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I. UVOD DO PROBLEMATIKY NUMERICKEJ MATEMATIKY

experimenty
it atiietthbt AN

’ realny problém ‘ ’ rieSenie problému ‘

exaktné 7 s~ .
mat. model - ’exaktne rleseme‘

mat.metédy

. ~, priblizné S numerické .~ .
’ jednoduchsi model‘ e num. uloha ————— | num. rieSenie

metddy metddy

merania

4 — _ 4
Priklad 1.1. Objem Zeme: OzVZgwr?’% (r=6378km) V=§7~T’/‘3.

Priklad 1.2. Elektricky obvod: (a, b, ¢, d znéme konstanty)

I=a(e¥ —1
ale ) = c=da(e’V —1)+U.
c=dI+U
Ak c=12,d=14,e =3 a b =2, tak U=0,299
Budeme predpokladat, Ze rieSenie existuje; otdzka stability tlohy;

Priklad 1.3.

2x1+ 6xs =8 2x1+ 6xo =8
22146.000001z2 =8.000001  227145.9999992x45 =8.000001

o <1) e ( 7 )
rieSenie: x=1{ rieSenie: x={_4

Nestabilna stuistava, lebo mald zmena v koeficientoch sposobi velki zmenu.

Priklad 1.4. Ax =b:

01 =1 0 0 0\ /z 0.1
0 01 -1 0 0 |[a -1
0 0 01 -1 0 [|a|=] 01
0 0 0 01 —1]|a -1
0 0 0 0 01/ \z;

Riesenie tejto stistavy je x = (1;0;1;0;1)T. Ak namiesto méame 0.101, tak
riegenie bude x = (101;10;2;0.1;1.01)T. —nestabiln4 ststava.

Priklad 1.5.

22 —4dr4+4=0 T =2,00 =2

22 —4x 4+ 3.999 = 0 r1 = 2.01, 29 = 1.99

Priklad 1.6. {z,}5%, Znil = G Zp a>0, 20>0.

1. a>0,20=0=2,=0,---,2,=0

2. a>1, 20 #0 = 21 = a-z9, 22 = a%20, ..., 2, = "2 lim z, = 00

Nech zy = 10710, 2.nestabilna.
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Priklad 1.7. fi(x) =0, fa(x) = e-sin(nz) pre Va€R, >0, n>0.

o(2) = (2) ~ o) = max f (2) — fo(x)| = max|é sin(nr)]| < =

g (z) = fi(z) — fi(z) = max lgx)'| = |e cos(nx)-n| < en.

Nech e =102 a n = 10°. Vypodet derivicie je nestabilna tiloha.
) je spojita funkcia. Nech \fl( )— fa(z)| <e Vze(0,1)

/ |f1(x (x)|dz < e / dx = ¢. Integrovanie je stabiln4 tloha.
0

Ciselné ststavy.
:I:anan_l s alao,blbg o=+ ZaklOk + ZkaO’k

Definicia 1.1. Ak ¢ je zaklad ¢iselnej sustavy, tak ¢islo tvaru +ag, ai1as - - - a; - ¢°

(kde ag # 0 a a;€{0,1,--- ,9} ) sa nazyva mantisa. Normalizovand mantisa je ¢islo
tvaru +0.a1as - - - a; - ¢°, kde a; # 0.

Priklad 1.8. 8.125(10) = 1000.001 )
254.125(19) = 11111110.001 5.

II. POGITACOVA REALIZACIA REALNYCH CISEL

1
ay x = £0.dydy - - - dg|dsy 1 - 10° (e — exponent); — <m < 1
q
by T = ddo.drdz -~ dy - ¢° 1<m<yqg.
M(q,t,L,U)- q aditivny ¢ miestny poCita¢. L—najmensi exponent, U—najvicsi ex-
ponent.
Priklad 2.1. M(2,3,-1,1) pripad ay: 0,100-27%,0,101-27*,--. 0,111 - 2!~ tieto

st presne zobrazitelné ¢isla. NajmensSie presne zobrazitelné éislo je
7

1

0,100-271 = <> ; najviicsie presne zobrazitelné ¢islo je 0,111 -2 = (> .
(10) (10)
Pocet presne zobrazitelnych &isel na poéitaci M(q,t, L,U) je 2(¢—1)-¢'=1- (U~

—L+1)+1.
Definicia 2.1. Absolitna chyba je rozdiel medzi presnym ¢islom z a vysledkom

Z: |z — T

_ 1, . ) , .y . _
|m —m| < §q ak T je spravne zaokrtihlené ¢islo na t-tom mieste. m resp. m

mantisa Cisla x resp. T.

xT—Z
Definicia 2.2. Ak x =m-¢° a T = m - ¢%, tak relativna chyba je vyraz
mq® — mq® m—1m 1 r—z 1

Plati: — | £ < = - ¢!t Teda < =gt ti=n.
maqe m 2 2

n je zaokriihlovacia jednotka. Zaokrihlovacia jednotka sa rovna r - ¢ =%, kde k = 1

pri rezani; a Kk = 3 pri zaokruhlovani.

w — presna operacia; @ — pocitaCova operacia.
x sa dé presne zobrazit, tak fl;(z) =z, kde fl;(x) je poCitac¢ova realizicia ¢isla x.
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Ak z,yeM, tak ¢ @ y = fli(x wy). Ak z,y¢M, tak z © y = fl:(fl:(z) w fl:(y)).
Sucet ¢isel s rovnakymi znamienkami: Rz, y > 0, T~ xresp. y =y tj. t =T+¢&;
resp. y =§+e2 [(@+y) —(F+Y)|=[x+y) - (ZT-e1+7—e2)| = a1 +eaf.

(x+y)—(T+7) _|ate €1 €9 <}€71‘+572
Tty T+y x+y r+y| "l y |
Stcet s roznymi znamienkami: relativna chyba: Re(x +y) = E; i 22 .
Priklad 2.2. Zaokruhlite na 2 desatinné miesta:
x=0.996 = z = 1.00 y=-0.994 = 7= -0.99.
€1+ ¢e2 —0.004 — 0.004

R = = =

@ty =70y ’ 0.002 ’
o1 = |2 — & = | — 0.004] = 0.004 = 0.4%  Re(z) = |“—%| = -~ < 0.005

1= C T T R Tl | 246 T
lea| = |y — 7| = | — 0.004] = 0.004 = 0.4% Re(y) = vy _ 4 < 0.005.

y 994

Désledky pocitacovej aritmetiky:
Ak chceme vyratat x — sinx v okoli bodu 0, tak musime pouZit Taylora.
Chceme najst korene kvadratického trojclena axz? + bx + ¢ = 0, kde a # 0, b<0

—b+Vb? —4dac _ —b+ (=) b

a b> > 4ac. Potom dostaneme z; = = ——, ale
) ) 2a 2a a
.132%(_) = 0 ¢o je zly vysledok. Treba pouzit Vietove vztahy na urcenie

L a c c
korena xo: 129 = — = 19 = —.
a axy

€xy+ w3 =1 £ 50 e 1 1\ (e 1 1 N
T+ ag =2 1 12)7\0 1-1 2-1
e 1 x1 1 2-1 1 — a9
& = S xy = ~lax = ~ 0 zle.
(6 12:) ()= (a2s) wramimgminn -2 ~0

) 11 2 1 1 2
Spravny postup: c 1 1)\ o 126 1-92¢

1—2¢ 2—-2e—-1+42¢
To = T1=2—Ipo=———"""——=1=129 =
1—¢ 1—-c¢
Platné dekadické cCislice a platné desatinné miesta.
Definicia 2.3. Nech z = a - 10°, a-mantisa, # = a - 10°>. Hovorime, Ze j-té
dekadick ¢islica je za desatinnou ¢iarkou je platnd, ak plati (1) lz—z| < 110°77

a (2) la —a| < 11077, Ak platia pre nejaké j = s (tym skor pre j < s), ale
pre 7 = s + 1 uz nerovnost neplati, potom hovorime, ze T méa s platnych dislic za
desatinnou ciarkou.

Priklad 2.3. a = 0.314159 a a = 0.3142, tak |a — a| <
¢islice.

Pre ¢isla s normalizovanou mantisou sa pouziva vyraz platné desatinné miesta.
Platné desatinné miesta su tie miesta za desatinnou ¢iarkou, ktoré st obsadené
platnymi éislicami v zmysle tych nerovnosti (1), (2), a nulami pred prvou platnou
¢islicou.

1.107*, teda @ m4 4 platné
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III. DIFERENCNY POCET

Majme diskrétnu mnozinu bodov x; a v nich funkéné hodnoty f(x;). x; = xo+ih,
kde h velkost kroku a i€Z. Af(xo) = f(xo + h) — f(xo). Oznacme fi:=f(x;).

Definicia 3.1. Diferencia 1. radu funkcie f(z) v bode z; s krokom h sa nazyva
¢islo: Af(x))=f(x;+h)— f(x;) = f(xir1) — f(x;) = fix1 — fi. Diferencia 2. radu:
NP f(xi) = Af(wiga) = Af(xi), - n— tehorddu: A" f(x;) = A" f(wip1)—

— A" f ().

k Ik
Vseobecne plati: AFf(x;) = Z(—l)J (J)f(xl + (k= j)h).
§=0
A~ inverzny operator. Potom Af(z) = g(z) & c(z) + A7IAf(z) = Ag(z) &
A7 tg(z) = f(z)+c(x) & g(x) = Af(2)+0, teda Ac(z) = 0tj. c(z+h)—c(z) =0.
Aa”

Priklad 8.1. Aa® = a1 —a® = a®(a — 1). A2% = 2% % = 1= A~la® =
a@—

a—1
b

b

Af@)=g(@), Y g(@) =D [flx+h) - f(2)] = [f@)]5"

zlE = x(x — 1)76_(1(30 — k—i—:cl).

Azt = (4 DE — gl = (2 4+ Da(z-1) - (2 —k+2)—z(@@—1)---(z—k+1) =
=z(x—1)(r—k+2)z+1-(z—k+1)] =k 2t

Aglktl 2kt

Azl — (4 )plEl = B = 227 O A-1E] = .

