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II. Spojité zobrazenia 7
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2 GYÜRKI PIŠTA

I. ZÁKLADNÉ POJMY

Defińıcia 1.1.
Nech X je množina. Potom systém τ ⊆ P(X) sa nazýva topológia na množine X ak plat́ı:
(1) ∅, X ∈ τ
(2) Ak U, V ∈ τ , tak U ∩ V ∈ τ
(3) Ak S ⊆ τ , tak

⋃

U∈S
U ∈ τ

Ak τ je topológia na X, tak (X, τ) sa nazýva topologický priestor. Prvky τ sa nazývajú otvorené
množiny.

Pŕıklady.
1.1. ∅, X sú vždy topológie; τind = {∅, X} je topológia a nazýva sa indiskrétna topológia na X.
1.2. X; τdis = P(X) je topológia na X a nazýva sa diskrétna topológia.
1.3. R; τd = {U ∈ P(R); ∀a ∈ U ∃ε > 0 : (a−ε, a+ε) ⊆ U} obvyklá (štandardná, kanonická) topológia

na R.
1.4. R; τz = {U ∈ P(R); ∀a ∈ U ∃c < a : (c, a] ⊆ U} topológia na R. U, V ∈ τz, a ∈ U ∩ V ,

c1 < a : (c1, a] ⊆ U , c2 < a : (c2, a] ⊆ V , c = max{c1, c2} < a, (c, a] ⊆ V ∩ U , τd ⊆ τz.
1.5. R; τ→ = {∅,R} ∪ {(a,∞), a ∈ R} – topológia na R.
1.6. R; τcof = {U ∈ P(R); R \ U je konečná } ∪ {∅} – kofinitná topológia .
Metrika: d : X ×X → R:
(1) ∀a, b ∈ X : d(a, b) ≥ 0
(2) ∀a, b ∈ X : d(a, b) = d(b, a)
(3) ∀a, b, c ∈ X : d(a, c) ≤ d(a, b) + d(b, c)
(4) ∀a, b ∈ X : d(a, b) = 0⇔ a = b

Pŕıklady.
1.7. Nech (X, d) je metrický priestor. Potom τd = {U ∈ P(X) : ∀a ∈ U∃ε > 0 : Oε(a) ⊆ U} – je

topológia daná metrikou d.
1.8. (R, τd); (a, b) je otvorená, ale (a, b] nie je otvorená.
1.9. (R, τz); (a, b) je otvorená, a (a, b] tiež.

Defińıcia 1.2. Nech (X, τ) je topologický priestor. Podmnožina A ⊆ X sa nazýva uzavretá v (X, τ), ak
X \A ∈ τ .

Veta 1.1. Nech (X, τ) je topologický priestor. Potom plat́ı:
(1) X, ∅ sú uzavreté.
(2) Ak A,B sú uzavreté v (X, τ), tak A ∪B je uzavretá v (X, τ).
(3) Ak L je l’ubovol’ný systém uzavretých množ́ın, tak

⋂

A∈L
A je uzavretá množina.

Pŕıklady.
1.10. [a, b] je v R s obvyklou topológiou uzavretá.
1.11. (a, b] nie je uzavretá v (R, τd).
1.12. (a, b] je uzavretá v (R, τz).
Defińıcia 1.3. Nech (X, τ) je topologický priestor. Potom systém B ⊆ τ sa nazýva báza topológie, ak
pre každé U ∈ τ existuje L ⊆ B tak, že U =

⋃

V ∈L
V .

Ak B je báza topológie, tak aj B \ {∅} je báza topológie.

Veta 1.2. Systém B ⊆ τ je báza v (X, τ) ⇔ pre každé U ∈ τ a pre každé x ∈ U existuje V ∈ B tak, že
x ∈ V ⊆ U .

Dôkaz.
⇒ : Nech U ∈ τ a x ∈ U . ∃L ⊆ B, U =

⋃

V ∈L
V . Potom existuje V ∈ L, x ∈ V . Plat́ı V ∈ B, V ⊆ U .

⇐ : Nech U ∈ τ a x ∈ U . ∃Vx ∈ B : x ∈ Vx ∈ B. L = {Vx, x ∈ U} ⊆ B;
⋃

x∈U
Vx = U .
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Pŕıklady.
1.13. (R, τd); B = {(a, b) : a < b, a, b ∈ R} – báza τd. U ∈ τd, x ∈ U, x ∈ (x− ε, x+ ε) ⊆ U .
1.14. (R, τd); B = {(a, b) : a < b, a, b ∈ Q} je báza τd.
1.15. (R, τz); B = {(a, b] : a < b, a, b ∈ R} je báza τz.
1.16. (R, τz); B = {(a, b] : a < b, a, b ∈ Q}. Je to báza τz ?
1.17. (X, τdis); B = {{a}, a ∈ X} je báza (X, τdis).
1.18. (X, d) je metrický priestor. B = {Oε(x); x ∈ X, ε > 0} a B = {O 1

n
(x); x ∈ X, n ∈ N} sú bázy

priestoru (X, τd).

Veta 1.3. Nech B je báza topológie v priestore X. Potom plat́ı:

(i)
⋃

V ∈B
V = X.

(ii) Ak V1, V2 ∈ B a x ∈ V1 ∩ V2, tak existuje V3 ∈ B tak, že x ∈ V3 ⊆ V1 ∩ V2.

Veta 1.4. Nech B je systém podmnož́ın množiny X, ktorý má vlastnosti (i) a (ii). Potom systém množ́ın
τB = {U ∈ P(X) : ∀a ∈ U ∃V ∈ B : a ∈ V ⊆ U} je topológia na X a B je báza τB.

Dôkaz. ∅ ∈ τB, X ∈ τB z (i). Nech U1, U2 ∈ τB. Nech a ∈ U1 ∩ U2. Potom a ∈ U1, a ∈ U2 a existujú
V1, V2 ∈ B tak, že a ∈ V1 ⊆ U1, a ∈ V2 ⊆ U2, a ∈ V1 ∩V2. Potom ∃V3 ∈ B: a ∈ V3 ⊆ V1 ∩V2 ⊆ U1 ∩U2 ⇒
U1 ∩ U2 ∈ τB. S ⊆ τB, a ∈ W =

⋃

U∈S
U . Potom ∃U ∈ S, a ∈ U

(ii)⇒ ∃V ∈ B, a ∈ V ⊆ U ⊆ W ⇒

W∈τB, B ⊆ τB, V ∈ B ⇒ ∀a ∈ U ∃V ∈ B ⇒ V ∈ τB. U ∈ τB ⇔ ∀a ∈ U ∃V ∈ B : a ∈ V ⊆ U .

