,a,). IIH(P) =
Tp = Pn + ant
Uréime jediny bod P+ = IIX (P)Na. ai(p1+ait)+ -« +an(pn+ant)+ao=0 &
aip1+---t+apppta
& agtaipi+ - +anpy+t(a2+ - +a2)=0. Z toho: t= — 101 5 "p; 0
a1_|_ oo +an
aipit---+appntao - aipit---+anpntao
a%++a% ’ ’ n a%++a%
_\/(a1p1+ - +anpnta)? _lapit - +anpntal

(af+---+a})? Vit +ap

_ ‘a1p1+ e +anpn+a0|
A /a%_’_ ce J’_a%

Vzdialenost rovnobeZnijch afinnyjch podpriestorov.

p(P, a)=|PP*|=|(~a; )=

(a+-++a)

Teda: p(P, @)

Veta 11.23. Nech a=a1x1+ - - - +anx,+x9=0 a f=byx1+ - - - +byx,+by=0 st dve
|bo—ao

1/0]%_’_..._’_0‘%‘

Dokaz. Z vety 11.22 mame: p(a, B8)=p(P, ), kde P=(p1,- - ,pn) je Iubovolny bod

U nrn b - b
z «. Z prikladu vieme, ze p(P, 6):|a1p1—|— HnPrt 0|: |—cotbol

Vai+-+a2 Vai+ - +aZ
Vzdialenost dvoch mimobezngch afinngch podpriestorov.
Veta 11.24. Nech a=(B(a),V (), f=(B(8),V(5)) sit mimobezné afinné podpri-
estory v E". Teda B(a)NB(8)=0 a V(a)NV()={0}. Potom existuje bod Pca

rovnobezné nadroviny v E". Potom p(«, 5)=
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a Qef také, ze F)—Q)GV(Q)J‘QV(,B)J‘ a plati: p(a, 8)=p(P,Q). (Priamka urcend
bodmi P, Q je tzv. stredné prieCka afinnych podpriestorov «, 3.)

Dokaz Nech Xea,Y €S sa lubovolné. Potom XYy ¢ V(a)®V(3). Keby ano, tak
by XY=d+h b pre jednoznacne uréené aEV( ), EEV(B) Potom ex1stuJe jediny bod
Zew: d= X7 a jediny bod Weg: WY=b. Teda: XY= XZJrWY ale zaroven
ﬁ:)_(_Z)—i-Z—VI)H—W, teda Z—>W:0, ¢o je ekvivalentny s tym, ze Z=W. Teda
Z=Weanp=0 (kedze o, 3 st mimobezné). Spor.

Nech 7 je afinny podpriestor uréeny bodom X, pricom V(v)=V(a)$®V(8). Nech +’
je afinny podprestor uréeny bodom X a taky, ze V(v’)zV(a)&BV(ﬂ)@[ﬁ]. Kedze
[)7}7] ¢ V(a)aV (), dim(y')— dim(v)=1, a teda (méme yCv’') v je nadrovinou v .
Nech 7 nenulovy je normélovy vektor nadroviny v v 7. Teda 7€V (v)t=(V(a)®

aV(B))*=V(a)tNV(B)*t. Nech teraz (di,--- ,dr) je dajaka ortogonilna baza

Vo V( ) nech (51, R ;) je ortogonalna baza vo V(5). Potom vektory a1, -- - , ag,
by,--- ,bj,7 st linedrne nezéavislé a teda tvoria bazu vo V(v'). Pretoze WEV(W’),
mame )ﬁ}—alaﬁ— +akak+ﬁ1bl—|— +ﬂjb] +617 pre jednoznacne uréené oy, - - - ,
i, 1y, B, 6€ER. Potom 640, lebo XY ¢V (a)@V(3). Oznacme P ten jeding
bod z a, pre ktory ald'1+~~+ozkd’k:ﬁ, oznatme () ten jediny bod z (3, pre
ktory Bibi+ - +B;b;=QY. Teda mame, ze XY =X P+PQ+QY. Teda PQ=yi.
Kedze PQeV (a)*NV(B)L, tak priamka, ktora prechédza bodmi P,Q je kolma
na o aj f a pretina a v P a 8 v Q. Este treba ukdzat, ze p(P,Q)=p(c, ).
Vieme, ze p(a, 3)=inf{p(A, B); Acq; BGB} Nech Aca, BGB st lubovolné. Potom
A= P+51a1+ - +sdy zaroven B= Q+t1b1+ <4t bJ pre vhodné sq,--- , sk, t1,

L ER. AB B A= PQ+t1b1—|— 7] b-—slal— - —Sdy,. Potom p(A, B)*=

\AB|2 (AB, AB) (PQ—s1d@1— -+ —spdp+tibi+ - +1; meQ $1d@1— - —

—Skak+t1b1+ e —‘rtjbj> = (ﬁi P—Q)>+2<PQ, —8101— - —skak-i-tlbl—&- +tjbj>
=0

(=51 — -+ — Spdk +t1by + -+ tjby; —s1d@1 — - - — spdp + tiby 4+ -+ 15b;) =
=p(P,Q)*+|—s1d1— - —Spdpttib +tj5j\2. Z toho vidno, ze p(A, B) sa min-
imalizuje vtedy, ked | — syd;—- - —sk&'k+tlgl+ e +tj5j|=0 tj. préave vtedy, ked
—s1d1— - fskﬁk+t151+ e +tjl;j:6 & s1=---=§p=t1="---=t;=0, lebo (d1, -,

Tiy by, - ,f)}) je baza vo V(a)®V(3). Teda p(A, B) sa minimalizuje vtedy, ked sa

rovnéd p(P, Q). To znamend, ze naozaj p(a, §)=p(P, Q).

Désledok. Nech a=(B(a),V(«)), B=(B(3),V(B)) st mimobezné afinné podpries-

tory v E™. Potom existuje afinny podpriestor 31 taky, ze SCQ1, |81 a p(«, B)=

=p(a, 41). (= p(A, AL), pre lubovolny bod Aca, A+ je kolmy priemet bodu A

do f31.)

Dokaz. Zoberme (31, ako afinny podpriestor uréeny fubovolnym bodom z 3 a taky, ze

V(61)=V(a)®V (3). Potom je pravda, ze 3Cf; aj to, Ze a|1 (lebo V(a)CV(61)).

—

Z predchadzajicej vety vieme, Ze existuji Pca, Q€ také, ze PQcV (a)tNV (B)+=

=(V(e)®V (8))=V (81)* pricom p(a, B)=p(P,Q). Mame QCJ, a teda tiez Q€f
—

a zaroven PQEV(H[#1 (P)). Z toho: Qeﬂé1 (P)NB1={P*}, a preto Pr=Q. Teda

pla, B)=p(P,Q)=p(P, P+)=p(a:, B1).



66 I.ROCNIK

Uhly medzi afinnymi podpriestormi v E™.

1. Uhol dvoch orientovanych priamok:
Nech p,qCE™ st dve orientované priamky (p#£q). Teda V(p), V(¢) st dve oriento-
vané vektorové priestory. Z toho ak d#ﬁ je smerovy vektor orientovanej priamky p
a @0 je iny smerovy vektor, tak @ =k-@ pre dajaké k>0. Podobne, ak b/, b st dva
smerové vektory orientovanej priamky ¢, tak V=lb.

(@, b) _ (ka,ib) _ ki@b) _ (aD)
@5 [kal-ib| k@l al-[o]
Tento vyraz nezavisi od vyberu smerovych vektorov orientovanych priamok p, q.
q.b
<f _,>€<—1,1> = Flpe(0, ) : cos p= SL’ =
. o |al[b] . o Jalfbl
 definujeme ako uhol zovrety orientovanou priamkou p a orientovanou priamkou q.
2. Uhol dvoch neorientovanych priamok:
Nech p, qCE" st dve neorientované priamky. Potom, ak d#0, @’'#0 st dva smerové
vektory priamky p, tak @=k-@, kde k#0. Podobne, ak b, (#0) st dva smerové
vektory priamky ¢, tak ’=Ib pre [#£0. Potom vyraz

Zo Schwarzovej nerovnosti vieme, Ze

(@, 0) _ (ka,lb) _ kld,b) | (ab)
@ |o'| (kal-iB] [kll]al-[o] " |al-|e)

vo vSeobecnosti zavisi od vyberu smerového vektora priamky p resp. ¢q. Aleu vyraz
(@,b) (@, )|
alle alle

1) potom nazveme uhlom zovrety neorientovanych priamok p a q.

3. Uhol dvoch nadrovin

Nech a, 8 st dve nadroviny v E", nech 7, fig st ich normalové vektory. Potom uhol
medzi a a 3 sa definuje ako uhol neorientovanych priamok so smerovymi vektormi
Tiq Tesp. fg. Teda: ak a=ai1x1+ - +anrp+ao=0, 8=biz1+ - - +b,2,+bp=0, tak

a=(a1, -+ ,an);g=(b1,--- ,by) a L(a, ) je to €islo z intervalu (0, g> pre ktoré

|a1b1+ e +anbn|
cos | Z(a, B)|= .
Viat+ - +ad) i+ +07)

Vektorovy a zmieSany suéin v R3.

\/

™
uz od vyberu nezavisi. Existuje jediné 1€ (0, 5) také, Ze cos =

Definicia 11.21. Nech R? je standardne orientovany tj. nech (€1, €2, €3) je kladna
béza tohto priestoru. Nech @, b st dva vektory z R®. Potom existuje jediny vektor
CER3 taky, ze
l.¢Llaclb.

N Y e o ey o

-

3. Ak @,b st hnearne nezavislé, tak (@, b, ¢) je kladna baza v R3.

Vektorovy sacin vektorov @ a b je vektor ¢, oznacuje sa axb.

Pozndmka. Vlastne sme definovali zobrazenie x : R3xR3—R2, x(a,b)=axb.
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Geometricky vyznam |EL'><5|: je to plosny obsah rovnobeznika urceného d, b.
(axBl=1/|al2 (52— (|15 cos(£a, ) = \/ 2|5 —|al2|5 (1 sin®(Zd, b) =
= \/|@'|2|5|2(Sin £@,b)) = |a||b|sin(£a@,b). Plosny obsah rovnobeznika uréeného
@,b je |l|b| sin(£a, b).
Veta 11.25. Nech G=(a1, as,a3), b=(b1, by, bs) st dva vektory z R®. Potom
ax b= det (Zi 22 Zi) 1-det (a2 a3) —éy det (Zl Zj ) +¢é3 det (al aQ) Pretoze €1=
(1,0,0), (0, 1,0), Ey(0, 0, 1) mdme B (det (™ ™) ,—det (%0, (%))

Dokaz. Overime podmlenky 524y a 3.y z definicie.
L,

((a1,a2,a3), (det () 3, ) . —det (5 3, ) . det () ) =
— 4y det (% ) —ay det (@ b3)+a3det(‘;;g;):det(Ziz;;):o
1 2 3

Podobne pre b.
2.

Vdet? (32 50) rdet? (57 57) +det? (57 42) =
= V/|(a1,az,a3)2|(b1, b2, b3)[> — ((a1, az, az) (b1, ba, b3))2

3.y Predpokladajme, zZe d=(a1, az, a3), g:(b1,b2, bs) st linedrne nezavislé. To zna-
mend, ze (by,ba,bs) nie je nenulovym nasobkom (a1, as,az) a preto aspon jedno
7z Cisel det ((12 ag) det (Zi Z;) det (al az) je #£0. Mame a= azfl—i—ageg—i—ageg, b=

=b1€1+boéor+bsez, ¢=det (bz ZLZ’) e1— det (b1 23 ) éx+det (Zi by ) €3. Teda matica
prechodu od bézy (€1, €3, €3) k trojici vektorov (d, b, ) je

ai az as
P= by bo b3
det (7 4,) —det (j ;) det () 37)

Potom det? (a2 I ) +det? (al I ) +det? (a1 o ) > 0. Z toho (kedze P je reguldrna):
(d, b, ) je baza v R3, a pretoze det(P)>0 je kladné béaza aj (d, b, €). Z jednoznacnej
uréenosti @xb: axb= (det (a2 a3) ,—det (211 Zs) ,det (le Zj))
Veta 1_'1.26._‘ Vektorovy s_ycm v R? m4 tieto vlastnosti:
1.y@ x b= —b x @ pre Vd, bER3.
2.)(ad’+ﬂ5)x5:a(6x€)+ﬂ(5xé') a @x (Bb+~@)=PB(@xb)+v(@x?&) tj. zobrazenie x :
R3xR3—R3 je linedrne v oboch argumentoch.
Dokaz. 1.)dx5::a Pre linearne zavislé 6,5 1.y zrejme plati. Pre d’,l; linearne
nezavislé mame, ze (@, 576') je kladna baza. Zaroven (l;, a, gx&') je kladna béza
v R? potom axb= — bxa. . .
Ing dokaz: Nech d=(a1,as,as), b=(b1,ba,bs), potom axb= (det (a2 ag) ,

ay ag ay az ba b b1 b b1 b T =
—det (31 57) det (31 52)) = (det( 20 ) —det (2 0) det (1 12)) =—bxa.
2.y Z vlastnosti determinantov jasné.
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-

Definicia 11.22. Nech R? je standardne orientovany. Nech @, b, ZER? sti dané vek-
tory. Potom ich zmiesany sicin sa definuje ako redlne ¢islo (@xb, @), ozn. (d,b, ).

Veta 11.27.
N ai az ag
Nech @=(ay, az, as), b=(by, bz, b3), @=(c1, c2, c3). Potom (@, b, &)= det (bl b2 bs).

C1 C2 C3

Dékaz. (a, g,a:(ﬁxg,a:((det (Zj Z;’) ,—det (Zi Z;’) ,det (Zi Zs ), (c1,c2,03)) =

ay az as

— ey det (U29%) — cpdet (2 0%) + eadet (0 22) = det ( n bn b3).

C1 C2 C3
Veta 11.28. ZmieSany sicin ma tieto vlastnosti:
1.y je linearny v kazdom argumente.
2.)(a@,b,c)=(b, ¢, @)=(c, a,b).
Dokaz. jasné z determinantového vyjadrenia zmiesaného sucinu a vlastnosti deter-
minantov.