T (k+ 1)z T ] T P

Diferen¢né rovnica: ststava rovnic G(n, Ayn, A%yn, -+, APy,) = 0. Neznadma
v tomto G je {y,}.

k
Ak
Akyn = Z(_l)] <j>yn—k+j G(n7 Yn, Ayna Yn+1, 7yn+p) =0=
§=0

= Yntp = F(N,Yn, -+ s Ynt+p—1) (1). Rovnicu (1) nazyvame diferenénou rovnicou

p-teho radu. Partikularnym rieSenim tejto rovnice rozumieme aktkolvek postupnost
{Yn}nen, ktorej ¢leny vyhovuji rovnici (1) pre vietky n. Kazdé rieSenie diferen-
ciadlnej rovnice p-teho radu je jednoznac¢ne urcené p zaciatoénymi podmienkami.
Vseobecné riesenie diferencidlnej rovnice p-teho radu rozumieme

{Yn}nen, ktorej ¢leny zavisia od p konstant: ci1,---,¢p. Yn = y(n,c1, -+ ,¢p).
Kazdé partikuldrne rieSenie sa d4 ziskat zo vSeobecného rieSenia a zo zaciato¢énych
podmienok.

Linedrna homogénna diferencna rovnica s konstantngmi koeficientami.

aOYntp + W1Yntp—1 + -+ + apyn = 0, kde a; st konstanty, pricom ag # 0 # a,.
Riesenie budeme hladat v tvare ¢ - 2" = yp, Ypiy1 = ¢ 2" o Jypyp = - 2P
dosadenim: agc- 2" 1tP +ajc- 2" P71 4. 4 apc- 2" =0 c- 2" (ags? + a 2P+
4+ 4 apzo) =0. agz? + a1 2P~ 4+ + apzo je charakteristicka rovnica prislusna
k diferencialnej rovnici, je to algebraicka rovnica p-teho radu v premennej z a s tymi
istymi koeficientami.
Charakteristicka rovnica: agz? + a12P~! + -+ a,2° =0 (2).
1. Predpokladajme, ze charakteristickd rovnica ma vSetky korene realne, rozne:
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z1,-+ -, %p. Potom fundamentélny systém rieSeni rovnice (1) je tvaru 27, 2%, - - -, Zy
(mnozina linearne nezavislych rieseni). VSeobecné riesenie: y, = ci2{+---+cpz).
2. Ak je niektory realny koren charakteristickej rovnice k-nésobny, potom z titulu
tohto koreiia sa dostant do fundamentalneho systému takéto funkcie: z7*; nzl*;-- - ;
n’“_lzf. Linedrna kombinécia tychto rieSeni je vSeobecné rieSenie. zI(c;0 + ciin+
R Cikflnk_ly

3. Ak je niektory koren charakteristickej rovnice komplexny k-nasobny.

z = p(cos p+isin ). Vo fundamentdlnom systéme rieSeni z titulu tohto k-nasobné-
ho koretia bude vystupovat celkom 2k rieSeni tvaru: p™ cos(np); np™ cos(np);--- ;
nF=1p" cos(nep); p" sin(n); np" sin(ng); - - - ;nF~1p" sin(ne).

4. Ak je koreni jednoduchy, komplexny: z12=p(cos p+isin ) = 2"=p"(cos(ny)=*
+isin(ny)). Do fundamentalneho systému pridu takéto rovnice: ¢1p™(cos(ng)+
+isin(ny))+cap™(cos(np) —isin(ny)) tj. p"(c1+ce) cos(np)+p™(c1—ce) sin(nyp) =
= K1p" cos(ny) + Kap™ sin(nep).

Priklad 3.2. Vyrieste rovnicu 4-ho radu: y,4+4 + 2yn+3 + 3Yn+2 + 2ynt1 + yn = 0.
Jej charakteristicka rovnica je z* 4+ 223 + 322 +224+1 = 0.

—14+1iV3

219 = su komplexne zdruzené dvojnésobné korene.

2
2n=—1+ i? = cos(27) + isin(27)
B=—z— i? = cos(27) — isin(3m).

Priklad 3.3. V banke mame yo kortin. Roény trok je r%, pri¢om troky sa buda

pripisovat mesacne, a budeme platif mesacne poplatok d. Kolko periazi budeme

mat po n mesiacoch?

Riesenie: yni1 = Yn+15Yn—0d & Yny1 = yn(1+5)—d = Ay, +B,kde A = 1475 a

B=—d y,=Ay, 1 =A%, 2+AB+B =--- = A"yo+ B(A" '+ A" 2 4. .+ A+
n 1 _ "

+1) = A"yo + B - A

(presne zobrazovatelné ¢isla). y,~Y, Y1 =AY, +B+Rpi1 Yii1—Ynt1 =

:AYn+B+Rn+1_Ayn_B:A(Yn_yn)+Rn+1:A(A(Yn—l_yn—1)+Rn)+Rn—1:

= AnJrl(Yo — yo) + Aan + e + A2Rn_1 + ARn + Rn+1.

1° Al <1: |Ry|<Rpren=1,2,--- = Y41 — yng1|<C.

2° |A| > 1: |ynt1 — Yot1| — <.

3° Al =1: |Ry|>R > 0= VYn:|Yyi1 — Ynt1| — 0o numericky nestabilné.

Vsimnime si stabilitu. Predpokladajme, ze A, Be M

Priklad 3.4. V skklenenej naddobe je tekutina, ktord ma v case tg teplotu yg. Nech
okolité prostredie ma 7 a nech c je tepelnd vodivost skla. Oznadenie y, teplotu
tekutiny v Gase t,,. h ¢asovy krok. t, = to + nh. Podla Newtona: y,11 — yn =

= Ch(g —Yn) & Ynt+1 = Yn — Chyn + c-hy & ynip1 = (1 — ¢-h)y, + c-hy. Oznacme

1— an+1
a:=1—chab=chy. Yypi1=ay, +b=---=a""ys+b 1
—a
b , chy _
la|<1 = yni1 ~ 14 ;‘nhjgoynﬂ :m:y- [1—ch|<l=

2
= 0<ch<2 = h<—-. Ak by sme poznali yg, 7 a uréime si h experimentalne.
c

_ Y1 — Yo
Y1 — Yo = ch(y —yo) = hc = = .
Y—Y0
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Linearne rekurentné relacie 2.radu s konstantnymi koeficientami.
Ynt2 +01Yns1 +0oyn =0 yp = 2" 2£0 ypp1 = 2" g0 =202

Zn+2 + b12n+1 + b()Zn =0 p(Z) = 22 + blz —+ bo =0
ay Nech korene st rozne: z1#z;. Potom {27}, {23} s dve linedrne nezavislé
rieSenia.
by mé dvojnasobny koreri: {z"} A ({nz"}V {nz""'}). Nech z je dvojnasobny koreii
povodnej rovnice. Nech y,, = nz" = y,12 = (n + 2)2"T2

(n+2)2""2 + by (n+1)2" + bgn-2" = 0 &
& n2"2 L hn2™ T 4 bgne2™ + 22712 4 b2 =0
n-2"(2% 4+ bz +bo) + 2"t (22 +b1) =0
———— ——

p(2) P'(2)
Domdca vloha. Dokézte, ze {n-2"~'} je tiez riesenim.

Veta 3.1. Nech by, b1 €R. Potom existuju dve linearne nezavislé rieSenia postup-
nosti (1)  yn+t2 + b1Ynt1 + boyn.

Dokaz. Staci dokdzaf linedrnu nezédvislost.

ay: Ak polyném p(z) mé dva rozne realne korene, tak z{, 23 st dve linedrne
nezavislé riesenia rovnice (1).

by: Nech p(z) ma dvojnésobny korent z. {z"},{n-z""'} st linedrne nezdvislé.
Sporom predpokladajme, Ze st linedrne zavislé. 2" = an-2"~1 Vn.
n=1z=al=>a=z

n=0:2"=a02z"1= 1=0-spor.

Désledok. Mnozina vietkych postupnosti spliiajiici (1) je linearny vektorovy pri-
estor dimenzie 2.

Veta 3.2. Dimenzia linedrneho vektorového priestoru vsetkych postupnosti spliia-
Jjuci rekurentnii reldciu (1) je 2.

Veta 3.3. Nech by, by, A, BER. no#n;€Z potom existuje jedina postupnost splia-
juca rovnicu (1) taka, Ze spliia dve zaciatocéné podmienky: yn, = A, Yn, = B.

10
Priklad 3.5. yo =1, y1 =3, Yn+1 = —Yn — Yn—1

3
10 1 1
z2—§z+120©(j—3)(z—g):0:>21:3 2=z
1 1
yn:c1-3"+62'<3> Yo =cC1 +C2 y1=361+562
1 1 8
y1 = 3(yo — c2) + 302 < y1 —3yo = —3c2 + 502 = —502
U S S B
2—3891 8Z/o . 1—3 82/({ Syl
Y1 — Yo Yo — Y1
= .gn L
4 8 TR

Po dosadeni: y, =37".
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Nehomogénna rekurentnd rovnica 2.rddu.

(2) Ynt2 + blyn+1b0yn = Un42

Veta 3.4. (princip superpozicie)

ay Nech v, je nejakd pevne zvolend postupnost spliiajiica (2). Potom kazda {y,},
ktora spliia (2) sa da napisat v tvare: y, = U, + v, kde v, je nejaké partikuldrne
rieSenie nehomogénneho systému a u,, je rieSenie prislusneho homogénneho systému.
by Nech v, splia (2) a u,, splia (1), potom y,, = U, + v,.

Priklad 3.6. Rieste yn+2—yn+1—2yn:2n2+2 10=0, y1=1.
Riesenie: Hladdme w, a v,. (hladdme v tvare pravej strany). Charakteristickd
rovnica: r2—r—2=0 = r;=2, ry= — 1. Nehomogénna, ¢ast:
vp=an?+bn+c  v,1=a(n+1)2+b(n+1)+c  v,po=a(n+2)%+b(n+2)+c(n+2)
vn+2—vn+1—2vn:2n2+2 =a=—-1, b=—1, c=—3 = v,=—n’—n—3
Teda y,=c1-2"+ca-(—1)"—n?—n—3.
Zaciatocné podmienky: yo=0=c1+co—3 a y1=1=2c;—c2—5. Po vyrieSeni: c¢;=3,
02:0.
Vysledok: y,,=2"-3—n?—n—3.