Pŕıklady.
1.19. X, B = {{a}, a ∈ X} τB = τdis
1.20. Nech (A,≤) je usporiadaná množina a má aspoň 2 prvky. Pre a<b, a, b ∈ A : (a, b) = {x∈A,

a<x<b}, [a) = {x∈A, x<a}, (b] = {x ∈ A, x>b}. B = {(a, b); a, b ∈ A, a<b}∪{[a), a ∈ A}∪{(b], b ∈ A}
je báza topológie na A. τB = τ≤ je topológia určená usporiadańım ≤.

Defińıcia 1.4. Nech (X, τ) je topologický priestor. Systém S ⊆ τ sa nazýva subbáza topológie τ , ak

{
k⋂

i=1

Wi, k ∈ N, Wi ∈ S} je báza topológie τ .

Pŕıklad.
1.21. (R, τd) S = {(−∞, a], a ∈ R} ∩ {(b,∞), b ∈ R} – subbáza τd.

{
k⋂

i=1

Wi, k ∈ N, Wi ∈ S} = S ∩ {(a, b); a, b ∈ R, a < b} ∪ {∅}; BS ⊇ B = {(a, b), a, b ∈ R, a < b}.

Veta 1.5. Ak S je subbáza topológie τ na X, tak
⋃

V ∈S
V = X.

Dôkaz. Nech BS={
k⋂

i=1

Wi, k∈N, Wi∈S} je báza τ . Potom
⋃

V ∈BS
V = X. Nech

⋃

W∈S
W = Y ( X,

∀V ∈ BS ∃W ∈ S : V ⊆W ⇒
⋃

V ∈BS
V ⊆

⋃

W∈S
W = Y ( X spor s (i).

Veta 1.6. Nech S ⊆ P(X) a
⋃

W∈S
W = X . Potom BS = {

k⋂

i=1

Wi, k ∈ N, Wi ∈ S} spl’̌na (i), (ii) a τBS

je určená bázou BS je topológia na X pre ktorú S je subbáza.

Dôkaz.
S ⊆ BS ⇒

⋃

V ∈BS
V ⊇

⋃

W∈S
W = X ⇒ (i) pre BS . Ak V, V ′ ∈ BS ⇒ V ∩ V ′ ∈ BS ⇒ plat́ı (ii) pre BS .

Potom τBS = {U ∈ P(X), ∀a ∈ U ∃V ∈ BS : a ∈ V ⊆ U} je topológia na X a BS je báza τBS ⇒ S je

subbáza τBS . S ⊆ BS ⊆ τBS ⇒ S ⊆ τBS a {
k⋂

i=1

Wi, k∈N, Wi∈S} = BS je báza τBS ⇒ S je subbáza τBS .
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τS = τBS = {U ∈ P(X), ∀a ∈ U, ∃k ∈ N ∃W1, · · · ,Wk ∈ S : a ∈
k⋂

i=1

Wi ⊆ U}.

Defińıcia 1.5. Nech (X, τ) je topologický priestor, p ∈ X. Každá otvorená množina U ∈ τ pre ktorú
p ∈ U sa nazýva okoĺım bodu p. Systém všetkých okoĺı bodu p: η(p).

Plat́ı: Ak U,U ′ ∈ η(p)⇒ U ∩ U ′ ∈ η(p).

Defińıcia 1.6. Nech p ∈ X, (X, τ) je topologický priestor. Systém B(p) ⊆ η(p) sa nazýva báza okoĺı
bodu p ak ∀U ∈ η(p) ∃V ∈ B(p) tak, že V ⊆ U .

Pŕıklad.
1.22. (X, d) je metrický priestor, p ∈ X. B(p) = {Oε(p), ε > 0} – báza okoĺı bodu p v (X, τd).
1.23. B′(p) = {O 1

n
(p), n ∈ N} – báza okoĺı bodu p v (X, τd).

1.24. (R, τz) B(p) = {(p− ε, p], ε > 0} – báza okoĺı v p.
1.25. (R, τdis) B(p) = {{p}} – báza okoĺı p.

Veta 1.7.
(1) Ak B je báza topológie v (X, τ) a p ∈ X, tak B(p) = {V ∈ B, p ∈ V } je báza okoĺı v p.
(2) Ak pre ∀p ∈ X B(p) je báza okoĺı v (X, τ), tak

⋃

p∈X
B(p) = B je báza topológie v (X, τ).

Dôkaz.
(1) Nech U je okolie p. Teda U ∈ τ a p ∈ U . Potom existuje V ∈ B : p ∈ V ⊆ U . V ∈ B(p), V ⊆ U .
(2) Nech U je otvorená množina tj. U ∈ τ , p ∈ U . ∃V ∈ B(p) ⊆ B, V ⊆ U, p ∈ V ⊆ U .

Veta 1.8. Nech (X, τ) je priestor a pre každé p ∈ X je daná báza okoĺı B(p). Potom plat́ı:
(i) ∀p ∈ X : B(p) 6= ∅
(ii) ∀V ∈ B(p) p ∈ V

(iii) Ak V1 ∩ V2 je okolie p potom ∃V3 ∈ B(p) : V3 ⊆ V1 ∩ V2.
(iv) ∀V ∈ B(p) ∀q ∈ V ∃W ∈ B(q) : W ⊆ V .
(v) U je otvorená v (X, τ)⇔ ∀p ∈ U ∃V ∈ B(p) : V ⊆ U .

Dôkaz.
(i) X ∈ η(p)⇒ ∃V ∈ B(p) V ⊆ X ⇒ B(p) 6= ∅.

