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2 2.ROČNÍK

I. Úvod do problematiky numerickej matematiky

reálny problém
experimenty−−−−−−−−→
merania

riešenie problému
y

mat. model
exaktné−−−−−−−−→

mat.metódy
exaktné riešenie

y
jednoduchší model

približné−−−−−→
metódy

num. úloha
numerické−−−−−−−→
metódy

num. riešenie

Príklad 1.1. Objem Zeme: O≈V=
4
3
πr3≈V̄ (r=6378km) V̄=

4
3
π̃r3.

Príklad 1.2. Elektrický obvod: (a, b, c, d znéme konštanty){
I = a(ebU − 1)

c = d·I + U
⇒ c = da(ebU − 1) + U .

Ak c = 12, d = 14, e = 3 a b = 2, tak U≈0, 299
Budeme predpokladať, že riešenie existuje; otázka stability úlohy;

Príklad 1.3.

2x1+ 6x2 =8

2x1+6.000001x2 =8.000001

riešenie: x =

(
1
1

)

2x1+ 6x2 =8

2x1+5.999999x2 =8.000001

riešenie: x =

(
7
−1

)

Nestabilná sústava, lebo malá zmena v koeficientoch spôsobí veľkú zmenu.

Príklad 1.4. Ax = b:




0.1 −1 0 0 0
0 0.1 −1 0 0
0 0 0.1 −1 0
0 0 0 0.1 −1
0 0 0 0 0.1







x1

x2

x3

x4

x5


 =




0.1
−1
0.1
−1
0.1




Riešenie tejto sústavy je x = (1; 0; 1; 0; 1)T. Ak namiesto 0.1 máme 0.101, tak
riešenie bude x = (101; 10; 2; 0.1; 1.01)T. –nestabilná sústava.

Príklad 1.5.
x2 − 4x+ 4 = 0 x1 = 2, x2 = 2
x2 − 4x+ 3.999 = 0 x1 = 2.01, x2 = 1.99

Príklad 1.6. {zn}∞n=0 zn+1 = a·zn a≥0, z0≥0.
1. a>0, z0 = 0⇒ z1 = 0, · · · , zi = 0
2. a>1, z0 6= 0⇒ z1 = a·z0, z2 = a2z0, . . . , zn = anz0 lim

n→∞
zn =∞

Nech z0 = 10−10. 2.nestabilná.
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Príklad 1.7. f1(x) = 0, f2(x) = ε· sin(nx) pre ∀x∈R, ε>0, n>0.
g(x) = f1(x)− f2(x)⇒ max

x∈R
|f1(x)− f2(x)| = max

x∈R
|ε sin(nx)| ≤ ε.

g′(x) = f ′1(x)− f ′2(x)⇒ max
x∈R
|g(x)′| = |ε cos(nx)·n| ≤ εn.

Nech ε = 10−9 a n = 109. Výpočet derivácie je nestabilná úloha.
g(x) je spojitá funkcia. Nech |f1(x)− f2(x)| ≤ ε ∀x∈〈0, 1〉∫ 1

0
|f1(x)− f2(x)|dx ≤ ε

∫ 1

0
dx = ε. Integrovanie je stabilná úloha.

Číselné sústavy.

±anan−1 · · · a1a0, b1b2 · · · = ±
n∑

k=0

ak·10k +
∞∑

k=0

bk·10−k.

Definícia 1.1. Ak q je základ číselnej sústavy, tak číslo tvaru ±a0, a1a2 · · · at · qc
(kde a0 6= 0 a ai∈{0, 1, · · · , 9} ) sa nazýva mantisa. Normalizovaná mantisa je číslo
tvaru ±0.a1a2 · · · at · qb, kde a1 6= 0.

Príklad 1.8. 8.125(10) = 1000.001(2)

254.125(10) = 11111110.001(2).

II. Počítačová realizácia reálnych čísel

a) x = ±0.d1d2 · · · dt|dt+1 · · · ∗ 10e (e− exponent); 1
q
≤ m < 1

b) x̄ = ±d0.d1d2 · · · dt · qe 1 ≤ m < q.
M(q, t, L, U)– q aditívny t miestny počítač. L–najmenší exponent, U–najväčší ex-
ponent.

Príklad 2.1. M(2, 3,−1, 1) prípad a): 0, 100 · 2−1, 0, 101 · 2−1, · · · , 0, 111 · 21– tieto
sú presne zobraziteľné čísla. Najmenšie presne zobraziteľné číslo je

0, 100 · 2−1 =

(
1
4

)

(10)

; najväčšie presne zobraziteľné číslo je 0, 111 · 21 =

(
7
4

)

(10)

.

Počet presne zobraziteľných čísel na počítači M(q, t, L, U) je 2(q− 1) · qt−1 · (U−
−L+ 1) + 1.

Definícia 2.1. Absolútna chyba je rozdiel medzi presným číslom x a výsledkom
x̄: |x− x̄|.

|m − m̄| ≤ 1
2
q−t ak x̄ je správne zaokrúhlené číslo na t-tom mieste. m resp. m̄

mantisa čísla x resp. x̄.

Definícia 2.2. Ak x = m · qe a x̄ = m̄ · qe, tak relatívna chyba je výraz

∣∣∣∣
x− x̄
x

∣∣∣∣.

Platí:

∣∣∣∣
x− x̄
x

∣∣∣∣ =

∣∣∣∣
mqe − m̄qe

mqe

∣∣∣∣ =

∣∣∣∣
m− m̄
m

∣∣∣∣ ≤
1
2
· q1−t. Teda

∣∣∣∣
x− x̄
x

∣∣∣∣ ≤
1
2
· q1−t:=η.

η je zaokrúhlovacia jednotka. Zaokrúhlovacia jednotka sa rovná κ · q1−t, kde κ = 1

pri rezaní; a κ =
1
2

pri zaokrúhlovaní.

ω – presná operácia; ω̂ – počítačová operácia.
x sa dá presne zobraziť, tak flt(x) = x, kde flt(x) je počítačová realizácia čísla x.
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Ak x, y∈M , tak x ω̂ y = flt(x ω y). Ak x, y /∈M , tak x ω̂ y = flt(flt(x) ω flt(y)).
Súčet čísel s rovnakými znamienkami: R3x, y > 0, x̄ ≈ x resp. ȳ ≈ y tj. x = x̄+ ε1

resp. y = ȳ + ε2. |(x + y) − (x̄ + ȳ)| = |(x + y) − (x̄ − ε1 + ȳ − ε2)| = |ε1 + ε2|.∣∣∣∣
(x+ y)− (x̄+ ȳ)

x+ y

∣∣∣∣ =

∣∣∣∣
ε1 + ε2

x+ y

∣∣∣∣ ≤
∣∣∣∣
ε1

x+ y

∣∣∣∣+

∣∣∣∣
ε2

x+ y

∣∣∣∣ ≤
∣∣∣ε1

x

∣∣∣+

∣∣∣∣
ε2

y

∣∣∣∣.

Súčet s rôznymi znamienkami: relatívna chyba: Re(x+ y) =

∣∣∣∣
ε1 + ε2

x+ y

∣∣∣∣.

Príklad 2.2. Zaokrúhlite na 2 desatinné miesta:
x = 0.996⇒ x̄ = 1.00 y = −0.994⇒ ȳ = −0.99.

Re(x+ y) =

∣∣∣∣
ε1 + ε2

x+ y

∣∣∣∣ =

∣∣∣∣
−0.004− 0.004

0.002

∣∣∣∣ = 4.

|ε1| = |x− x̄| = | − 0.004| = 0.004 = 0.4% Re(x) =

∣∣∣∣
x− x̄
x

∣∣∣∣ =
1

246
< 0.005.

|ε2| = |y − ȳ| = | − 0.004| = 0.004 = 0.4% Re(y) =

∣∣∣∣
y − ȳ
y

∣∣∣∣ =
4

994
< 0.005.

Dôsledky počítačovej aritmetiky:
Ak chceme vyrátať x− sinx v okolí bodu 0, tak musíme použiť Taylora.
Chceme nájsť korene kvadratického trojčlena ax2 + bx + c = 0, kde a 6= 0, b<0

a b2 � 4ac. Potom dostaneme x1 =
−b+

√
b2 − 4ac

2a
≈ −b+ (−b)

2a
= − b

a
, ale

x2
−b− (−b)

2a
= 0 čo je zlý výsledok. Treba použiť Vietove vzťahy na určenie

koreňa x2: x1x2 =
c

a
⇒ x2 =

c

ax1
.

{
εx1 + x2 = 1

x1 + x2 = 2
ε→ 0

(
ε 1 1
1 1 2

)
≈
(
ε 1 1
0 1− 1

ε 2− 1
ε

)
⇔

⇔
(
ε 1
0 1− 1

ε

)(
x1

x2

)
=

(
1

2− 1
ε

)
⇔ x2 =

2− 1
ε

1− 1
ε

≈ 1 a x1 =
1− x2

ε
≈ 0 zle.

Správny postup:

(
1 1 2
ε 1 1

)
≈
(

1 1 2
0 1− ε 1− 2ε

)

x2 =
1− 2ε
1− ε x1 = 2− x2 =

2− 2ε− 1 + 2ε
1− ε = 1⇒ x2 = 1

Platné dekadické číslice a platné desatinné miesta.

Definícia 2.3. Nech x = a · 10b, a–mantisa, x̄ = ā · 10b. Hovoríme, že j-tá
dekadická číslica je za desatinnou čiarkou je platná, ak platí (1) |x−x̄| ≤ 1

210b−j

a (2) |a − ā| ≤ 1
210−j . Ak platia pre nejaké j = s (tým skôr pre j < s), ale

pre j = s + 1 už nerovnosť neplatí, potom hovoríme, že x̄ má s platných číslic za
desatinnou čiarkou.

Príklad 2.3. a = 0.314159 a ā = 0.3142, tak |a− ā| ≤ 1
2 · 10−4, teda ā má 4 platné

číslice.
Pre čísla s normalizovanou mantisou sa používa výraz platné desatinné miesta.

Platné desatinné miesta sú tie miesta za desatinnou čiarkou, ktoré sú obsadené
platnými číslicami v zmysle tých nerovností (1), (2), a nulami pred prvou platnou
číslicou.
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III. Diferenčný počet

Majme diskrétnu množinu bodov xi a v nich funkčné hodnoty f(xi). xi = x0+ih,
kde h veľkosť kroku a i∈Z. 4f(x0) = f(x0 + h)− f(x0). Označme fi:=f(xi).

Definícia 3.1. Diferencia 1. rádu funkcie f(x) v bode xi s krokom h sa nazýva
číslo: 41f(xi)=f(xi+h)−f(xi) = f(xi+1)−f(xi) = fi+1−fi. Diferencia 2. rádu:
42f(xi) = 4f(xi+1)−4f(xi), · · · , n− tehorádu: 4nf(xi) = 4n−1f(xi+1)−
−4n−1f(xi).

Všeobecne platí: 4kf(xi) =
k∑

j=0

(−1)j
(
k

j

)
f(xi + (k − j)h).

4−1–inverzný operátor. Potom 4f(x) = g(x)⇔ c(x) +4−14f(x) = 4−1g(x)⇔
4−1g(x) = f(x)+c(x)⇔ g(x) = 4f(x)+0, teda 4c(x) = 0 tj. c(x+h)−c(x) = 0.

Príklad 3.1. 4ax = ax+1 − ax = ax(a − 1). 42x = 2x. ax =
4ax
a− 1

⇒ 4−1ax =

ax

a− 1
.

4f(x) = g(x),
b∑

x=a

g(x) =
b∑

x=a

[f(x+ h)− f(x)] = [f(x)]b+1
a .

x[k] = x(x− 1) · · · (x− k + 1).
4x[k] = (x+ 1)[k]−x[k] = (x+ 1)x(x− 1) · · · (x− k+ 2)−x(x− 1) · · · (x− k+ 1) =
= x(x− 1) · · · (x− k + 2)[x+ 1− (x− k + 1)] = k · x[k+1].

4x[k+1] = (k + 1)x[k] ⇒ x[k] =
4x[k+1]

k + 1
· 4−1x[k] =

x[k+1]

k + 1
.

Diferenčná rovnica: sústava rovníc G(n,4yn,42yn, · · · ,4pyn) = 0. Neznáma
v tomto G je {yn}.

4kyn =
k∑

j=0

(−1)j
(
k

j

)
yn−k+j G(n, yn,4yn, yn+1, · · · , yn+p) = 0⇒

⇒ yn+p = F (n, yn, · · · , yn+p−1) (1). Rovnicu (1) nazývame diferenčnou rovnicou
p-teho rádu. Partikulárnym riešením tejto rovnice rozumieme akúkoľvek postupnosť
{yn}n∈N, ktorej členy vyhovujú rovnici (1) pre všetky n. Každé riešenie diferen-
ciálnej rovnice p-teho rádu je jednoznačne určené p začiatočnými podmienkami.
Všeobecné riešenie diferenciálnej rovnice p-teho rádu rozumieme
{yn}n∈N, ktorej členy závisia od p konštánt: c1, · · · , cp. yn = y(n, c1, · · · , cp).
Každé partikulárne riešenie sa dá získať zo všeobecného riešenia a zo začiatočných
podmienok.