Priklad 3.7. Rieste: yp41=2y,+b" yo=1.
RieSenie: 1°  b#2: yp41=2yn+b" yp=utn+v, v,=k-b"

1
k-bntl—2k-b"=b" < k-b—2k=1 & k(b—2)= 1@k7b—2évn )

n

Up+1—2Up=0 = u=2 = up,=c2"

b" 1 b-3

Yn=Up+Vp = Yn=cC 2"+ﬁ Zaciato¢né podmienka: 1= c—l—ﬁ = c——2.
2" (b—3)+b"
Vysledok yn:(biz)—’—.

2°  b=2: v,=k-n-2"
Vpr1=20,+2" & k(n+1)2"1=2kn-2"4+2" & 2k(n+1)=2kn+1 <

1
& 2kn+2k=2kn+1 = k:§ = v,=n2""1 = y,=n-2""14¢c2"
Zadiatotna podmienka: 1=c-2° < c=1.
Vysledok: y,=2""1(n+2).
Priklad 3.8. Rieste: yp12—6yn11+9%,=0 yo=1, y2=3
Riesenie: 22—62+9=0 & (2—3)?=0 = ¢1-3"+cyn-3"=3"(ca-n+c1). Zaciatocné

1
podmienky: yo=1=1-(c3-04+c1)=c1 a y2=3=9-(2ca+1) = 18co=—6 = czz—g.
Vysledok: y,=3"- (1—%).
Priklad 3.9. Rieste: yp41—2yn+2yn—1=0 yo=1, y1=2
24++/4-8
Riesenie: 2°—22+2=0 = zlgz%zlii:\/ﬁ(cos %:ti sin %)
Yn=c1-(v2)™(cos %Hsin %)JFCQ(ﬁ)n(cos %—i sin "41)

Zaciato¢né podmienky: yo=1=c;(cos0+isin0)+ca(cos0—isin0) = 1=c1+co

y1=2= \[(i—k i)—ﬂf (£—1£)2>2 c1(141)+eo(1—1)=c1+ca+i(er1—c2)
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1-i 1+i
= i(Cl_C2):]. = 1(261—1):1 = Cl:Tl 02:;.
1
Po dosadeni dostaneme vysledok: y,=(1/2)"*"sin @

Domdce ulohy. Rieste:

1. ypyo—4yny1+4y,=3-2" yo=1, y1=2.

2. yn+2—5yn+1+4yn:32" y():]., y1:2

3. yn+2—5yn+1+4yn:2~4" y():]., y1:2

4. Ypio+yn=0, zaciatoéné podmienky si zvolte.

Odhad chyby funkénej hodnoty s pribliZznym argumentom.
x—presnd hodnota; Z-aproximécia. Az=x—Z, |Az|=|z—Z|<e(x).
Ay(z)=y(x)—y(@)=y'(§)(z—T)  [Ay(z)[< nax Y/ ()] |Az|<M-e(x)

~—_——
M

‘Ayu) . Me(w)

y(@) |~ ly(z)]

Vypocet standardnijch funkcii a ukdzky implementdcie Standardnych funkcii na

pocitaci.

Poiiadavka:
1. n:§'27t.
2. Aby algoritmus pre vypocet Standardnych funkcii bol dostatocne rychly.
Priklad 3.10. si S 0<z<Z. Chyba je mensia ak
riklad 8.10. sinz=x——+———+——"+- r<—. a je mensia ako

31 50 7l gl ==y PR

22k+1 . Fonili o ¢l 2h—1

———| ak sme skonéili pri ¢lene ————.

(2k+1)! P (2k—1)!

Polynomialna aproximacia:
sin %zq(aj)zx(b0+b1x2+b2x4+b3x6):x(((b3x2+b2)x2+b1)x2+bo).
Racionalna aproximacia:
P(x)
Q(z)

Priklad 3.11. Chceme aproximovat f(z)=2" (0, 1) pomocou polynému tak, aby
relativna chyba bola mensia ako 1071, Potrebujeme polyném 6-teho stupiia.
Potrebujeme 6-krat nésobenie a 6-krat s¢itanie.

q(z?)+ws(2?)
q(z?)—zs(z?)

fz)~

Racinélne: 2%~ =r(z). Potrebujeme 3 nésobenia, 4 s¢itania a 1 dele-

nie.

Vypoclet hodnét Standardnych funkcii a transformacia argumentu do
vhodného intervalu a jej numerické aspekty.

Majme vhodnti aproximac¢ni funkciu, ktora aproximuje funkciu sinz na (0, 5).
sinz=sin(x+2k7n) w=x—2kn=x—nn. Predpokladajme, Ze n,x sa d4 presne zob-

razit na pocitaci a 7 je zobrazené na maximalny pocet desatinnych miest.
T ), 7=r(14e1), [e1|<n, a=z—n7, a=(z—nm(1+e1)(1+e2))(14€3), kde £,<7,

|Aul=|a—u|=|(x—nm)ez—nm(e1+e2)| S|l —nm|n+2nan<|u|n+2nmn.
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Priklad 3.12. Predpokladajme, ze £g=1000 a chceme spoditat sinzy v jednoduchej

presnosti na poéitaci M (2,23, —126,127).

Riesenie: n=|120]=318, u=xo—nr=1000—3187~0.9735361 - - - =i, n=3-2723,
Au| 1.2.1074

Aul< 2nmn<2000n<1.2-1074. | — | <———

| AulSluln+2nmn n< 1S 0973

sin u=sin g cos nT— cos zo sinnw = | sin u|=|sin x|,

| A sin | =|A sinu| <] cos A u|< cos0.9735361 - - - -1.2:107%<0.68-1074,

<1.3-107%, u=xo—nm,

Asinzg|  0.68-107%
< <0.9-1074.
sinzg |~ 0.8268725
A
=2-53=1.9752 = | Au|<20007=2.210"13, | =220 < 6.107 13,
SN Tg

IV. CORDIC ALGORITMUS

(CORDIC= COordinate ROtation DIgital Computer)
CORDIC algoritmus sa pouziva na aproximaciu trigonometrickych funkcii.
Vypocet sa bude realizovat v registre 2¢ bitoch v pevnej rddovej ¢iarke.

3 5
Zoberme si: t=3, 1.d;d>d3-2~4=0.0001d;d2d3-2°. sin 3=4 | —%4—% e
Asin 3 sinf—8| _| 8] B2 -
<| = 2__ 2.2726 1< 2
sin 3 " sing | ™38 6 pr=m ) LSS,
g% m*27% 4272 2 1 t 1
—_—= < =-.272¢c_.27t=p —2e<] 0.75—t & —+—-(041---
G 16 G 3 <12 n, —2e< logy e>2+2( )
& e>| = (t+1)]. Pre vSetky e> La(t-i-l)J budeme aproximovat S=sin .
t=3: l.d1da2d3 0.01d;d2d3 sa este zmesti v registre 2¢ bit s pevnou desatinnou
¢iarkou.

R 1 - .
B=m-27¢, e=2. U0=<0> B1=Bo—v0 B2=P1—71-01 Uip1=P;7;

cosy; —0;sinvy; cosyp —sin~yg
P,= . ;=04 = .
’ ( 0; sin y; COS Y5 ) sgnfi=0i Po ( sinyy  Ccosg )

P, je ortogonalna matica tj. P;lzP;r.

. (cos% —sin’yo> (1) (cos%)
P()’U(): . = .
sinyg  coso 0 sin 7y
Nech 0,71, ,72¢—1 je postupnost rotécii vektorov iy, 7y, - -- a nech Gy=(1,0)T,
Bo=0B, Ui+1=PiV;, Bit1=Bi—divi

. COS 7;=C;
L ocosy;  —dpsiny L | 1 =4t i\ _ A~
Pﬂ}z_ <57 sin Yi COS 7; > Y= 5;11117;:? =6 (§1t7 1 Yi _CZQZUZ
i—Ug

1
V14272

Budeme volit ; tak, aby tan~;=t;=27%. ¥ 1=P;0;=c;Q;7;, c;=cosy;=

Ugp= Cor—1C2¢—2 - - €10 Qo:—1Q2:—2 - - Q1 Qo

T
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Algoritmus:

VStupy(Input):ﬁ7 Yo, V1, s V2t—1
for i:=0 to 2t-1 do

d:=sgn(p) ,
(1 —s2i
T2t 1 )Y
fi=p—07i
Pozndmka. Operécie st jednoduché; posunutie desatinnej ¢iarky a jedna logicka
operacia (testovanie). Uhly ;= arctan(27¢), pre malé ~; : ;=27
V. CEBYSEVOVE POLYNOMY 1.DRUHU

Predpis: Tp11(2)=22T,(2)—Tn-1(x), To(x)=1, T1(z)=x, z€(-1,1).
Charakteristickd rovnica: 22—2zz+1=0

1° |z|<1:
2r++v/4x2 — 4
%:xi,/ﬁ_l

1
1294 c228=1=ci+co, crr+c1Va2—1+cor—coVa2—1=z = C1=5. 2=
1 1
Tn($)=§($+\/myb+§(m—\/mw &
1 1
< Tn(x):§($+iv 1—$2)”+5(x—i\/@)”

Zavedme substiticiu z=cost, t€(0, 7).

12—

1
2

1 1
T, (x):i (cost+isin t)”+§ (cost—isint)™

T, (cost)= % (cos(nt)+isin(nt))+ % (cos(nt)—isin(nt))= cos(nt)

’ T, ()= cos(arccos z) ‘

2°  |x|=1:
2=1: \2—20+1=0 & (A—1)=0 & Aja=1
z=—1: Algifl
T, (z)=2"(c1n+c2)
T0($)=1201'0+C2 = cy=1
Ty (x)=z=x(c1+c2)=x(c1+1) = ¢1=0
Tn(x)=2a"

VI. RIESENIE ROVNIC f(z) = 0
Majme MCR a f: M—R; f(x)=0
f(@)=0 & a+f(r)=r & r=r—f(z)=p(r)
Brouwerova veta. Nech a,beR, a<b, ¢ je spojitd na (a,b), p({a,b))C{(a,b) =
= Jz€(a,b) : T=p(T).

Dékaz. (x):=x—p(x), Y(a)=a—p(a)<0, ¥ (b)=b—p(b)>0 = Iz (a,b) : (T)=0
= T=0(T).
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Banachova veta. Nech a,beR, a<b, ¢({a,b))C(a,b). Ak existuje LER : 1>L>0,
ze pre Yx,ye{a,b) : |p(x)—p(y)|<L|lz—y|<|r—y|. Potom zTE(a,b) : T=¢(T).