(iii) V1 ∩ V2 je okolie p⇒ ∃V3 ∈ B(p) tak, že V3 ⊆ V1 ∩ V2.
(iv) Nech V ∈ B(p), q ∈ V . V ∈ τ ⇒ V je okolie q ⇒ ∃W ∈ B(q) : W ⊆ V .
(v) ⇒ : U je otvorená a p ∈ U . Potom U ∈ η(p)⇒ ∃V ∈ B(p) tak, že V ⊆ U .

⇐ : ∀q ∈ U ∃Vq ∈ B(q) : Vq ⊆ U . q ∈ Vq, Vq ∈ τ, U =
⋃

q∈V
Vq ∈ τ .

Veta 1.9. Nech X je množina a ∀p ∈ X je daný systém B(p) ⊆ P(X) pričom sú splnené podmienky (i)
až (iv). Potom τ = {U ∈ P(X), ∀p ∈ U ∃V ∈ B(p), V ⊆ U} je topológia na X taká, že pre všetky p ∈ X
je B(p) báza okoĺı bodu p.

Dôkaz. ∅, X ∈ τ ; U,U ′ ∈ τ p ∈ U ∩ U ′ ⇒ ∃V, V ′ ∈ B(p), V ⊆ U, V ′ ⊆ U ′ (iii)⇒ ∃V ′′ ∈ B(p) :
V ′′ ⊆ V ′ ∩ V ⇒ V ′′ ⊆ U ∩ U ′. U ∩ U ′ ∈ τ . Ak S ⊆ τ , tak

⋃

V ∈S
V ∈ τ je zrejmé. Nech p ∈ X. Chceme

ukázat’, že B(p) je báza okoĺı p v (X, τ).
1. B(p) ⊆ η(p) ⊆ τ . Nech V ∈ B(p), q ∈ V . Podl’a (iv) ∃W ∈ B(q) W ⊆ V ⇒ V ∈ τ . Podl’a (ii)

∀V ∈ B(p) : p ∈ V .
2. ∀U ∈ η(p) ∃V ∈ B(p) V ⊆ U . U ∈ η(p)⇒ U ∈ τ ; p ∈ U ⇒ ∃V ∈ B(p)⇒ V ⊆ U .

Pŕıklad.
1.26. P1=(R×R+

0 , τ1) Oε(a, b)={(c, d)∈R×R+
0 ;
√

(a− c)2 + (b− d)2 < ε}. Ak (a, b) ∈ R × R+
0 a

b>0 tak B(a, b)={Oε(a, b); ε > 0}. Õε(a, 0)={(c, d)∈R×R+
0 ;
√

(a− c)2 + d2 < ε, d > 0} ∩ {(a, 0)}.
B(a, 0)={Õε(a, 0); ε > 0}.

1.27. P2 := (R × R+
0 , τ2), B(a, b) = {Oε(a, b), ε > 0} pre b > 0. B(a, 0) = {Ōε(a, 0), ε > 0},

Ōε(a, 0)=Õε(a, ε) ∪ {(a, 0)}.
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Defińıcia 1.7. Nech A ⊆ (X, τ). Potom množina Ā =
⋂{V ∈ P(X); V je uzavretá v (X, τ) a A ⊆ V }

sa nazýva uzáver množiny A.

Veta 1.10. Nech A,B sú podmnožiny v (X, τ). Potom plat́ı:
(1) A ⊆ Ā a Ā je uzavretá množina.
(2) Ak V je uzavretá v (X, τ) a A ⊆ V , tak Ā ⊆ V .
(3) ∅̄ = ∅.
(4) Ak A ⊆ B, tak Ā ⊆ B̄.
(5) A ∪B = Ā ∪ B̄.
(6) B je uzavretá ⇔ B̄ = B.
(7) (Ā) = Ā.

Dôkaz.

(4) A ⊆ B ⊆ B̄, A ⊆ B̄ – uzavretá
(2)⇒ Ā ⊆ B̄.

(5) A∪B ⊆ Ā∪ B̄ je uzavretá ⇒ A ∪B ⊆ Ā∪ B̄; A ⊆ A∪B ⊆ A ∪B ⇒ Ā ⊆ A ∪B, B̄ ⊆ A ∪B ⇒
Ā ∪ B̄ ⊆ A ∪B ⇒ Ā ∪ B̄ = A ∪B.

(6) ⇒ : B ⊆ B – uzavretá ⇒ B̄ ⊆ B. Podl’a (1) plat́ı B ⊆ B̄.

⇐ : B = B̄
(1)⇒ B je uzavretá.

(7) Ā je uzavretá ⇒ (Ā) = A.

Veta 1.11. Nech X je množina a cl : P(X) → P(X); A 7→ clA je zobrazenie, ktoré má nasledujúce
vlastnosti:
(cl 1) ∀A ∈ P(X) : A ⊆ clA.
(cl 2) cl ∅ = ∅.
(cl 3) cl (A ∪B) = cl A ∪ cl B.
(cl 4) cl (clA) = cl A.

Potom τ = {U ∈ P(X), cl (X \ U) = X \ U} je topológia na X a pre každé A ∈ P(X) : cl A = Ā.

Veta 1.12. Nech A je podmnožina X, (X, τ) je topologický priestor a p ∈ X a B(p) je báza okoĺı bodu
p. Potom p ∈ Ā⇔ ∀V ∈ B(p) : V ∩A 6= ∅.
Dôkaz.
⇒ : Nech ∃V ∈ B(p) : V ∩A = ∅. Potom A ⊆ X \ V – uzavretá. Potom Ā ⊆ X \ V ⇒ p /∈ Ā.
⇐ : p /∈ Ā – uzavretá. Potom p ∈ X \ Ā – otvorená ⇒ ∃V ∈ B(p) V ⊆ X \ Ā ⇒ V ∩ Ā = ∅ ⇒

V ∩A = ∅. �
Nech X je topologický priestor, A ⊆ X potom Int A =

⋃{U ∈ P(X), U je otvorená, U ⊆ A}.
Pŕıklad.

1.28. Int [0, 1] = (0, 1), Int Q = 6 ∃ (6= ∅)
Defińıcia 1.8. Priestor X sa nazýva separabilný, ak v X existuje spočitatel’ná hustá podmnožina.