Lineárna homogénna diferenčná rovnica s konštantnými koeficientami.
a0yn+p + a1yn+p−1 + · · · + apyn = 0, kde ai sú konštanty, pričom a0 6= 0 6= ap.

Riešenie budeme hľadať v tvare c · zn = yn, yn+1 = c · zn+1, · · · , yn+p = c · zn+p

dosadením: a0c · zn+p + a1c · zn+p−1 + · · ·+ apc · zn = 0⇔ c · zn(a0z
p + a1z

p−1+
+ · · ·+ apz

0) = 0. a0z
p + a1z

p−1 + · · ·+ apz
0 je charakteristická rovnica príslušná

k diferenciálnej rovnici, je to algebraická rovnica p-teho rádu v premennej z a s tými
istými koeficientami.
Charakteristická rovnica: a0z

p + a1z
p−1 + · · ·+ apz

0 = 0 (2).
1. Predpokladajme, že charakteristická rovnica má všetky korene reálne, rôzne:
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z1, · · · , zp. Potom fundamentálny systém riešení rovnice (1) je tvaru zn1 , z
n
2 , · · · , znp

(množina lineárne nezávislých riešení). Všeobecné riešenie: yn = c1z
n
1 + · · ·+cpznp .

2. Ak je niektorý reálny koreň charakteristickej rovnice k-násobný, potom z titulu
tohto koreňa sa dostanú do fundamentálneho systému takéto funkcie: zni ; nzni ; · · · ;
nk−1zni . Lineárna kombinácia týchto riešení je všeobecné riešenie. zni (ci0 + ci1n+
+ · · ·+ cik−1n

k−1).
3. Ak je niektorý koreň charakteristickej rovnice komplexný k-násobný.
z = ρ(cosϕ+i sinϕ). Vo fundamentálnom systéme riešení z titulu tohto k-násobné-
ho koreňa bude vystupovať celkom 2k riešení tvaru: ρn cos(nϕ); nρn cos(nϕ); · · · ;
nk−1ρn cos(nϕ); ρn sin(nϕ);nρn sin(nϕ); · · · ;nk−1ρn sin(nϕ).
4. Ak je koreň jednoduchý, komplexný: z12=ρ(cosϕ±i sinϕ)⇒ zn=ρn(cos(nϕ)±
±i sin(nϕ)). Do fundamentálneho systému prídu takéto rovnice: c1ρn(cos(nϕ)+
+i sin(nϕ))+c2ρn(cos(nϕ)−i sin(nϕ)) tj. ρn(c1+c2) cos(nϕ)+ρn(c1−c2) sin(nϕ) =
= K1ρ

n cos(nϕ) +K2ρ
n sin(nϕ).

Príklad 3.2. Vyriešte rovnicu 4-ho rádu: yn+4 + 2yn+3 + 3yn+2 + 2yn+1 + yn = 0.
Jej charakteristická rovnica je z4 + 2z3 + 3z2 + 2z + 1 = 0.

z12 =
−1± i

√
3

2
sú komplexne združené dvojnásobné korene.

z1 = − 1
2 + i

√
3

2 = cos( 2
3π) + i sin(2

3π)

z2 = − 1
2 − i

√
3

2 = cos( 2
3π)− i sin(2

3π).

Príklad 3.3. V banke máme y0 korún. Ročný úrok je r%, pričom úroky sa budú
pripisovať mesačne, a budeme platiť mesačne poplatok d. Koľko peňazí budeme
mať po n mesiacoch?
Riešenie: yn+1 = yn+ r

12 ·yn−d⇔ yn+1 = yn(1+ r
12 )−d = Ayn+B, kde A = 1+ r

12 a
B = −d. yn = A·yn−1 = A2yn−2+AB+B = · · · = Any0+B(An−1+An−2+· · ·+A+

+1) = Any0 + B · 1−An
1−A . Všimnime si stabilitu. Predpokladajme, že A,B∈M

(presne zobrazovateľné čísla). yn≈Yn Yn+1 = AYn+B+Rn+1 Yn+1−yn+1 =
=AYn+B+Rn+1−Ayn−B=A(Yn−yn)+Rn+1=A·(A(Yn−1−yn−1)+Rn)+Rn−1=
= An+1(Y0 − y0) +AnR1 + · · ·+A2Rn−1 +ARn +Rn+1.
1◦ |A| < 1: |Rn|≤R pre n = 1, 2, · · · ⇒ |Yn+1 − yn+1|≤C.
2◦ |A| > 1: |yn+1 − Yn+1| → ∞.
3◦ |A| = 1: |Rn|≥R > 0⇒ ∀n : |Yn+1 − yn+1| → ∞ numericky nestabilné.

Príklad 3.4. V skklenenej nádobe je tekutina, ktorá má v čase t0 teplotu y0. Nech
okolité prostredie má ȳ a nech c je tepelná vodivosť skla. Označenie yn teplotu
tekutiny v čase tn. h časový krok. tn = t0 + nh. Podľa Newtona: yn+1 − yn =
= c·h(ȳ − yn)⇔ yn+1 = yn − c·hyn + c·hȳ ⇔ yn+1 = (1− c·h)yn + c·hȳ. Označme

a:=1− c·h a b:=c·hȳ. yn+1 = ayn + b = · · · = an+1y0 + b
1− an+1

1− a .

|a|<1 −→ yn+1 −→ b

1− a ⇒ lim
n→∞

yn+1 =
chȳ

1− (1− ch)
= ȳ. |1− ch|<1⇒

⇒ 0<ch<2⇒ h<
2
c

. Ak by sme poznali y0, ȳ a určíme si h experimentálne.

y1 − y0 = ch(ȳ − y0)⇒ hc =
y1 − y0

ȳ − y0
.
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Lineárne rekurentné relácie 2.rádu s konštantnými koeficientami.
yn+2 + b1yn+1 + b0yn = 0 yn = zn z 6=0 yn+1 = zn+1 yn+2 = zn+2.

zn+2 + b1zn+1 + b0z
n = 0⇔ p(z) = z2 + b1z + b0 = 0

a) Nech korene sú rôzne: z1 6=z2. Potom {zn1 }, {zn2 } sú dve lineárne nezávislé
riešenia.
b) má dvojnásobný koreň: {zn}∧ ({nzn}∨ {nzn−1}). Nech z je dvojnásobný koreň
pôvodnej rovnice. Nech yn = nzn ⇒ yn+2 = (n+ 2)zn+2.

(n+ 2)zn+2 + b1(n+ 1)zn+1 + b0n·zn = 0⇔
⇔ n·zn+2 + b1n·zn+1 + b0n·zn + 2zn+2 + b1z

n+1 = 0
n·zn(z2 + b1z + b0︸ ︷︷ ︸

p(z)

) + zn+1(2z + b1︸ ︷︷ ︸
p′(z)

) = 0

Domáca úloha. Dokážte, že {n·zn−1} je tiež riešením.

Veta 3.1. Nech b0, b1∈R. Potom existujú dve lineárne nezávislé riešenia postup-
nosti (1) yn+2 + b1yn+1 + b0yn.

Dôkaz. Stačí dokázať lineárnu nezávislosť.
a): Ak polynóm p(z) má dva rôzne reálne korene, tak zn1 , zn2 sú dve lineárne
nezávislé riešenia rovnice (1).
b): Nech p(z) má dvojnásobný koreň z. {zn}, {n·zn−1} sú lineárne nezávislé.
Sporom predpokladajme, že sú lineárne závislé. zn = αn·zn−1 ∀n.
n = 1: z = α·1·z0 ⇒ α = z.
n = 0: z0 = α·0·z−1 ⇒ 1 = 0–spor.

Dôsledok. Množina všetkých postupností spĺňajúci (1) je lineárny vektorový pri-
estor dimenzie 2.

Veta 3.2. Dimenzia lineárneho vektorového priestoru všetkých postupností spĺňa-
júci rekurentnú reláciu (1) je 2.

Veta 3.3. Nech b0, b1, A,B∈R. n0 6=n1∈Z potom existuje jediná postupnosť spĺňa-
júca rovnicu (1) taká, že spĺňa dve začiatočné podmienky: yn0 = A, yn1 = B.

Príklad 3.5. y0 = 1, y1 = 3, yn+1 =
10
3
yn − yn−1

z2 − 10
3
z + 1 = 0⇔ (z − 3)(z − 1

3
) = 0⇒ z1 = 3 z2 =

1
3

yn = c1·3n + c2·
(

1
3

)n
y0 = c1 + c2 y1 = 3c1 +

1
3
c2

y1 = 3(y0 − c2) +
1
3
c2 ⇔ y1 − 3y0 = −3c2 +

1
3
c2 = −8

3
c2

c2 = −3
8
y1 +

9
8
y0 c1 = −1

8
y0 +

3
8
y1

yn =
3y1 − y0

8
·3n +

9y0 − 3y1

8
· 1
3n

Po dosadení: yn = 3−n.
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Nehomogénna rekurentná rovnica 2.rádu.

(2) yn+2 + b1yn+1b0yn = an+2

Veta 3.4. (princíp superpozície)
a) Nech vn je nejaká pevne zvolená postupnosť spĺňajúca (2). Potom každá {yn},
ktorá spĺňa (2) sa dá napísať v tvare: yn = un + vn, kde vn je nejaké partikulárne
riešenie nehomogénneho systému a un je riešenie príslušneho homogénneho systému.
b) Nech vn spĺňa (2) a un spĺňa (1), potom yn = un + vn.

Príklad 3.6. Riešte yn+2−yn+1−2yn=2n2+2 y0=0, y1=1.
Riešenie: Hľadáme un a vn. (hľadáme v tvare pravej strany). Charakteristická
rovnica: r2−r−2=0⇒ r1=2, r2=− 1. Nehomogénna časť:
vn=an2+bn+c vn+1=a(n+1)2+b(n+1)+c vn+2=a(n+2)2+b(n+2)+c(n+2)

vn+2−vn+1−2vn=2n2+2⇒ a=− 1, b=− 1, c=− 3⇒ vn=−n2−n−3
Teda yn=c1·2n+c2·(−1)n−n2−n−3.
Začiatočné podmienky: y0=0=c1+c2−3 a y1=1=2c1−c2−5. Po vyriešení: c1=3,
c2=0.
Výsledok: yn=2n·3−n2−n−3.

Príklad 3.7. Riešte: yn+1=2yn+bn y0=1.
Riešenie: 1◦ b6=2: yn+1=2yn+bn yn=un+vn vn=k·bn
k·bn+1−2k·bn=bn ⇔ k·b−2k=1⇔ k(b−2)=1⇔ k=

1
b−2

⇒ vn=
bn

b−2
un+1−2un=0⇒ u=2⇒ un=c·2n
yn=un+vn ⇒ yn=c·2n+

bn

b−2
. Začiatočná podmienka: 1=c+

1
b−2

⇒ c=
b−3
b−2

.

Výsledok yn=
2n(b−3)+bn

b−2
.

2◦ b=2: vn=k·n·2n
vn+1=2vn+2n ⇔ k(n+1)2n+1=2kn·2n+2n ⇔ 2k(n+1)=2kn+1⇔
⇔ 2kn+2k=2kn+1⇒ k=

1
2
⇒ vn=n·2n−1 ⇒ yn=n·2n−1+c·2n

Začiatočná podmienka: 1=c·20 ⇔ c=1.
Výsledok: yn=2n−1·(n+2).

Príklad 3.8. Riešte: yn+2−6yn+1+9yn=0 y0=1, y2=3
Riešenie: z2−6z+9=0 ⇔ (z−3)2=0 ⇒ c1·3n+c2·n·3n=3n(c2·n+c1). Začiatočné

podmienky: y0=1=1·(c2·0+c1)=c1 a y2=3=9·(2c2+1)⇒ 18c2=−6⇒ c2=−1
3

.

Výsledok: yn=3n·
(

1−n
3

)
.

Príklad 3.9. Riešte: yn+1−2yn+2yn−1=0 y0=1, y1=2

Riešenie: z2−2z+2=0⇒ z12=
+2±√4−8

2
=1±i=

√
2(cos

π

4
±i sin

π

4
).

yn=c1·(
√

2)n·(cos
nπ

4
+i sin

nπ

4
)+c2(

√
2)n(cos

nπ

4
−i sin

nπ

4
)

Začiatočné podmienky: y0=1=c1(cos 0+i sin 0)+c2(cos 0−i sin 0)⇒ 1=c1+c2

y1=2=
√

2·(
√

2
2

+i

√
2

2
)+
√

2c2(

√
2

2
−i

√
2

2
)⇒ 2=c1(1+i)+c2(1−i)=c1+c2+i(c1−c2)
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⇒ i(c1−c2)=1⇒ i(2c1−1)=1⇒ c1=
1−i
2

c2=
1+i
2

.