{z,} konsStruovand pomocou x,1=p(x,) konverguje pre Vxo<(a,b).
n

|$n*f‘§ﬁ‘|$1*$0|

. _ L _ _
Dokaz. \x—xn\§ﬁ~|xn—xn,1 l, |Z—2p1|=T—tn+an—2n-1]<

<|T—zp|+|zn—2n-1]<|@(T) =P (Tn—1)|[+|Tn—Tn 1 [SL|IT—2p 1 [+|Tn—2n1]<

§|xn*xn—1|gﬁ|xn*zn—l|-
L
|j_$n|§@(£)_‘P(xnfl)|§L|£_xnfl‘Sﬁ |Tn—2n-1].

Veta 6.3. (postacujica podmienka konvergencie itera¢nej postupnosti)
Nech peCl{a,b) tj. p,¢’ st spojité. ¢({a,b))C(a,b). Nech L= In<a}§> |’ (x)|<1.
re(a,

I—x
Potom platia vSetky tvrdenia Banachovej vety a lim —_ondl =y (7).

T—00 r—T

n

Dokaz. |Z—ni1|=[@(T)=p(2n)|=[@(En) [T —2n| <L-[T—2y).

T—Tpal . T—Tpail _
Tnst \zw@nn lim \ . ‘=<p’(33)
T—Tn n—oo | T—xp

Veta 6.4. Nech T=p(T) a nech ¢ je spojita diferencidlna funkcia v O(Z), nech
|¢'(Z)|<1. Potom, ak x¢ je dostatoCne blizke k T, tak platia vSetky tvrdenia
vety 6.3.

Dékaz. peCt(O(z)) = II=(T—5,7+5) taky, ze L= mg;(\(p’(x)kl. Ukazeme, Ze

ak z€l = ¢(z)€l. tj. & |[z—x|< = p(x)el.
|2—p(2)|=p(Z)—p(2) | <L|z—z|<|z—2|<0.

Pozndmka. Dosledkom tychto viet je metéda prostej iterdcie. x,11=¢(xy).
Vzdy konvergentné metddy.

1. Metéda bisekcie:. Ak f : (a,b)—R je spojitd funkcia a f(a)f(b)<0, tak
existuje koreri na intervale {(a,b) a ndjdeme ho takto:
u:=a, v:=b

repeat
_utv

if f(m)*f(u)<0 then u:=m else v:=m
until v-u<e

2. Metdda regula falsi:.

3. Metdda tetiv:.
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4. Newtonova metdda:.

o _f(xz;l)
T )
Veta 6.5. Nech Z€R, f(z)=0, zpt1=Cn— JJ:/<( )) feC?(0(x)), f'()#0. Po-
tom 301 (Z) také, Ze postupnost Tp1=rn— ;/((x )) konverguje k . Naviac plati:
e |¢'@
n—oo |xn—x|2 2 ’
s ooy @@ @) @@ o @ (@)
A I R
Funkciu ¢ rozvinieme do Taylorovho lladu: ,
oley=p @)+ 0 (o) £ (g2
A I (3D
A TR Il
Tni1=T+ éﬁn)( n—7)?
onn=al_|e"(&)| . leen=al_|¢"(@)
Tp—T|? 2! n—oo (r,—)2 2

Tpp1=0(Tn) =T+ (&0 ) (2n—T)
$n+1—|53=¢/(§:n)(95n_33)
. Ip1—2 | 4, _
Jim. 7] =[#"(2)]
1" = _f//(j)
2O

©(Z) pre dvojnasobny korer(l‘?)f ( ) f( Fa) ( )f @ )
) 1 " + "
Tin I S T

Veta 6.6. Nech peN a Z je p-ndsobny koreii rovnice f(z)=0 a feCPT{O(z)).

f(@n) konverguje k bode  a plati lim [2n41]
f(@n) n—oo |55n_33|2

Potom postupnost T,+1==Tp—p

Dékaz. Oznaime: p(z)=x—p

R (x—Z)Ph(x) e x—Z)h(z) _
A= Th(a) Ha 2 () ph(a) (e—a)h ()
pC(z (Z)=z%
D(x )
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!+ "
'@, . e,
p@)=p(@)+ S e-0)+ £ (o-a)?
! "(e !
In-&-l:‘P(zn):jJr(p (2 ") (Iﬂ 7:5)2
Rad konvergencie itera¢nej postupnosti.
Nech zg,x1,--- — T a nech ¢,=z,—z. Radom konvergencie iteracnej postup-

€
| "+1|=c<oo.

nosti nazveme najvicsie kladné cislo p>1 také, ze plati lim el
n—oo |Ey

c— asymptoticka konstanta.
p=1, tak linedrna konvergencia, p=2 kvadraticka konvergencia,....
Hovorime, zZe itera¢nd metdéda mé rad konvergencie p.

Urychlovacia metoda konvergencie; Aitkenov 62 proces.
Nech {z,}: xps1=p(z,). Nech |¢'(z)|<L<1l. Predpokladajme, Ze linedrna
konvergencia.
Enir ()~ p(E)=¢ (6) (2, —F)

Tpy1—T Tp—T Tp_1—T
T = (&) ———=¢(fnm1) ————=¢'(€n—2)
Tp—T Tp—1—T Tp—2—
lim 21 (2)= lim Y
n—oo Ty —I n—oo Tp_1—I
Tp—Tp—1

Ozname \,=————.
Tpn—1—"Tn-2

T—p—1—(T—Tn) _f_xnfl_QO/(Snfl)'(f_xnfl)_1_90/(57171) N
- T—Tp_1 - 1

‘pl(gn—2)_(a_y_$n71) 801(5n72) B 1
1=¢'(§n1) _1=¢'(Z)
_ 1 1 1=¢'(®@
' (€n—2) o' (Z)
Pre dostato¢ne velké n mozeme o' (T)=\,,.
-2, =p(Z)—p(Tn-1)=¢'(§n-1)(Z—Tn-1)

T—Xp

>\ =
" j_mn—Q_(i‘_xn—l)

= lim

n—oo

A (T)~ =T (T—Xp—1)

T—Tp—1

T—Tn=2T—Tn-1FTn—1—Tn~ (i'_xn)""(xnfl_xn)

1
An
P—tn— s (P
T—Tp N LT—Tp )RTp—-1—Tn
T— n 1*7 RTp—1—Tp
(Z—xn)( 3 VL1 —T

A,—1

(T—xp) RTy_1—Tn,

n

An
1-X\,

T—I,~

(xn—2n—1) | —chybova Aitkenova formula

Extrapolacnéa Aitkenova formula: Z=x,+ Tpy—Tp—1)

A
l—An(

s . ;. ~ n

novéa aproximécia: &=x,+-——(Tp—Tp_1).
1-),

Tp—Tn—-1

Tp—1—Tp—2 Tpn—Tn-—1

'(xn_xnfl):xn"_ '(xn_l'nfl):

=gy p—niTn=2
1_ Tp—Tp—1 Tp—1—Tp—2—Tp+Tn_1

Tp—1—"Tn-2
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_ (xn_xn71)2 _ (:En_irnfl)2 _
=I,+ =Ty— =
Tn—1— 2xn+xn+1 xn_xn—l_(-rn—l_xn—2)

(Axp_1)? . (A1)

e S e _
" AT/n—lfAIn—Q " A25En—2
Ax —1 2
xn:xnf(Q# — Aitkenova formula
A Lp—2

Algoritmus:

Vstupy: xg, ¢, €

1° zi=p(x0), ro=p(21), |T1—T2|<€ = T2xT
(z2—11)

(z2—x1)—(21—70)
3° xg:=19 chod na 1°.

2° i‘gzxg—

Odhady chyb v iteraénych metdédach.
ozn. x* -pevny bod a T aproximécia. f(z*)=0,
f@)=f(@)—f(z")=
Predpokladajme, ze f'(z*)£0. |z—z* |—‘

A\_/

—kh
—
o
—
e
]

TG Nech | f/(x)|>m v okoli O(x*)
o <TOL ) F@)<o
(@) =IF@)|<]f (@)~ [(2)|<6 = | f(7)|<6+|f(@)]
Fmat|< ’fm 5+\TJ;(9?°)I
(%) je aproximécia f(Z). Ak f(Z)=0 = |z—a* |§% — dosazitelna presnost.

Priklad 6.1. f(z)=z—e "=0, 2*~0.567143=7, f(Z)= — 4.551-107,6=1.10"1,

\ffx*|§w, I (Z)~1.567 = m=1.5,
|i,_x*|g0.5-10_10—1%1;.551-10_7§0.4'10—6.
DosaZitelnd presnost pre dvojndsobny koren.
Fla)=f )+ P o)+ 0 eyt f(ﬂ’c)=f ) 5y
T = 2f(2)| _ [21f(@)] _
@I\ 1@V e
|f(@)—f(Z)|<6 = [f(Z)|<0

Priklad 6.2. Nevrhnite iteraént metédu na f(z)=z2—Inz—2=0

1.koren hladajte na intervale (1—0, 1) a 2. korenl na intervale (1,2).

2
-2 —2
= xn_,’_lfg n

2
¢’(x):(e$2*2)’:2xez2’2 <p”(:£):(4xz+2)e””2’2 P (1)==<1
29=0.1, £1=0.1366954 - - - £4=0.1379347, £5=0.1379348.
Teda prvy koren je ~ 0.1379347.

15
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Druhy koren:

1
z=+Inz+2 '(1)=——— ¢"(x)<0na (1,2
VIEES )= s (<0 (1)

o(z)
2o=1.5, £1=1.5509562 - - - 1g=1.5644621

Teda druhy korerni je ~ 1.5644621.