Defińıcia 1.9. Množina A ⊆ X je hustá v X , ak jej uzáver je celý topologický priestor. Ā = X.

Veta 1.13. Podmnožina A priestoru X, ktorého báza je B. Potom A ⊆ X je hustá v X ⇔ ∀V ∈ B,
V 6= ∅ : V ∩A 6= ∅.
Dôkaz.
⇒ : Nech existuje V ∈ B, V 6= ∅ tak, že V ∩ A = ∅. Potom A ⊆ X \ V – uzavretá množina. Potom

Ā ⊆ X \ V 6= X ⇒ A 6= X ⇒ A nie je hustá v X.
⇐ : Nech A nie je hustá v X tj. Ā 6= X. Potom X \ Ā 6= ∅, X \ Ā je otvorená. Nech c ∈ X \ Ā.

∃V ∈ B tak, že c ∈ V ⊆ X \ Ā. V 6= ∅, V ∩ Ā = ∅ ⇒ V ∩A = ∅.
Pŕıklady.

1.29. Q̄ = R, (R, τd) B = {(a, b), a < b, a, b ∈ R} – báza τd. (a, b) ∩Q 6= ∅.
1.30. (R, τz), B = {(a, b], a < b, a, b ∈ R} Q̄ = R.
1.31. (R, τdis), B = {{a}, a ∈ R} Q̄ 6= R.



6 GYÜRKI PIŠTA

Defińıcia 1.10. Hovoŕıme, že X spl’̌na 1. axiómu spočitatel’nosti (resp. 2. axiómu spočitatel’nosti), ak
pre každé a ∈ X existuje spočitatel’ná báza okoĺı v a. (resp. X má spočitatel’nú bázu topológie.)

Pŕıklady.
1.32. (R, τd), (R, τz) – separabilné, Q – spočitatel’ná hustá. (R, τdis) nie je separabilný.
1.33. (R, τcofin), N̄ = R – separabilný, N – uzavretá množina.
1.34. (R, τd), (X, d) – metrický priestor. (X, τd) spl’̌na 1. axiómu spočitatel’nosti. ∀a ∈ X : B(a) =

= {O 1
n

(a); n ∈ N}.
1.35. (R, τz) a ∈ R : B(a) = {(a− 1

n , a], n ∈ N} – báza okoĺı a spl’̌na 1. axiómu spočitatel’nosti.
1.36. (R, τdis) B(a) = {{a}} – spl’̌na 1. axiómu spočitatel’nosti.
1.37. (R, τcof ), 0 ∈ R. Nech B(0) je spočitatel’ná báza okoĺı 0. B(0) = {V1, · · · , Vn, · · · } spočitatel’ný

systém. ∀n ∈ N : X \ Vn je konečná. A =
⋂

n∈N
Vn, X \ A =

⋃

n∈N
(X \ Vn) spočitatel’ná, potom A je

nespočitatel’ná. Nech a∈A, a6=0. Potom W=R \ {a} je okolie bodu 0. ∀n∈N a∈Vn ⇒ Vn ∩R \W 6= ∅ ⇒
Vn 6⊆W spor s tým, že B(0) je báza. Teda (R, τcof ) nespl’̌na 1. axiómu spočitatel’nosti.

1.38. (R, τd) B = {(a, b); a < b, a, b ∈ Q} – spočitatel’ná báza v (R, τd). U ∈ τd, a ∈ U : ∃ε>0 :
(a− ε, a+ ε) ⊆ U . ∃r ∈ (a− ε, a) ∩Q; ∃s ∈ (a, a+ ε) ∩Q. a ∈ (r, s)︸ ︷︷ ︸

∈B

⊆ (a− ε, a+ ε) ⊆ U .

1.39. (R, τdis) nemá spočitatel’nú bázu. B – l’ubovol’ná báza τdis. ∀a ∈ R, {a} je otvorená a ∈ {a} ⇒
∃V ∈ B, a ∈ V ⊆ {a} ⇒ V = {a} ⇒ {a} ∈ B. card B ≥ C.
Veta 1.14.

(1) Ak X spl’̌na 2. axiómu spočitatel’nosti, tak spl’̌na 1. axiómu spočitatel’nosti.
(2) Ak X spl’̌na 2. axiómu spočitatel’nosti, tak je separibilný.

Dôkaz.

(1) Nech B je spočitatel’ná báza v X. Potom ∀a ∈ X, B(a) = {V ∈ B; a ∈ V } je spočitatel’ná báza
okoĺı a.

(2) Nech B je spočitatel’ná báza X. ∀V ∈ B \ {∅} vyberieme xV ∈ V . A = {xV , V ∈ B \ {∅}}
spočitatel’ná A ⊆ X, ∀V ∈ B, V 6= ∅, V ∩A 3 xV ⇒ V ∩A 6= ∅. Teda Ā = X.

Pŕıklady.
1.40. (R, τdis) spl’̌na 1. axiómu spočitatel’nosti, nespl’̌na 2. axiómu spočitatel’nosti.
1.41. (R, τcof ) separabilný a nespl’̌na 2. axiómu spočitatel’nosti ani 1. axiómu spočitatel’nosti.
1.42. (R, τz) separabilný, spl’̌na 1. axiómu spočitatel’nosti, ale nespl’̌na 2. axiómu spočitatel’nosti.

Veta 1.15. Nech (X, τ) je topologický priestor, Y⊆X. Potom systém množ́ın τ�Y = {V ∈ P(Y ), ∃U∈τ :
V = Y ∩ U} je topológia na Y .

Dôkaz. ∅, Y ∈ τ�Y . Nech V1, V2 ∈ τ�Y . Potom ∃U1, U2 ∈ τ tak, že V1 = Y ∩ U1, V2 = Y ∩ U2.
V1 ∩ V2 = (Y ∩ U1) ∩ (Y ∩ U2) = Y ∩ (U1 ∩ U2). Nech S ⊆ τ�Y . Potom ∀V ∈ S vyberme UV ∈ τ tak, že
V = Y ∩ UV .

⋃

V ∈S
V =

⋃

V ∈S
(Y ∩ UV ) = Y ∩ (

⋃

V ∈S
UV )⇒

⋃

V ∈S
V ∈ τ�Y .