Veta 11.29. Nech d, b st dva linedrne nezavislé vektory v R3, chdpané ako orien-
tované tsecky v Oy, so zaciatkom v O. Nech € je vektor, ktory nelezi v smerovom
priestore roviny uréenej bodom O a vektormi @, b. Potom (@, b, @)| je objem rovno-
beznostena uréeného bodom O a orientovanymi tseckami d, 57 C.

— - — —
Dékaz. da=0A, A=(a1,as,a3),b=0B, B=(by, b2, b3),c=0C,C=(cy1, c3,c3). Objem
rovnobeznostena Odbé =(plodny obsah podstavy Oab)-vyska = |@xb|-p(C,«), kde
a je rovina uréend bodom O a vektormi @,b = |@xb|-p(C, Ct).

1=0+a1t+b;s r1=c1+det (42 53 )p
a={ x9=0+ast+bys ML (C)={ zo=co—det(j! §3)p peER
x3=0+ast+bss z3=cz+det (4 32)p
art+bis—det (32 52) p=c1
ast+bas+det (51 52 ) p=ca
ast+bss—det (3! 57 ) p=cs
al az as ai az as
det b1 b2 b3 det 1)1 bz b3
c1 C2 C3 C1 C2 C3

p 7dt (&20.3) dt (alag) dt (alaj)_ D

az a b ay a _’75; 2 ay a _’757 2
p(C’,CJ‘)—\/det (e <aDE> +det?® (. j)LDf> +det” (4 Q)LDP

V=@ xbl-p(C,CY) = (@b,

Veta 11.30. Nech x : R"xR"—R" je zobrazenie s tymito vlastnostami:
1.yx je linedrne v oboch argumentoch.

2.y pre ¥, beR™ je (a@xb)La, (axb)Lb
3.y|@xb|=1/|a|2|b|>— (@, b)>.

Potom n = 3, alebon = 7.

Bez dokazu.
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XII. LINEARNE TRANSFORMACIE VEKTOROVYCH PRIESTOROV

Definicia 12.1. Linedrna transformdcia vektorového priestoru V' je linedrne zob-
razenie V—V.

Priklad. f:R3—R3, f(xq, 72, 23)=(221+22—23, T2, —71) je linedrna transformécia
priestoru R3.

Definicia 12.2. Nech V je n-rozmerny vektorovy priestor nad polom R. Nech

(d1,--+ ,dn) je bdza vo V. Ak f : V=V je linedrna transformécia priestoru V,
tak jej matica vzhladom na bazu (ds, - - - , @) je matica A=(a;;)€M,,(R) taka, Ze
fl@)=andi+ - +aindy; i=1,- - ,n.

Priklad. Matica linedrneho zobrazenia f : R*—R3; f(x1, 12, 23) = (21 — 22 — 73,

110
T1+T2, Ta+x3) vzhladom na bazu (€1, €, €3) je M = (—1 1 1) €M33(R).
~101
Priklad. Nech f : R3—R® f(x1,x9, x3)=(621+420—213, 221 +73, 4w1+425). Ma-
6 24
tica f vzhladom na (€1, €2, €3) je My = ( 40 4). Vektory d1=(0, 1, 2), d2=(2,1,2)
—210

a3=(2,—3,2) tiez tvoria bazu v R3. Ak4 je matica f vzhladom na bazu (a, @z, d3)?
Vyratame: €,=(1,0,0)=x(0,1,2)+y(2,1,2)+2(2, —3,2) = v=—1,y=3, 2=0. Teda
e1=—2(0,1,2)+1(2,1,2)+0-(2,—3,2). Podobne: é>=1(2,1,2)—1(2,-3,2), &=

:%(07 1,2 —§(2, 1,2)+(2, —3,2). Teda matica prechodu od (@1, ds, d3) k (€1, €3, €3)

). Potom f(a@1) = f(0,1,2) = 2é, + 4€3 = 2(1a@, — &)+

—
¢
"
Il
|~/
wi= O ‘
N
IS
! o
=

@'QJF%“S) = 2d;. f(d2)=6ds a f(d3)=—2ds. Teda matica f vzhladom

na bazu (dy, dz,ds) je B = (O 6 0 ) Pre My plati (z1, 22, 23)-My=f(x1, 2, x3).
00 -2
Vseobecne, ak f: R"—R" je linedrna transformécia, tak méme f(x1,--- ,2,)=
=(x1, -+ ,xn)- My, kde M;eM,,,,(R) je matica f vzhladom na bazu (é€1,--- ,¢€,).
Ale, ak BeM,,,,(R) je matica f vzhladom na inG bazu (d,--- ,d,) tak uz ne-
plati, ze f(x1, - ,zn)=(x1, -+ ,2,)-B. Napriklad z predchadzajtaceho prikladu:
20 0
F(1,1,1)=(-1,2,2), ale (1,1,1)- (0 6 0 ) =(2,6,—2)#(—1,2,2).
00

Veta 12.1. Nech f:V—V je linedrna transformdcia, nech (da;, ds, d3) je baza voV a

nech AeM,,,,(R) je matica f vzhladom na bazu (d;, ds, d3). Potom, ak (x1,--+ ,x,)
je n-tica stiradnic vektora €V v bdze (dy,ds,ds), tak (x1,--- ,x,)-A je n-tica
stradnic vektora f(&) v béze (a1, -+ ,dn).

Doékaz. Mame T=x1d1+ - - - +2ndyn. Potom f(Z)=f(x1d1+ - +2ndn)=x1f(d1)+
+- +$nf(c_in) = .131(@116_1:1—"- U +a1nc_in)+ o +xn(anlal+ o +afnna:n) =
=(z1011+ - Fxpan1)d1+ - 1010+ - FER AR G,. Teda f(F) mé vzhladom
na (dy,---,@,) n-ticu stradnic (x1a11+ - +Tpan1, -+ ,T1010+ - +Tpapy,). Ale

ail A1n
(xlv"' vxn) ( ) :(x1a11+"'+$nanlu"' vm1a1n+"'+xnann)‘ To je
An1l -+ Gnn
‘ C Py ; (o
prave n-tica stradnic f(Z) vzhladom na bézu (dy,--- ,dy).
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Otdzka. Nech f:V—V je linedrna transformécia, nech (dy,---,d,),(d, - ,d,
st dve bazy vo V. Nech f mé vzhladom na (dy,--- ,d,) maticu AeM,,(R) a
vzhladom na (aj,- - - ,d},) maticu BeM,,,,(R). Aky je vztah medzi A a B?

Odpoved. Nech PeM,,,(R) je matica prechodu od (a@y,---,al) k (@1, - ,dn).
Vieme, Ze P je reguldrna pricom P~'=P’ je matica opa¢ného prechodu. Nech €V
je Tubovolné, nech jeho suradnice vzhladom na (dy,---,d1) st X=(z1, - ,2,) a
vzhladom na bazu (@i, - ,a),) sa X'=(z4, - ,x,). Vieme, ze X=X'P’, X'=XP.
Nech teraz f(Z) mé stradnice Y=(yi,---,yn) vzhladom na (@,---,d,) a nech
mé suradnice Y'=(y1,-- ,y,) vzhladom na (a},---,d.,). Zas vieme, ze Y'=YP,
Y=Y'P’'. Z predchddzajicej vety tiez vieme, ze Y=XA, Y'=X'B. Z toho:
XAP=YP=Y'=X'B=XPB = XAP=XPB tj. |X(AP-PB)=0| pre vietky
XeR™. Ak postupne berieme za X n-tice &,=(1,0,---,0),---,€,=(0,---,0,1),
tak — déva, ze prvy az n-ty riadok v matici AP—PB je nulovy, a teda AP—-PB=0,

z toho AP=PB a teda | B=P AP |.

Definicia 12.3. Nech A,BeM,,,,(R). Hovorime, Ze matica B je podobnd matici
A, ak existuje reguldrna matica QeM,,,, (R) takd, ze B=QAQ™!. (zapis: B ~ A).

Tvrdenie 12.1. ~ je relcia ekvivalencie na M,,,,(R).

Dokaz.

Symetrickost: B~A = B=QAQ™!, ale potom aj A=Q 'BQ=Q'B(Q !)"!a

teda A~B. Reflexivita: A~A, lebo A=I,AI . Tranzitivnost: A~B,B~C =

= A=QBQ !, B=SCS ! = A=QSCS'Q'=(QS)C(QS) ! a preto A~C.
RieSenie predchadzajicej otdzky moZzeme vyjadrit takto: Matice linedrnej trans-

formécie n-rozmerného vektorového priestoru V' vzhladom na rézne bazy priestoru

V' st navzajom podobné.

Veta 12.2. Existuje linearna transformécia a vhodna baza priestoru R™ také, Ze
pre dané podobné matice A, B plati: A je maticou tej linearnej transformacie
vzhladom na $tandardnt bazu (€1,--- ,€,) a B je matica tej istej linedrnej trans-
formdcie vzhladom na (dy,- -+ ,dy).

Dékaz. Nech A=(a;;),B=(b;;), nech B=PAP~! pre dajaki reguldrnu maticu
PemM,,,(R). Predpis f(€;)=a;1€1+ - +ain€, podla zdkladnej vety o linedrnych
zobrazeniach definuje linedrne zobrazenie f : R"—R", pricom f mda vzhladom

na (€1, ,€,) maticu A. Definujme vektory dy, - ,dn: @;=pi1€1+ - +Din€hn,
i=1,--- ,n. Pretoze P=(p;;) je regularna, vektory (d@i,--- ,d,) tvoria bazu priesto-
n
ru R™. (tiez &= p,d. Vj.) Aké je matica f vzhladom na (dy,- - ,dy,)?
j=1

n n n n n
f(@;)= Zpijf(é}'): Zpijf (Z ajs€s> = Zpij Z ajs€s=
=1 i=1 s=1 =1 s=1
n n n n n n
= Zpij Z Qjs Zplstf_it: Z Z Zpijajsp/st ay
=1 s=1 =1

t=1 \s=1j=1

V zéatvorke je prvok i-teho riadku a j-teho stipca B=PAP 1.
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Definicia 12.4. Nech f : V—V je linedrna transformécia. Viastny vektor lineér-
nej transformécie f je nenulovy vektor ¥€V taky, Ze pre ddke AER mame f(7)=M\v.
V tejto situécii sa A nazyva vlastnd hodnota linearnej transforméacie f patriaca
vlastnému vektoru .

Priklad. idy : V—V pre Vo€V —{0} plati idy (7)=1-7.

Definicia 12.5. Vlastny vektor a k nemu patriaca vlastnd hodnota matice
Aed,,,, (R) sa definuje ako vlastny vektor (a k nemu patriaca vlastnd hodnota)
linedrnej transformécie f4 : R"—R™ (ktorej maticou vzhladom na $tandardni bazu
je A.) Ina¢ povedané: nenulovy vektor (z1,- - ,x,)ER™ je vlastny vektor matice A
ak existuje AeR také, ze (z1, -+ ,2n)- A=A(x1, - ,z,). O X hovorime ako o vlast-
nej hodnote matice A patriacej k vlastnému vektoru (z1,- -+, x,).

Priklad. (z1,- - ,2,)#(0,---,0) (1, xp)Ly=1(21, -+ ,zy).
Poznamka. Definovali sme tzv. lavy vliastny vektor matice A. Niekedy sa definuje

Y1 0
aj tzv. pravy vlastny vektor matice A ako taky ( ) =+ <> pre ktory existuje
Yn 0

Y1 Y1
HER také, ze A ( ) =u ( ) Transponovanim: (y1,- - ,yn)AT=p(ys, - ,yn).

Y1
Teda ( | je pravy vlastny vektor matice A préave vtedy, ked (y1,--- ,yn) je lavy
Yn

vlastny vektor matice AT.
V dalSom budeme uvazovat iba o lavych vlastnych vektoroch.

Tvrdenie 12.2. Podobné matice (nad R) maji ti istd mnozinu vlastnych hodnét
(z pola R).

Dokaz. Nech A,BEM,,,,(R) a nech st podobné, teda B=PAP~! pre dajakt regu-
larnu maticu PeM,,,,(R). Oznac¢me S(A) resp. S(B) mnozinu vlastnych hodnot
matice A, resp. B. Chceme ukézaf, ze S(A)=S(B). Nech AeS(A) je Tubovolné.
Vieme, Ze existuje nenulovy vektor ZER" taky, Ze Z-A=AZ. Miame A=P 'BP.
Teda (7P)BP=)\7 < (7P~ 1)B=A(ZP~'). Méme fp-1=7P1eR"—{(0,---,0)},
kedZe linedrna transformécia fp-1 : R"—R" je reguldrna. Teda AeS(B), prislusny
vlastny vektor je ZP~!. Ukazali sme, ze S(A)CS(B). Analogicky sa ukaze, ze
S(B)CS(A). Veelku S(A)=S(B).

Tvrdenie 12.3. Ak AR je vlastnd hodnota matice A€M, (R) a TeR"—{0} je
vlastny vektor matice A patriaci k A, tak cU pre ceR—{0} je tiez vlastny vektor
matice A (patriace k vlastnej hodnote \).

Doékaz. Méame TA=)7. Potom (ct) A=c(TA)=c(A0)=A(cV).

Ako zévisi vlastny vektor (zy,--- ,x,)ER"—0 od matice A=(a;)EM,(R)?
(21, ,,)ER"—{0} je vlastny vektor matice A=(a;;)€M,,(R) patriaci k vlast-
nej hodnote A€R prave vtedy, ked (z1, -+ ,z,)A=X(z1, - ,2pn) & (T1, * ,Tpn)A=
=(x1,--, xy)AL, & (@1, -, 2,) (AL, —A)=0. tj.

A—ain  —aiz - —ai,
—a1  A—az - —ag,
(Ila"'axn) . . . . :(0a70)<j’>

—an1 —0an2 o A_ann
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(A—a11)x1—a2129— -+ —ap12,=0
& (%)
—A1,T1—A2pT2— -+ - (A—app) T, =0
Teda (z1,--- ,xn)eR”—{ﬁ} je vlastnym vektorom patriacim k vlastnej hodnote
AER prave vtedy, ked (z1,---,2,) je netrividlnym rieSenim linedrneho systému

(%). Vieme, Ze (x) mé nenulové rieSenie prave vtedy, ked h( matice systému *)<n,
tj. prave vtedy, ked h(AL,—A)<n. Takisto mame, Ze A€R je vlastnou hodnotou
matice A prave vtedy, ked h(\L,—A)<n tj. matica A\I,,—A je singularna. Specidlne
z toho vidno, ze 0€R je vlastnou hodnotou matice Aed,,(R) < h(—A)<n tj.
prave vtedy, ked h(A)<n.