Priklad 6.3. Navrhnite itera¢nt metédu: x2—a=0, (a>0)

flx;) 1 a
Domdca tuloha. Navrhnite netédu pre p>1:
1
xTr =
. 1
P 1
p+
P+ —
1
x = =z
prorage p(x)

VII. IMPLEMENTACIA VYPOGTU DRUHEJ ODMOCNINY

A=m-22F m=1.byby --- by, M(2,t, L,U), exp=2k, A=1.byby---b; -2%F
—_—
A=1.b1bs - -- bt-22k A=1by.bob3 - - - bt-22k_1 a=cyco.dide -+ di—1  1<a<4
Va>1 z,>/a VYneN zvolime: ro>1 = z,>1
1 1
xn-&-l_\/a:g(xn_\/a)zgg(xn_\/ay
y 1 h h
h<273  |zo—+/a|=|Va+h—/a|~—-|h|=—<-<27*
2& 2672
1
ml—\/ﬁgi(a}o—\/&)2§2_9
1
$27\/a§2f3(1'07\/a)4§2719
1
wg—\/&gf(l‘o—\/&)8§2_39

1
Ak t=23, tak chyba je mensia ako 5-2*23:2*24

1 a
Veta 7.1. Pre kazdé xo>0 iteracna metoda xn+1:§(mn+—) generuje nerastiicu
T,

zdola ohranicent postupnost. A plati: lim z,=+/a.
n—oo

Doékaz. Najprv ukdzeme, ze aj Tni1>+/a. Potom ukdZeme, Ze x,—x,_1>0 pre
vsetky n.

1 a r24+a—2x,\/a (r,—+a)?
xn-l—l_\/a:i(xn"'?)_\/a: ! o0 n\[:( n2x\/>) >0
1 a, 202-22—a x2—a (z,—a)(z,+/a)

>0

xniznﬁ_l:xnii( "Jra): 2%, 2x, 2x,
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Teda postupnost je nerastiica, zdola ohranic¢ena.
lm r,=a" @ (et )@= (D)
i mnmat =g (ot ) #=glet

2(x*)%=(2*)%+a r*?=a = z*=\/a

Banachova veta o pevnom bode v R”.

17

Nech (X,d) je uplny metricky priestor a nech 3A>0, 1>\ také, Ze pre zobrazenie

¢ : X—X plati, Ze d(o(z), p(y))<Ad(z,y). Potom Flz*eX : p(a*)=z*.

Iubovolné xo€X : x,11=p(z,) konverguje k x*.

VIII. n-ROZMERNY NEWTONOV ALGORITMUS
A RIESENIE SYSTEMOV NELINEARNYCH ROVNiC

fi(z1,22)=0

Majme ststavu {
fa2(21,22)=0

wramy at=roth 0=[(a)=f(rotht)=f(zo)t T pe L) oy
hO*h = — f/( ) 171*10+h0 = l‘l—JTO*fl(xO)

xl—xgo)—&—h* TE=Tq )+h2
0=Ffi1(a7,23)=f1 (z} ’+h1,x2>+h*>

of CL'( )7 (0) . of1(x ,l‘(o) .
—f( )+ 1(811- 2)h (a1x 2)h2+
o—f2<x1:w2>(0)f2<(0) 1+, 2§ )”‘*)E)
f2(xg0)7x2 ) an(l'l 7.'1/'2 )h* 8f2<x1 71"2 )h§+

81’1 1 (933’2

afi(a”, 2y afi (2, 2)
0x1 8x <
0
af2<:c§°%xé°>> 9 fo(2\", 2y | \n
0x1 6332

& JFh=~ f@ & =371 @) fla))

J(Z) je Jacobiho matica.
xgl)—xl h(o xél)—xQ h(o
72U =70) 4 j(0)
k41 —p(k) _ (J (;c(k)) f( )

Priklad 8.1. Najdite priesecik elipsy s hyperbolou, ktory lezi v 1.kvadrante!
Riesenie:

f1 (ml, $2)14I%+9I§*36:O

f2(£L’1, 1’2):161}%—9%%—36:0
Presné riesenie je (1.897367,1.549193).

Pre
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(0)

8 18\ (h 23 1.3
- hO=

<32 18)(h<0>) <29) h (0.7)

Newtonovou metddou:

220

k xgk) zgk)

0 1 1

1 2.3 1.7

2 1.93261 1.55588
3 1.89769 1.54921
4 1.89737 1.54919

LU-rozklad. Ax=B A=LU LUx=b Ly=b=y Ux=y=x.

IX. LUBBOCKOVA METODA NA APROXIMACIU SUCTU NEKONECGCNYCH RADOV

Fuler — MacLaurin:

on 1 h2 ! h4 "1 "
y(x)dz=h yo+y1+ “HYn—1F5Yn —ﬁ(yn—yo) 720(@/ —Yo )=
o

h2* .
> G P = ) B

B —Bernoulliho ¢isla, E,, —zvysok, h= xn—xo‘

S= wam Fit Fmt Fyvomet o+ fa) = B (fit )+
i=j
Ua Y YNTIN U YT
+m( [i=Ofn—m)— 2 ( [i+ D% foom)+
(m2—1)(19m2-1) (m2—1)(9m?-1)

(A?)fj*Agfn—Sm)*
(m?—1)(863m*—145m>+2)
60480m5

(m?—1)(275m*—61m?2+2)

B 24192m5 (A2 f 4% fumm)

Asfk: Z(_l)r <i) fk+(s—r)7n

r=0

(A4fj+A4fn—4m)+

720m3 480m3

(A% fj=D° frsm)—

00 . 102 . 10 .
Ini Ini In Ini Ini
S_Zi(iJrl Z (i+1) Z i) 2 i(i+1) +_§3 G

=100

m=1 m=10 m=100
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10° .
In¢
" '21%4 m — f100—f1000— f10000
s

m=103

10!

1
S 788530606(+10~)
i(i+1)

=1

Kummer: A= Zaz B= Zb hm ——q;«éO

A= Zaz—z a1—qb; +qz Za, (1- q +qB
=1 3

N b > b;
> ai(l—g—)+ Y ai(l—q—)
i=1 v i=N+1 v

Rny—0

A=1.07667405

Domaca iloha.

12 2
3 3 3 o s 0
Al 2
Overte, ze pre maticu A= % 7% % plati 22—27% 1
CE !
3 3 3
Riesenie:
3 = 1 2
A°=1 S=851+5,=A- I =—A+I; —=
3 11+52= Z 2k e o a2 3’;(%)2 3 +13
2 (-1 2 2 (1 0 0 2 (0 1 1
:72L4 2 -1 2 +;—4 010 :% 10 1
2 2 -1 0 0 1 1 10

O =

O ==



20 2.ROCNIK

X. INTERPOLACIA

Mnozina funkcii 2™ je Gplnd na (a, b) tj. ku kazdému po Gastiach spojitej funkcie

b
f(x) a danému >0 existujia n,aq, - - ,a, tak, ze \// (f( Zaz V2dr<e
a
—aproximacia v strede.

Weierstrassova veta. Ak f(z)eC{a,b) : Ve>03n(e) a polyndm P,(z) tak, ze
|f(z)—P,(z)|<e Vze(a,b).

Ak f(t) je spojitd, periodickd s periédou 2m:
Ve>0 3n(e) Isp(t)=ao+ Z(ak cos(kt)+by sin(kt)) : |f(t)—sn(t)|<e Vze(a,b).

b b
El/ fA(z)dz = f(x)€Lala,b) wu,vELy p(u,v)=|u—v|= /uvdx.

- (0,1)
Bernsteinove polyndmy: Bn(x)zz (Z) zh(1—z)nkf (%) B,(z) = f(x)
k=0
pouzivaju sa v dokaze Weierstrassovej vety.

Interpolacia: (z;,v;)=f(z;)€ER, i =0,1,--- ,n=:0(1)n.
Nech x;#x; pre i#j. f(xz)~p(x) a chceme aby f(x;)=p(z;) pre i=0,1,--- ,n.

Veta 10.1. Nech z;,y;€R prei=0,1,--- ,n ax;#x; prei#j. Potom existuje jediny
polynom p(x)€P,(z) taky, ze p(x;)=f(x;) pre vsetky i=0,1,--- ,n

Dékaz. Nech p(x)=ao+aiz+ - +anzy

Existencia: ) )
yozp(xo)=a0+a1xo+a2xg+ e —|—anx8
y1=p(z1)=ao+a1r1+ari+ - +a,zi
Yn=p(xn)=ao+a1z,+agrli+ - +a,z]

Méme systém n + 1 rovnic s n + 1 neznamymi ag, a1, - , Gy,-

2 n
1 =z ;vg g
1 =z 7 7
07 . = H(wz*%)
'2 - i#]
1 =, =z T,

Jednoznacnost: Nech p(x), ¢(z)eP(z), p(x)#q(z), r(z)=p(x)—q(x)eP(x). r(x) je
stupnia <n, ale mé& n + 1 roznych korenov, preto r(z)=0 = p(z)=q(x).

Lagrangeov interpolaény polyném: f(x Zl ), kde I (x) st
elementarne Lagrangeove polynémy.

0, ak i#j

7. Kroneckerova 0;;
1, ak i=j

l (xi)@-]—{

Li(@)=kj(x—wo)(w—21) - - (=) 1) (@ =Tj41) - - - (T =)
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1=lj(w;)=k;(zj—x0)(zj—21) - - - (¥j—xj-1)(Tj—Tj41) - - (25 —Tn)
1
k/’jzi f.%‘i: €T;)— lj Jil)f ch
e (2i)=p(x;) ]z::() (i) f ()
i
(z—wo)(x—21) - (x—j-1)(T—Tj41) - (T—p)

)= (zj—xo)(j—w1) - (xj—mj—1) (@ —Tjp1) - - (Tj—2n)

n

p()=>_1;(x)f())

Jj=0

Domdca uloha. Néjdite Lagrangeov interpola¢ny polyndém pre hodnoty: f(0)=1,
f(1)=0, f(3)=4.