Defińıcia 1.11. Nech (X, τ) je priestor, Y ⊆ X. Potom priestor (Y, τ�Y ) sa nazýva podpriestor (X, τ).

Pŕıklady.
1.43. (R, τd), [0, 1] – podpriestor (R, τd). ( 1

2 , 1] = [0, 1] ∩ ( 1
2 , 2). ( 1

2 , 1] je otvorená v [0, 1].
1.44. (R, τd), (0, 1] – podpriestor (R, τd). (0, 1

2 ] je uzavretá v (0, 1].

Veta 1.16. Nech (X, τ) je topologický priestor a (Y, τ�Y ) je podpriestor (X, τ). Potom plat́ı:

(1) Podmnožina priestoru (Y, τ�Y ) je uzavretá ⇔ existuje uzavretá podmnožina B v (X, τ) tak, že
A = Y ∩B.

(2) V je okolie bodu b v (Y, τ�Y )⇒ existuje okolie U bodu b v (X, τ) tak, že V = Y ∩ U .
(3) Ak b ∈ Y, B(b) je báza okoĺı b v (X, τ), tak BY (b) = {Y ∩V, V ∈ B(b)} je báza okoĺı b v (Y, τ�Y ).
(4) Ak B je báza topológie v (X, τ), tak B�Y = {Y ∩ V, V ∈ B} je báza topológie v (Y, τ�Y ).
(5) Ak A ⊆ Y , tak ĀY = ĀX ∩ Y .
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Dôkaz.
(4) B�Y ⊆ τ�Y U ∈ τ�Y , c ∈ U . ∃U ′ ∈ τ, U = Y ∩ U ′. c ∈ U ′ ⇒ ∃V ∈ B : c ∈ V ⊆ U ′.

V ∩ Y = W ∈ B�Y , c ∈W , W = V ∩ Y ⊆ U ′ ∩ Y = U .

Dôsledok. Ak X má spočitatel’nú bázu (resp. spl’̌na 1. axiómu spočitatel’nosti) a Y je podpriestor X, tak
Y má spočitatel’nú bázu (resp. spl’̌na 1. axiómu spočitatel’nosti).

Úloha. Nájst’ v predchádzajúcich pŕıkladoch separabilný priestor obsahujúci podpriestor, ktorý nie je
separabilný.
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Axiómy oddelitel’nosti.

Defińıcia 1.12. Priestor X sa nazýva
(1) T0-priestor, ak pre ∀a, b ∈ X, a 6= b existuje okolie U bodu a tak, že b /∈ U alebo existuje okolie

V bodu b tak, že a /∈ V .
(2) T1-priestor, ak pre ∀a, b ∈ X, a 6= b existuje okolie U bodu a tak, že b /∈ U a existuje okolie V

bodu b tak, že a /∈ V .
(3) T2-priestor (Hausdorffovský), ak pre l’ubovol’né a, b ∈ X, a 6= b, ∃U(a) a V (b) : U ∩ V = ∅.

Tvrdenie. Každý T2-priestor je T1-priestor; každý T1-priestor je T0-priestor.

Pŕıklady.
1.45. ({0, 1}, τind) nie je T0-priestor.
1.46. ({0, 1}, τS) τS = {∅, {1}, {0, 1}} je T0-priestor, ale nie je T1-priestor. τS sa nazýva Sierpinského

priestor.
1.47. (R, τ→) je T0-priestor, ale nie je T1-priestor.
1.48. (R, τcof ); U = R \ {b} 3 a, V = R \ {a} 3 b. Je to T1-priestor, ale nie je T2-priestor, lebo:

a ∈ U = R \K, b ∈ V =: R \ L, U ∩ V = R \ (K ∪ L) 6= ∅.
1.49. (X, d) je metrický priestor. (X, τd) je T2-priestor, lebo: a, b∈X, a 6= b, d(a, b)=δ>0, ε> δ

2 ,
O δ

2
(a) ∩ O δ

2
(b) = ∅.

Veta 1.17. X je T1-priestor ⇔ ∀a ∈ X {a} je uzavretá.

Dôkaz.
⇒ : Nech a ∈ X, ∀b ∈ X \ {a} existuje okolie Ub také, že Ub ⊆ X \ {a} U =

⋃

b∈A
Ub = X \ {a} ⇒

{a} = X \ U je uzavretá.
⇐ : Nech a, b ∈ X, a 6= b, {a}, {b} uzavretá. U = X \ {b} otvorená a ∈ U, b /∈ U, V = X \ {a}

otvorená. b ∈ V, a /∈ V ⇒ X je T1-priestor.

Veta 1.18. Ak X je Ti-priestor (i = 0, 1, 2) a Y je podpriestor X, tak Y je Ti-priestor.

Dôkaz.
T1: X je T1-priestor. Nech b ∈ Y . {b} je uzavretá v X. {b} = Y ∩ {b} uzavretá v Y . Y je T1-priestor.
T2: Nech a, b ∈ Y, a 6= b. Existujú otvorené U, V ∈ X také, že a ∈ U, b ∈ V a U ∩ V = ∅,

U ′ = U ∩ Y, V ′ = V ∩ Y sú otvorené v Y . a ∈ U ′, b ∈ V ′, U ′ ∩ V ′ = ∅, Y je T2-priestor.

II. SPOJITÉ ZOBRAZENIA

Analýza: f : R→ R, ∀a ∈ R ∀ε > 0 ∃δ > 0 : f((a− δ, a+ δ)) ≤ (f(a)− ε, f(a) + ε).

Defińıcia 2.1. Nech X,Y sú topologické priestory. Zobrazenie f : X → Y sa nazýva spojité, ak pre
každú otvorenú množinu V priestoru Y je f−1(V ) = {a ∈ X, f(a) ∈ V } otvorená v X.