Priklad. Nech f : R2—R? je linearne zobrazenie otocenie o uhol ¢€(0,27) okolo

zaciatku stradnicového systému. f,(7)=Av. Aké ma vlastné hodnoty a vlastné

vektory? Ak4 je matica linedrneho zobrazenia f,, vzhladom na (€3,¢€2)? R*~C.

z=x+iy. fo(x,y)=f,(z+iy)(cos p+isin p)=(x cos ¢ — ysin p; xsin ¢ + y cos ).
cosy sing

M;, = ) Kedy je AeR vlastnou hodnotou matice My, ? Prave vtedy,

» —sing cos ¢

A—cosp sing o o 2
—singp )\—cosga)_()@()\ COSSO) +

+sin? =0 < A\2—2) cos ¢+ cos? o+ sin® p=0 < A\2—2) cos ¢+1=0. Z toho:

)\12:2COS ot ”;COSQ L cosp £ v/ —sin? p, teda AeR & sinp=0 < =0V p=r.
Potom A\;=1, \s=—1. Teda matica My, chdpana ako readlna mé vlastni hodnotu
(1 resp. -1) iba vtedy, ked =0 resp. p=m.

Aké st vlastné hodnoty matice My, ak ju chdpeme ako komplexnt?

Vtedy vlastné hodnoty: A= cos¢+isin @, \a= cos p—isin ¢, pre Yo (0, 27).

ked matica AL,—M;_ je singuldrna < det (

Rozsirenie definicie matice resp. determinantu.

Pripustime, Ze prvky matic mozu byt aj prvky fubovolného komutativneho okru-
hu s 1. Rovnost matic, ndsobenie atd. funguje analogicky. Ak A=(a;;)€M,,(R)
(kde (R,+,-,1) je komutativny okruh s 1) definujeme determinant:

det(A)= > (~1)"Par,a)a2p0) - dngm)
LPES{L...Y”}

Mnohé z vlastnosti determinantov nad polom sa zachovaji aj pre determinanty
nad komutativnym okruhom s 1. Napr. determinant zmeni znamienko na opac¢né
ak vzdjomne vymenime dva riadky; determinant je nulovy ak niektory riadok je
nulovy; det(AB)=det(A) det(B), atd...

Definicia 12.6. Charakteristicky polynom matice AeM,,,(R) (kde R je pole) sa
definuje ako y 4 (t)=det(tI,—A).

t—ann  —aiz -+ —aip

—as1  t—agg - —aon
A:(a’ij)emnn(R) XA(t):det i

—Gp1  —Gp2 - t—Qpn

Prvkami tejto matice s prvky okruhu polynémov R[t]. Ozna¢me R[t] okruh
polynémov v neurcitej ¢t nad polom R. Ak p(t)€R][t], tak jeho koreii je a€R, pre
ktoré p(a)=0.
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Priklad. p(t)=t?—2t+1 € R[t]. p(1)=0, 1 je koreti.
Z doterajsieho: AeR je vlastnd hodnota matice A€M, (R) prave vtedy, ked A
je koreriom charakteristického polynému x 4 (¢) matice A.

1 0 2 t—10 —2
Napr.: A= (o 0 1) EM33(R). XA(t)zdet( 0t 1) =312 +t—1=(t2+1)(t-1)
0-10 0 1t

Ma jeden redlny koremn: 1. Matica A chapana ako redlna matica ma jedin vlastni
hodnotu: A=1. Neskér sa pozrieme, aké st vlastné hodnoty, ak A chapeme ako
komplexnti maticu.

(oo}

Definicia 12.7. Stupen polyndmu p(t)= ZaitiER[t] je s, ak a;#0, ale a;=0, pre
i=0

1>s v pripade, Ze p(t)#0. Ak p(t)=0, tak stupen polynému sa definuje ako —oo.

Veta 12.3. Nech A€M, (R). Potom stupeii x 4(t) je n. Okrem toho, koeficient
prit" ! v xa(t) je — Za“ a absolitny ¢len v x (t) je (—1)™ det(A).
i=1

Dokaz.

t—a11 —aiz -+ —ain
—ag21 t—az -+ —azn

xa(t)=det : c : =(t—ai1)(t—az2) - - (t—an,)+cleny s tF

—Gnl —0Gp2 *° —0nn
kde k<n—2. Koeficient pri t" a t"~! ziskame z (t—a11)(t—a22) - (t—an,). Z toho

n
koeficient pri t” je 1, pri t*, s>n st nuly. Koeficient pri t"~1 je — Z a;. Koeficient
i=1

) — det(—A)=(—1)" det(A).

—ai1 -+ —Qin

pri t° je x4 (0)=det <

—Qn1 *° —Ann

n
Definicia 12.8. Pre maticu A=(a;;)€M,,(R) sa Z a; nazyva stopa matice A,

i=1
ozn. Tr(A); Sp(A). Plati napr. ak A, BeM,,,,(R), tak Tr(AB)=Tr(BA).
Veta 12.4. Podobné matice maju ten isty charakteristicky polyném.

Dékaz. Majme A, BEM,,,,(R), nech B=PAP~! pre ddku regularnu PedM,,,(R).
Chceme ukazat, ze xa(t)=xp(t). Z definicie: xp(t)=det(tI, — B)=det(tI,—
—PAP 1)=det(PtI,P ! -PAP !)=det(P(tL,—A)P~!)=det(P) det(tI,—A)-
-det(P~1)=det(P) det(P~!) det(tI,—A)=det(tI,—A) = xa(t).

Definicia 12.9. Charakteristicky polyném linedrnej transformécie f : R*—R"™

(R je pole) je charakteristicky polyném matice linedrnej transformacie vzhladom
na fubovolni bézu v R™.

Definicia je dobra, lebo ak A je matica transformdcie f vzhladom na jednu bazu
a B je jej matica vzhladom na int bazu, tak A, B st podobné, teda xa(t)=x5(t).

Pozndmka. z=a+ib, Z=a—ib je komplexne zdruzené k z. z€C je redlne & z=z.
z-z=|z|2.
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Definicia 12.10. Nech A=(a;;)€M;s(C). Komplexne zdruzend k nej je matica
A:(C_lij)Gmtks((C).

Zrejme plati: A+B=A+B; AB=AB.

Veta 12.5. Nech A€M, (R) je symetrickd (tj. A=AT). Ak A chipeme ako
komplexnu maticu, tak vSetky jej viastné hodnoty su realne.

Dokaz. Nech A\eC je lubovolnd vlastnd hodnota matice A. Teda existuje nenulovy
vektor ZEC™ taky, ze TA=AZ. Komplexné zdruzenie: TA=AT tj. ZA=AZ. Pretoze
A mé vsetky prvky reilne, mame A=A, a teda YA=AZ. Transponovanie dava:
(ZA)T=(D)T, tji. ATZ=)\i", ale A=AT a preto AF =0T o AT =NA
_ _ T1
Méame: ZA=M\Z; preto AT =TT tj. (A\-N)ZTT Too. xfo(xl, cee L Ty) ( ) =
5’,’77/
=r1Z14 - 2 Zn=|T1*+ - - - 4|2, [*>0, kedZe (21, -+, 2,)€C"—{(0,--- ,0)}, pre-
to A—A=0 tj. A=\ teda A\eR.

Podobnost matice s diagonalnou maticou.

Veta 12.6. Matica AeM,,,(R) je podobna diagonalnej matici prave vtedy, ked
vlastné vektory matice A generuju cely priestor R". Ak A je podobna diagonal-

nej matici, tak je podobnd matici diag(A1, -+, Ay), kde A1, , A\, ER st vlastné
hodnoty matice A.

Dokaz.

[=] Predpokladajme, ze matica A je podobnd D=diag(dy, - ,d,). Pretoze
mame €;=(0,---,0,1,---,0) : &D=d;e;, teda dy,--- ,d, su vlastné hodnoty ma-
tice D (a €1, , €, st prislusné vlastné vektory). Vieme, ze {dy,--- ,d,} je tiez

mnozinou vSetkych vlastnych hodnot matice A. Chceme ukazaf, ze vlastné vek-
tory matice A generuju R". Mame, ze D=PAP~! pre vhodnt reguldarnu maticu
P. Teda z &;D=d;é; dostaneme: &PAP~'=d;é; (sprava P): (&;P)A=d;(¢;P).
e1P,--- ,€,P st nenulové z R"™, teda si to vlastné vektory patriace k vlastnym
hodnotam dy,--- ,d, matice A. NavySe e1P,--- ,&,P s linedrne nezavislé, lebo
st to obrazy bazovych vektorov éi,--- ,é, priestoru R™ pri regularnej linedrnej
transformécie fp : R"—R". Teda &1P,---,e,P st vlastné vektory matice A,
generujuce R™.

[ < |[Predpokladajme, Ze vlastné vektory matice A generuji cely priestor R". Vy-
berme spomedzi nich bazu (51, cee I_;n) priestoru R™. Nech Ay, --- , A\, ER st vlastné
hodnoty matice A patriace k 51, e 7511- Teda glAzAlglzfA (51), e ,gnA:Angn:
=fa(b). tj. mame, ze fa(br)=A1b1+0ba+ - +0bpn, -+, fa(bn)=0b1+ - - +Anby.
Teda linedrna transformécia fa : R"—R" (ktord vzhladom na (€1, --,€,) mé
maticu A) méa vzhladom na bazu (by,-- , by ) maticu diag(A1,--+,A,). Potom
z jednej z viet vieme, Ze A je podobna dzag(/\ ©y An).

Priklad. Matica A = ( ) € M,,,,(R) nie je podobna diagondlnej matici.

xAa(t) = det (tgl t_ll) = (t—1)2. Keby A bola podobn4 diagonalnej matici, tak by

bola podobna (0 1) Teda by existovala regularna matica P taka, ze (é i) =

=PAP = (0 (1)) — to nie je pravda, preto A nie je podobna diagonalnej matici.
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Vlastné vektory patriace k vlastnej hodnote A=1: (21, x2) ((1) 1) =1-(x1,z2).

Z toho: zi1=z1 a x14+xo=x9 Potom x1=0. Vlastné vektory sa tvaru: k(0,1);
k€R—{0}. Vlastné vektory negenerujt celé R?, podla vety A nie je podobn4 di-
agonalnej matici.

Veta 12.7. Nech Ae9M,,,,(R) a nech )\1, -+, \-€R st také vlastné hodnoty matice
A, ktoré€ st navzajom rézne. Nech b1, . b su vlastné vektory patriace A1, -+, A,
Potom by, - ,b, st linearne nezavisié.

Dokaz. Indukcia podla r:
1° Pre r=1 kedZe b0 je linearne nezavislé, tvrdenie plati.

2° Predpokladajme, ze tvrdenie plati pre r—1. Teraz nech Ay, - - /\, je r navzajom
roznych vlastnych hodnét, nech prislusné vlastné vektory su bl, -+ ,by. Nech
a1b1+ +arb7070 Chceme ukazat, ze ar=: -+ =q,=0. Sprava (\.I,—A):

O[lbl()\ I — ) —|—Oér 1b7~ 1(A I A) (/\ IT—A) = 05151)\7«17«—041>\151—|— e
- ap_1b 1/\ L—a, 1 Ar_1bya+arb AT —ar A, =0 & an\bi—aidbi+ -
B 0 7 1)\ br 1+O[T 1)\7" 1br 1+C¥r)\ b Ckr)\ b —0 Teda Oll(>\ )\1)b1+ -+

Far_1( A=A 1)br 1=0. 7 indukéného predpokladu vieme, Ze bl, .- br 1 su
linedrne nezdvislé. Preto aj(A\.—A1)=0,- - ,ar,l()\ —Xr1)=0. Ale ) ;«ré/\j pre

i#j, teda A\.—A17#0, -+ ;A\ —A_1#0, z toho: ay=---=q,._1=0. Zostava arbT 0.
Pretoze b, 70, mame aj a,=0.
Dosledok. Ak A je taka matica, Zze ma n navzajom roznych vlastnych hodnét,

tak prislusné vlastné vektory su linearne nezavislé, teda generuju celé R", a teda je
podobné diagondlnej matici diag(A1, -, \p).

Niektoré fakty o polynémoch.

Veta 12.8. Nech polyném p(t) je stupiia n>0; ¢(t) je stupria m>0 nad R. Po-
tom existuje jediny polyndm d(t) a jediny polyném r(t) (deg(r(t))<m) také, ze

p(t)=d(t)q(t)+r(t)

Veta 12.9. Nech p(t)€R][t], deg(p(t))>1. Potom a€R je koretiom p(t) préve vtedy,
ked p(t)=(t—a)q(t), kde deg(q (t))=deg( ()1
Dokaz.

[= ] Predpokladajme, ze a€R je koren. Teda p(a)=0. Z vety 12.8 vieme, Ze:

p(t)=(t—a)q(t)+r(t), kde deg(r(t))<1l. Kedze p(a)=0=r(a), mame r(¢)=0, teda

p(H)=(t=a)q(?).

[<] Ak p(t)=(t—a)q(t), tak p(a)=(a—a)q(t)=0, teda o je koreti.

Definicia 10.11. Hovorime, Ze polyném p(t)=a,t"+ - - - +ait+ao€R[t] sa nad R

uplne rozklad4 na linedrne ¢initele, ak p(t) sa da vyjadrit v tvare p(t)=a, (t—ay) - - -
-+ (t—ay) pre ddke ai,- -+ ,a,€R. Ked zdruzime rovnaké ¢initele, tak dostaneme:

p(t)=an(t—ay)* - (t—a)ks, pricom 3 k;=n.

Priklad. Polyném t?41 sa nad R nerozklad4 tplne na linearne &initele, ale nad C
sa rozklada.

Zakladna veta algebry.
Kazdy nekonstantny polyném z C[t| mé v C koreii.
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Désledok. Kazdy polyném z Clt] sa tplne rozkladd na linedrne ¢initele nad C.