Riesenie:

Newtonov interpolaény polyném: {z;}" ., {f(x:)},, p(x)eP(z)
f@)=p(x)=cotci(x—x0)+ca(x—zo)(x—21)+ - +Cn(x—20) - - (T—T 1)

J(wo)=p(x0)=co= [ 0]

f(x1)=p(x1)=fot+ci(x1—20) = Clzl;f():f[ffo, 7]

Xr1—Xo
Vyraz h=fo je pomernd diferencia.
T1—T0
To2—X
Ja—fo— (f1—fo)
Co= T1=%g :f[x(),xl7l'2]
(22—=w0)(x1—71)
Cn:f[x(); Ty, 7xn]

Oznacme pgloﬁ_l) Newtonov interpola¢ny polyném pre uzly zg,--- ,Tn_1 a pgllﬁ)
pre uzly x1,--- ,x,. Potom

1 0,n—1 1,

Pn()= (=o' (@)@ —wo)p " (=)
ITp—X0

Pa(@0)=pl T (wo)=f (z0)y/

1,7
(@) =plY (20) =1 (20)y/
pre t=1,2,--- ;n—1:

1 n— n
p(i)= (on =) i i) +(im0) P () | =1 (i)
Tp—X0o N—————— N——
f@i) f@i)
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Oznaéme si koeficienty pri najvyssej mocnine ¢, v p,(z); cilo_)l v pSLOﬂ_l)(m); cﬁj_)l
1,n
v pSz—l) ().
Pn(2)=pn—1(z)+cn(z—20)(2—21) - (T—T1—1)
1 0
_0'57,7)176517)1 _f[xl7"' 7Z’n]_f[.'170,"' 75(:77,71]_
Cp=——" f[1'07371,"' axn}_ =Cn
In—T0 In—=20
n—1
p(a)=f[wol+flxo, x1)(w—w0)+ - -+ flzo, x1, -, xa] [ [ (x—2)
i=0

Newtonov interpola¢ny polyném

f(@i)

i—x0)  (wi—j_1)(Tj—Tj41) - (Tj—7n)

7=0
dio—d dij—1—di—1j—
digi=f(z;) dyy=—2"90 g,;="9-17TmLL
T1—=Xo Ti—Xi—j
x; dio din dip di3
zo  doo

o dwo a1 dup o dun
Potom c;=d;; pre vSetky =0,1,--- ,n.
Chyba interpolaéného polynému.
Veta 10.2. Nech z;, f(z;)€R. z,2;€(a,b), i=0(1)n, x;7#x; pre i#j. Nech I, je

majmensi otvoreny interval vytvoreny bodmi xg, 1, - - , 2,2 nech feC"+1(a, b).
(nt+1) (4
Potom 3In, €1, : f(x)—p(x):JM(x—xo) e (z—g).

Dokaz. Pomocou Rolleho vety. Nech z je Iubovolny, pevny, rozny od vSetkych
interpolacnych uzlov.

f(z)=p(z) 17
G(2)=f(2)—pz)—=—F—"= z—x;
RO tar=a | 0
G(z;)=0 Vie{0,---,n} G(z)=0
Teda n+2 nulovych bodov mame.

(n41) () £(n+1) (1) _0— f(@)—p() n
G (2)=f (2)-0 71—[?:0(3:_%)( +1)!
f(z)—p(z)
H?:1(I*17i)

(n 1) () )
= f)-ple)=L e [Tz

G(n+1)(77x)202f(n+1)(77w)_ (n+1)! =
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Daosledok.
£
|f(z)—pn(2)|< max (i) Nz—x0)(x—21) - - - (x—2,)]
Chybovy vztah pomocou pomernych diferencii
Pn+1(z) -Newtonov interpola¢ny polyném; xo, 1, -+, Tny1 — fo, f1,-*, fat1
Prt1(@)=pn(2)+f[0, 21, Tnpr)(x—20) (x—21) - - - (T—20)
frt1=Pn1(Tn1)=pn(Tnt1) + [0, 21, -+ T ] (Tnp1—20) - - (Tnp1—T0)

n (n+1) n
f(In-s-l)*pn(an):f[Iov T 717n+1] H(zn—&-l*xi)zw' H(»Tn-s-l*%i)

i=0 (n+1)! i=0
F Y ()
Vztah medzi pomernou diferenciou a derivaciou: f[zg,x1, - , %y, x]zw
n+1)!
Neplati: max |f(z)—pn(z)] == 0 Vzcl,.
Nasobné uzly. ‘ ‘
f(x)%p(x) f(j)(xo):p(])(xO) j€{0,17'-' ,TL}
p(x)=ao+ ayz+ asz?+ et anz"”
p(z)= a1+ 2092+ 4 nanz" !
P (z)= 2as+ ce n(n—1)a,z" 2
p™ (x)= nla,
Matica stustavy:
1 xy 23 2} g
0 1 2z 323 nxf !
0 2 6xg n(n—1)xf >
0 0 0 0 n!
_ f/(xo) f(n) (‘Z‘O) n f(n+1)( ) n+1
f(x)= f(zo)+ 1 (z—20)+ e r—2x0)" + (nt1)! (z—0)
Q(x)

Q(z) je hladany polyném.
Zovseobecneny Newtonov interpola¢ny polyném pre nasobné uzly:

p(x)=co+c1(x—x0)+Co (x—x0)2+ s drep(@—xzo)"

@) (p
Cz:f z<' O)Zf[xowo,"' , T
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Priklad 10.1.
Podmienka (*): xo— fo, 21— f1, T2— fa, f3, 3, 23— f3.
Treba najst Newtonov interpolacny polyném tak, aby platila podmienka (*) pre

uzly xg,- - ,x3. Preznaenie: up=xg, u1==x1, ug==o, u3==s, u4==o, us=2x3 (podla
nésobnosti).

uo  Foo

up Fio Fn

uz Fag Fo1  Faa

us Fig F§k1 I3y Fis

us Fapo Ffy Ffy Fiz Fu

us Fso Fs1 Fso Fs3 Fsq Fss

F;; st koeficienty Newtonovho interpola¢ného polynému.

Fskfl_stlkfl F(k) (us>
FS == F* = F’L = i
k Yot g sk %l o=1f(us)

f(x)=Foo+Fi1(x—x0)+Foz(x—x0)(x—21)+F33(x—20) (x—21) (x—22)+
+Fu(z—x0)(z—21) (2—22) %+ Fys(x—x0) (2 —121 ) (£—122) 3

Hermiteova interpolacia:
Dané st z;, f(z;) a f'(x;). 1€{0,--- ,n}. Nech z;#x; pre i#j. Hladdme polyném
z triedy p€Pa, 1 taky, ze p(x;)=f(z;) a p'(z;)=f"(x;).
Veta 10.3. Nech z;,y;, y;€R Vie{0,1,--- ,n} z;7#x; pre i#j.
Potom 3h(x)EPapt1(x) : h(x;)=f(z:;) a h'(z;)=f'(z;). Polynom h(z) vyzerd
takto:

Zl 20 (i) (v =) (@) fit-(w =) [l (@) f]

T—T;

kde l;(z)=
LTIy
i#]
Priklad 10.2. N&jdite Newtonov interpolaény polyném pre uzly f(—1)=6, f(0)=1,
f(2)=3, f(5)=

Riesenie:

zo=—1 fo=6

)_\
@

= =1 =
z1=0 f fu 10 -3
3—1 6
To=2 f2=3 f21—7—1 f22:§:2
20 2 1
T3=5 f3=66 fa1 fa2 5 fa3 63

1 1 5 11
p(m):6—5(a:—|—1)+2m(m—|—1)+§x(x—|—1)(x—2)=§x3+§x2 Ea:—l—l
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Newtonov interpolacny polynom pre ekvidistantné uzly.
{z:}1g — {f(=zi)}y, h=xiy1—2; pre i=0,1,--- ,n—1.

f(@)=f(x0)+flxo, 21](x—20)+ f[T0, 71, T2] (T—T0 ) (T—21 )+ - - - +

n—1
+-- +f[1'0a Ty, 7$n] H (1’71'1)4» f[l‘(), e ,xn,.’ﬂ](l’fl’o) e (lL’*,ﬁL’n)
=0 chyba
Ak
Af(@s)=f(@iz1)—f(@i), flwo, - ax]= k!hJ;O-
To fo
T h %
. ; A £%fy
2 2 h 2h?
- f Afy A f A3 fo
8 3 h 2h? 613
r=x9+th,
2
f(xo+th):f(xo)+Af}(Lx°) tht 2 QJ;L(fO) th(t—1)h+- -+
A”f(xo) n An+1f(£$) n
Al t(t—1)--- (t—n+1)+m.h Hi(t—1)--- (t—n)

f(zo+th)= f(zo)+ G) Af(xo)+---+ (2) A" f(xo) + <n4t—1> A" f(20)

Newtonov interpola¢ny polyném napred
pre ekvidistantné uzly

t\ tk

Optimalny vyber interpolaénych uzlov:
Chyba Newtonovho interpola¢ného polynému, ked mame n+1 interpola¢nych uzlov:

7f(n+1)(77m) .
6(1)—W(I*Io) () f(x)—p(z)=e(z)
{witico = {f(z))} wi€(a,b)
MnJrl

M)+ (e (n+1) ()| —.
Z§3§>Ie(w)lﬁ(n+l)! [(x—20) -+ (x—2n)| wggf;)If (z)|=:Mp 41
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Veta o minimalnej odchylke pre CebySevove polynémy.
Spomedzi vsetkych normalizovanych polynémov n-teho stupiia v premennej t sa
prave T, (t) na intervale (—1,1) najmenej odchyluje od nuly.

T,,=2'"" cos(n arccos )

pn (£)]|> T, (t)|=[2"""
max |pn(t)]2 | max  [Tn(t)]=[277"|

te(—1
Dokaz. , . .
x:%aH—Ta cos(narccost;)=0 narccost;= Z2 .
arccost;=——m t;=cos| —
2n 2n

T, (W) _gt-np <2x;(_aa—|—b)> _ (2x;£aa+b)>”+m , <b_2a)n

T80 (£)=2'2" (b—a)" T}, <2m;(“+b)> ="t
—a

Maximélna odchylka: 2'=2%(b—a)".