Pŕıklady.
2.1. f : X → Y, ∀a ∈ X : f(a) = b0 ∈ Y . (konštantné zobrazenie). V je otvorená v Y , ak b0 ∈ V tak

f−1(V ) = X; ak b0 /∈ V tak f−1(V ) = ∅.
2.2. X – diskrétny, Y – l’ubovol’ný, f : X → Y je l’ubovol’né. Potom f je spojité.
2.3. X – l’ubovol’ný, Y – indiskrétny, f : X → Y je l’ubovol’né. Potom f je spojité.
2.4. f : (X, d)→ (Y, d′) je spojité tak f : (X, τd)→ (Y, τ ′d) je spojité.
2.5. idX : X → X je spojité.
2.6. idR : (R, τd)→ (R, τz) nie je spojité.
2.7. idR : (R, τz)→ (R, τd) je spojité.

Poznámka. f [Ā] ⊆ f [A].

Veta 2.1. Nech X,Y sú topologické priestory. Pre každé a ∈ X B(a) je daná báza okoĺı a a pre každé
b ∈ Y je daná báza okoĺı B′(b) bodu b a f : X → Y je zobrazenie. Potom sú ekvivalentné:

(1) f : X → Y je spojité.
(2) Pre každú uzavretú podmnožinu B priestoru Y f−1(B) je uzavretá v X.
(3) Pre každú podmnožinu A priestoru X : f [Ā] ⊆ f [A].
(4) Pre každé a ∈ X a každé V ∈ B′(f(a)) existuje U ∈ B(a) tak, že f [u] ⊆ V .
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Dôkaz.
(1)⇒(2): Nech B je uzavretá v Y . Potom Y \B je daná otvorená v Y a teda f−1(U) je otvorená v X.

f−1(B) = f−1(Y \ U) = X \ f−1(U) je uzavretá v X.
(2)⇒(3): Nech A ⊆ X, a ∈ Ā : f−1(f [a]︸︷︷︸

uz.

) ⊇ f−1(f [A]) ⊇ A⇒ f−1(f [A]︸︷︷︸
uz.

) ⊇ Ā︸︷︷︸
uz.

⇒ f [Ā] ⊆ f [A].

(3)⇒(4): Nech a∈X a ∃V ∈B(f(a)) tak, že ∀U∈B(a), f(U)*V . Potom U*f−1(V )⇒ U ∩X \ f−1(V )
je neprázdna. Potom a ∈ X \ f−1(V ) a teda f(a) ∈ f(X \ f−1(V )) = f(f−1(Y \ V )) = Y \ V = Y \ V
spor.

(4)⇒(1): Nech V je otvorená v Y . Treba dokázat’, že f−1(V ) je otvorená v X. Nech a ∈ f−1(V ).
Potom f(a)∈V ⇒ ∃W∈B′(f(a)) : W⊆V . ∃S∈B(a) : f(S)⊆W ⇒ S ⊆ f−1(W ) ⊆ f−1(V ) je otvorená.

Veta 2.2. Nech f : X → Y je zobrazenie, B je báza topológie v Y a S je subbáza topológie v Y . Potom
nasledujúce výroky sú ekvivalentné:

(1) f : X → Y je spojité.
(2) Pre každé V ∈ B : f−1(V ) je otvorená množina v X.
(3) Pre každé W ∈ S : f−1(W ) je otvorená v X.

Dôkaz. (1)⇒ (2)⇒ (3) je jasné.
(3) ⇒ (1): Nech V je otvorená množina v Y . Treba dokázat’, že f−1(V ) je otvorená v X. Nech

a ∈ f−1(V ). Potom f(a) ∈ V . Existujú S1, · · · , Sk ∈ S tak, že f(a) ∈ ⋂Si ⊆ V . f−1(
⋂
Si) =

⋂
f−1(Si).

f−1(Si) otvorené. a ∈ f−1(
⋂
Si) ⊆ f−1(V ).

Defińıcia 2.2. Nech X,Y sú topologické priestory, f : X → Y , a ∈ X. Hovoŕıme, že f je spojité v bode
a, ak pre každé okolie V (f(a)) bodu f(a) existuje okolie U bodu a tak, že f [U ] ⊆ V .

Veta 2.3. Nech f : X → Y je zobrazenie, X ′ je podpriestor X a Y ′ je podpriestor Y taký, že f(X) ⊆ Y ′.
Ak f : X → Y je spojité, tak aj f�X′ : X ′ → Y aj f ′ : X → Y ′, f ′(a) = f(a) ∀a ∈ X sú spojité.

Veta 2.4. Nech f : X → Y je zobrazenie, U je systém otvorených podpriestorov priestoru X taký, že⋃

U∈U
U = X. Potom f je spojité ⇒ ∀U ∈ U f�U : U → Y je spojité.

Dôkaz.
⇒ : je zrejmé.
⇐ : Nech V je otvorená v Y . ∀U ∈ U : (f�U )−1(V ) je otvorená v X. U je otvorená ⇒ (f�U )−1(V ) =

= f−1(V ) ∩ U je otvorená v X. f−1(V ) =
⋃

U∈U
(f−1(V ) ∩ U) otvorená v X.

Veta 2.5. Nech X,Y sú topologické priestory a V je konečný systém uzavretých podpriestorov priestoru
X taký, že

⋃

V ∈V
V = X. Potom f : X → Y je spojité ⇔ ∀V ∈ V f�V : V → Y je spojité.

Pŕıklad.
2.8.

f(x) =





1
x− 1

ak x ∈ [
1
2
, 1)

1
x+ 1

ak x ∈ (−1,−1
2

] je spojité.

−4x ak x ∈ (−1
2
,

1
2

)

Veta 2.6. Ak f : X → Y, g : Y → Z sú spojité zobrazenia, tak g ◦ f je spojité z X → Z.

Dôkaz. W otvorená v Z. (g ◦ f)−1(W ) = f−1(g−1(W )) je otvorená.

Otázka. Ak g ◦ f : X → Z je spojité, či niektoré z f, g muśı byt’ spojité?

Defińıcia 2.3. Nech X,Y sú topologické priestory. Zobrazenie f : X → Y sa nazýva homeomorfizmus
ak f je spojité, bijekt́ıvne a f−1 je spojité tiež.

Pŕıklady.
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2.9. idR : (R, τdis)→ (R, τind) spojité bijekt́ıvne. id−1
R = idR : (R, τind)→ (R, τdis) je spojité, teda je

to homeomorfizmus.
2.10. Zobrazenie z pŕıkladu č. 8 je homeomorfizmus.
2.11. idX : X → X je homeomorfizmus.