Po dosadení dostaneme výsledok: yn=(
√

2)n+1 sin
(n+1)π

4
.

Domáce úlohy. Riešte:
1. yn+2−4yn+1+4yn=3·2n y0=1, y1=2.
2. yn+2−5yn+1+4yn=3·2n y0=1, y1=2.
3. yn+2−5yn+1+4yn=2·4n y0=1, y1=2.
4. yn+2+yn=0, začiatočné podmienky si zvoľte.

Odhad chyby funkčnej hodnoty s približným argumentom.
x–presná hodnota; x̄–aproximácia. 4x=x−x̄, |4x|=|x−x̄|≤ε(x).

4y(x)=y(x)−y(x̄)=y′(ξ)(x−x̄) |4y(x)|≤ max
z∈O(x)

|y′(z)|
︸ ︷︷ ︸

M

|4x|≤M ·ε(x)

∣∣∣∣
4y(x)
y(x)

∣∣∣∣ .
Mε(x)
|y(x̄)| .

Výpočet štandardných funkcií a ukážky implementácie štandardných funkcií na
počítači.

Požiadavka:

1. η=
1
2
·2−t.

2. Aby algoritmus pre výpočet štandardných funkcií bol dostatočne rýchly.

Príklad 3.10. sinx=x−x
3

3!
+
x5

5!
−x

7

7!
+
x9

9!
− · · · 0≤x≤π

2
. Chyba je menšia ako

∣∣∣∣
x2k+1

(2k+1)!

∣∣∣∣ ak sme skončili pri člene
x2k−1

(2k−1)!
.

Polynomiálna aproximácia:

sin
πx

2
≈q(x)=x(b0+b1x2+b2x4+b3x6)=x(((b3x2+b2)x2+b1)x2+b0).

Racionálna aproximácia:

f(x)≈P (x)
Q(x)

.

Príklad 3.11. Chceme aproximovať f(x)=2x 〈0, 1
2 〉 pomocou polynómu tak, aby

relatívna chyba bola menšia ako 10−10. Potrebujeme polynóm 6-teho stupňa.
Potrebujeme 6-krát násobenie a 6-krát sčítanie.

Racinálne: 2x≈q(x
2)+xs(x2)

q(x2)−xs(x2)
=r(x). Potrebujeme 3 násobenia, 4 sčítania a 1 dele-

nie.

Výpočet hodnôt štandardných funkcií a transformácia argumentu do
vhodného intervalu a jej numerické aspekty.

Majme vhodnú aproximačnú funkciu, ktorá aproximuje funkciu sinx na 〈0, π2 〉.
sinx= sin(x+2kπ) u:=x−2kπ=x−nπ. Predpokladajme, že n, x sa dá presne zob-
raziť na počítači a π je zobrazené na maximálny počet desatinných miest.
π̄−π
π

=ε1, π̄=π(1+ε1), |ε1|≤η, ū=x−nπ̄, ū=(x−nπ(1+ε1)(1+ε2))(1+ε3), kde εi≤η,

|4u|=|ū−u|≈|(x−nπ)ε3−nπ(ε1+ε2)|.|x−nπ|η+2nπη≤|u|η+2nπη.
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Príklad 3.12. Predpokladajme, že x0=1000 a chceme spočítať sinx0 v jednoduchej
presnosti na počítači M(2, 23,−126, 127).
Riešenie: n=b 1000

π c=318, u=x0−nπ=1000−318π≈0.9735361 · · ·=ū, η= 1
2 ·2−23,

|4u|.|u|η+2nπη<2000η≤1.2·10−4.

∣∣∣∣
4u
u

∣∣∣∣.
1.2·10−4

0.973
≤1.3·10−4, u=x0−nπ,

sinu= sinx0 cosnπ− cosx0 sinnπ ⇒ | sinu|=| sinx0|,
|4 sinx0|=|4 sinu|.| cos ū4u|. cos 0.9735361 · · · ·1.2·10−4≤0.68·10−4,∣∣∣∣
4 sinx0

sinx0

∣∣∣∣≤
0.68·10−4

0.8268725
<0.9·10−4.

η=2−53= 1
2 ·2−52 ⇒ |4u|<2000η=2.2·10−13,

∣∣∣∣
4 sinx0

sinx0

∣∣∣∣≤1.6·10−13.

IV. CORDIC algoritmus

(CORDIC= COordinate ROtation DIgital Computer)
CORDIC algoritmus sa používa na aproximáciu trigonometrických funkcií.
Výpočet sa bude realizovať v registre 2t bitoch v pevnej rádovej čiarke.

Zoberme si: t=3, 1.d1d2d3·2−4=0.0001d1d2d3·20. sinβ=β | −β
3

3!
+
β5

5!
· · ·∣∣∣∣

4 sinβ
sinβ

∣∣∣∣<η,

∣∣∣∣
sinβ−β

sinβ

∣∣∣∣.
∣∣∣∣
β3

3!β

∣∣∣∣=
β2

6
. β2=m2·2−2e, 1≤m<2,

β2

6
=
m2·2−2e

6
<

4·2−2e

6
=

2
3
·2−2e<

1
2
·2−t=η, −2e< log2 0.75−t⇔ e>

t

2
+

1
2

(0.41 · · · )
⇔ e>b1

2
(t+1)c. Pre všetky e>b1

2
(t+1)c budeme aproximovať β= sinβ.

t=3: 1.d1d2d3 0.01d1d2d3 sa ešte zmestí v registre 2t bit s pevnou desatinnou
čiarkou.

β=m·2−e, e=2. ~v0=

(
1
0

)
β1=β0−γ0 β2=β1−γ1·δ1 ~vi+1=Pi~vi

Pi=

(
cos γi −δi sin γi
δi sin γi cos γi

)
sgnβi=δi P0=

(
cos γ0 − sin γ0

sin γ0 cos γ0

)

Pi je ortogonálna matica tj. P−1
i =PT

i .

P0~v0=

(
cos γ0 − sin γ0

sin γ0 cos γ0

)(
1
0

)
=

(
cos γ0

sin γ0

)

Nech γ0, γ1, · · · , γ2t−1 je postupnosť rotácií vektorov ~v0, ~v1, · · · a nech ~v0=(1, 0)T,
β0=β, ~vi+1=Pi~vi, βi+1=βi−δiγi

Pi~vi=

(
cos γi −δi sin γi
δi sin γi cos γi

)
~vi=

∣∣∣∣∣∣

cos γi=ci
sin γi=si
tan γi=ti

∣∣∣∣∣∣
=ci

(
1 −δiti
δiti 1

)(
xi
yi

)
=ciQi~vi

Budeme voliť γi tak, aby tan γi=ti=2−i. ~vi+1=Pi~vi=ciQi~vi, ci= cos γi=
1√

1+2−2i
,

~v2t= c2t−1c2t−2 · · · c1c0︸ ︷︷ ︸
τ

Q2t−1Q2t−2 · · ·Q1Q0~v0
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Algoritmus:
Vstupy(Input):β, γ0, γ1, · · · , γ2t−1

for i:=0 to 2t-1 do
δ:=sgn(β)

~v:=

(
1 −δ·2−i

δ·2−i 1

)
~v

β:=β−δγi
Poznámka. Operácie sú jednoduché; posunutie desatinnej čiarky a jedna logická
operácia (testovanie). Uhly γi= arctan(2−i), pre malé γi : γi=2−i.

V. ČEBYŠEVOVE POLYNÓMY 1.DRUHU

Predpis: Tn+1(x)=2xTn(x)−Tn−1(x), T0(x)=1, T1(x)=x, x∈〈−1, 1〉.
Charakteristická rovnica: z2−2xz+1=0
1◦ |x|<1:

z12=
2x±√4x2 − 4

2
=x±√x2−1

c1z
0
1+c2z0

2=1=c1+c2, c1x+c1
√
x2−1+c2x−c2

√
x2−1=x⇒ c1=

1
2
, c2=

1
2

Tn(x)=
1
2

(x+
√
x2−1)n+

1
2

(x−√x2−1)n ⇔
⇔ Tn(x)=

1
2

(x+i
√

1−x2)n+
1
2

(x−i
√

1−x2)n

Zaveďme substitúciu x= cos t, t∈〈0, π〉.
Tn(x)=

1
2

(cos t+i sin t)n+
1
2

(cos t−i sin t)n

Tn(cos t)=
1
2

(cos(nt)+i sin(nt))+
1
2

(cos(nt)−i sin(nt))= cos(nt)

Tn(x)= cos(arccosx)

2◦ |x|=1:
x=1 : λ2−2λ+1=0⇔ (λ−1)2=0⇔ λ12=1

x=− 1 : · · · λ12=− 1
Tn(x)=xn(c1n+c2)

T0(x)=1=c1·0+c2 ⇒ c2=1
T1(x)=x=x(c1+c2)=x(c1+1)⇒ c1=0

Tn(x)=xn

VI. Riešenie rovníc f(x) = 0

Majme M⊂R a f : M→R; f(x)=0
f(x)=0⇔ x+f(x)=x⇔ x=x−f(x)=:ϕ(x)

Brouwerova veta. Nech a, b∈R, a<b, ϕ je spojitá na 〈a, b〉, ϕ(〈a, b〉)⊂〈a, b〉 ⇒
⇒ ∃x̄∈〈a, b〉 : x̄=ϕ(x̄).

Dôkaz. ψ(x):=x−ϕ(x), ψ(a)=a−ϕ(a)≤0, ψ(b)=b−ϕ(b)≥0⇒ ∃x̄∈〈a, b〉 : ψ(x̄)=0
⇒ x̄=ϕ(x̄).
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Banachova veta. Nech a, b∈R, a<b, ϕ(〈a, b〉)⊂〈a, b〉. Ak existuje L∈R : 1>L≥0,
že pre ∀x, y∈〈a, b〉 : |ϕ(x)−ϕ(y)|≤L|x−y|<|x−y|. Potom ∃!x̄∈〈a, b〉 : x̄=ϕ(x̄).
{xn} konštruovaná pomocou xn+1=ϕ(xn) konverguje pre ∀x0∈〈a, b〉.

|xn−x̄|≤ Ln

1−L ·|x1−x0|

Dôkaz. |x̄−xn|≤ L

1−L ·|xn−xn−1|, |x̄−xn−1|=|x̄−xn+xn−xn−1|≤
≤|x̄−xn|+|xn−xn−1|≤|ϕ(x̄)−ϕ(xn−1)|+|xn−xn−1|≤L|x̄−xn−1|+|xn−xn−1|≤
≤|xn−xn−1|≤ 1

1−L |xn−xn−1|.

|x̄−xn|≤ϕ(x̄)−ϕ(xn−1)|≤L|x̄−xn−1|≤ L

1−L |xn−xn−1|.

Veta 6.3. (postačujúca podmienka konvergencie iteračnej postupnosti)
Nech ϕ∈C1〈a, b〉 tj. ϕ,ϕ′ sú spojité. ϕ(〈a, b〉)⊂〈a, b〉. Nech L= max

x∈〈a,b〉
|ϕ′(x)|<1.

Potom platia všetky tvrdenia Banachovej vety a lim
x→∞

∣∣∣∣
x̄−xn+1

x̄−xn

∣∣∣∣=ϕ′(x̄).

Dôkaz. |x̄−xn+1|=|ϕ(x̄)−ϕ(xn)|=|ϕ(ξn)|·|x̄−xn|≤L·|x̄−xn|.∣∣∣∣
x̄−xn+1

x̄−xn

∣∣∣∣=|ϕ′(ξn)| lim
n→∞

∣∣∣∣
x̄−xn+1

x̄−xn

∣∣∣∣=ϕ′(x̄)

Veta 6.4. Nech x̄=ϕ(x̄) a nech ϕ je spojitá diferenciálna funkcia v O(x̄), nech
|ϕ′(x̄)|<1. Potom, ak x0 je dostatočne blízke k x̄, tak platia všetky tvrdenia
vety 6.3.

Dôkaz. ϕ∈C1(O(x̄)) ⇒ ∃I=〈x̄−δ, x̄+δ〉 taký, že L= max
x∈I
|ϕ′(x)|<1. Ukážeme, že

ak x∈I ⇒ ϕ(x)∈I. tj. či |x̄−x|≤δ ?⇒ ϕ(x)∈I.
|x̄−ϕ(x)|=|ϕ(x̄)−ϕ(x)|≤L|x̄−x|≤|x̄−x|<δ.
Poznámka. Dôsledkom týchto viet je metóda prostej iterácie. xn+1=ϕ(xn).

Vždy konvergentné metódy.