Veta 10.5. Spomedzi vsetkych normalizovanych polynémov sa prave Cebysevov
normalizovany polyném odchyluje majmenej od nuly.

b— 2i+1 b
ﬂfi:Ta cos (W) +¥ «— interpola¢né uzly (optimalny vyber)

XI. INTERPOLACIA POMOCOU SPLAJNOV

Linearne splajny.
{z:}y — {f(xi}y mi€{a,b), a=x9<x1< - <Tp_1<Tp=b, hi=x;y1—x;,
n

h=max h;, s(z)= Z lj(z)f(x;) <« Lagrange, f(z)~s(xz)eC(a,b), so(z) na (xq, z1);
s1(x) na (1, x2), -j~:-0, $n(x) na (xp_1,2,). si(z) si linedrne funkcie.
Sz(x):f(xz)'i‘f[xz, $i+1]($—$1)+f[9€i7 LTi41, ni](x—xi)(f—ﬁciﬂ)

f(z)mes(x) max >|f”(x)|:Mi max M;=M %hzzﬁ(m)—si(xﬂ

TE(Ti,Tiq1

s(zi)=f(z:) f(z)=lo(x)f(zo)+l1(2)f(z1)+

l;(z;)=0;; « béazické funkcie linedrneho splajnu

r1—T Lp—1—X
ak x€(xg, ———— ak z€{x,_1,7p
lo(x)=¢ T1—2o (w0, 1) lp(x)=¢ ZTn-1—%0 (n—1,2m)
0 ak x€(xy, z,) 0 ak z€(xg, xp—1)

0 ak ze€(zg, £i—1)U(Tit1, Tpn)
Ti—1—T
—— ak z€{x;_1,x;
li(x)=q wi—1—a (i1, 73)
T—x;
ek IS 1 x€(Ti, Ti—1)
LT —Ti41
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Prirodzeny kubicky splajn.
Podmienky pre prirodzeny kubicky splajn:
. S(x)eC?{a,b)
. S(x)=f(z;) i=0(1)n
. S(x)ePs ze(xi, Tit1)
. S (x29)=5"(zn)=0
Moment splajnu: M;=S!(x;), M;+1=S/ (x;+1)

N

Mis1—M;

S{(x)—M;= “(x—y)

Tip1—T4

1
r—x;

h;

€Z; —T;
St (x)=M; 7%‘ +Mitq

(r—2;)?
2h;

£C7;+1—£L')2

—oh, +A;

(x—x;)3

X _ )3
Si(:C):Mi(-T%Jrl -'17) +Mi+1 o

6h;

+Ai($—l‘i)+ bi+A;x; (1)
———r
=B,

M;h;

f(xi)=Si(z:)= +B;

M, 1h2
f($i+1)=Si(%+1)=%+A¢hi+3i

M;h? fiv1—fi
B,= 7;—71 Az: ——(M;1—M; 2
M h B ) @)
2 2
/ M. (x;—x) M (x—xi—1) A
171(.1') i—1 *th—l +M; 2hi—1 +A4;—1
Mi hz‘— Mi
S;(xl):_7hl+A’L 51{71(351'):Mi72 ! +Ai,1 7(hi,1—|—hi):Ai—Ai,1
M, R B
7Z(hz_1+hz):f2+}1ll fl_gl(Mi_‘rl_Mi)_flhi{Zl 1+ 26 1 (Mi—Mi_l)
M; h; hi—1 fivi—fi  fi—fixr
i AWRLS VA VAN M—M )= _
2 (hz 1+hz)+ 6( i+1 z) 6 ( i i 1) hz hi—l
hi—1 hi—1+h; h; fivi—fi  fi—fie1
M M+ My = -
6 1+ 3 + g it1 hi It
hi—1 h; 6 fixri—fi  fi—fie1
L Y VAR VAL VA -
hi_1+h; " 1 +hifl+hi T hithi < h; hi—1
—— ——
=X; = =gi

NMi_1+2Mi+n; M 1=g; Aitni=1

27
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2 m 0 - 0 0 0 My g1
)\2 2 2 0 0 0 MQ gz
0 /\3 2 0 0 0 Mg gs
0 0 0 - 2 TIn—3 0 My, 3 9n-3
0 O 0 tet >\n—2 2 MNn—2 Mn—2 gn—2
0 0 0 -+ 0 IAp1 2 M, g1

Ak stucet mimodiagonalnych prvkov je mensi ako prvok na hlavnej diagonale, tak
hovorime o diagondlne dominantnej matici.
Ak g(x)eC?{a,b), g(x) interpoluje f(z), S(x) —prirodzeny kubicky splajn, ktory

aproximuje f(z), potom
b b
[ orae [ ora

XII. METODA NAJMENSICH STVORCOV
Spojity pripad:

f(z)eC{a,b), p*(x)~f(x), w(x)>0 —integrovatelna, p*( Zazx je stuptia n
(presne).
Kritérium:

b b
/ w(@)[f (2)—p* (2)]Pdu< / w(@) [ (2) (@) de < Yg(z) Py ()

Diskréiny pripad:
{witicy, {F(@a)}Yion, {9i (@)}, ¢5(x) st linedrne nezévislé, tj.

vo(z1) e1(z1) ©m (1)

(/70(562) ¥1 (x2) QOHL(I'Z) .
Qo . +oq . 4+ Fam, . =0 & ;=01

wo(rn) o1(zp) Om(Tn)

)Rpm (z Z o goj . Kritérium:

Z wi[f —pm( xi)]zzminimum

p(fp)=Ilf— pl—\// —p()]*dz — spojity pripad

| f=pll= sz p(z;))? < diskrétny pripad
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Priklad 12.1. pocet neznamych << pocet merani.
Spojity pripad: f(x)eC(—1,1), mdme k dispozicii: {p;(x)}, w(xr)=1 «— vahova

funkcia. .
2)=Y aipi(x)
i=0

Nezname st ag, - - - ,a, a treba minimalizovat

| l[f(w)— Zamw)mx

_\,_/
n d;
n n 1
s Y e [ e =r-2 dt Y o) ae
i=0  j=0 -
Cij
aH n n n n
02@ = —2di+ Z Ckj05+ Z a;iCir=—2d+2 Z Cria; =0 = dp= Z CLiQ;
7=0 =0 1=0 =0
o Co1 " Con ag do
clo €11 Cln a | | d
Cno  Cnil e Cnn an, dn

Gramova matica
KedZze p;(z) st bazové v priestore < det(c;i)=0.

Priklad 12.2.
Ortogondlny systém {g;(z)}, ortonormélny systém {h;(x)} .

(9i- 95)= / (@) (w)da

go<$)=§00<x) gk chgj

x-
el
|
—

—1

(r: 95)

HQ’H; 9j (gugk):(gszk)i C](glvg])
J

gk(l‘):sﬁk(iﬂ)*

<.
Il
o
<.
Il
o

(95, 0k) _ (95> Pk)
(95,95)  llg;ll?

i=j: (95, 0%)=(95,95) ¢;j=

k—

9;
g (Salm >
Z lgill / llgsll

-

h
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k—1
gk:ﬂpk"zz:OPk,hj)hj
j=0
Legendrove ortogonalne polynomy:
Py=1, Pi=z, (n+ 1)P,41(2)=2n+1)zP,(z)—nP,_1(x)
Vlastnosti:
1. P,(x) mé n korefiov na intervale (—1,1).
2. f_ll P, (z) P, (x)dz=0 pre m#n.

dn
. P = 2_1 TL'
3 Pala) 27n! dxm™ (x2 )
1 0, 2
4. f_l[Pn(l‘)} dm_2n+1_
5. f_11 kan(:L‘)dx:O pre k=0,1,---  k—1.
1 2n+1(nl)2
. TLPn d =
6. 2, a"Py(x)dx @n1)!

Priklad 12.2. (pokracovanie)

n

F@)mp™ ()= a;h;(x)=" (f h;)h;(x)
0 =0

Jj= Jj=

1
a;=d;= / 1 f(x)hj(z)dz=(f, h;) (f, hj)sa Fourierove koeficienty

n n n
H(ag, -+ ,an)=n—2 Z a;d;i+ Z a; Z ajcijzn—QaTd—&—aTca
i=0 i=0 =0
cij=0 & i#j], aTca=aTa, lebo c je jednotkova matica. Preto:

n+(a—d)T(a—d)—dTd=n+aTa—dTa—aTd+dTd—dTd=n+aTa—2aTd

totiz aTd=dTa.
Pre aké a bude H minimélne? Ak a=d.
Diskrétny pripad:
{o 0, {F (@)}, {@i(@)}7, ¢;(z) st linearne nezavislé tvaru z7.

n

F@)mpn(@)=" 0] pi(w)
i=0
al(-m) — horny index je stupen polynému a nie derivacia.
Treba minimalizovat:

> wlf @) —pu@)?

N |

If—pll= (Z wi[f(xi)—pm(xi)V)
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S wilf @) -3 aPpi@)E e H@, - al™)
Jj=1 =0

O0H i _ " om
9™ =2 wil ()= Y ap; (@) (en(a:))=0
ay i=1 j=0
m n n B
Z a§m) Z wip; () pr(wi) = Z wi f(xq)pn ()
=0 i=1 i=1
djk Pk
ia(-m dip=
g k= Pk
=0
(m)
doo  do1 dom ag Po
dyo dix din a(m) _ P1
an dnl Tt dnn a%n) pm

1
Priklad 12.8. Mame interval (0, 1), ekvidistantne na n podintervalov dlzky hzﬁ.
x;€{(i—1)h,ih).

1 n n
. 1 . ; n
J-‘rkd ~l J+k = j+k_ "

/m v nzx ;x Jj+k—1

0 i=1
L 1 1 1
2 3 m+1
1 1 1 1
(dij)=n- 2 3 4 m+2 | ~» zle podmienend matica
i 1 1 ' i
m+1  m+2 m+3 1+2m

Priklad 12.4. o;(z)=27, {z;}7, Q¥ (2), Q" (x), -, Q" (2),
> wiQf (1) Q" ()
=1

Qj+1(r)=(z—;11)Q;(z)—B;(x)Q;j-1(z) Qo(z)=1 Q1(x)=0
| > wiwi Q3 () > wiQ3(w:)

J

Qj(2)=laj+ ) aix’ aj="7 Bi==
i=0 ZwZQi(xl) ZwiQifﬂxi)
i=1 i=1
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doo  dor -+ dom bo Po

m N le dll c. dlm bl P1
%ZbJQE’ OB : D : S I
= : : . : : :

dmO dml e dmm bm Pm

(dij) je diagonalna matica, lebo d;;=0 pre i#j.

pr=Y_ [(2:)Qu(:)

i=1

m—sz Q" () QL (2:)

Pk
bp=—
dik
Poznamka. .
1
Cebysevove ortogonalne polynémy: / T:(x)T(x)dx
Y g poly y . m ]( ) k( )

oo
Hermiteove ortogondlne polynémy: / e H i(x)Hy(z)dx

—0o0
o0
Laguerrove ortogonédlne polynémy: / e “L;(x)Ly(z)dx.
0
Priklad 12.5. Mame zmeranti odpor medenej tyce v réznych teplotach:

t;(C°) 19.1 250 30.1 36.0 40.0 45.1 50.0
R;(Q) 76.30 77.80 79.75 80.80 82.35 83.90 85.10

Treba minimalizovat:

7
H(ao,a1)= g R;—ap—ait;)

i=1
OH 7 7 7 7
—=—2 Z(Ri—ao—alti)zo Zt? Zti ZRZ
Oao i=1 | = i=1 <a0> _| =t
rd 7 7 al 7
7_—22 —ao—alti)ti:O Zti th Zthl
Oy i=1 i=1 i=1 i=1

€i+ao+a1ti=Ri 1 ( 0 ) = RZ‘
. . al .
Xa=y = XTXa=XTy

Symetrickd M,,,, matica je kladne definitna, ak existuje inverznd pozitivne definitna
symetricka matica.
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XIII. NUMERICKA DERIVACIA

P ao) @)y () a0y

f'(xo), | f"(x0) "

T

f(xo+h)—f(xo) f"(x0),  f"(x0)
I TR

Symbolom ” f(x) je nekonefne mald radu O(hP)” rozumieme: ak existuje kR,
ho>0 Vh>0 h<ho=|f(x)|<khP.

f(z)=f(xo+h)=f(z0)+

h2+...