Veta 2.7. Ak f : X → Y, g : Y → Z sú homeomorfizmy, tak g ◦ f : X → Z je homeomorfizmus.

Pŕıklad.
2.12. S1 = {(x, y) ∈ R2 :

√
x2 + (y − 1

2 )2 = 1}; f : S1 \ {0, 1} → R× {0} je homeomorfizmus.

V Rn+1: Sn = {(x1, · · · , xn+1),

(
n∑

i=1

x2
i

)
+ (xn+1 − 1

2
)2 = 1}.

Defińıcia 2.4. Spojité zobrazenie f : X → Y sa nazýva otvorené (uzavreté) ak pre každú otvorenú
(uzavretú) množinu U v X je f [U ] otvorená (uzavretá).

Pŕıklad 2.13.
idR : (R, τx)→(R, τd) je spojité (a, b) je otvorená v (R, τz). idR((0, 1])=(0, 1] nie je otvorená v (X, τd).

Veta 2.8. Nech B je báza topológia X a f : X → Y je spojité zobrazenie. Potom f je otvorené
⇔ ∀V ∈ B f(V ) je otvorená v Y .

Dôkaz.

⇒ : zrejmá. ⇐ : Nech U je otvorená v X. Potom existuje S ⊆ B, U =
⋃

V ∈S
V , f(U) = f

( ⋃

V ∈S
V

)
=

=
⋃

V ∈S
f(V ) otvorená ⇒ je otvorená.

Pŕıklady.
2.14. X = R, Y = {(x, y)∈R2, x2 + y2 = 1} = S1, f : R→ S1, f(x) = (cos(2πx), sin(2πx))∈S1,

B = {(a, b); a, b ∈ R, a < b, b− a < 1
2}.

2.15. p1 : R2 → R, p1(x, y) 7→ x projekcia na prvú zložku – otvorené zobrazenie.

Defińıcia 2.5. Spojité zobrazenie f : X → Y sa nazýva faktorové zobrazenie ak f je surjekt́ıvne a pre
každé V ⊆ Y plat́ı: ak f−1(V ) je otvorená množina, tak V je otvorená.

Pŕıklady.

2.16. f : R → ({0, 1}, τind), f(x) =
{

0 ak x ∈ Q
1 ak x ∈ R \Q je spojité. V⊆{0, 1} a f−1(V ) je otvorená?

Potom f−1(V ) = ∅ ⇒ V = ∅. Ak f−1(V ) = ∅ ⇒ ∃r∈f−1(V ). Potom ∃ε>0 : (r−ε, r+ε)⊆f−1(V ); ∃s∈Q,
t ∈ R \Q, s, t ∈ (r − ε, r + ε) ⊆ f−1(V ) je faktorové zobrazenie.

2.17. idR : (R, τdis) → (R, τind) je spojité, surjekt́ıvne, nie je faktorové, lebo id−1
R {r} = {r} otvorená

v (R, τdis), ale nie je otvorená v (R, τind).

Veta 2.9a. Nech f : X → Y je spojité surjekt́ıvne zobrazenie. Potom f je faktorové ⇔ ∀V ⊆ Y plat́ı:
ak f−1(V ) je uzavretá v X, tak V je uzavretá v Y .

Veta 2.9b. Ak f : X→Y a g : Y→Z sú faktorové zobrazenia, tak aj g◦f : X→Z je faktorové zobrazenie.

Dôkaz. Nech V ⊆ Z a (g ◦ f)−1(V ) je otvorená v X. (g ◦ f)−1(V ) = g−1(f−1(V )) je otvorená ⇒ g−1(V )
je otvorená ⇒ V je otvorená.

Veta 2.9c. Ak f : X → Y je surjekt́ıvne a otvorené (uzavreté) spojité zobrazenie, tak f je faktorové
zobrazenie.

Dôkaz. Nech V ⊆ Y a f−1(V ) je otvorená v X. f je otvorené ⇒ f(f−1(V )) = V je otvorená.

Pŕıklad.
2.18. f : R→ S1 f(x) = (cos(2πx), sin(2πx)) otvorené zobrazenie ⇒ faktorové.
2.19. p1 : R2 → R p1(x, y) = x otvorené ⇒ faktorové.

Defińıcia 2.6. Spojité zobrazenie f : X → Y je vnorenie, ak f : X → f(X) (podpriestor Y ) je
homeomorfizmus.
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Veta 2.10. Spojité zobrazenie f : X → Y je vnorenie ⇔ f je injekt́ıvne a pre každú otvorenú (uzavretú)
podmnožinu V v X, f(V ) je otvorená (uzavretá) v f(X).

Pŕıklady.
2.20. Ak A je podpriestor X, tak j : A→ X, j(x) = x je vnorenie. j(A) = A, j : A→ j(A) = A,

j = idA je vnorenie.
2.21. f : R→ R2, f(x) = (x, x) je spojité, injekt́ıvne, otvorené ⇒ vnorenie.
2.22. f : R+ → R2, f(x) = (x, 1

x ) je spojité, injekt́ıvne, otvorené ⇒ vnorenie.

III. TOPOLOGICKÝ SÚČIN TOPOLOGICKÝCH PRIESTOROV

Defińıcia 3.1. Nech (X, τX), (Y, τY ) sú topologické priestory, S={U×Y, U∈τX} ∪ {X×V, V ∈τY }
BS = {U × V, U ∈ τX , V ∈ τY }. Nech τS = τB je topológia určená subbázou S resp. BS . Potom
(X ×Y, τBS ) sa nazýva topologický súčin priestorov (X, τX), (Y, τY ); S(B) sa nazýva štandardná subbáza
(báza) súčinnej topológie τBS .

Označenie. (X × Y, τB) = (X, τX)× (Y, τY ).

Veta 3.1. Nech (X, τX), (Y, τY ) sú priestory, τB je súčinná topológia na X×Y a τ je l’ubovol’ná topológia
na X × Y taká, že pX : (X × Y, τ)→ (X, τX) aj pY : (X × Y, τ)→ (Y, τY ) sú spojité. Potom τB ⊆ τ .