Tvrdenie 12.4. Kazdy nekonsStantny polynom s realnymi koeficientmi sa rozklada
na sucin polynémov stupna <2.

Doékaz. Nech p(t)=a,t"+ - - - +ait+ag, a;€R. Ak p(t) chdpeme ako polyném nad
C a z€C je jeho koren, tak aj Zp je koren, lebo p(zg)=0=anz{+ - - +aizo+ao,
a teda tiez O=an,z{+ - - +ai1z0+ao=an2l+ - - - +@120+a0=an(20)"+ - - - +a1Zo+ao.
Z dosledku zékladnej vety algebry vieme, ze p(t)=an,(t—=21)--- (t—2,) pre z€C.

Ale ak z; je koreni, tak aj z; je koren, teda pre Vie{l,--- ,n} z;=%; pre vhodné
j€{1,---,n}. Teda p(t) obsahuje sudiny (t—z;)(t—z;)=t>— (2;+%;) + 2;Z;; ob-
€R €R

sahuje Cinitele stupna 1 Vv 2.
Tvrdenie 12.5. Ak p(t)eR[t] m4d nepdrny stuper, tak p(t) mé koreri v R.

Dékaz. Z predchadzajicich uvah vyplyva, Ze ak p(¢)€R[t] nem4 redlne korene, tak
ma parny stupen.

Veta 12.10. Nech AeIM,,,,(R) m4 charakteristicky polyndm x 4 (t)€R[t] taky, Ze sa
tiplne rozklada nad R na navzdjom rézne linearne ¢initele, x o (t)=(t—XA1) - - (t=\p);
Ai#\j pre i#j. Nech 51, e ,gn su vlastné vektory patriace k A1, --- , A\, ozna¢me
Va(b:)=[b;JCR"™. Potom matica A je podobné diagondlnej matici diag(Ay, -+ , An)
a R"=[b1]® - - ®by).

Dékaz. To, ze A je podobnd diag(A1, - - , Ap) uz vlastne vieme z dosledku vety 12.7.
Tiez vieme, ze 51, e ,l;n generuju celé R™. Teda kazdé £€R'™ je tvaru F=aiby+ -
o+ F by, teda R"=[by]® - - - ®[bn]. Ale [b;]N([01]® - - - B[bi—1]B[bis1]® - - - B[bn])=
:{6} pre kazdé i. (keby nie,tak by pre déke al;izﬁll;l—i— e +ﬂi,1gi,1+ﬁi+15i+1+
4+ +ﬂn5n, ¢o je nemozné, lebo 51, e ,gn st linedrne nezavislé.) Teda v skutoé-
nosti: R"=[by]® - - - &[by).

Definicia 12.12. Pre Ae9,,,(R) definujme jej k-td mocninu (k€Z, k>0) takto:
A=, A'=A AF=A.-AF1

Veta Cayley-Hamiltonova.

Nech xA(t) = ant™ 4+ -+ + a1t + ag € R[t] je charakteristicky polyndm matice

A € M, (R). Potom plati a, A™ + a, 1 A" 1 + .-+ + a1 A + aol,, = 0. Strucne
xa(A) =0.

b11 bin
Doékaz. Ak B:( Do ) mame

bu1 - ban
bi1 - bin Bi1 -+ Bna

B-adj(B) = ( ) < ) = diag(det(B),--- ,det(B)) = det(B)I,,
bp1  bpn Bin -+ Bnn

to plati aj pre matice nad komutativnym okruhom s 1. Specidlne:

(+)  (tL,—A)adj(tL, —A)=det(tL, —A)-I,)=x(t) I
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LCubovolnd maticu nad okruhom R[] mdZzeme napisat v tvare "polyném” s koefi-
cientami z M,,,,(R) pri mocnindch ¢. Napr.:

B3 1?2 -1 100 010 000 00 -1
< 0o ¢ 2t>(000)t3+<000>t2+<012)t+<00 0 >
t+t2 tt2 3 001 110 110 000
adj(tI,,—A) takto napiSeme ako ”polyném” s konstantnymi maticovymi koeficient-
mi stupiia <n—1. Teda adj(tI, — A) = Bo + Byt +--- + B,,_:1t""! pre vhodné
By, -+ ,B,_1€M,,(R). Teda () prepiSeme (tI,—A)(Bo+Bit+---+B, 11" 1)=
=(ap+ait+ - +a,_1t" " 1+¢")I,. Porovname koeficienty na lavej a pravej strane
pri rovnakych mocninach t.

to : —AB() = aOIn /AO
tl : Bo—AB1 = alln /A
t2 : Bl—ABg = CI,QIn /1&2

tn71 : Bn_Q_ABn_l = an_lln /'1&7171
¢ B,.1=1, /A"

Séitanim Tavych resp. pravych stran: aol,+a1A+ - +a,_1 A" 1 +A"=0.

Veta 12.11 a Definicia 12.13. Pre kazdd maticu A€M, (R) existuje prave
jeden polyném 14 (t)€R]t] s koeficientom 1 pri najvysSej mocnine t taky, Ze
"ua(A)=0” a taky, ze kazdy polynom R[t]>p(t)#0 s vlastnostou "p(A)=0" je
nasobkom polynému 14 (t). Polynom pa(t) sa nazyva minimdlny polyndm matice
A.

Dokaz. Oznaéme No={p(t)€R]t]; p(A)=0 a ak p(t)#0, tak m4 koeficient 1 pri naj-
vy$Sej mocnine}. Na#0, lebo z Cayley — Hamiltonovej vety vieme, ze x4 (t)EN4.
Zarovet je jasné, ze v N4 existuji polynémy stupiia >0. Nech pa(t) je polyném
najmensieho stupfia >1 v N4. Nech p(t)#£0 je taky, Zze p(A)=0. Chceme ukazaf,
7e p(t) je nasobkom p(t). Vieme, Ze existuje jediny p(t) a jediny r(t) tak, ze
p(t) = pa(t)q(t) + r(t), pricom deg(r(t)) < deg(pa(t)). Mame r(A) = 0 a zaroven
deg(r(t))< deg(pa(t)), to je mozné len tak, ze r(t)=0, teda p(t) je ¢(t)-nadsobkom
polynému p4(t). Este treba ukézat jednoznacnost: Nech by boli dva také polynémy
1A (t); ia(t) s potrebnymi vlastnostami. Potom fi4(t) je ndsobkom polynému 4 (t),
ale aj pa je ndsobkom fia(t). Pretoze pa(t) aj fa(t) mé koeficient 1 pri najvyssej
mocnine, dostavame p4(t)=fA(t).

Priklad. A= (; 1), xa(t)=(t—1)%. 1ua(t) by mohol byt (t—1)% alebo (t—1).

((1) 1) — ((1) 2) + (g 8) teda t—1 nie je minimalny polyném. Teda p(t)=(t—1)2.
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Jordanov normélny tvar matice (linearnej transformaécie).

Definicia 12.14. Ak f: R"—R" je linedrna transforméacia a A€R je jej vlastnd
hodnota, tak (f — A\)* bude oznacovat linedrnu transformaciu (f — Xidgn)o---o
o(f=Xidgn) : R"™—R™. Specidlne: (f—\)°=idgr~. Oznaéme V;(\)={FER"; e-
xistuje n>0 také, ze (f—\)"(£)=0}. Vlastné vektory linedrnej transformacie f
patriace k A patria do Vy(A): ak ¥ je vlastny vektor patriaci k A, tak f(¥)=AV tj.
(f =M (?)=0

Definicia 12.15. V;(\) sa nazyva zovieobecnend vlastnd mnoZina patriaca

k vlastnej hodnote A.

Veta 12.12.
1.4V¢(A) je vektorovy podpriestor v R™.
2. f(V¢(N))CVi(A) (tomu sa hovori, Ze Vi (X) je f invariantny podpriestor v R™.)

3.y Pre ZER™ oznacme &;=(f—\)"(Z). Ale &y, -- ,T,_1 su (pre ddke k) nenulové,
ale uz 7,=0, tak potom %o, - ,Tx_1 St linedrne nezavislé.
Dokaz.

Ly Vi(A)#0, lebo tam patria vlastné vektory f. Nech Z,7€Vy(A) su Iubovolné,

nech a€R, B€R. Chceme ukazat, ze ai+B7eVy(A). Mame (f—\)k (%)= 0 pre dake

k>0; (f—A)"(7)=0 pre déke m>0. Potom (f—\) T (aZ+57) = (f—A)™(f—N\)*-

(@@ +BP=(f =N (@[ =N (&) +B(f =) =B(f =)™ (=N (D =B(f—\)*-
—_———

2, Nech yef( f;

Teda 3m>0: (f

fo(f=A)"(Z) =
—————

0

3.y Nech apZo+ - +ag_ 17— 1—6 chceme ukazat, Ze ag=---=a,_1=0. Mdime
ao(f=N)°(Z)+a1 (f=N @)+ - - +ap_1(f—N)F1(£)=0. Aphkujeme na obe stra-

ny (f=A)*~". Potom ag(f =)~ (@)+a1 (f =N @)+ +ar—1(f=A)*F (=0

QT — 1—|—0+ +0 0<=>Z‘k 1750=>010 0.

Zostava: an(f=A)' @)+ +ap_1 ([N (@)=0 /(f-A)"?

al(f MNF1(@) 4 - 4o 1 (f-N)PF3(2)=0 a1 @p_140+---+0=0 = ;=0 atd.
=0 Vi.

Dosledok. VacV;(\) mame (f—\)"(a@)=0.

(A %) pre dake Z€Vy(\)

). Chceme ukazat, ze V(). Mame §={f(Z
(@)=(f=A)"of(Z) =

)
—A)"™(#)=0. Potom (f-\)"(§)=(f-A)" (
0, teda yeVy ().

Dékaz. Nech @cVy()) je lubovolng. Ak (f—\)"(@)#0, tak aj @;=(f—\)"(@)#0 pre
i =0,---,n. Z 3. by sme mali (kedZe existuje m>0 : (f—=\)™(@)=0, pretoze
acVy(\)), ze do, - - - , @y st linedrne nezavislé. Ale je ich n+1 a sa v R"—spor.

Definicia 12.16. Jordanova matica typu nxn nad polom R patriaca k vlastnej
hodnote A (linedrnej transformécie, resp. matice) je matica, ktord mé na hlavnej
diagonéle samé A, na susednej (zhora) ¢iare rovnobeznej s hlavnou diagondlou mé
samé 1, a inde 0. Ozn. J,,(N).
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1
Priklad. J;(\)=()), Jo(A\)= (3 ;) L Ja(N)= <§ ) 3)
Veta 12.13. Nech f : R"—R" je linearna transformacia, ktora ma jedini a pritom
n-nasobnd vlastni hodnotu A€R. Potom Vy(A\)=R" a vo Vy(\) existuje béza,
vzhladom na ktord md f maticu A(N)eM,,,(R), pozostavajica z Jordanovych
matic I, (A), -+ ,J4.(\) (kde q1> - >q,) umiestnenych pozdlz hlavnej diagonély
a okrem toho uz iba z nul. ¢1+ - - - +qg,=n

J, (N 0 . 0
A= 0 Jp(N) 0
6 0 qu.()\)

Veta 12.14. Pre maticu Ae9,,(R) takd, Ze ma jedini n-ndsobnu vlastni hod-
notu AeR plati, ze Vi(A\)=R" a matica A je podobna matici A(\)eM,,,(R) po-
zostavajiicej z Jordanovych matic: Jg, (A), -+ ,J,, (\) umiestnenych pozdlz hlavnej
diagonaly (q1+ -+ +q-=n) ina¢ iba z nil.

Dokaz. xa(t)=(t=N)". Z Cayley — Hamiltonovej vety: (f—A)"=0. Tj. pre
VZER™ : (f—\)"(%)=0; z toho teda R"=V}()).

Veta 12.15. Nech f : R"—R" je linearna transformécia taka, Ze jej charakteri-
sticky polynom je: x r(t)=(t—A1)" (t—X2)" - - (t—As)™ (kde n1+ - - - +ng=n). Po-
tom R"=V;(A1)®---®Vy(Xs) a pre kazdé Vi(\;);i=0,1--- s existuje jeho bdza,
vzhladom na ktortd ma fly () : Vi(Ai—=V¢(A;) maticu A(X;)€M,,,n, (R) pozostd-
vajiicu z Jordanovych matic (stcet stuptiov ktroych je n;) umiestnenych pozdlz
hlavnej diagondly a in4¢ iba z nal. Teda vzhladom na bazu (By,--- , Bs) priestoru
R™ ma f maticu tvaru:

Jg (N 0 EE 0
o [1.] - o
6 0 o qu.(/\)

Potom x 4(t)=(t—A1)" -+ (t—=Xs)™. (> n;=n) plati, ze R"=Vy(A)®---®Vi(\s)
a matica A je podobnd matici tvaru (x).

Definicia 12.17. Matica () je tzv. Jordanov normdlny tvar matice A.

Pozndmka.

1.y Kazd4 matica A€, (C) splha predpoklady vety a teda k nej existuje nejaky
Jordanov normdalny tvar.

2.y Specidlne, ak matica A€M, (R) je taka, Ze x 4(t)=(t—A1) - -- (t—A,) kde N\i#);
pre i # j, tak sme uz davnejsie dokazali, ze A je podobna diagonalnej matici
diag(M1,- -+, An). Toto je Jordanov normélny tvar takejto matice A.
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Tvrdenie 12.6.

1.y Jordanov normélny tvar je jediny, odhliadnime od permutdcie Jordanovych
matic pozdlz hlavnej diagonaly.

2.y Dve matice A,BEM,,,(R) také, ze ich charakteristické polynémy sa nad R
uplne rozkladaji na linedrne cinitele st podobné préve vtedy, ked pripustaji ten
isty Jordanov normalny tvar.

3.y Pocet Jordanovych matic v Jordanovom normélnom tvare matice A sa rovna
najmensiemu moznému poctu linearne nezavislych vilastnych vektorov matice A.
4.y Pocet Jordanovych matic zodpovedajtcich nejakej vlastnej hodnote matice A
sa rovna maximalnemu poctu linearne nezavislych vlastnych vektorov patriacich k
tej viastnej hodnote. Ak xa(t)=(t—A1)"* -+ (t=Xs)™, kde A1, -+, As€ER; (NiF#N;
pre i#£j) tak m;=sucet stupniov Jordanovych matic patriacich k ;.