1. Metóda bisekcie:. Ak f : 〈a, b〉→R je spojitá funkcia a f(a)f(b)<0, tak
existuje koreň na intervale 〈a, b〉 a nájdeme ho takto:
u:=a, v:=b
repeat

m:=
u+v

2
if f(m)*f(u)<0 then u:=m else v:=m

until v-u<ε

2. Metóda regula falsi:.

y−f(b)=(f(b)−f(a))·x−a
b−a

3. Metóda tetív:.
xi+1=xi−f(xi)

xi−xi−1

f(xi)−f(xi−1)
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4. Newtonova metóda:.

xi=xi−1− f(xi−1)
f ′(xi−1)

Veta 6.5. Nech x̄∈R, f(x̄)=0, xn+1=xn− f(xn)
f ′(xn)

, f∈C2(O(x̄)), f ′(x̄)6=0. Po-

tom ∃O1(x̄) také, že postupnosť xn+1=xn− f(xn)
f ′(xn)

konverguje k x̄. Naviac platí:

lim
n→∞

|xn+1−x̄|
|xn−x̄|2 =

∣∣∣∣
ϕ′′(x̄)

2

∣∣∣∣.

Dôkaz. ϕ′(x)=1−f
′2(x)−f(x)f ′′(x)

f ′2(x)
=
f(x̄)f ′′(x̄)

f ′2(x̄)
⇒ ϕ′(x̄)=

f(x̄)f ′′(x̄)

f ′2(x̄)
Funkciu ϕ rozvinieme do Taylorovho radu:

ϕ(x)=ϕ(x̄)+
ϕ′(x̄)

1!
(x−x̄)+

ϕ′′(ξ)
2!

(x−x̄)2

ϕ(xn)=ϕ(x̄)+
ϕ′(x̄)

1!
(xn−x̄)+

ϕ′′(ξn)
2!

(xn−x̄)2

xn+1=x̄+
ϕ′′(ξn)

2!
(xn−x̄)2

|xn+1−x̄|
xn−x̄|2 =

∣∣∣∣
ϕ′′(ξn)

2!

∣∣∣∣ lim
n→∞

|xn+1−x̄|
(xn−x̄)2

=

∣∣∣∣
ϕ′′(x̄)

2

∣∣∣∣
xn+1=ϕ(xn)=x̄+ϕ′(ξn)(xn−x̄)

xn+1−x̄=ϕ′(ξn)(xn−x̄)

lim
n→∞

|xn+1−x̄
|xn−x̄| =|ϕ′(x̄)|

ϕ′′(x̄)=
f ′′(x̄)
f ′(x̄)

ϕ(x̄) pre dvojnásobný koreň?

lim
x→x̄

ϕ′(x)= lim
x→x̄

f(x)f ′′(x)
[f(x)]2

= lim
x→x̄

f ′(x)f ′′(x)+f(x)f ′′′(x)
2f ′(x)f ′′(x)

=

=
1
2

+ lim
x→x̄

f(x)f ′′′(x)
2f ′(x)f ′′(x)

=
1
2

+ lim
x→x̄

f ′(x)f ′′′(x)+f(x)f iv(x)
2f ′′(x)f ′′′(x)+2f ′(x)f iv(x)

=
1
2

Veta 6.6. Nech p∈N a x̄ je p-násobný koreň rovnice f(x)=0 a f∈Cp+1〈O(x̄)〉.
Potom postupnosť xn+1=xn−p f(xn)

f ′(xn)
konverguje k bode x̄ a platí lim

n→∞
|xn+1|
|xn−x̄|2 =c.

Dôkaz. Označme: ϕ(x)=x−p f(x)
f ′(x)

, ϕ(x̄)
?
= x̄

f(x)=(x−x̄)ph(x)
f ′(x)=p(x−x̄)p−1h(x)+(x−x̄)ph′(x)

ϕ(x)=x−p (x−x̄)ph(x)
p(x−x̄)p−1h(x)+(x−x̄)ph′(x)

=x−p (x−x̄)h(x)
ph(x)+(x−x̄)h′(x)

=

x−pC(x)
D(x)

⇒ ϕ(x̄)=x̄

ϕ′(x)=1−pC
′(x)D(x)−C(x)D′(x)

D2(x)
= · · · ⇒ ϕ′(x̄)=1−ph(x̄)ph(x̄)

p2h2(x̄)
=0
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ϕ(x)=ϕ(x̄)+
ϕ′(x̄)

1!
(x−x̄)+

ϕ′′(ξ)
2!

(x−x̄)2

xn+1=ϕ(xn)=x̄+
ϕ′′(ξn)

2
(xn−x̄)2

Rád konvergencie iteračnej postupnosti.
Nech x0, x1, · · · → x̄ a nech εn=xn−x̄. Rádom konvergencie iteračnej postup-

nosti nazveme najväčšie kladné číslo p≥1 také, že platí lim
n→∞

|εn+1|
|εn|p =c<∞.

c– asymptotická konštanta.
p=1, tak lineárna konvergencia, p=2 kvadratická konvergencia,. . . .
Hovoríme, že iteračná metóda má rád konvergencie p.

Urýchlovacia metóda konvergencie; Aitkenov δ2 proces.
Nech {xn}: xn+1=ϕ(xn). Nech |ϕ′(x)|≤L<1. Predpokladajme, že lineárna

konvergencia.
xn+1−x̄=ϕ(xn)−ϕ(x̄)=ϕ′(ξn)(xn−x̄)

xn+1−x̄
xn−x̄ =ϕ′(ξn)

xn−x̄
xn−1−x̄=ϕ′(ξn−1)

xn−1−x̄
xn−2−x̄=ϕ′(ξn−2)

lim
n→∞

xn−1−x̄
xn−x̄ =ϕ′(x)= lim

n→∞
xn−x̄
xn−1−x̄

Označme λn=
xn−xn−1

xn−1−xn−2
.

λn=
x̄−xn−1−(x̄−xn)
x̄−xn−2−(x̄−xn−1)

=
x̄−xn−1−ϕ′(ξn−1)·(x̄−xn−1)

x̄−xn−1

ϕ′(ξn−2)−(x̄−xn−1)
=

1−ϕ′(ξn−1)
1

ϕ′(ξn−2) − 1
⇒

⇒ lim
n→∞

1−ϕ′(ξn−1)
1

ϕ′(ξn−2) − 1
=

1−ϕ′(x̄)
1−ϕ′(x̄)
ϕ′(x̄)

Pre dostatočne veľké n môžeme ϕ′(x̄)≈λn.
x̄−xn=ϕ(x̄)−ϕ(xn−1)=ϕ′(ξn−1)(x̄−xn−1)

λn≈ϕ′(x̄)≈ x̄−xn
x̄−xn−1

x̄−xn≈λn(x̄−xn−1)

x̄−xn=x̄−xn−1+xn−1−xn≈ 1
λn

(x̄−xn)+(xn−1−xn)

x̄−xn− 1
λn

(x̄−xn)≈xn−1−xn
(x̄−xn)(1− 1

λn
)≈xn−1−xn

(x̄−xn)
λn−1
λn
≈xn−1−xn

x̄−xn≈ λn
1−λn (xn−xn−1) –chybová Aitkenova formula

Extrapolačná Aitkenova formula: x̄≈xn+
λn

1−λn (xn−xn−1)

nová aproximácia: x̂=xn+
λn

1−λn (xn−xn−1).

x̂n=xn+

xn−xn−1

xn−1−xn−2

1− xn−xn−1

xn−1−xn−2

·(xn−xn−1)=xn+
xn−xn−1

xn−1−xn−2−xn+xn−1
·(xn−xn−1)=
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=xn+
(xn−xn−1)2

xn−1−2xn+xn+1
=xn− (xn−xn−1)2

xn−xn−1−(xn−1−xn−2)
=

=xn− (4xn−1)2

4xn−1−4xn−2
=xn− (4xn−1)2

42xn−2

x̂n=xn− (4xn−1)2

42xn−2
−→ Aitkenova formula

Algoritmus:
Vstupy: x0, ϕ, ε
1◦ x1=ϕ(x0), x2=ϕ(x1), |x1−x2|<ε⇒ x2≈x̄
2◦ x̂2=x2− (x2−x1)2

(x2−x1)−(x1−x0)
3◦ x0:=x̂2 choď na 1◦.

Odhady chýb v iteračných metódach.
ozn. x∗ -pevný bod a x̄ aproximácia. f(x∗)=0, x∗≈x̄.

f(x̄)=f(x̄)−f(x∗)=f(ξ)(x̄−x∗)
Predpokladajme, že f ′(x∗)6=0. |x̄−x∗|= |f(x̄)|

|f ′(ξ)| . Nech |f ′(x)|≥m v okolí O(x∗)

|x̄−x∗|≤|f(x̄)|
m

|f(x̄)−f(x̄)|≤δ
|f(x̄)|−|f(x̄)|≤|f(x̄)−f(x̄)|≤δ ⇒ |f(x̄)|≤δ+|f(x̄)|

|x̄−x∗|≤
∣∣∣∣
f(x̄)
m

∣∣∣∣≤
δ+|f(x̄)|

m

f(x̄) je aproximácia f(x̄). Ak f(x̄)=0⇒ |x̄−x∗|≤ δ

m
– dosažiteľná presnosť.

Príklad 6.1. f(x)=x−e−x=0, x∗≈0.567143=x̄, f(x̄)=− 4.551·10−7,δ= 1
2 ·10−10,

|x̄−x∗|≤δ+|f(x̄)|
m

, f ′(x̄)≈1.567⇒ m=1.5,

|x̄−x∗|≤0.5·10−10+4.551·10−7

1.5
≤0.4·10−6.

Dosažiteľná presnosť pre dvojnásobný koreň.

f(x)=f(x∗)+f ′(x∗)(x−x∗)+f ′′(ξ)
2!

(x−x∗)2 ⇒ f(x̄)=
f ′′(ξ)

2
(x̄−x∗)2

|x̄−x∗|=
√

2|f(x̄)|
|f ′′(ξ)|≈

√
2|f(x̄)|
|f ′′(x)|≈

√
2δ

|f ′′(x̄)|
|f(x̄)−f(x̄)|≤δ ⇒ |f(x̄)|.δ

Príklad 6.2. Nevrhnite iteračnú metódu na f(x)=x2− lnx−2=0

1.koreň hľadajte na intervale 〈 1
10
, 1〉 a 2. koreň na intervale 〈1, 2〉.

x= ex
2−2︸ ︷︷ ︸

ϕ(x)

xn+1=ex
2
n−2

ϕ′(x)=(ex
2−2)′=2xex

2−2 ϕ′′(x)=(4x2+2)ex
2−2 ϕ′(1)=

2
e
<1

x0=0.1, x1=0.1366954 · · ·x4=0.1379347, x5=0.1379348.
Teda prvý koreň je ≈ 0.1379347.
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Druhý koreň:

x=
√

lnx+2︸ ︷︷ ︸
ϕ(x)

ϕ′(x)=
1

x
√

2+ lnx
ϕ′′(x)<0 na 〈1, 2〉

x0=1.5, x1=1.5509562 · · ·x8=1.5644621
Teda druhý koreň je ≈ 1.5644621.

Príklad 6.3. Navrhnite iteračnú metódu: x2−a=0, (a>0)

f(x)=x2−a xi+1=xi− f(xi)
f ′(xi)

=
1
2

(xi+
a

xi
)

Domáca úloha. Navrhnite netódu pre p>1:

x =
1

p+
1

p+
1

p+
1
· · ·

x =
1

p+ x
= ϕ(x)

VII. Implementácia výpočtu druhej odmocniny

A=m·22k, m=1.b1b2 · · · bt, M(2, t, L, U), exp=2k, A= 1.b1b2 · · · bt︸ ︷︷ ︸
m

·22k,

A=1.b1b2 · · · bt·22k A=1b1.b2b3 · · · bt·22k−1 a=c1c0.d1d2 · · · dt−1 1≤a<4√
a≥1 xn≥

√
a ∀n∈N zvolíme: x0≥1⇒ xn≥1

xn+1−
√
a=

1
2xn

(xn−
√
a)2≤1

2
(xn−

√
a)2

h≤2−3 |x0−
√
a|=|√a+h−√a|≈ 1

2ξ
·|h|= h

2ξ
≤h

2
≤2−4

x1−
√
a≤1

2
(x0−

√
a)2≤2−9

x2−
√
a≤ 1

23
(x0−

√
a)4≤2−19

x3−
√
a≤ 1

27
(x0−

√
a)8≤2−39

Ak t=23, tak chyba je menšia ako
1
2
·2−23=2−24

Veta 7.1. Pre každé x0>0 iteračná metóda xn+1=
1
2

(xn+
a

xn
) generuje nerastúcu

zdola ohraničenú postupnosť. A platí: lim
n→∞

xn=
√
a.