=f"(w0)+

f(@o+h)—f(wo)

h —f'(zo)=a1h+ash*+azh®+ - --

f(zo+h)—f(zo—h)

2h
fl(@o),  f"(@o), o, f"(w0), 5, [ 4 FY) 5
S 4 S R W R

e (e e (iv) (v)

Dy(h)=

f(zo+h)=f(z0)+

flxo+h)—f(xog—h)=2h 7'4» .

3! 5!

f//,(l'o) 4f(v)
T

/ " (v)
f (1I|0)+2h3f (x0)+2h5f

S o) = o= = (o) +1?

1
o [f(wo+h)— f(zo—h)]—f(w0)=b1 h*+bah*+b3h®+chyba raduO(h?)

Do(h) méa chybu radu O(h?); D4 (h), D—(h) maja chybu radu O(h).
Priklad 13.1. Aproximujte derivaciu e* v bode 1. R; chyba odseknutia.

h | Dy(h) R,

0.4 [3.3423 [6.24% 107!
0.2 |3.0092 |2.91 %101
0.1 |2.8588 |1.41 %1071
0.05 |2.7874 16.91 % 102

h Do(h)—e [|7.5%107%| —8.18%107°
75%107! 12591071 ||7.5%1076| —2.82 %107
75%1072 |2.52%1073 || 751077 | 1.72%1073
75%1073 [242%107°%||7.5%1078| 8.17% 102
75%107%* 11.82%107°%||7.5%107° 1.28
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_ | f(@o)+h)=f(xo=h) f(zo+h)—[f(zo—h)
2h 2h

|Do(h)—D <

|[f(zo+h)—f(zot+h)[<e  |f(zo—h)~f(zo—h)|<e

2 €

<‘f(xo+h)—f(xo+h)_f(xo—h)—f(xo—h) _
- —2h h

2h 2h

Richardsonova extrapolacia.

D, (h)

T(h){ D_(h) . Predpokladajme, ze T'(h) vieme poéitat pre h#0 rozne h. Ak
Do(h)

lim existuje, chceme ju odhadnit.

h—0

T(h) teraz ratame z Dqy(h):

T(h)=f"(z0)+b1h*+ boh*+bsh®+ - --
| S —
O(h4)
T(h)=f"(x0)+b1h*+O(h*)
T(2h)=F"(z0)+4b1 K> +O(h*)

T(2h)-T(h) 4
— O

T(2h)—T(h)=3b,h*+O(h*) = b1h*=
T(h)=F(zo) +(T(2h)~T(R) 5 +O(*)

Zf/(xo)+(9(h4)

T(n)

T(h):fl<$0)+O(h4):f/((£0)+01h4+ Cgh6+03h8+
O(h®)

T(h)=f"(x0)+c1h*+O(h®) - - - spravime to isté ako s T'(h)
T(2h)=f"(z0)+16c1h*+O(h®)
T(2h)—T(h)
15

o T(2R)-T(h)
T(h)=f (o) +———

=c1h*+0(h)

+0O(h")
T(h)—T(2h)
15
T(h)= f'(zo)+bih? +O(h") r>p
—————

L1 (hP)

+T(h)=f"(z0)+O(h°)
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T(2h)= f'(x0)+b1(2h)? +O(h")
N———
L [(2h)P]

Pre Dy je p=1, pre Dg je p=2.
L;(h?) —Lagrangeov polyném 1. stupiia v premennej h?.

Priklad 13.2. Ideme interpolovat v premennej h?, potrebujeme 2 interpolaéné uzly.
L1 [(2h)P]=T(2h); L1[WP]=T'(h); L(z)=lo(x) f(z0)+1(2) f(21)

_x—m o TP=hP o TP—(2h)P
lo@ )_(2h)p—hz’ L )_hpf(Qh)p

l()(.’L‘ =
To—aT1

aP—hP xP—(2h)P
mT(?h)erT(h)

e e e e

.Tozhp

Ll(l’p):

T(h)—T(2h)
e

=

=
SIS
(=] [=]

T

8

A

I
~/~
N >
~_
S

N

o3
(=}

To1 T

\
N

8

[\v)

|
NN
N
~
S

~

TN TN T NN

T3 T3z 133

B
I
7N
| >
N———
ks
~
| = oo > > o>
~ —
&3
(=]

[\)
=

Tip—1—Ti—1 k-1

(q7)F -1
Priklad 13.3. Mame aproximovat I'(z) v bode z=1.5. ['(z)= [~ e 't*~dt. I'(x)
mé derivacie vyssich radov. I (z)= [ e~"t" " Intdt.

Ti=T; -1+

'(1.9)-T(1.1)

Too=Do (0, 4)=———p=———=0.013019
I'(1.7)-I'(1.3
T10=Do(0, 2):%:0.027920
h T; T; T; Ti3

7
0.4 0 0.013019

0.2 1 0.027920 0.032887

0.1 2 0.031258 0.032371 0.032337

0.05 3 0.032069 0.032339 0.032337 0.032337

Presna hodnota I'"(1.5)=0.032338 na 6 desatinnych miest.
Poznamka.

8f(827 y) ({170, yo)%f<x0+h7 yO)Q_hf(xO_h7 yO)
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XIV. RIESENIE SUSTAV LINEARNYCH ROVNIC

y"—y=0 y(0)=0 y(1)=sinh1
ylith)=2y@)+y(ei=h)

Y (2:)—y(r:)=0 = 12
1 —(2+h)? 1 0 o 0
h:Z : 1 —(2+h)? 1 ya | = 0
0 1 —(2+h?) Y3 sinh 1

i Ui chyba
1]0.252803 |1.9%10~*
21 0.521406 |3.1% 1074
310.822598 [2.8 % 10~*

Priklad 14.1. Ax=Db, A je regularna $tvorcova matica.

ai; aiz2 - Qain Z1 b1
a21 Q22 -t A2p €2 by
an1 an2 e Ann Tn bn
* £ *

apy Q12 -0 A1p
* *

Aik 0 a3 - a3
mik= a A~ .
kk :

0 0 at,

Algoritmus GEM:
for k:=1 to n-1 do
for i=k+1 to n do
Mik = Qik/ Ak
for i=k+1 to n do
for j:=k+1 to n do
Ajj 1= Qi5 — My ALKy
for i:=k+1 to n do
bi = bz — My * bk

n—1 n—1 n—1 n—1 3 PR
e

(n—k)P= 3" 7= Y [(=1r+7)= Y2 t= [3+2} -
k=1 =1 1 y=1 1
B f n+ lg n7n(n71)(n72)+n(n71)7n37n2+ﬁ
13, L2, 3 23 6

Pocet zdruzenych operacii v tomto algoritme: T
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ail 1|1 .
< 1 1‘ 2) £=an

€ Bez pivotizacie s pivotizaciou
10~ | 1.0013580;0.9999900 | 1.0000100;0.9999900
1076 | 1.0132790;0.9999990 | 1.0000010;0.9999990
1077 | 1.1920930;0.9999999 | 1.0000001;0.9999999
1078 | 0.0000000; 1.0000000 | 1.0000000; 1.0000000

Netreba robit pivotizaciu:
1. ak matica je diagonalne dominantna
2. ak matica je symetricka kladne definitna

Priklad 14.2.

LU-rozklad.
a1l a2z a3 1 0 0 Ul U2 U13
ag1 Gz a3 | =l 1 O 0  up U2
azp Qg2 ass l31 l 1 0 0 uss

0.6 1. 52 3. 5 1
A=\ 2 ~ P=1[ 2 | P pamita riadky
1 3
2 4 1 2 2 4 1 2
06 152 35 ~|1]=(03 032 32|~ |3
1 28 1 3 05 08 05 1
2 4 2 4 1
=105 038 0.5 =105 08 05
0.3 032 32 03 04 3
1 0 O 2 4 1
=L=(05 1 0 U=10 08 05
03 04 1 0 0 3
2 4 1 010
LU= 1 28 1 P=10 0 1 PA=LU
06 152 3.5 1 00

Algoritmus na LU-rozklad:

for k:=1 to n-1 do
~v:=tnd max(a, k,n)
swap(A,b,k,n,vy)
Pyi=Dk; PE=7

for i=k+1 to n do
M=/ Akk

for i=k+1 to n do
for j=k+1 to n do

A5 =i5 =Mk * Ak
for i:=1 to n do
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5:=by,
for j:=1 to i-1 do
SI=8—Qi;5 *Yj
Yi=s
(Poslednych 5 riadkov riesi Ly=Pb.)

XV. NUMERICKA KVADRATURA

Chceme aproximovat I= [ f f(x)dx
Obdiznikove pravidlo: I~(3—a)f(Z) pre T€(a,b)

Lichobeznikove pravidlo: Im%(ﬂ—a) (f()+£(9))

Simpsonovo pravidlo:

a+p

[F@)+4f+F(B)]  v=—5

B

T 6
Newton-Cotesova metdda:
Ak pocet interpolaénych uzlov je n+1, tak namiesto integrandu f(x) berieme
Lagrangeov polyném n-teho stupna.

Nech z;:=a+ih, kde hzﬂ_—a. Potom Lagrangeov polyném n-teho stupna:
n

(@)=Y f) [ =
i=0 J

g#i

/a deZf /aHiZd

J#£i

/ﬂH;_Zjd:ﬂ h)\mfh/ Ht ]dt
« i Aj

J#

Potom (n + 1)-uzlovd Newton-Cotesova aproximaécia je:

ﬁ n
[ r@asny fwn
@ i=0