5.y Stuperi najvicsej spomedzi Jordanovych matic patriacich k vlastnej hodnote A
sa rovna nasobnosti A ako korena minimalneho polynomu.

6.y Nech xa(t)=(t—=A1)™ --- (t=Xs)™, Ni€R, \i#\; pre i#j. Potom stupein naj-
vdcsej spomedzi Jordanovych matic patriacich k \; ur¢ime takto: vyratame
A-\I,, (A-\1,)2%, ---. Zistime, Ze hodnost matice (A—\;1,,)*¥ s rastom k po ¢ase
prestane klesat. Prave najmensia hodnota k, pre ktorti sa dosiahne najnizsia hod-
nost sa rovnéa stupni najvicsej Jordanovej matici patriacej k \;.

Priklad.

—-
—

6 5 -4 —3% xa(t)=(t-1)*(t-2)
A 2 3 -2 —% teda existuje jej
11 0 f% Jordanov
6 6 —6 —3 normalny tvar.

h(A—214)=3; h((A—214)?)=2; h((A—214)?)=2, - - Teda v Jordanovom normalnom
tvare bude J2(2)= ((2) é) h(A—11,)=2; h((A—114)?)=2,- - - stupefi najvicsej Jor-
danovej matice patrice k 1 bude 1. Z toho Jordanov normalny tvar matice A je:

2100
ao- (1200
0001

Pozndmka.

Nech charakteristicky polyném matice A€M, (R) je xa(t)=(t—A)". Potom:

(i) Najvicsia Jordanova matica ma stupen ki, kde k1 je najmensie celé také, ze
(A—AL, )" =0.

(i) h((A—MI,,)*1~1)= poéet Jordanovych matic stupiia k;.
(iii)h((A—AL,)*1=2)=(2-pocet Jordanovych matic stupiia k; )+ (pocet Jordanovych
matic stuptia (k1—1)).

(iv)h((A—AL, )k ~3)=(3-pocet JM stuptia k; )+2-(podet JM stupiia k; —1)+1-(podet
JM stupnia (k1—2)).

atd.

Priklad.
A (-2 —60 13) 693”(4,4(R) , XA(t) (t ) , ( 4)

0 -313 T2y B
-1-40 8 ((A-114)%*)=1, h(A—-114)°)=0
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Potom podet Jordanovych matic stupiia 3 je h((A—114)?%)=1.

1100
Jordanov normalny tvar matice A je AN)= (8 é i g)
0001

XIII. KVADRATICKE FORMY (NAD POLOM R)

Budeme uvazovat o n (n>0) premennych 1, -+ , z,, ktoré budi moct nadobti-
dat redlne hodnoty, pritom bude platit x;z;=x;z; Vi, j. Potom kvadratickd forma
n premennych xq,--- ,x, je vyraz tvaru: Z ai;Tixj, kde a;;€R st tzv. koefi-

1<i<j<n
cienty kvadratickej formy.

Priklad.

1.y 0 je kvadraticka forma, kde a;;=0 Vi, j.

2, 22+13 je kvadratickd forma dvoch premennych.

3. x%+2x1x2—3x2x3 je kvadraticka forma troch premennych.

2
r{+2r1x0—3x0w3= (21 X2 x3)

(e

1 0
0 O i)
-3 0

Kvadratickt formu Y a;jz;2; (n premennych) moézeme napisat v tvare: XAXT,
kde X=(z1, - ,zn),

@11 @12 - A1n\  Ale takychto zapisov air aiz—e - aip
. . T _ n
| 0 a2 G2n | v tvare X-matica-X e a= 2 T
A=| T , e vela X oo - X
: : . : je nekonecne vela Do
0 0 o ap napr. tiez: 0 0 - ann

pre Iubovolné ecR.

Veta 13.1. Pre kazdi kvadraticka formu ) a;jz;x; existuje jedind symetrick
matica SEM,,,,(R) takd, Ze Z aijxixj:XSXT, kde X=(z1, - ,zy).
1<i<j<n
n

Dékaz. S=s;j;s;j=sji. Musi byt E Qi T;T;= g 8;j&;x;. 7 porovnavania:

1<i<j<n 1=i,j
a;;=S8;; pre Z:]., -+ ,N a pre Z?é] : sij+5ji:25ij:aij = sij:%aij.
S je matica kvadratickej formy.
Priklad.
2 *% 0 Iy
20} —wizotai & (11 w2 w3) | -3 0 0 T2
0 1 I3
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Definicia 13.1.

Reguldrnou linedrnou transforméciou premennych X=(x1,- - ,x,) rozumieme za-
vedenie novych premennych Y=(y1, - ,y,) takych, ze Y=XP pre ddku regularnu
maticu PeM,,,(R). Y=XP & X=YP~!

Kvadratické formy budeme zapisovat v tvare XSXT, kde S = ST € 91,,,,(R),
X = (21, -+ ,2,). Urobme v kvadratickej forme XSXT reguldrnu linedrnu trans-
formaciu premennych Y = XP. KedZe P je reguldrna, mame X = YP 7!, teda
XSXT=YP'S(YP HT=Y P !S(P HTYT. Mdme BT=(P!S(P~1)T)T=

—_———

B
=P 1S(P~1)T = B, teda B je symetrickd. Od formy XSXT premennych
X=(z1, - ,xzy,) sme presli ku kvadratickej forme n premennych Y=(y1, - ,yn),
YBYT pricom B=P~!S(P~1)T. tj. S=PBPT.

Definicia 13.2. Matice A, BEM,,,,(R) st kongruentné (nad R) ak existuje regu-
larna matica QEM,,,(R) taka, ze A=QBQT.

Pozndmka. Ak kvadratickt formu XSXT upravime reguldrnou linedrnou transfor-
maciou premennych na ”novi” kvadratickti formu, tak matice tychto foriem st
kongruentné.

Veta 13.2. Kazdi (nenulova) kvadraticka formu n premennych mozno vhodnou
reguldrnou linedrnou transforméciou premennych previest na tvar:
Yit - Y —Yi— - —Yn, kde s<n.

Dokaz. Majme (nenulovil) kvadratickt formu XSXT, kde X=(z1,--- ,2,), S#0
S=ST=(s;;)€M,,,(R). Vhodnou regularnou linedrnou transformaciou premennych
mozeme XSXT previest na ZBZT, kde Z=(z1, - ,2,), B=BT=(b;;) €M, (R),

pricom uz by; # 0. Ak existuje i€{1,--- ,n} také, ze s;; # 0, tak zoberieme x;=z,
T1=2;, Tj=2; pre 1#j#i. Ak s11="--- =s,, =0 tak existuja déke i, je{1,--- ,n} i#7,
5i;70. Potom zavedieme nové premenné (yi,- -, Yn), Ti=Y1+Y;; T;=Vi—Y;; Th=Yk

pre i#k#j. To je reguldrna linedrna transformécia premennych. Dostaneme:

XSXT = 2 s;; x;x;+¢leny bezz;z; = 25ij(yi2—y]2)+éleny bez y2=2s,;y?+¢leny
>

bez y?, madme XSXT=YCYT, kde C=(ci;) mé c;;=2s;;70. Potom zadmenou pre-

mennych z1=y;; 2;=Y1; 2; y] pre 1#£j#i prejdeme k forme ZBZT, kde uz by;#0.

Teraz: XSXT ZBZT b1121+b122122+ +b1n212n+b212221+ +bn12n21+

+ Z bwzlzjfbnzlJr?Zb”zlzﬂL Z bijzizj=b11 zl+2zlzb )+

2<i;5<n j=2 2<;5<n
2
) )
15
+ szzzzj—bll zZ1+ E b —|- E bijZiZj—bn E sz ,
2<i;5<n 2<i,j<n j—2 11
2 : 1 1 0 --- 0
ur=z21+ —=Z; . ,
. e by’ to je reguldrna bha 1 .0
zémena =2 L . b1y
remenntch: Ug=29 — linedrna transformécia .
P e premennych, jej matica: : 0 :

Up=2%2n b11
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jeregularna. Dostaneme: XSXT:ZBZT:bHu%—l— Z gijuiuj:buu%—i—UGUT,
2<i,j<n

kde GEM,,_1,_1(R); G=GT, U=(uy,--- ,u,). Opakovanim kone¢ného poétu ta-

kychto krokov dostaneme pomocou regularnych linearnych transformacii premen-

nych, ze XSXT:dlv%—}— e —|—d5vf, kde s<n. Permutéciou premennych vy,--- ,v,
dostaneme, Ze XSXT:clp%—&— . --+ckp%+ck+1p%+1+csp§, kde cq1,- -+, ¢ su kladné
a Cg41,- - ,C SU zaporné. Potom urobime reguldrnu linedrnu transforméaciu pre-
mennych: y1=y/c1p1," -+, Yb=+/CkPks Ye+1=v/—Cht1Pk+1, """, Ys=/—CsDs.

Potom yi+ - +yi—y? — - —y?=XSXT; s<n

Dosledok. Kazda symetricka matica typu nxn nad R je kongruentna s diagonal-
nou maticou, ktord ma na hlavnej diagonale iba prvky z {—1,0,1}.

Dokaz. Ak S=STeM,,,,(R), tak XSXT je kvadraticka forma, ktora sa reguldrnou
linedrnou transformédciou premennych upravi na tvar: yi+- - +yi—y?2 f1m —y2
(s<n),teda na kvadraticki formu s maticou diag(l,---,1,—1,---,—=1,0,---,0).
Matice tych kvadratickych foriem st kongruentné.

Veta 13.3. (o zotrvacnosti):

Ak danti (nenulovii) kvadratickii formu XSXT n premennych upravime reguldrnou
linedrnou transforméciou premennych Y=XQ na y3+ - - - +yi—y? IREREE —y2,
(s<n) a reguldrnou linedrnou transforméciou premennych Z=XH ju upravime na
2442222 — - —2F (t<n), tak k=r a s=t.

Pozndmka. Této veta odovodiiuje, preco sa tvar y+- - —&—y,f—y,%ﬂ— c—y? (s<n)
nazyva aj kanonicky tvar kvadratickej formy XSXT.

Dokaz. 1.): D,=diag(1,---,1,—1,--- ,—1,0,--- ,0) je matica y7+ - +yi—
—_—— ———

s—k

k
—Yp1— - —y2. Vieme, ze S=QD1QT. Dy=diag(1,---,1,-1,---,—1,0,---,0)
—_—— ———

T t—r
je matica zf+ - +22—22, — - —2%. Tiez S=HD,H™. Pre hodnost mame:
h(S) = h(QquT): dim([meTDlQ): dim([meTfDl fQ) = dim([meTfDl) =
=dim(Imfp,) = h(D1) = s (pretoze Q aj QT je linearny izomorfizmus.)
2.): Nech by r<k. fg : R"=R", fy : R"—=R" st linedrne izomorfizmy.
Ozna¢me S1=[€é1, -, €x], S2=[€r+1," - , €x] podpriestory v R"”. Teda dim(S;) = k,
dim(S3)=n—r. Oznacme lefél(Sl),ngfgl(Sg). Pretoze fg, fu sa linearne
izomorfizmy, mame dim(T})=Fk, dim(Ty)=n—r. Tvrdime, 7e TiNTy#{0}.
dim(T} 4 7T%)=dim(T})+ dim(73)— dim(71NT )= dim(T} )+ dim (T3 )=k+n—r. Ale
z predpokladu k—r>0, teda by bolo, ze dim(71+7%)>n spor s tym, ze T1+T>CR".

Nech teraz éeTyNTy, é#0. Mame D,=diag(1,---,1,-1,---—=1,0,---,0),
—— ———
k s—k
Dy=diag(1,---,1,—1,--- ,—1). Vieme, ze S=QD;QT,S=HD,HT. Ratajme:
—— ———

5Sgr=6QD1QT5‘1‘:(6Q)Dl(EQ)T:fQ(E)Dl(fQ(é))T Ked’ie fQ(@ESl mame:

Fo(@=(@F1, - &0, ,0). kde (1, +&)#(0,--- ,0). Teda &S-cT =

:(61;"' aék707"' 70)dlag(17 717_17"' 7_1707"' 50>(615"' 7616’07"' 7O)T:
———

k
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=G, %, 0, ,0)(C1, -+, 8, 0, ,0)T=E2+4 . +2>0. Zaroveti: ¢-S-cT=
=CHDHT -eT=f4 (&)Da(fu ()T, 04 f1(&)=(0,- -+ ,0,G41, -+ ,&). Preto
N—_——

T

E’SET:(Q 70aé7"+17"' 7éé)dzag(1a 717_17"' a_1707"' 70)(07 70751"4—17
——
: 7ES)T:(Oa"' 707 _é’l"+1a"' a_éna07"' ,0)(0, 7Oaér+17"' 7ES)T:
:—5T+1—-~-—és<0 spor.

Podobne sa odvodi spor z predpokladu »>k. Vcelku: r = k.

Definicia 13.3. Kvadratickd forma XAXT sa nazjva kladne definitnd, ak pre
vietky X#0 je XAXT>0. [nazyva sa kladne semidefinitnd, ak XAXT>0 pre
vietky X+#£0; nazyva sa zdporne definitnd ak XAXT <0 pre vietky X+#£0.]

Definicia 13.4. Symetrickd matica Ae9M,,,,(R) sa vola kladne definitnd, ak kvad-
raticka forma XAXT je kladne definitna.

Veta 13.4. Ak kvadraticka forma XAXT je kladne definitnd a Y=XP je regu-
lérna linedrna transformacia premennych, tak kvadraticka forma YBYT ziskana
2z XAXT uvedenou regulirnou linedrnou transformaciou premennych je tiez kladne
definitna.

Dokaz. Vieme, 7e A=PBPT, B=P'A(P~1)T. Potom pre lubovolnti Y#0 méame
YBYT=YP AP HTYT=(YP H)A(YP 1T, ak forma XAXT je kladne defi-
nitna, tak YBY T=(YP1)A(YP1)T>0, lebo YP1#£0 (kedZe P! je regularna
matica). Teda aj forma YBYT je kladne definitn4.

Veta 13.5. Kvadraticka forma je kladne definitnd prave vtedy, ked jej kanonicky
tvar je y?+ - +y2.