Dôkaz. Najprv ukážeme, že aj xn+1≥
√
a. Potom ukážeme, že xn−xn−1≥0 pre

všetky n.

xn+1−
√
a=

1
2

(xn+
a

xn
)−√a=

x2
n+a−2xn

√
a

2xn
=

(xn−
√
a)2

2xn
≥0

xn−xn+1=xn−1
2

(xn+
a

xn
)=

2x2
n−x2

n−a
2xn

=
x2
n−a
2xn

=
(xn−

√
a)(xn+

√
a)

2xn
≥0
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Teda postupnosť je nerastúca, zdola ohraničená.

lim
n→∞

xn=x∗ xn+1=
1
2

(xn+
a

xn
) x∗=

1
2

(x∗+
a

x∗
)

2(x∗)2=(x∗)2+a x∗2=a⇒ x∗=
√
a

Banachova veta o pevnom bode v Rn.
Nech (X, d) je úplný metrický priestor a nech ∃λ≥0, 1>λ také, že pre zobrazenie
ϕ : X→X platí, že d(ϕ(x), ϕ(y))<λd(x, y). Potom ∃!x∗∈X : ϕ(x∗)=x∗. Pre
ľubovoľné x0∈X : xn+1=ϕ(xn) konverguje k x∗.

VIII. n-rozmerný Newtonov algoritmus
a riešenie systémov nelineárnych rovníc

Majme sústavu

{
f1(x1, x2)=0

f2(x1, x2)=0

x∗≈x0 x∗=x0+h∗ 0=f(x∗)=f(x0+h∗)=f(x0)+
f ′(x0)

1!
·h∗+|f

′′(x0)
2!
·h∗2+ · · ·

h0=h∗=− f(x0)
f ′(x0)

x1=x0+h0 ⇒ x1=x0− f(x0)
f ′(x0)

x∗1=x(0)
1 +h∗1 x∗2=x(0)

2 +h∗2
0=f1(x∗1, x

∗
2)=f1(x(0)

1 +h∗1, x
(0)
2 +h∗2)=

=f1(x(0)
1 , x

(0)
2 )+

∂f1(x(0)
1 , x

(0)
2 )

∂x1
h∗1+

∂f1(x(0)
1 , x

(0)
2 )

∂x2
h∗2+ · · ·

0=f2(x∗1, x
∗
2)=f2(x(0)

1 +h∗1, x
(0)
2 +h∗2)=

=f2(x(0)
1 , x

(0)
2 )+

∂f2(x(0)
1 , x

(0)
2 )

∂x1
h∗1+

∂f2(x(0)
1 , x

(0)
2 )

∂x2
h∗2+ · · ·




∂f1(x(0)
1 , x

(0)
2 )

∂x1

∂f1(x(0)
1 , x

(0)
2 )

∂x2

∂f2(x(0)
1 , x

(0)
2 )

∂x1

∂f2(x(0)
1 , x

(0)
2 )

∂x2



(
h

(0)
1

h
(0)
2

)
=

(−f1(x(0)
1 , x

(0)
2 )

−f2(x(0)
1 , x

(0)
2 )

)
⇔

⇔ J(~x(0))~h=− ~f(~x(0) ⇔ ~h=− J−1(~x(0))~f(~x(0)
0 )

J(~x) je Jacobiho matica.

x
(1)
1 =x(0)

1 +h(0)
1 x

(1)
2 =x(0)

2 +h(0)
2

~x(1)=~x(0)+~h(0)

~x(k+1)=~x(k)−(J(~x(k))−1 ~f(~x(k))

Príklad 8.1. Nájdite priesečík elipsy s hyperbolou, ktorý leží v 1.kvadrante!
Riešenie:

f1(x1, x2)=4x2
1+9x2

2−36=0
f2(x1, x2)=16x2

1−9x2
2−36=0

Presné riešenie je (1.897367, 1.549193).
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Newtonovou metódou:

~x(0)=

(
1
1

) (
8 18
32 −18

)(
h

(0)
1

h
(0)
2

)
=

(
23
29

)
⇒ h(0)=

(
1.3
0.7

)

k x
(k)
1 x

(k)
2

0 1 1

1 2.3 1.7

2 1.93261 1.55588

3 1.89769 1.54921

4 1.89737 1.54919

LU-rozklad. Ax=B A=LU LUx=b Ly=b⇒ y Ux=y⇒ x.

IX. Lubbockova metóda na aproximáciu súčtu nekonečných radov

Euler −MacLaurin:

∫ xn

x0

y(x)dx=h

(
1
2
y0+y1+ · · ·+yn−1+

1
2
yn

)
−h

2

12
(y′n−y′0)+

h4

720
(y′′′n −y′′′0 )− · · ·

∑ h2k

(2k)!
B2k(y(2k−1)

n −y(2k−1)
0 )+Em

B –Bernoulliho čísla, Em –zvyšok, h=
xn−x0

n
.

S=
n∑

i=j

fi≈m(fj+fj+m+fj+2m+ · · ·+fn)−m− 1
2

(fj+fn)+

+
m2−1
12m

(4fj−4fn−m)−m
2−1

24m
(42fj+42fn−2m)+

+
(m2−1)(19m2−1)

720m3
(43fj−43fn−3m)− (m2−1)(9m2−1)

480m3
(44fj+44fn−4m)+

+
(m2−1)(863m4−145m2+2)

60480m5
(45fj−45fn−5m)−

− (m2−1)(275m4−61m2+2)
24192m5

(46fj+46fn−6m)

4sfk=
s∑
r=0

(−1)r
(
s

r

)
fk+(s−r)m

s=
∞∑

i=1

ln i
i(i+1)

≈
105∑

i=1

ln i
i(i+1)

=
100∑

i=1

ln i
i(i+1)

︸ ︷︷ ︸
m=1

+
103∑

i=100

ln i
i(i+1)

︸ ︷︷ ︸
m=10

+
104∑

i=103

ln i
i(i+1)

︸ ︷︷ ︸
m=100

+
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+
105∑

i=104

ln i
i(i+1)

︸ ︷︷ ︸
m=103

−f100−f1000−f10000

1011∑

i=1

ln i
i(i+1)

.
=0.788530606(±10−9)

Kummer: A=
∞∑

i=1

ai B=
∞∑

i=1

bi lim
i→∞

ai
bi

=q 6=0

A=
∞∑

i=1

ai=
∞∑

i=1

(a1−qbi)+q
∞∑

i=1

=
∞∑

i=1

ai(1−q bi
ai

)+qB

N∑

i=1

ai(1−q bi
ai

)+
∞∑

i=N+1

ai(1−q bi
ai

)

︸ ︷︷ ︸
RN→0

∞∑

i=1

1
i2+1

≈
N∑

i=1

1
i2+1

+RN

Príklad 9.1. A=
∞∑

i=1

1
i2+1

B=
∞∑

i=1

1
i2

=
π2

6
q=1

A=
∞∑

i=1

1
i2+1

(1− i
2+1
i2

)+B=
∞∑

i=1

1
i2+1

(
− 1
i2

)
+
π2

6

A
.
=1.07667405

Domáca úloha.

Overte, že pre maticu A=




−1
3

2
3

2
3

2
3

−1
3

2
3

2
3

2
3

−1
3




platí
∞∑

i=1

Ai

i2
=
π2

12




0 1 1
1 0 1
1 1 0


 .

Riešenie:

A3=I3 S=S1+S2=A·
∞∑

k=1

1
(2k − 1)2

+I3

∞∑

k=1

1
(2k)2

=
π2

8
A+I3·π

2

24
=

=
π2

24



−1 2 2
2 −1 2
2 2 −1


+

π2

24




1 0 0
0 1 0
0 0 1


=

π2

12




0 1 1
1 0 1
1 1 0



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X. Interpolácia

Množina funkcií xn je úplná na 〈a, b〉 tj. ku každému po častiach spojitej funkcie

f(x) a danému ε>0 existujú n, a1, · · · , an tak, že

√∫ b

a

(f(x)−
∑

aix
i)2dx<ε

–aproximácia v strede.

Weierstrassova veta. Ak f(x)∈C〈a, b〉 : ∀ε>0∃n(ε) a polynóm Pn(x) tak, že
|f(x)−Pn(x)|<ε ∀x∈〈a, b〉.

Ak f(t) je spojitá, periodická s periódou 2π:

∀ε>0 ∃n(ε) ∃sn(t)=a0+
∑

(ak cos(kt)+bk sin(kt)) : |f(t)−sn(t)|<ε ∀x∈〈a, b〉.

∃
∫ b

a

f2(x)dx⇒ f(x)∈L2〈a, b〉 u, v∈L2 ρ(u, v)=‖u−v‖=
√∫ b

a

uvdx.

Bernsteinove polynómy: Bn(x)=
n∑

k=0

(
n

k

)
xk(1−x)n−kf

(n
k

)
Bn(x)

〈0,1〉
⇒ f(x)

používajú sa v dôkaze Weierstrassovej vety.
Interpolácia: (xi, yi)=f(xi)∈R, i = 0, 1, · · · , n=:0(1)n.
Nech xi 6=xj pre i 6=j. f(x)≈p(x) a chceme aby f(xi)=p(xi) pre i=0, 1, · · · , n.

Veta 10.1. Nech xi, yi∈R pre i=0, 1, · · · , n a xi 6=xj pre i6=j. Potom existuje jediný
polynóm p(x)∈Pn(x) taký, že p(xi)=f(xi) pre všetky i=0, 1, · · · , n
Dôkaz. Nech p(x)=a0+a1x+ · · ·+anxn
Existencia:

y0=p(x0)=a0+a1x0+a2x
2
0+ · · ·+anx2

0
y1=p(x1)=a0+a1x1+a2x

2
1+ · · ·+anx2

1
· · ·

yn=p(xn)=a0+a1xn+a2x
2
n+ · · ·+anx2

n

Máme systém n+ 1 rovníc s n+ 1 neznámymi a0, a1, · · · , an.

06=

∣∣∣∣∣∣∣∣

1 x0 x2
0 · · · xn0

1 x1 x2
1 · · · xn1

...
...

...
. . .

...
1 xn x2

n · · · xnn

∣∣∣∣∣∣∣∣
=
∏

i 6=j
(xi−xj)

Jednoznačnosť: Nech p(x), q(x)∈P(x), p(x) 6=q(x), r(x)=p(x)−q(x)∈P(x). r(x) je
stupňa ≤n, ale má n+ 1 rôznych koreňov, preto r(x)≡0⇒ p(x)≡q(x).

Lagrangeov interpolačný polynóm: f(x)
.
=p(x)=

n∑

j=0

lj(x)f(xj), kde lj(x) sú

elementárne Lagrangeove polynómy.

lj(xi)=δij=

{
0, ak i6=j
1, ak i=j

Kroneckerova δij

lj(x)=kj(x−x0)(x−x1) · · · (x−xj−1)(x−xj+1) · · · (x−xn)
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1=lj(xj)=kj(xj−x0)(xj−x1) · · · (xj−xj−1)(xj−xj+1) · · · (xj−xn)

kj=
1∏

i 6=j
(xj−xi)

f(xi)=p(xi)=
n∑

j=0

lj(xi)f(xj)

lj(x)=
(x−x0)(x−x1) · · · (x−xj−1)(x−xj+1) · · · (x−xn)

(xj−x0)(xj−x1) · · · (xj−xj−1)(xj−xj+1) · · · (xj−xn)

p(x)=
n∑

j=0

lj(x)f(xj)

Domáca úloha. Nájdite Lagrangeov interpolačný polynóm pre hodnoty: f(0)=1,
f(1)=0, f(3)=4.
Riešenie:

p(x)=4 · (x−0)(x−1)
(3−1)(3−0)

+0 · (x−0)(x−3)
(1−0)(1−3)

+1 · (x−1)(x−3)
(0−1)(0−3)

=x2−2x+1

Newtonov interpolačný polynóm: {xi}ni=0, {f(xi)}ni=0, p(x)∈P(x)

f(x)≈p(x)=c0+c1(x−x0)+c2(x−x0)(x−x1)+ · · ·+cn(x−x0) · · · (x−xn−1)

f(x0)=p(x0)=c0=f [x0]

f(x1)=p(x1)=f0+c1(x1−x0)⇒ c1=
f1−f0

x1−x0
=f [x0, x1]

Výraz
f1−f0

x1−x0
je pomerná diferencia.

c2=
f2−f0−x2−x0

x1−x0
(f1−f0)

(x2−x0)(x1−x1)
=f [x0, x1, x2]

cn=f [x0, x1, · · · , xn]

Označme p(0,n−1)
n−1 Newtonov interpolačný polynóm pre uzly x0, · · · , xn−1 a p

(1,n)
n−1

pre uzly x1, · · · , xn. Potom

pn(x)=
1

xn−x0

[
(xn−x)p(0,n−1)

n−1 (x)+(x−x0)p(1,n)
n−1 (x)

]

pn(x0)=p(0,n−1)
n−1 (x0)=f(x0)

√

pn(xn)=p(1,n)
n−1 (xn)=f(xn)

√
pre i=1, 2, · · · , n−1:

pn(xi)=
1

xn−x0


(xn−xi) p(0,n−1)

n−1 (xi)︸ ︷︷ ︸
f(xi)

+(xi−x0) p(1,n)
n−1 (xi)︸ ︷︷ ︸
f(xi)


=f(xi)

√
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Označme si koeficienty pri najvyššej mocnine cn v pn(x); c(0)
n−1 v p(0,n−1)

n−1 (x); c(1)
n−1

v p(1,n)
n−1 (x).

pn(x)=pn−1(x)+cn(x−x0)(x−x1) · · · (x−xn−1)

cn=
c
(1)
n−1−c(0)

n−1

xn−x0
f [x0, x1, · · · , xn]=

f [x1, · · · , xn]−f [x0, · · · , xn−1]
xn−x0

=cn

p(x)=f [x0]+f [x0, x1](x−x0)+ · · ·+f [x0, x1, · · · , xn]
n−1∏

i=0

(x−xi)
︸ ︷︷ ︸

Newtonov interpolačný polynóm

f [x0, x1, · · · , xn]=
n∑

j=0

f(xi)
(xj−x0) · · · (xj−xj−1)(xj−xj+1) · · · (xj−xn)

di0:=f(xi) d11=
d10−d00

x1−x0
dij=

dij−1−di−1j−1

xi−xi−j
xi di0 di1 di2 di3 · · ·
x0 d00

x1 d10 d11

x2 d20 d21 d22
...

...
...

...
. . .

xn dn0 dn1 dn2 · · · dnn

Potom ci=dii pre všetky i=0, 1, · · · , n.

Chyba interpolačného polynómu.

Veta 10.2. Nech xi, f(xi)∈R. x, xi∈〈a, b〉, i=0(1)n, xi 6=xj pre i6=j. Nech Ix je
majmenší otvorený interval vytvorený bodmi x0, x1, · · · , xn, x nech f∈C(n+1)〈a, b〉.
Potom ∃ηx∈Ix : f(x)−p(x)=

f (n+1)(ηx)
(n+1)!

(x−x0) · · · (x−xn).

Dôkaz. Pomocou Rolleho vety. Nech z je ľubovoľný, pevný, rôzny od všetkých
interpolačných uzlov.

G(z)=f(z)−p(z)− f(x)−p(x)∏n
i=0(x−xi)

n∏

i=0

(z−xi)

G(xi)=0 ∀i∈{0, · · · , n} G(x)=0

Teda n+2 nulových bodov máme.

G(n+1)(z)=f (n+1)(z)−0− f(x)−p(x)∏n
i=0(x−xi) (n+1)!

G(n+1)(ηx)=0=f (n+1)(ηx)− f(x)−p(x)∏n
i=1(x−xi) (n+1)!⇒

⇒ f(x)−p(x)=
f (n+1)(ηx)

(n+1)!

n∏

i=0

(x−xi)



NUMERICKÁ MATEMATIKA 23

Dôsledok.

|f(x)−pn(x)|≤max
x∈Ix

|f (n+1)|
(n+1)!

·|(x−x0)(x−x1) · · · (x−xn)|

Chybový vzťah pomocou pomerných diferencií
pn+1(x) –Newtonov interpolačný polynóm; x0, x1, · · · , xn+1 −→ f0, f1, · · · , fn+1

pn+1(x)=pn(x)+f [x0, x1, · · · , xn+1](x−x0)(x−x1) · · · (x−xn)

fn+1=pn+1(xn+1)=pn(xn+1)+f [x0, x1, · · · , xn+1](xn+1−x0) · · · (xn+1−xn)

f(xn+1)−pn(xn+1)=f [x0, · · · , xn+1]
n∏

i=0

(xn+1−xi)=
f (n+1)(ηxn+1)

(n+1)!
·
n∏

i=0

(xn+1−xi)

Vzťah medzi pomernou diferenciou a deriváciou: f [x0, x1, · · · , xn, x]=
f (n+1)(ηx)

(n+1)!
.

Neplatí: max |f(x)−pn(x)| n→∞−→ 0 ∀x∈Ix.

Násobné uzly.
f(x)≈p(x) f (j)(x0)=p(j)(x0) j∈{0, 1, · · · , n}

p(x)=a0+ a1x+ a2x
2+ · · ·+ anx

n

p′(x)= a1+ 2a2x+ · · ·+ nanx
n−1

p′′(x)= 2a2+ · · ·+ n(n−1)anx
n−2

...
...

p(n)(x)= n!an

Matica sústavy:



1 x0 x2
0 x3

0 · · · xn0
0 1 2x0 3x2

0 · · · nxn−1
0

0 0 2 6x0 · · · n(n−1)xn−2
0

...
...

...
...

. . .
...

0 0 0 0 · · · n!




f(x)= f(x0)+
f ′(x0)

1!
(x−x0)+ · · ·+f (n)(x0)

n!
(x−x0)n

︸ ︷︷ ︸
Q(x)

+
f (n+1)(ξ)
(n+1)!

(x−x0)n+1

Q(x) je hĺadaný polynóm.
Zovšeobecnený Newtonov interpolačný polynóm pre násobné uzly:

p(x)=c0+c1(x−x0)+c2(x−x0)2+ · · ·+cn(x−x0)n

ci=
f (i)(x0)

i!
=f [x0, x0, · · · , x0]
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Príklad 10.1.
Podmienka (*): x0→f0, x1→f1, x2→f2, f

′
2, f
′′
2 , x3→f3.

Treba nájsť Newtonov interpolačný polynóm tak, aby platila podmienka (*) pre
uzly x0, · · · , x3. Preznačenie: u0=x0, u1=x1, u2=x2, u3=x2, u4=x2, u5=x3 (podľa
násobnosti).

u0 F00

u1 F10 F11

u2 F20 F21 F22

u3 F30 F ∗31 F32 F33

u4 F40 F ∗41 F ∗42 F43 F44

u5 F50 F51 F52 F53 F54 F55

Fii sú koeficienty Newtonovho interpolačného polynómu.

Fsk=
Fsk−1−Fs−1k−1

us−us−k F ∗sk=
F (k)(us)

k!
Fi0=f(ui)

f(x)=F00+F11(x−x0)+F22(x−x0)(x−x1)+F33(x−x0)(x−x1)(x−x2)+

+F44(x−x0)(x−x1)(x−x2)2+F55(x−x0)(x−x1)(x−x2)3

Hermiteova interpolácia:
Dané sú xi, f(xi) a f ′(xi). i∈{0, · · · , n}. Nech xi 6=xj pre i6=j. Hľadáme polynóm
z triedy p∈P2n+1 taký, že p(xi)=f(xi) a p′(xi)=f ′(xi).

Veta 10.3. Nech xi, yi, y
′
i∈R ∀i∈{0, 1, · · · , n} xi 6=xj pre i 6=j.

Potom ∃!h(x)∈P2n+1(x) : h(xi)=f(xi) a h′(xi)=f ′(xi). Polynóm h(x) vyzerá
takto:

h(x)=
n∑

i=0

[1−2l′i(xi)(x−xi)][li(x)]2fi+(x−xi)[li(x)]2f ′i

kde li(x)=
∏

i 6=j

x−xj
xi−xj

Príklad 10.2. Nájdite Newtonov interpolačný polynóm pre uzly f(−1)=6, f(0)=1,
f(2)=3, f(5)=66.
Riešenie:

x0=− 1 f0=6

x1=0 f1=1 f11=
1−6
1−0

=− 5

x2=2 f2=3 f21=
3−1
2−0

=1 f22=
6
3

=2

x3=5 f3=66 f31=21 f32=
20
5

=4 f33=
2
6

=
1
3

p(x)=6−5(x+1)+2x(x+1)+
1
3
x(x+1)(x−2)=

1
3
x3+

5
3
x2−11

3
x+1
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Newtonov interpolačný polynóm pre ekvidistantné uzly.
{xi}ni=0 −→ {f(xi)}ni=0, h=xi+1−xi pre i=0, 1, · · · , n−1.

f(x)=f(x0)+f [x0, x1](x−x0)+f [x0, x1, x2](x−x0)(x−x1)+ · · ·+

+ · · ·+f [x0, x1, · · · , xn]
n−1∏

i=0

(x−xi)+ f [x0, · · · , xn, x](x−x0) · · · (x−xn)︸ ︷︷ ︸
chyba

4f(xi)=f(xi+1)−f(xi), f [x0, · · · , xk]=
4kf0

k!hk
.

x0 f0

x1 f1
4f0

h

x2 f2
4f1

h

42f0

2h2

x3 f3
4f2

h

42f1

2h2

43f0

6h3

x=x0+th,

f(x0+th)=f(x0)+
4f(x0)

h
·th+

42f(x0)
2h2

th(t−1)h+ · · ·+

+
4nf(x0)
n!hn

hnt(t−1) · · · (t−n+1)+
4n+1f(ξx)
(n+1)!hn+1

·hn+1t(t−1) · · · (t−n)

f(x0+th)= f(x0)+

(
t

1

)
4f(x0)+ · · ·+

(
t

n

)
4nf(x0)

︸ ︷︷ ︸
Newtonov interpolačný polynóm napred

pre ekvidistantné uzly

+

(
t

n+1

)
4n+1f(x0)

kde

(
t

k

)
=
tk

k!

Optimálny výber interpolačných uzlov:
Chyba Newtonovho interpolačného polynómu, keď máme n+1 interpolačných uzlov:

e(x)=
f (n+1)(ηx)

(n+1)!
(x−x0) · · · (x−xn) f(x)−p(x)=e(x)

{xi}ni=0 → {f(xi)} xi∈〈a, b〉

max
x∈〈a,b〉

|e(x)|≤ Mn+1

(n+1)!
·|(x−x0) · · · (x−xn)| max

x∈〈a,b〉
|f (n+1)(x)|=:Mn+1
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Veta o minimálnej odchylke pre Čebyševove polynómy.
Spomedzi všetkých normalizovaných polynómov n-teho stupňa v premennej t sa
práve T̃n(t) na intervale 〈−1, 1〉 najmenej odchyluje od nuly.

T̃n=21−n cos(n arccosx)

max
t∈〈−1,1〉

|p̃n(t)|≥ max
t∈〈−1,1〉

|T̃n(t)|=|21−n|

Dôkaz.

x=
b−a

2
t+
b+a

2
cos(n arccos ti)=0 n arccos ti=

2i+1
2

π

arccos ti=
2i+1
2n

π ti= cos

(
2i+1
2n

π

)

T̄n

(
2x−(a+b)

b−a
)

=21−nTn

(
2x−(a+b)

b−a
)

=

(
2x−(a+b)

b−a
)n

+ · · · /.

(
b−a

2

)n

T̂ 〈a,b〉n (x)=21−2n(b−a)nTn

(
2x−(a+b)

b−a
)

=xn+ · · ·

Maximálna odchylka: 21−2n(b−a)n.

Veta 10.5. Spomedzi všetkých normalizovaných polynómov sa práve Čebyševov
normalizovaný polynóm odchyluje majmenej od nuly.

xi=
b−a

2
cos

(
(2i+1)π
2(n+1)

)
+
b+a

2
←− interpolačné uzly (optimálny výber)

XI. Interpolácia pomocou splajnov

Lineárne splajny.
{xi}ni=0 −→ {f(xi}ni=0 xi∈〈a, b〉, a=x0<x1< · · ·<xn−1<xn=b, hi=xi+1−xi,

h= maxhi, s(x)=
n∑

j=0

lj(x)f(xj)←− Lagrange, f(x)≈s(x)∈C〈a, b〉, s0(x) na 〈x0, x1〉;

s1(x) na 〈x1, x2〉, · · · , sn(x) na 〈xn−1, xn〉. si(x) sú lineárne funkcie.

si(x)=f(xi)+f [xi, xi+1](x−x1)+f [xi, xi+1, ηi](x−xi)(x−xi+1)

f(x)≈si(x) max
x∈〈xi,xi+1〉

|f ′′(x)|=Mi maxMi=M
M

2!
h2≥|f(x)−si(x)|

s(xi)=f(xi) f(x)
.
=l0(x)f(x0)+l1(x)f(x1)+ · · ·

lj(xi)=δij ←− bázické funkcie lineárneho splajnu

l0(x)=





x1−x
x1−x0

ak x∈〈x0, x1〉
0 ak x∈〈x1, xn〉

ln(x)=





xn−1−x
xn−1−x0

ak x∈〈xn−1, xn〉
0 ak x∈〈x0, xn−1〉

li(x)=





0 ak x∈〈x0, xi−1〉∪〈xi+1, xn〉
xi−1−x
xi−1−xi ak x∈〈xi−1, xi〉
x−xi+1

xi−xi+1
ak x∈〈xi, xi−1〉
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Prirodzený kubický splajn.
Podmienky pre prirodzený kubický splajn:

1. S(x)∈C2〈a, b〉
2. S(xi)=f(xi) i=0(1)n
3. S(x)∈P3 x∈〈xi, xi+1〉
4. S′′(x0)=S′(xn)=0
Moment splajnu: Mi=S′′i (xi), Mi+1=S′′i (xi+1)

S′′i (x)−Mi=
Mi+1−Mi

xi+1−xi ·(x−xi)