Dékaz. [<]: Ak kanonicky tvar je yi+--- +y2, tak pre vietky Y=(y1, -, yn)#0

je y3+---+y2>0. Z predchadzajicej vety vyplyva, Ze aj povodna forma je kladne

definitna.

[= | Predpokladajme, Ze danéd kvadratickd forma je kladne definitné. Jej kanon-

icky tvar Y3+ +yi—yi,— - —y2;s<n. Keby bolo k<s<n, tak hodnota tejto

kvadratickej formy v (0,---,0,1,0,---,0) by bola —1, a teda tato kvadraticka
——

k
forma by nebola kladne definitn tj. ani povodné by nebola kladne definitné —spor.

Veta 13.6. Matica A=ATecM,,,,(R) je kladne definitna prave vtedy, ked existuje
reguldrna matica PEM,,,,(R) taks, e A=PPT.

Dokaz.

[= ] Predpokladajme, Ze A je kladne definitnd. Teda kvadratickd forma XAXT
je kladne definitna, teda jej kanonicky tvar je y?+---+42=YIL,YT. Potom vieme,
7e A=PI,PT, kde Y=XP je regularna linedrna transforméacia premennych, ktora
XAXT prevedie na YI,YT.

[< [ Predpokladajme, Ze A=PPT. Potom kvadraticks forma uréend maticou A je
XAXT=XPPTXT=XP)(XP)T. Ak X=(z1, - ,7,)#0, tak XAXT>0, alebo
XP=(z1, - ,2,)P je nenulovd n-tica (b1, - ,b,)ER™ a b3+ - +b2>0.
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Veta 13.7. (Sylvestrovo kritérium)
Matica A=AT=(a;;)€M,,,(R) je kladne definitna préve vtedy, ked det(a;1)>0,

ail vt Qin

det (a“ (m) >0,--- ,det ( --------- ) >0 ¢o je ekvivalntné s tym, ze kvadraticka

azi1 a22 a a
nl *** Gnn

forma XAXT je kladne definitna.
Strucéne: préave vtedy, ked vSetky tzv. hlavné rohové determinanty matice A st
kladné.

Dokaz. Indukcia vzhladom na n:

1°: Pre n=1: aj17? je kladne definitna prave vtedy, ked a;;=det(a1;)>0.

2°: Predpokladajme, Ze tvrdenie plati pre vSetky realne symetrické matice typu

(n—1) x (n—1). Teraz nech A=ATeM,,,(R).

Nutnost podmienky: Predpokladajme, Ze A je kladne definitnd. Chceme ukézat, Ze

jej hlavné rohové determinanty st kladné. Vieme, ze kvadraticka forma XAXT je

kladne definitné. X=(z1, - ,7,). XAXT= Z Qi LT = Z Qi T+
1<i,j<n 1<i,j<n—1

+2:(a1n 1 Tn+  +  F U 1T Tr—1)+annz?. Uvazujme o kvadratickej forme:

ail Ain—1
Z ajjrixy. Jej matica je ( ) Tato kvadratickd forma je
.. Ap—11 " An—1n—1
1<i,j<n—1
tiez kladne definitnd. Keby nie, tak by existovala (n—1)-tica (%1, ,Z,—1)#0
taka, ze Z a;;&;%;<0. Potom (&1, -+, Zn—1, 0) by bola nenulova n-tica, pri¢om
1<i,5<n

Z AT T 5= Z ai;T;%;<0 —spor s tym, Ze XAXT je kladne definitna.
1<i,j<n 1<i,j<n-—1

Z indukéného predpokladu: det(ai1)>0,--- ,det (

ail Aln—1
) >0. Zostava

An—11 *** An—1n—1
este ukazaft, Ze det(A)>0. Ale matica A je kladne definitné, a teda podla vety 13.6
existuje regularna matica P : A=PPT, preto det(A)=det(P) det(PT)=det*(P)>0
kedZe P je reguldrna.

ail -t Q1n
Postacugiicost: Predpokladajme, Ze det(ai1)>0,--- ,det ( SR > >0.

Anl ** Gnn

7 indukéného predpokladu vyplyva, ze kvadraticka forma

ainr v A1p—1 x1

(1, Tp—1) : : = Z i LT

Ty 1<i,j<n—1
p—11 **° Gp-1n—1 n—1 SHhIsn

je kladne definitnd. Teda existuje regularna matica PeM,,,,(R) taka, ze reguldrna
linedrna transformécia premennych (y1,- - ,yn—1)=(z1, - ,z,—1)-P prevedie tito
kvadratickt formu na y3+ - - - +y2_,. Definujme y,,=z,. To znamen4, Ze dostaneme

reguldrnu linedrnu transforméciu n premennych (y1,- -, yn)=(z1, - ,Tn) (1; ?)

Tato prevedie kvadratickd formu Z a;jrivynayi+ - +y2 1 +2-(binyrynt+ -
1<ij<n
o b 1nYn—1Yn)+buny2 pre vhodné b;;€R.
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Upravime: Y ajjzia;=y1+ - +binyn) >+ - +Un-1+bn-1nyn)>+cyp=

1<i,j<n
_ e 242 e tato forma | - ¢
Zn1=Yn-1+bn_1nyn| ! n-1 ma maticu: |9 ... 1 0

Téato je kongruentnd s A, teda existuje reguldrna matica QeM,,,,(R) tak4, ze:
diag(1,1,---,1,¢)=QAQT. Z toho: det(QAQT)=c=det(Q)det(A)det(QT)=
=det*(Q)- det(A)>0, teda c>0.

XIV. HOMOGENNE BILINEARNE FORMY

Definicia 14.1. Nech st dané dve skupiny n premennych z1, -+ ,z, ay1, -, Yn.

Potom homogénna bilinedrna forma (tychto dvoch skupin premennych) je vyraz
n

tvaru: Z x;G4;Y;, pricom a;; €R st koeficienty tejto formy.
ij=1
Priklad. x1y1+ - - +x,Yn je homogénna bilinedrna forma, ktora definuje standard-
ny skalarny stcin v R”.
n

Formu Z x;a,;y; mozeme zapisat pomocou matic XAYT, kde X=(x1, " ,2Zn)

4,j=1
n

Y=(y1, - ,Yn), A=(a;;) €M, (R). Ak X=Y tak Z x;a,;y; je kvadratickd forma
i,j=1

premennych X=(x1, - ,x,).

Definicia 14.2. Nech V je vektorovy priestor nad R. Funkcia ¢ : VXV —R je

bilinedrna, ak pre kazdé o, BER, T, ¥, ZEV plati: p(aZ+Ly; 2)=ap(Z, 2)+LBe(¥, 2);

P(Z, afj+pZ)=ap(, ) +8p(Z, 2).

Tvrdenie 14.1. Homogénna bilinearna forma je vlastne stradnicové vyjadrenie

bilinearnej funkcie.

Dokaz. Nech V je vektorovy priestor nad R, nech (al, -, a ) (by,- - ,by) st dve
bazy vo V. Nech ¥=xid1+ - - +z,0dy, resp y= y1b1—|— +ynbn Nech ¢ : VXV —R

je bilinedrna funkcia. Potom (&, i)= szal, ZyJ Z i 0( az, i)y Ko
1,9=1

prislicha homogénna bilinedrna forma XAYT kde X—(arl, ) Y=(y1, 0, Yn)
A m3 v i-tom riadku a j-tom stipci prvok ¢(a;, b;).

Homogénna kvadraticka funkcia.

Definicia 14.3. Nech V je vektorovy priestor nad R, nech ¢ : VxV—R je bi-
linearna funkcia. Potom homogénna kvadratickd funkcia prislichajica k ¢ sa defin-
uje ako ¢ : VR, o(2)=p(Z, Z).

Priklad. V=R3, bilinearna funkcia ¢ : R¥xR3—R s predpisom ¢(&, i) = 5x1y1+
+T1Yy2+322y1 —TaY2. o uréuje kvadratick funkciu ¢ : R3 =R, (w1, 19, 23) =

= 5x§+4x1x2—x§. T4 istd kvadratickd funkcia prislacha aj k bilinearnej funkcii
@ RIXR3=R, @(Z, i) =bx1y1+3T1y2+T2y1 —T2Y2.
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Veta 14.1. Homogénna kvadraticka funkcia je urcena jedinou symetrickou bi-
linearnou funkciou.

Dokaz. Nech ¢ : VXV —R je symetricka bilinearna funkcia, ktora urc¢uje homogén-
nu kvadratickti funkciu ¢ : V—R (teda o (Z)=p(Z,Z),F€V ). Pre lubovolné
L,geV : p(I+y; T+4)=o(T, Z)+2¢(Z, 1)+ (4, §) = Y(T+9) = (Z)+(5)+20 (7, )
z Coho (7, §)=3 [ (T+9)—¥(Z)—(9)]-

Pozndmka. Nech V je redlny vektorovy priestor, nech je dana kvadratickd forma
XAXT n premennych X=(zy,---,7,), AT=A. Potom tato kvadraticks forma
uréuje homogénnu kvadraticka funkciu takto: zvolme bazu (dy,--- ,d,) vo V. Ak
F=x1d1+ - +2,3,€V, tak definujeme ¥ (¥)=XAXT. Potom 1) : V—R je ho-
mogénna kvadraticka funkcia.

Niektore fakty z euklidovskej teorie kvadratickych foriem.

Pripometime si: matica A€M, (R) je ortogonalna, ak AAT=IL,, tj. jej ri-
adky tvoria ortonormélny systém vektorov v R™ tj. pre vSetky Z, y€R™ méame, Ze
(ZA; gA)=(Z, 7).

Tvrdenie 14.2. Ortogonalne matice typu nxn tvoria grupu; je to tzv. ortogondl-
na grupa; ozna¢me ju O(n).

Dékaz. Ak A,B€O(n), tak AAT=I,,BBT=I,, potom AB(AB)T=ABBTAT=
=AI,AT=I,. Teda AB€O(n). Asociativnost: /; neutralny prvok: I,€0(n),
inverzny prvok k AcO(n) je AT, mame AAT=I, a ATA =1, = AT(AT)T ;.
ATeO(n).

Veta 14.2. Matica prechodu od ortonorméalnej bazy v R™ (so standardnym skaldr-
nym suc¢inom) k ortonormalnej béze je ortogonédlna matica. TieZ: ak od ortonor-
malnej bazy v R"™ prejdeme pomocou ortogonalnej matice prechodu k novej baze,
tak aj nova baza bude ortonormalna.

a1, ,0n), (@), ,d,) su dve ortonormélne bazy v R™.

Dokaz. 1.¢ast: Nech (
Nech P=(p;;)eM,,»(R) je matica prechodu od (a},---.d},) k (dl, <+ dy). Teda

= VI
a; = E pijajal:17"' n. Potom 611{7_ a'uak E ng J7 E pksa
i=1

n n n
1 ak sz
= Z Zpijpk.s (@;,d,) = Zpijpkj, teda Zpijpka{ . To znamena, ze
= o 0 ak i#£k

j=1s=1 T
=8,

kazdy riadok v P (ako vektor z R™) m4 dizku 1 a kazdé dva riadky st na seba
kolmé, tj. riadky v P tvoria ortonormdalnu bazu v R", tj. P€O(n).

2.¢ast: Nech je dand O(n)>P=(p;;) a béza (@}, -- ,d,), ktord je ortonormalna.
n

Matica P je reguldrna, teda vztahy d;= Zpijc?; definuju bazu (dy,- - - ,d,). Pritom
j=1

n
vSak (d;, dx)= E PijPrj=0ik teda (di,--- ,d,) je ortonormélna baza.
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Veta 14.3. (o hlavnych osiach) Pre kazdi redlnu symetrickd maticu A€, (R)
existuje C€O(n) taka, ze CACT=CAC™!=diag(\1, - ,\,), kde Ai,---,\, st
vlastné hodnoty matice A. (Riadky v C su ortogondlne vlastné vektory patriace
k>\17"’ v)‘n)

Doékaz. Indukcia vzhladom na n.

1° Pre n=1 tvrdenie plati.

2° Indukény predpoklad: Predpokladajme, Ze veta je spravna pre n—1. Teraz nech
A je symetricka redlna matica typu nxn. Nech A\ €R je jej vlastna hodnota, k nej
zoberme vlastny vektor Z;, rovno ho zoberme taky, Ze |Z1|=1. Dopliime vektor &

na ortonormdlnu bazu v R™; nech to je (Z1,Z, -+ ,&,). Nech P je matica prechodu
od (€1, ,€,) k (F1,-+ ,Z,), vieme, ze P€O(n). Nech B je matica linedrnej
transformécie f4 : R"—R" vzhladom na (Zy,---,&,). Matica fa vzhladom na

(€1,---,én) je A, potom vieme, ze B=PAP !=PAPT. Mame BT=B. Tiez:
fa(Z1)=M174, lebo ¥ je vlastny vektor matice A patriaci k A\;. To znamend, Ze

B= (i‘)l :, ), kde A’eM,,_1,—1(R) je symetrickd. Podla indukéného predpokladu
existuje ortonormélna matica HEO(n—1): HA'HT=HA'H '=diag()\}, -+ ,\,),

kde M, -+, X

n

QeO(n). Tiez QPeO(n). Ratajme: QPA(QP)~'=QPA(QP)T=QPAPTQT=
0

st vlastné hodnoty matice A’. Utvorme: Q= ((1) SI) mame, ze

A 0
_ T (10 () O 1 o) (M 0 _ 0 Az 0
~aeQ™=(38) (5 2) (o) = (o mrarr )= | -

00 - A

Z podobnosti vyplyva {1, Ao, -+, A }={A1, A5, -+ , AL }. Za C z tvrdenia zoberie-
me QP. Teda mame CcO(n) takt, ze CACT=CAC~!=diag(\1, - ,\,). Z toho:
& CAC =¢,diag(\1, -+ ,\n). &ICA=(0,---, \;,--+,0)C=)\;€;C. Teda (¢;C)A=
=X;(€;C) tj. &C je vlastny vektor matice A patriaci k vlastnej hodnote \; zaroven
€;C je i-ty riadok matice C.

Poznamka.