S′′i (x)=[Mihi+(Mi+1−Mi)(x−xi)] 1
hi

kde hi=xi+1−xi

S′′i (x)=Mi
xi+1−xi

hi
+Mi+1

x−xi
hi

S′i(x)=Mi
(xi+1−x)2

−2hi
+Mi+1

(x−xi)2

2hi
+Ai

Si(x)=Mi
(xi+1−x)3

6hi
+Mi+1

(x−xi)3

6hi
+Ai(x−xi)+ bi+Aixi︸ ︷︷ ︸

=Bi

(1)

f(xi)=Si(xi)=
Mihi

6
+Bi

f(xi+1)=Si(xi+1)=
Mi+1h

2
i

6
+Aihi+Bi

Bi=fi−Mih
2
i

6
Ai=

fi+1−fi
hi

−hi
6

(Mi+1−Mi) (2)

S′i−1(x)=Mi−1
(xi−x)2

−2hi−1
+Mi

(x−xi−1)2

2hi−1
+Ai−1

S′i(xi)=−
Mi

2
hi+Ai S′i−1(xi)=Mi

hi−1

2
+Ai−1

Mi

2
(hi−1+hi)=Ai−Ai−1

Mi

2
(hi−1+hi)=

fi+1−fi
hi

−hi
6

(Mi+1−Mi)−fi−fi−1

hi−1
+
hi−1

6
(Mi−Mi−1)

Mi

2
(hi−1+hi)+

hi
6

(Mi+1−Mi)−hi−1

6
(Mi−Mi−1)=

fi+1−fi
hi

−fi−fi+1

hi−1

hi−1

6
Mi−1+

hi−1+hi
3

Mi+
hi
6
Mi+1=

fi+1−fi
hi

−fi−fi−1

hi−1

hi−1

hi−1+hi︸ ︷︷ ︸
=λi

Mi−1+2Mi+
hi

hi−1+hi︸ ︷︷ ︸
=ηi

Mi+1=
6

hi+hi−1

(
fi+1−fi
hi

−fi−fi−1

hi−1

)

︸ ︷︷ ︸
=gi

λiMi−1+2Mi+ηiMi+1=gi λi+ηi=1
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


2 η1 0 · · · 0 0 0
λ2 2 η2 · · · 0 0 0
0 λ3 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 ηn−3 0
0 0 0 · · · λn−2 2 ηn−2

0 0 0 · · · 0 λn−1 2







M1

M2

M3
...

Mn−3

Mn−2

Mn−1




=




g1

g2

g3
...

gn−3

gn−2

gn−1




Ak súčet mimodiagonálnych prvkov je menší ako prvok na hlavnej diagonále, tak
hovoríme o diagonálne dominantnej matici.
Ak g(x)∈C2〈a, b〉, g(x) interpoluje f(x), S(x) –prirodzený kubický splajn, ktorý
aproximuje f(x), potom

∫ b

a

[g′′(t)]2dt≥
∫ b

a

[S′′(t)]2dt

XII. Metóda najmenších štvorcov

Spojitý prípad:

f(x)∈C〈a, b〉, p∗(x)≈f(x), w(x)>0 –integrovateľná, p∗(x)=
n∑
aix

i je stupňa n

(presne).
Kritérium:

∫ b

a

w(x)[f(x)−p∗(x)]2dx≤
∫ b

a

w(x)[f(x)−q(x)]2dx⇐ ∀q(x)∈Pn(x)

Diskrétny prípad:
{xi}ni=1, {f̃(xi)}ni=1, {ϕj(x)}n−1

j=0 , ϕj(x) sú lineárne nezávislé, tj.

α0




ϕ0(x1)
ϕ0(x2)

...
ϕ0(xn)


+α1




ϕ1(x1)
ϕ1(x2)

...
ϕ1(xn)


+ · · ·+αm




ϕm(x1)
ϕm(x2)

...
ϕm(xn)


=0⇔ αi=0∀i

f(x)≈pm(x)=
m∑

j=0

αjϕj(x). Kritérium:

n∑

i=1

wi[f̃(xi)−pm(xi)]
2=minimum

ρ(f, p)=‖f−p‖=
√∫ b

a

w(x)[f(x)−p(x)]2dx←− spojitý prípad

‖f−p‖=
√√√√

n∑

i=1

wi[f̃(xi)−p(xi)]2 ←− diskrétny prípad



NUMERICKÁ MATEMATIKA 29

Príklad 12.1. počet neznámych << počet meraní.
Spojitý prípad: f(x)∈C〈−1, 1〉, máme k dispozícii: {ϕi(x)}, w(x)≡1 ←− váhová
funkcia.

f(x)≈pn(x)=
n∑

i=0

aiϕi(x)

Neznáme sú a0, · · · , an a treba minimalizovať

∫ 1

−1
[f(x)−

n∑

i=0

aiϕi(x)]2dx

H(a0, · · · , an)=
∫ 1

−1
f2(x)dx

︸ ︷︷ ︸
η

−2
n∑

i=0

ai

∫ 1

−1
f(x)ϕi(x)dx

︸ ︷︷ ︸
di

+

+
n∑

i=0

ai

n∑

j=0

aj

∫ 1

−1
ϕi(x)ϕj(x)dx

︸ ︷︷ ︸
cij

=η−2
n∑

i=0

aidi+
n∑

i=0

ai

n∑

j=0

ajcij

0=
∂H

∂ak
⇒ −2dk+

n∑

j=0

ckjaj+
n∑

i=0

aicik=−2dk+2
n∑

i=0

ckiai=0⇒ dk=
n∑

i=0

ckiai




c00 c01 · · · c0n
c10 c11 · · · c1n
...

...
. . .

...
cn0 cn1 · · · cnn




︸ ︷︷ ︸
Gramova matica




a0

a1
...
an


=




d0

d1
...
dn




Keďže ϕi(x) sú bázové v priestore ⇔ det(cik)=0.

Príklad 12.2.
Ortogonálny systém {gi(x)}, ortonormálny systém {hi(x)} .

(gi, gj)=
∫ 1

−1
gi(x)gj(x)dx

g0(x)=ϕ0(x) gk(x)=ϕk(x)−
k−1∑

j=0

cjgj(x)

gk(x)=ϕk(x)−
k−1∑

j=0

(ϕk, gj)
‖gj‖2 gj (gi, gk)=(gi, ϕk)−

k−1∑

j=0

cj(gi, gj)

i=j : (gj , ϕk)=(gj , gj) cj=
(gj , ϕk)
(gj , gj)

=
(gj , ϕk)
‖gj‖2

gk(x)=ϕk(x)−
k−1∑

j=0

(
ϕk,

gj
‖gj‖

)
gj
‖gj‖
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gk=ϕk−
k−1∑

j=0

(ϕk, hj)hj

Legendrove ortogonálne polynómy:
P0=1, P1=x, (n+ 1)Pn+1(x)=(2n+1)xPn(x)−nPn−1(x)
Vlastnosti:
1. Pn(x) má n koreňov na intervale 〈−1, 1〉.
2.
∫ 1
−1 Pm(x)Pn(x)dx=0 pre m6=n.

3. Pn(x)=
1

2nn!
dn

dxn
(x2−1)n.

4.
∫ 1
−1[Pn(x)]2dx=

2
2n+1

.

5.
∫ 1
−1 x

kPn(x)dx=0 pre k=0, 1, · · · , k−1.

6.
∫ 1
−1 x

nPn(x)dx=
2n+1(n!)2

(2n+1)!
.

Príklad 12.2. (pokračovanie)

f(x)≈p∗(x)=
n∑

j=0

ajhj(x)=
n∑

j=0

(f, hj)hj(x)

aj=dj=
∫ 1

−1
f(x)hj(x)dx=(f, hj) (f, hj)sú Fourierove koeficienty

H(a0, · · · , an)=η−2
n∑

i=0

aidi+
n∑

i=0

ai

n∑

j=0

ajcij=η−2aTd+aTca

cij=0⇔ i 6=j, aTca=aTa, lebo c je jednotková matica. Preto:

η+(a−d)T(a−d)−dTd=η+aTa−dTa−aTd+dTd−dTd=η+aTa−2aTd

totiž aTd=dTa.
Pre aké a bude H minimálne? Ak a=d.

Diskrétny prípad:
{xi}ni=1, {f̄(xi)}ni=1, {ϕi(x)}ni=1, ϕj(x) sú lineárne nezávislé tvaru xj .

f(x)≈pm(x)=
n∑

i=0

a
(m)
i ϕi(x)

a
(m)
i – horný index je stupeň polynómu a nie derivácia.

Treba minimalizovať:
n∑

i=1

wi[f̄(xi)−pm(x)]2

‖f−p‖=
(

n∑

i=1

wi[f(xi)−pm(xi)]
2

)1
2
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n∑

j=1

wi[f̄(xi)−
n∑

j=0

a
(n)
j ϕj(xi)]

2 · · · H(a(m)
0 , · · · , a(m)

n )

∂H

∂a
(m)
k

=2
n∑

i=1

wi[f̄(xi)−
n∑

j=0

a
(m)
j ϕj(xi)]·(ϕk(xi))=0

m∑

j=0

a
(m)
j

n∑

i=1

wiϕj(xi)ϕk(xi)

︸ ︷︷ ︸
djk

=
n∑

i=1

wif̄(xi)ϕk(xi)

︸ ︷︷ ︸
ρk

m∑

j=0

a
(m)
j djk=ρk




d00 d01 · · · d0m

d10 d11 · · · d1n
...

...
. . .

...
dn0 dn1 · · · dnn







a
(m)
0

a
(m)
1
...

a
(m)
m


=




ρ0

ρ1
...
ρm




Príklad 12.3. Máme interval 〈0, 1〉, ekvidistantne na n podintervalov dĺžky h=
1
n

.

xi∈〈(i−1)h, ih〉.
∫ 1

0
xj+kdx≈ 1

n

n∑

i=1

xj+ki ⇒
n∑

i=1

xj+ki =
n

j+k−1

(dij)=n·




1
1
2

1
3

· · · 1
m+1

1
2

1
3

1
4

· · · 1
m+2

...
...

...
. . .

...
1

m+1
1

m+2
1

m+3
· · · 1

1+2m



 zle podmienená matica

Príklad 12.4. ϕj(x)=xj , {xi}ni=1, Q(n)
0 (x), Q(n)

1 (x), · · · , Q(n)
n−1(x),

n∑

i=1

wiQ
(n)
j (xi)Q

(n)
k (xi)

Qj+1(x)=(x−αj+1)Qj(x)−βj(x)Qj−1(x) Q0(x)≡1 Q1(x)≡0

Qj(x)=1·xj+
j−1∑

i=0

aix
i αj+1=

n∑

i=1

wixiQ
2
j (xi)

n∑

i=1

wiQ
2
j (xi)

βj=

n∑

i=1

wiQ
2
j (xi)

n∑

i=1

wiQ
2
j−1(xi)
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f(x)≈
m∑

j=0

bjQ
(n)
j (x) 




d00 d01 · · · d0m

d10 d11 · · · d1m
...

...
. . .

...
dm0 dm1 · · · dmm







b0
b1
...
bm


=




ρ0

ρ1
...
ρm




(dij) je diagonálna matica, lebo dij=0 pre i6=j.

ρk=
n∑

i=1

f̄(xi)Qk(xi)

djk=
n∑

i=1

wiQ
(n)
j (xi)Q

(n)
k (xi)

bk=
ρk
dkk

Poznámka.

Čebyševove ortogonálne polynómy:
∫ 1

−1

1√
1−x2

Tj(x)Tk(x)dx

Hermiteove ortogonálne polynómy:
∫ ∞
−∞

e−x
2

Hj(x)Hk(x)dx

Laguerrove ortogonálne polynómy:
∫ ∞

0
e−xLj(x)Lk(x)dx.

Príklad 12.5. Máme zmeranú odpor medenej tyče v rôznych teplotách:

ti(C◦) 19.1 25.0 30.1 36.0 40.0 45.1 50.0
Ri(Ω) 76.30 77.80 79.75 80.80 82.35 83.90 85.10

Treba minimalizovať:

H(a0, a1)=
7∑

i=1

(Ri−a0−a1ti)
2

∂H

∂a0
=−2

7∑

i=1

(Ri−a0−a1ti)=0

∂H

∂a1
=−2

7∑

i=1

(Ri−a0−a1ti)ti=0

⇒




7∑

i=1

t0i

7∑

i=1

ti

7∑

i=1

ti

7∑

i=1

t2i




(
a0

a1

)
=




7∑

i=1

Ri

7∑

i=1

Riti




εi+a0+a1ti=R̃i




...
...

1 ti
...

...



(
a0

a1

)
=




...
R̃i
...




Xa=y⇒ XTXa=XTy

SymetrickáMnn matica je kladne definitná, ak existuje inverzná pozitívne definitná
symetrická matica.
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XIII. Numerická derivácia

f ′(x0)≈f(x0+h)−f(x0)
h

=D+(h) f ′(x0)≈f(x0)−f(x0−h)
h

=D−(h)

f ′(x0)≈f(x0+h)−f(x0−h)
2h

=D0(h)

f(x)=f(x0+h)=f(x0)+
f ′(x0)

1!
h+

f ′′(x0)
2!

h2+
f ′′′(x0)

3!
h3+ · · ·

f(x0+h)−f(x0)
h

=f ′(x0)+
f ′′(x0)

2!
h+

f ′′′(x0)
3!

h2+ · · ·

Symbolom ”f(x) je nekonečne malá rádu O(hp)” rozumieme: ak existuje k∈R,
h0>0 ∀h>0 h<h0 ⇒ |f(x)|≤khp.

f(x0+h)−f(x0)
h

−f ′(x0)=a1h+a2h
2+a3h

3+ · · ·

D0(h)=
f(x0+h)−f(x0−h)

2h

f(x0+h)=f(x0)+
f ′(x0)

1!
h+

f ′′(x0)
2!

h2+
f ′′′(x0)

3!
h3+

f (iv)

4!
h4+

f (v)

5!
h5+ · · ·

f(x0−h)=f(x0)−f
′(x0)
1!

h+
f ′′(x0)

2!
h2−f

′′′(x0)
3!

h3+
f (iv)

4!
h4−f

(v)

5!
h5+ · · ·

f(x0+h)−f(x0−h)=2h
f ′(x0)

1!
+2h3 f

′′′(x0)
3!

+2h5 f
(v)

5!
+ · · ·

1
2h

[f(x0+h)−f(x0−h)]=f ′(x0)+h2 f
′′′(x0)

3!
+h4 f

(v)

5!
+ · · ·

1
2h

[f(x0+h)−f(x0−h)]−f ′(x0)=b1h
2+b2h

4+b3h
6+chyba ráduO(h2)

D0(h) má chybu rádu O(h2); D+(h), D−(h) majú chybu rádu O(h).

Príklad 13.1. Aproximujte deriváciu ex v bode 1. Rt chyba odseknutia.

∣∣∣∣∣∣∣∣∣

h
0.4
0.2
0.1
0.05

∣∣∣∣∣∣∣∣∣

D+(h)
3.3423
3.0092
2.8588
2.7874

∣∣∣∣∣∣∣∣∣

Rt
6.24 ∗ 10−1

2.91 ∗ 10−1

1.41 ∗ 10−1

6.91 ∗ 10−2

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

h
7.5 ∗ 10−1

7.5 ∗ 10−2

7.5 ∗ 10−3

7.5 ∗ 10−4

∣∣∣∣∣∣∣∣∣

D0(h)−e
2.59 ∗ 10−1

2.52 ∗ 10−3

2.42 ∗ 10−5

1.82 ∗ 10−5

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

7.5 ∗ 10−5

7.5 ∗ 10−6

7.5 ∗ 10−7

7.5 ∗ 10−8

7.5 ∗ 10−9

∣∣∣∣∣∣∣∣∣

−8.18 ∗ 10−5

−2.82 ∗ 10−4

1.72 ∗ 10−3

8.17 ∗ 10−2

1.28

∣∣∣∣∣∣∣∣∣
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|f(x0+h)−f(x0+h)|≤ε |f(x0−h)−f(x0−h)|≤ε

|D0(h)−D0(h)|=
∣∣∣∣∣
f(x0)+h)−f(x0−h)

2h
−f(x0+h)−f(x0−h)

2h

∣∣∣∣∣≤

≤
∣∣∣∣∣
f(x0+h)−f(x0+h)

2h
−f(x0−h)−f(x0−h)

2h

∣∣∣∣∣≤
2ε
2h

=
ε

h

Richardsonova extrapolácia.

T (h)





D+(h)

D−(h)

D0(h)

. Predpokladajme, že T (h) vieme počítať pre h 6=0 rôzne h. Ak

lim
h→0

existuje, chceme ju odhadnúť.

T (h) teraz rátame z D0(h):

T (h)=f ′(x0)+b1h
2+ b2h

4+b3h
6+ · · ·︸ ︷︷ ︸

O(h4)

T (h)=f ′(x0)+b1h
2+O(h4)

T (2h)=f ′(x0)+4b1h
2+O(h4)

T (2h)−T (h)=3b1h
2+O(h4)⇒ b1h

2=
T (2h)−T (h)

3
−O(h4)

T (h)=f ′(x0)+(T (2h)−T (h))·1
3

+O(h4)

T (h)+
T (h)−T (2h)

3︸ ︷︷ ︸
T̄ (h)

=f ′(x0)+O(h4)

T̄ (h)=f ′(x0)+O(h4)=f ′(x0)+c1h
4+ c2h

6+c3h
8+ · · ·︸ ︷︷ ︸

O(h6)

T̄ (h)=f ′(x0)+c1h
4+O(h6) · · · spravíme to isté ako s T (h)

T̄ (2h)=f ′(x0)+16c1h
4+O(h6)

T̄ (2h)−T̄ (h)
15

=c1h
4+O(h6)

T̄ (h)=f ′(x0)+
T̄ (2h)−T̄ (h)

15
+O(h6)

T̄ (h)−T̄ (2h)
15

+T̄ (h)=f ′(x0)+O(h6) · · ·

T (h)= f ′(x0)+b1h
p

︸ ︷︷ ︸
L1(hp)

+O(hr) r>p
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T (2h)= f ′(x0)+b1(2h)p︸ ︷︷ ︸
L1[(2h)p]

+O(hr)

Pre D± je p=1, pre D0 je p=2.
L1(hp) –Lagrangeov polynóm 1. stupňa v premennej hp.

Príklad 13.2. Ideme interpolovať v premennej hp, potrebujeme 2 interpolačné uzly.
L1[(2h)p]=T (2h); L1[hp]=T (h); L(x)=l0(x)f(x0)+l1(x)f(x1)

l0(x)=
x−x1

x0−x1
l0(xp)=

xp−hp
(2h)p−hp l1(xp)=

xp−(2h)p

hp−(2h)p

L1(xp)=
xp−hp

(2h)p−hpT (2h)+
xp−(2h)p

hp−(2h)p
T (h)

L1(0)=
−hp

hp(2p−1)
T (2h)+

−hp·2p
hp(1−2p)

=
2pT (h)−T (2h)+T (h)

1−2p
=T (h)+

T (h)−T (2h)
2p−1

x0=hp T (h) T00

x1=

(
h

2

)p
T

(
h

2

)
T10 T11

x2=

(
h

4

)p
T

(
h

4

)
T20 T21 T22

x3=

(
h

8

)p
T

(
h

8

)
T30 T31 T32 T33

xi=

(
h

2i

)p
T

(
h

2i

)

Tik=Ti,k−1+
Ti,k−1−Ti−1,k−1

(qp)k−1

Príklad 13.3. Máme aproximovať Γ′(x) v bode x=1.5. Γ(x)=
∫∞

0 e−ttx−1dt. Γ(x)
má derivácie vyšších rádov. Γ′(x)=

∫∞
0 e−ttx−1 ln tdt.

T00=D0(0, 4)=
Γ(1.9)−Γ(1.1)

0.8
=0.013019

T10=D0(0, 2)=
Γ(1.7)−Γ(1.3)

0.4
=0.027920

h i Ti0 Ti1 Ti2 Ti3
0.4 0 0.013019
0.2 1 0.027920 0.032887
0.1 2 0.031258 0.032371 0.032337
0.05 3 0.032069 0.032339 0.032337 0.032337

Presná hodnota Γ′(1.5)=0.032338 na 6 desatinných miest.

Poznámka.
∂f(x, y)
∂x

(x0, y0)≈f(x0+h, y0)−f(x0−h, y0)
2h
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XIV. Riešenie sústav lineárnych rovníc

y′′−y=0 y(0)=0 y(1)= sinh 1

y′′(xi)−y(xi)=0⇒ y(xi+h)−2y(xi)+y(xi−h)
h2

−y(xi)=0

h=
1
4

:



−(2+h)2 1 0

1 −(2+h)2 1
0 1 −(2+h2)





y1

y2

y3


=




0
0

sinh 1




∣∣∣∣∣∣∣

i
1
2
3

∣∣∣∣∣∣∣

yi
0.252803
0.521406
0.822598

∣∣∣∣∣∣∣

chyba
1.9 ∗ 10−4

3.1 ∗ 10−4

2.8 ∗ 10−4

∣∣∣∣∣∣∣

Príklad 14.1. Ax=b, A je regulárna štvorcová matica.




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann







x1

x2
...
xn


=




b1
b2
...
bn




mik=
aik
akk

A 




a∗11 a∗12 · · · a∗1n
0 a∗22 · · · a∗2n
...

...
. . .

...
0 0 · · · a∗nn




Algoritmus GEM:
for k:=1 to n-1 do

for i=k+1 to n do
mik := aik/akk

for i=k+1 to n do
for j:=k+1 to n do

aij := aij −mikakj
for i:=k+1 to n do

bi := bi −mik ∗ bk
n−1∑

k=1

(n−k)2=
n−1∑
γ=1

γ2=
n−1∑
γ1

[(γ−1)γ+γ]=
n−1∑
γ=1

[γ2+γ1=

[
γ3

3
+
γ2

2

]n

1

=

=

[
γ3

3

]n

1

+

[
γ2

2

]n

1

=
n(n−1)(n−2)

3
+
n(n−1)

2
=
n3−n2

3
+
n

6

Počet združených operácií v tomto algoritme:
x
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Príklad 14.2. (
a11 1
1 1

∣∣∣∣
1
2

)
ε=a11

ε
10−5

10−6

10−7

10−8

∣∣∣∣∣∣∣∣∣

Bez pivotizácie
1.0013580; 0.9999900
1.0132790; 0.9999990
1.1920930; 0.9999999
0.0000000; 1.0000000

∣∣∣∣∣∣∣∣∣

s pivotizáciou
1.0000100; 0.9999900
1.0000010; 0.9999990
1.0000001; 0.9999999
1.0000000; 1.0000000

∣∣∣∣∣∣∣∣∣

Netreba robiť pivotizáciu:
1. ak matica je diagonálne dominantná
2. ak matica je symetrická kladne definitná

LU-rozklad.


a11 a12 a13

a21 a22 a23

a31 a32 a33


=




1 0 0
l21 1 0
l31 l32 1





u11 u12 u13

0 u22 u23

0 0 u33




A=




0.6 1.52 3.5
2 4 1
1 2.8 1


 P=




1
2
3


P pamätá riadky




2 4 1
0.6 1.52 3.5
1 2.8 1


 




2
1
3


⇒




2 4 1
0.3 0.32 3.2
0.5 0.8 0.5


 




2
3
1




⇒



2 4 1
0.5 0.8 0.5
0.3 0.32 3.2


⇒




2 4 1
0.5 0.8 0.5
0.3 0.4 3




⇒ L=




1 0 0
0.5 1 0
0.3 0.4 1


 U=




2 4 1
0 0.8 0.5
0 0 3




LU=




2 4 1
1 2.8 1

0.6 1.52 3.5


 P=




0 1 0
0 0 1
1 0 0


 PA=LU

Algoritmus na LU-rozklad:
for k:=1 to n-1 do

γ:=indmax(a, k, n)
swap(A,b,k,n,γ)
pγ :=pk; pk:=γ

for i=k+1 to n do
mik=aik/akk

for i=k+1 to n do
for j=k+1 to n do

aij=aij−mik ∗ akj
for i:=1 to n do
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s:=bpi
for j:=1 to i-1 do

s:=s−aij ∗ yj
yi=s

(Posledných 5 riadkov rieši Ly=Pb.)

XV. Numerická kvadratúra

Chceme aproximovať I=
∫ β
α
f(x)dx

Obdĺžnikove pravidlo: I≈(β−α)f(x̄) pre x̄∈〈a, b〉
Lichobežníkove pravidlo: I≈1

2
(β−α)(f(α)+f(β))

Simpsonovo pravidlo:

I≈β−α
6

[f(α)+4f(γ)+f(β)] γ=
α+β

2

Newton-Cotesova metóda:
Ak počet interpolačných uzlov je n+1, tak namiesto integrandu f(x) berieme
Lagrangeov polynóm n-teho stupňa.

Nech xi:=α+ih, kde h=
β−α
n

. Potom Lagrangeov polynóm n-teho stupňa:

pn(x)=
n∑

i=0

f(xi)
∏

j 6=i

x−xj
xi−xj

∫ β

α

f(x)dx≈
n∑

i=0

f(xi)
∫ β

α

∏

j 6=i

x−xj
xi−xj dx

∫ β

α

∏

j 6=i

x−xj
xi−xj dx=hλni:=h

∫ n

0

∏

j 6=i

t−j
i−j dt

Potom (n+ 1)-uzlová Newton-Cotesova aproximácia je:

∫ β

α

f(x)dx≈h
n∑

i=0

f(xi)λni