1. Vieme, %e vdaka symetrickosti redlnej matice A su vSetky jej vlastné hodnoty
realne.

2. AT=AecM,,,,(R) modzeme chapaf ako maticu linedrnej transformécie f4:R"—R"
Veta vlastne hovori, Ze existuje takd baza v R™ vzhladom na ktort je A podobné
diagonalnej matici diag(A1,- -, Ap).

3. Pre kvadratické formy n premennych veta hovori, ze reguldrna linedrna trans-
formacia X=YC (tj. Y=XCT=XC"1!) prevedie dani kvadratickt formu XAXT
na tvar \iyi+- -+ A y2. (Y=(y1, - ,¥yn))

Veta 14.4. Nech A=ATcM,,,.(R) je takd, Ze jej vlastné hodnoty Aq,--- , A, st
navzajom rozne. Nech Z¥i,---,Z, su jednotkové vlastné vektory prislichajice
k Ay, , A,. Potom %4, ,&,€R™ tvoria ortonormalny systém v R™ (a mézeme
ick zobrat ako riadky matice C€O(n) z vety 14.3).

Dokaz. Méame: #;A=\;Z; (prei=1,--- ,n ). Vyndsobenim: fiAf;r:)\ifisE';r; trans-
ponovanim: f]AT.’I_?’;I‘ = )\,fjf? tj. fjAfZT = Alf]f;r =4 )\]fjf;r = )\lfjf;r =
& (\j—N)T;ET=0. Ale \;#)\;, teda 7;7F =0 Standardny skaldrny saéin (7, #';)=0.

fa : R"—>R"™ m4 vzhladom na bézu (#1, - ,Z,) maticu diag(A1,- -, Ap)-
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101
Priklad. A= (0 1 1) €M,n(R). N4jst ortogondlnu maticu CeO(n),
110

aby CAC~'=CACT=diag(\1, A2, \3). Kde A\;=1, \a= — 1, A\3=2.

XV. KRIVKY 2.RADU

V afinno-euklidovskom priestore (R?,R?) majme kartezidnsku stiradnicovy sys-
tém (O, €}, €3). Bod X nech mé v 1iom stradnice X=(z1, z3). Nech je dané funkcia
f: A=R; f(x1, 2)=0a112242a1001 0o +a2205+2a1 71 +2a072+d, kde aij, a;, a€R.

f je tzv. nehomogénna kvadratickd funkcia na A, ak a117#0 V a127#0 V a22#0. ozn.
9(x1, T2)=a1123+2a1021 T2+ a2073.

Otézka: Akt mnoZinu bodov v A vyjadruje rovnica f(z1,22)=0, ak aspoii jedno
z a;;70?7 Odpoved: Veta 15.1:

Veta 15.1. {(x1,22)€R?; f(x1,22)=0} je tzv. zovseobecnens kuzelosecka; presnej-
Sie je to elipsa, hyperbola, parabola, priamka, dvojica priamok, prazdna mnozZina.

Dokaz. Kvadraticka forma g(z1, 72) = a112? + 2a127172 + 2273 ma maticu
A= (o1 12) eMoy(R). Z vety o hlavngch osiach vieme, Ze existuje C€O(2) :

az1 a2
CAC—1=CACT= (AO N ) kde A1, \2€R st vlastné hodnoty matice A.
b ) . o - , cosp sinp
(C d) €0(2) : a’+b*=1, > +d?=1, ac+bd=0. Prvky z O(2) st tvaru (_sing; Cosw)

—cos ¢ sing

tj. matica otocenia o uhol ¢, alebo ( sing cosp

). (determinant prvej matice je
1 a druhej je -1.) Ale za C z vety o hlavnych osiach moZno zobrat maticu z O(2)
tvaru ( cos sing
—sing cos ¢
pliime #; vektorom e,€R?, |e4|=1 na bazu (€], &y) v R? taki, aby matica prechodu
od (€1,€) k (€],é,) —ozn. ju P— mala kladny determinant. Nech B je matica
line4rnej transformacie f:R%2—R? vzhladom na (&}, €,). Mame f(&})=\1€] vieme,
7e B=PAP~'=PAPT, lebo P€O(2). Teda B=BT, B= ("} 7 ), b musi byt Az, za

C zoberieme P. Teda nech C= (“" ’Si““”) €0(2) je taks, 7e CACT=CAC~'=

). Takto: nech €} je vlastny vektor patriaci k A;. |€]|=1. Do-

singp cosp

= <>E)1 /\02 ) Ak (2, x4) st stradnice bodu X=(z1, z3) vzhladom na bézu (&}, &,)

a
(z1,x2) st jeho stradnice vzhladom na (€1, €5), a C je matica prechodu od (€1, €3)
k (€], ¢y), tak (2, 25)=(x1,22)-C, tj. (w1, 22)=(2,25)-C~1 o je to isté ako

cosp sinp I1:$/1 COS (,O—F.I?/Q sin ()
(21, 2)=(8,25) (s sons )+ () o
v eosw To=xh cos p—r} sin ¢
reguldrna linedrna transformécia premennych, ktora formu allx%+2a12m1x2+a22x§
prevedie na Alx’f + )\Qx’g. Tymto otocenim prejde (&) f(z1,22) =0 na tvar
() Alx’f+)\2x’§+2b1x’1+2b2x’2+b:0. A1, Ao st korene charakteristického poly-
nému x 4 (t)=det (t_a“ e ) = (t — A)(t — A2). Z toho: det(A) = M)Ay = 0.

—ai12 t—azz

() pre vhodné ¢ je

Rozlisime dva pripady:

(I): 640 : A1 A2#£0. Méame teda \;#£0#£X2. () upravime takto: /\1(1"§+25’\—11x’1)+
+)\2(l‘lg+2%$/2>+b=0. Upravime na $tvorce: A (z'7 + ;’\—11)2 + )\2(33’2—1—%)2 +b—
"o by
b2 b2 ) . L. T =ty

-\ )\—12—)\2)\—22:0. Potom regularna linearna transformécia:
! 2 $”2:$/2+§T2
2



90 L.ROCNIK

tj. posunutie prevedie () na tvar: (#) Az’ 14+ oa" 3+c=0; ceR.

Ak A1>0,22>0,¢<0 V' A1<0,X2<0,¢>0 tak rovnica (#) a teda aj f(x1,22)=0

vyjadruje elipsu.

Ak A\1>0, A2<0, ¢#£0 tak je to hyperbola.

Ak ¢=0 a 6=A1A2>0, tak jednobodova mnozina, ak ¢=0, <0, tak dvojica priamok.

Ak \1>0, A2>0, >0, tak prazdna mnozina.

(IT): §=0=MA1 X2 Nech napr. A\;=0, A\27#0. Teda () je Aaz’92%+2b1 21 +2by2’ 5 +b=0.

Ak by£0 : Mg (/54232 2o+ 2b1 (/14 50 )=0 & Ap(a'a+22)242b (271 —¢) =0
ay=x'1—c 2 : .

{ by = Ao’ 542b12"1=0 to je rovnica paraboly.

x//2:x/2+ )\2
Ak b=0: -

Invarianty krivky 2. radu.

Definicia 15.1. Invariantom krivky druhého radu vyjadrenej rovnicou

allx%+2a12x1x2+a22x§+2a1x1—|—2a2x2—|—a:0 je taky algebraicky vyraz zavisiaci od
(a11, a12, a2z, a1, as, a), ktory sa nezmeni, ak tto krivku vyjadrime v inom kartezi-
dnskom stradnicovom systéme (ku ktorému prejdeme pomocou otoc¢eni a posunuti).

Veta 15.2.
Invariantmi krivky 2.radu a11x%+2a12x1m2—|—aggx§+2a1x1+2a2x2+a=0 su:
ail ai2 ai
s:Tr(A):a11+a22; o= det(A): det <a11 a12> =A1)2; A=det (alz a2z az)
a1z a22 a1 az a
r1=x)+a
To=x5H+[
12 W 2 ’ / 2
a;xr'y+ 2&12$1I2 +ag0x'y + 2(@110&4—&125—&-&1)331 + 2(@120&4—&225—&-@2)1‘2 + (anoz +
+2a1203 + a3 + 2a1a + 2a23 + a)=0.

Méme: s(z],z5)=a11+a20=Tr(A)=s(x1,x2) a d(x}, xz5)=det (Zi: Z;Z ) =i(z1, z2).

Dokaz. Urobme transformaciu posunutie: { (o, BER dané). Dostaneme:

ail a2 airataizff+ar
A=det aiz a2 arzatazzB+az
arrataizf+ar arzatazeftaz ar1a’+2a12a6+a2:6%+2a1a+2a28+a

Otocenie: od kvadratickej formy X AXT=a1;2242a102129+a2273 prejdeme pomo-
Ceing cosg
cou CACT. Potom s=T7r(CACT)=Tr(CAC—1)=Tr(CC~1A)=Tr(A)=ai;+azs.
5= det(CAC~1)= det(C) det(A) det (C~1)= det(A).

cou regularnej linedrnej transformacie s maticou C= ( ) k forme s mati-

Invarianty krivky 2.rddu sa daji vyuzit pri skiimani rovnice

a11$%+2a12l‘1$2+a22.%‘§+2a1$1+2a21‘2+a:0 *

Napr. videli sme, Ze v situacii, ked \; \a=07#0 vhodnym otocenim rovnica % prejde
na tvar Alm'f—i—)\gm’g—&—c:o, kde ceR, A1, Ay st vlastné hodnoty matice A. Z in-
variantnosti A méme: A=det diag(A1, A2, c)=A1Aac=dc, teda c:%. Teda méme
)\19:’%4—)\2:0’34—%:0 —z tohto sa uz Tahko prejde ku kanonickému tvaru.
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>0 A#0  ak sA<0,tak elipsa; ak sA>0, tak ()
krivka eliptického typu A=0 Dbod, alebo prazdna mnozina
0<0 A0  hyperbola
krivka hyperbolického typu ~ A=0 dvojica disjunktnych priamok
0=0 A#(0  parabola

krivka parabolického typu A=0 dvojica rovnobeznych priamok

XVI. DUALNY VEKTOROVY PRIESTOR A
ZAKLADY MULTILINEARNEJ ALGEBRY

Nech V, W st vektorové priestory nad R. Ozna¢me L(V, W) mnoZinu linedrnych
zobrazeni z V do W.L(V, W)#(), lebo nulové zobrazenie patri do L(V,W). Defi-
nujeme +:L(V,W)XL(V,W)—=L(V,W), (f+9)(Z)=f(Z)+g(Z). Pre feL(V,W) a
a€R definujeme: af : V=W, af(@)=a(f(Z)), afeL(V,W). Pre f,geL(V,W) je
f+g : V=W naozaj linedrne: (f+g)(aZ+py) = f(az+py)+g(ad+py) = af(¥)+
01 (7)+ag(@)+89(7) = alf (@) +e@)+AF @ +9@) = alf+9)@)+B(F+o)(@).
Podobne sa presved¢ime, ze pre a€R, feL(V,W) je af : V—W naozaj linearne.
af (BU+yp)=a(f(Bi+yp))=a(Bf(0)+f(§))=aBf (V) +ay f(P)=Paof (V) +yaf(p)=
=B(af)(@)+v(af)(p). Lahko sa overi, ze potom L(V,W) s takto definovanym +
resp. takto definovanim nasobenim prvkov z L(V,W) prvkami z R je vektorovy
priestor nad R.

Definicia 16.1. Nech f : V—W je linedrne zobrazenie. Nech V' a W si koneéne
generované. Pevne zvolme bazu (1, -+ ,0k) vo V a (W, -+ , %) vo W. Potom
matica f vzhladom na bazy (¥,---,0k) resp. (W, - ,wWs) sa definuje ako ma-
tica A€My (R) takd, Ze jej i-ty riadok (i=1,--- , k) tvoria stradnice vektoru f(%;)
vzhladom na bazu (i, - - , Ws).

Veta 16.1.
Nech vektorové priestory V,W nad R st konecne generované. Potom aj vektorovy
priestor L(V, W) je kone¢ne generovany, a mame dim(L(V, W))=dim(V)- dim(W).

Doékaz. Definujme zobrazenie ® : L(V,W)—M;s(R), kde dim(V)=k, dim(W)=s.
®(f):= matica f vzhladom na pevne zvolenu bazu (1, -- , 7)) vo V respektive
(W, ,wWs) vo W. Toto ® je linedrny izomorfizmus, kedze 9Mys(R) je vektorovy
priestor dimenzie k-s, z toho vyplyva tvrdenie.

f(771)
® je linedrne: ®(f)= (
F (¥

). (s-tice stradnic vektora f(¥;) v baze (w1, -+ ,Ws).)
Pre o, B€R, f,g9€L(V,W) mame:

ozf—i—ﬁg af(v1) + Bg(vh)
af—i—ﬁg — =
(af +ﬂg Ty, af(vk) + Bg(vk)
g(th)
—al o 4s| | =0+ Ba(g)
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® je surjektivne: Nech A=(a;;)€Mys(R) je lubovolnd. Potom predpis

f(U)=anWi+ - - - +a15Ws

f(Uk)=a1pW+ - - - +aksWs

uplne a jednoznalne definuje, kedze (vy,---,0;) je baza linedrneho zobrazenia
f : V=W, z definicie je jasné, ze f méa vzhladom na bézy (¢%,---,U;) resp.
(W, -+ ,Ws) maticu A, tj. ®(f)=A.

® je injektivne: Nech ®(f)=®(g). To znamena, ze f(0;)=g(v;), i=1,--- , k. Pretoze
(U1, ,Uk) je baza vo V, z toho f=g.

Definicia 16.2. Nech V je vektorovy priestor nad R. Vektorovy priestor L(V, R)
sa nazyva dudlny priestor k priestoru V', ozna¢ime ho V*.

Pozndmka. Z vety 16.1 (kedze R je n-rozmerny vektorovy priestor nad R) méame,
ze ak V je konecne generovany, tak dim(V*)=dim(V).

Definicia 16.3.
Prvky z V* sa volaju linedrne formy na vektorovom priestore V.

Priklad.

1. V=R" pr;: R"=R, pri(z1,-- ,z,) = ;. pr; je linedrna forma na R"

tj. prie(R™)*.

2. C((0,1),R) je vektorovy priestor spojitych funkeii (0, 1)—R. fol :C((0,1),R)—=R
1 1 1 1

Jo (af+Bg)=a [y f+B8 [, g teda [; €C*((0,1),R).

Definicia 16.4+Tvrdenie 16.1.
Zobrazenie (, ) : V*xXV—R (V je vektorovy priestor nad R); (x*,%)=x*(¥) pre
kazdé z*€V*, yeV je bilinearne, nazyva sa pdrovacie zobrazenie V* a V.

Dokaz.
Linedrnost v l.argumente: «, BER, z*,y*eV*IeV, (ax*+Ly*, 0)=(az*+Ly*) (V)=

-,

= az*(0)+ By* (V) = a(z*, V) + B(y*, ¥). Linedrnost v 2.argumente: (z*, ad+ Fb) =

-,

=z*(adi+0b)=az* (a@)+ Bz (b)=a(z*, @)+ B(x*, b).
Definicia 16.5+Veta 16.2.

Nech vektorovy priestor V nad R je kone¢ne generovany, nech (51, e ,l_;k) je daka
- l,ak i=j
baza vo V. Potom predpis (b;‘,bj)zéij:{ e ] pre i,j=1,--- ,k tUplne a
0,ak i#£j
jednoznacne definuje linedrne formy bj,---,bpeV*. (b},---,b}) je potom béza
priestoru V*, nazyva sa dudlna bdza k béze (by,--- ,by).

Dokaz. Vieme, ze dim(V*)=dim(V)=k. Teda na dokaz toho, ze (b3, - - ,b}) je baza

vo V* stac¢l ukazat, ze b, --- ,bj st linedrne nezavislé. Nech o107+ - - - +aibi=0
(tj. nulové zobrazenie V—R). Chceme ukazat, ze a; = --- = o, = 0. Takto:

(arbi+ - - - Fapbls b)=aq (b7, ;) + - - - +a_1 (b1, bi)+ai (b3, i)+ - - - +o (b, bi) =
=a;;1=0prei=1,--- k.



LINEARNA ALGEBRA 93

Tvrdenie 16.2. Ak V je konec¢ne generovany vektorovy priestor nad R, tak V*=V.

Dékaz. Zoberieme Tubovolnt bazu (by,--- ,by) vo V. Potom priradenie b;—b}
i=1,--- ,k definuje lineadrne zobrazenie V—V*, kedze zobrazuje bazu na béazu, je
to linearny izomorfizmus.

Definicia 16.6. Nech V je vektorovy priestor nad R. Priestor (V*)* oznacime
V** nazyva sa druhy dudlny priestor priestoru V.

Veta 16.3. Ak V je konecne generovany, tak existuje kanonicky linearny izomor-
fizmus V**=V.

Dékaz. Definujme ey : V=V* ey (¥) : V*=R, ey (0)(z*):=2*(¥). (ak ey je
naozaj linedrny izomorfizmus, tak je jasné, ze je kanonicky, lebo nezavisi od vyberu.)
1. Overime, 7e ey (7) je pre kazdé U€V linedrne zobrazenie. ey (7)(aa* + 8b*) =
=(aa”+6b") (V) =(aa®)(v)+(60")(v)=aa” (V)+6b" (V) =azsy (V) (a”)+Bev () (b7).
2. Overime, 7e ey:V—V** je linedrne. ey (av+57) L aecy (0)+Pey (Z) pre a, fER,
v, Z€V. Staéi ukazat, Ze Tavd a prava strana maju rovnaké hodnoty na vsetkych
x*eV*. Lava strana: ey (ai+072)(x*)=a*(aU+07)=az* (V)+0z*(Z)=cey (V) (z*)+
+Bev (2)(x*)=(aey (V)+Bey (7)) (x*)=prava strana.
3. Ukazeme, 7e £y : V — V** je bijekcia. Nech (by, - - - ,l;k) je baza vo V. Nech
(b1, -+ ,b}) je dudlna baza vo V* a nech (b7*,--- ,b;*) je dudlna baza vo V. Zau-
jima nas, ¢o je ey (b;). Mame ey (b;)€(V*)*, ratajme (v (b;), b;) = Ev((_);)<b;k) =
=560 = { o
0 ak i#£j
A% (l_);):b;‘* i=1,--- , k. KedZe ey zobrazuje bazu na bazu, je to linedrny izomorfiz-
mus.

7 jednoznacnej urcenosti dudlnej bazy dostavame, Ze

Veta 16.4. Nech V,W st vektorové priestory nad R, nech f:V — W je linearne
zobrazenie. Potom existuje jediné linearne zobrazenie f* : W* — V* také, ze
(f*(w*),0)=(w*, f(W)). pre vSetky w*eW™* veV. Toto f* sa vold dudlne, alebo
adjungované linearne zobrazenie k zobrazeniu f.

Dékaz. Jednoznacnost: Nech by aj f; : W*—V™* bolo také ako f z tvrdenia. Potom
(f*(w*), 0)=(w*, f(0)=(f7(w*),v). Z toho: (f*(wW),v)=(f;(w*),¥) pre vietky
veV,w*eW*. 7Z bilinedrnosti: (f*(w*)—fr(w*),¥)=((f*—f7)(w*),v)=0. Teda
(f*—=f7)(w*) : V=R je nulové, preto f*— f; = nulové zobrazenie, teda f*=f;.

—

Existencia: Treba, ze f* definované vlastnostou (f*(w*)v)=(w*, f()) je linedrne:
f(aw*+5z%) L af*(w*)+6f*(z*). Treba ukazat, ze lavd a pravd strana maji
(ako linedrne zobrazenie V—R) ta istG hodnotu v Tubovolnom v€V. Lava strana:
(f*(aw*+527),0) = (aw™ 452", f(0)) = c(w”, f(0))+6(=", f(0)) = a(f*(w"), ¥)+
+8(f*(2"), U)=(af* (w*)+Bf* (), V) =prava strana.

Veta 16.5. Nech V, W st kone¢ne generované nad R, nech f : V—W m4 vzhladom

na bdzy (Vh,---,U;) vo V resp. (Wi, - ,wWs) vo W maticu A=(a;;)€Mis(R).
Potom duélne linedrne zobrazenie f* : W*—V* m4 vzhladom na bézu (w3, - -+ ,w¥)
vo W* resp. (vf,---,v;) maticu AT.

S
Dokaz. Mame f(ﬁi):Zaijwj pre i=1,--- k. Potrebujeme zistit, ¢o je f*(w*)
j=1
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k
pret=1,---,s. Mame f*(w}) = E bijvy, cheeme zistit by, (f*(wy), V) =
Jj=1
S S
o % 7 . * =\ 2 .
= (wy, g Apj W) =~>= g apj(w;, ;) = ape. Pravé strana:
=1 =1
k k
g bejvy, vy | = E bej (v, Up)=bip; 7z toho byy=a,; teda matica B zobrazenia f*
=1 =1

je vlastne AT,

Veta 16.6. Ak f,g su linedrne zobrazenia f,q: V—W, tak

L (f+9)*=f"+g"

2. Ak f : VW, a€eR, tak (af)*=a(f*)

3. O : V=W je nulové zobrazenie, potom O* : V*—W* je tiez nulové; (idy )*=idy -
4. Ak f: VW, g: W—S st linedrne zobrazenia, tak (gof)*=f*og*.

5. Ak f : V—>W je linedrne zobrazenie a V, W sii kone¢ne generované, tak (f*)* :
(V*)*—(W*)* sa stotozni s f, ak stotozni V** sV a W** s W.

Dokaz. Priamo z definicie: pre pripad zobrazeni medzi kone¢ne generovanymi pries-
tormi tieto vlastnosti vyplyvaju z vlastnosti matic. Napr. (f+g)*=f*+g* &
(A+B)T=AT+BT alebo: (gof)*=f*og* < (AB)T=BTAT.

Tenzorovy sudin vektorovych priestorov.

Nech V, W st kone¢ne generované vektorové priestory nad R. Potom V xW je
vektorovy priestor nad R. Ozna¢me M mnozinu vSetkych zobrazeni VxW —R,
ktoré nadobtidaji nenulové hodnoty iba v koneénom pocte prvkov z VxW. M#(,
lebo nulové zobrazenie patri do M. Mnozina G vSetkych zobrazeni z VxW —R je
vektorovy priestor . Pre f, g€G definujeme f+g : VXW—R; (f+9)(Z,9)=Ff(Z,¥)+
+9(Z, %), podobne pre f€G,a€R definujeme af:VxW—R; (af)(Z, 7)=a(f(Z,7)).
Je jasné, ze G je vektorovy priestor nad R. M je vektorovy podpriestor v G. (staci
pouzit kritérium vektorového podpriestoru).

Ak feM, tak existuja (01, W), - , (O, W) EV XW také, ze f(U;, W;)=c; pre i=1,2,
3, , k, pricom a,;#0 a f(¥, W)=0 pre (¥, W)¢{(v1,w1), -, Uk, Wr)}. Pre takéto
f zavedieme symbol «q (01, W)+ - - +a (U, Wx). Napr. (U, W) (pre veV, weW)
znamend funkciu, ktord mé vo (%, W) hodnotu 1 a vo vSetkych ingch mé hodnotu
0. Podobne —1-(7y, wp):=— (¥, wWo) je funkcia, ktord ma vo (¥, Wp) hodnotu —1 a
vsade inde 0.

Iny pripad: (¥ + Ua;Ws) — (U, Wa) — (U, Wa) je symbol oznacujuci zobrazenie
VxW—R, ktord mé vo (U;+0s, W) hodnotu 1, vo (U1,ws) a (¥, ws) —1 a vSade
inde 0.

Definicia 16.6. Nech SCM je vektorovy podpriestor v M generovany prvkami

tvaru (Ul+623 U_;)f(ﬁlv 117)—(1_)'2, U_j)a (67 151+U_)’2)7(177 u_jl)* 17) 2)7 (0“73 1[)')—04(17, ’u_)‘)
[pre Tubovolné ¥, ¥y, U €V, W, w1, Wa W] a (¥, o) — (¥, W).
Definicia 16.7. Nech V, W, M, S st ako vyssie. Potom tenzorovy sicin priestorov

V a W sa definuje ako faktorovy vektorovy priestor M /S, oznac¢ime ho V@W. Teda
V@W=M/S. Prvok vo VW reprezentovany (¥, W)€ M oznacime UQ.
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Trieda ekvivalencie prvku (0 +¥s, W) — (01, W) — (U2, @) bude (¥ +0s) @W—0; @W—
—Uo@UW=0€V xW tj. plati: (0+)@uW="01@W+v2@wW. Podobne:
TR (W g ) =T +TRWs
(a?) @W=a(TRW)
1R (aw)=a(vew)
Teda ak definujeme zobrazenie S : VxW—-=VW | S(U,w)=0@w, toto S bude
bilinearne.

Veta 16.7.

1. Ak V,W, T st konecne generované vekt. priestory, tak (VQW)QT=ZVR(WRT).
2. Ak V,W st konecne generované, tak VW=W V.

3. Ak V alebo W je nulovy priestor, tak V@W =0

4. Ak (Uy,---,0) je bdza vo V, (W, -+ ,Ws) je bdza vo W, tak baza vo VW
pozostédva z vektorov (U; @ W;), kde 1<i<k,1<j<s. Teda dim(V QW) =k-s=
= dim(V) - dim(W).

Veta 16.8. Nech v, W st konecne generované vektorové priestory nad R. Potom
V*QW=L(V,W).

Dékaz. Nech (¥y,---,Ux) je bdza vo V, (W, - ,Ws) je bdza vo W. Definujme
linedrne zobrazenie ® : V*@W—L(V, W) takto: ®(v;®w;)(Vs)=v}(¥s)-W;. Teda
@ (v; ®@U;)(VUs)=0;sw;. Teda ®(v;®wW;) ma maticu (vzhladom na bazu (71, --- , k)
vo V resp. (W, -+ ,,) vo W.) ktorej i-tj riadok ma v j-tom stlpci 1 a vSade inde
st nuly. Teda ®(v;®w;) je bazovy prvok v L(V, W) tj. ® je linedrny izomorfizmus.
Je jasné, ze pre vektorové priestory Vi,---, Vi modzeme definovat ich tenzorovy
sucin induktivne:
Vi@Ve® - @Vp=V10(Ve®- - @Vj).

Definicia 16.8. Nech V je koneéne generovany vektorovy priestor nad R. Nech
P, q st dané nezaporné celé ¢isla. Potom vektorovy priestor

TI(V)=V'® eV Ve -V

p

p q

sa nazyva priestor tenzorov p-krat kovariantnych a ¢-krat kontravariantnych. Prvky
TJ(V) sa volaju tenzory typu (p,q) nad V.

Priklad.
1. T}(V)=V, teda tenzory typu (0, 1) st vektory z V.
2. T?(V)=V"*, teda tenzory typu (1,0) st linedrne formy na V.
3. TH(V)=V*®@V=L(V,V), teda tenzory typu (1, 1) st vlastne linedrne zobrazenia
zV do V.

Tenzory typu (p,q) sa vyuzivaju v diferencidlnej geometrie a v matematickej
fyzike. Pracuje sa tam s ich stradnicami.
Nech (@1,---,0)) je baza vo V. Potom béazu priestoru T)J(V') tvoria vektory
vf‘1® e vfp@ﬁjl(@ . ®17jq kde 1<i1 <+ <ip<k a 1<5;< - - <jg<k. Teda kazdy
prvok z (V) m4 jediné vyjadrenie v tvare:

J1s5dg ) % o * o Ry
E T: 05, @ QU ®U; ® - - - QT

i1, lp
1<i;,5i<k
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Namiesto v¥ napifeme v*®, potom dostaneme: v’ (7;)=0;;.

22 1y sda i ip o -
:Z—‘il,'“,ipv ®...®vp®vjl®...®vjq
1< <k

Einsteinova sumac¢né konvencia: Ten isty tenzor zapiSeme takto:

j17"'7jq i1 .. ip . . 2.

Tilv"' Jip v R ®v ®’UJ1® ®qu

Aj béazové vektory sa v praxi vynechdvaji, ten isty tenzor sa oznacuje 17" 79,
15 p

(1§Zl7"' ylpy J1y a]qgk) ) )

Dané st pravidla ako sa zmeni tenzor 77" 7% ak od bazy (1, -- ,U) vo V prej-

i i
deme k béaze (07, -- ,4;,). To je obsah tzv. tenzorového poctu.