Dôkaz. pX spojitá ∀U ∈ τX : (pX)−1(U) = U × Y ∈ τX . pY spojitá ∀V ∈τY : (pY )−1(V )=X × V ∈τY .
Teda S ⊆ τ ⇒ τS = τB ⊆ τ .

Veta 3.2. Nech (X, τX), (Y, τY ) sú topologické priestory, BX je subbáza topológie τX , BY je báza τY .
Nech B̃ = {U × V ;U ∈ BX , V ∈ BY }. Potom B̃ je báza topológie τB̃ na X × Y a plat́ı τB̃ = τB.

Dôkaz.
⋃

(U,V )∈BX×BY
(U×V ) =

( ⋃

U∈BX
U

)
×
( ⋃

V ∈BY
V

)
= X×Y . U×V , U ′×V ′ ∈ B̃, (U×V )∩(U ′×V ′) =

= (U ∩ U ′) × (V ∩ V ′). (a, b) ∈ (U × V ) ∩ (U ′ × V ′). Potom a ∈ U ∩ U ′, b ∈ V ∩ V ′ ⇒ ∃W ∈ BX ,
W ′ ∈ BY : a ∈W ⊆ (U ∩U ′), b ∈W ′ ⊆ V ∩V ′. (a, b) ∈W ×W ′︸ ︷︷ ︸

∈B̃

⊆ (U×V )∩ (U ′×V ′). B̃ báza topológie

na (X×Y, τB̃). B̃ ⊆ B ⇒ τB̃ ⊆ τB. V ∈ BY
⋃

U∈BX
(U×V ) =

( ⋃

U∈BX
U

)
×V = X×V ∈ τB̃. Symetricky:

∀U ∈ BX :
⋃

V ∈BX
(U × V ) = U × Y ∈ τB̃. pX : (X × Y, τB̃)→ (X, τX); ∀U ∈ BX : (pX)−1(U) = U × Y ∈

τB̃. pX spojité. pY : (X × Y, τB̃) → (Y, τY ); ∀V ∈ BY : (pY )−1(V ) = X × V ∈ τB̃. pY spojité. pX , pY
sú spojité potom τB ⊆ τB̃.
τB = τB̃.

Veta 3.3. Nech X,Y, Z sú topologické priestory a X × Y je topologický súčin a f : Z → X×Y je
zobrazenie. Potom f je spojité ⇔ pX◦f aj f◦pY sú spojité.

Dôkaz.
⇒ : zrejmé.
⇐ : Nech S je štandardná subbáza súčinovej topológie S={U×Y,U je otvorená v X} ∩ {X×V ,

V je otvorená v Y }. Zoberme si U × Y ∈ S, f−1(U × Y ) = f−1((pX)−1(U)) = (pX◦f)−1︸ ︷︷ ︸
spoj.

(U)⇒ otvorená

v Z. f−1(X × V ) = f−1((pY )−1(V )) = (pY ◦f)−1︸ ︷︷ ︸
spoj.

(V ) otvorená v Z.

Pŕıklad.
3.1. R×R topologický súčin = (R×R, τd), d((a, b), (c, d)) = ((a− c)2 + (b− d)2)1/2. f : R+ → R× R,

f(x) = (x, 1
x ). f je spojité⇔ p1◦f, p2◦f sú spojité. p1◦f = p1(f(x))=x, p2 ◦ f(x) = p2(f(x)) = 1

x . Oba
idú z R+ do R.
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Veta 3.4. Ak (A, τA) je podpriestor (X, τX) a (B, τB) je podpriestor (Y, τY ), tak (A, τA) × (B, τB) je
podpriestor (X, τX)× (Y, τY ).

Dôkaz. A × B ⊆ X × Y ; BA×B = {U × V ;U ∈ τA, V ∈ τB}, BX×Y = {U ′ × V ′, U ′ ∈ τX , V ′ ∈ τY }.
∀U × V ∈ BA×B ∃U ′ ∈ τX , V ′ ∈ τY tak, že U = U ′ ∩A, V = V ′ ∩B ⇒ (U ′ ∩A)× (V ′ ∩B) =
= (U ′ × V ′) ∩ (A × B). BA×B = {(U ′ × V ′) ∩ (A × B), U ′ × V ′ ∈ BX×Y } báza podpriestoru určeného
A×B v (X, τX)× (Y, τY ).

Pŕıklady.
3.2. S1={(x, y) ∈ R2, x2 + y2 = 1}; [0, 1]⇒ S1×[0, 1] je podpriestor R3. S1×[0, 1] = {(a, b, c)∈R3;

a2 + b2 = 1, 0 ≤ c ≤ 1}.
3.3. S1 × S1 – tórus, anuloid.
3.4. [0, 1]× [0, 1] – štvorec.
3.5. ((Xα, τα))α∈I ;

∏

α∈I
Xα

pα−→ Xα : ∀α ∈ I. ∀U otvorenú v Xα: (pα)−1(U) je otvorená.

(pα)−1(U) =
∏

β∈I
Yβ ; Yα = U : ∀β 6= α Yβ = Xβ . (pα1)−1(U) ∩ (pα2)−1(V ) =

∏

γ∈I
Yγ , Yα1 = U ,

Yα2 = V : ∀γ /∈ {α1, α2}, Yγ = Xγ .

Defińıcia 3.2. Nech ((Xα, τα))α∈I je systém topologických priestorov (I je indexová množina). Nech
X =

∏

α∈I
Xα, S = {(pα)−1(U) : α ∈ I, U ∈ τα} a τ je topológia na X určená subbázou S. Potom (X, τ)

sa nazýva topologický súčin systému ((Xα, τα))α∈I ; S sa nazýva štandardná subbáza súčinovej topológie

a systém B = {
k⋂

i=1

(pαi)−1(Ui); k ∈ N;α1, · · · , αk ∈ I;Ui ∈ ταi , ∀i = 1, · · · , k} sa nazýva štandardná báza

súčinovej topológie. Ozn. (X, τ) =
∏

α∈I
(Xα, τα).

Veta 3.5. Nech (X, τ) =
∏

α∈I
(Xα, τα) je topologický súčin priestorov ((Xα, τα))α∈I . Potom plat́ı:

(1) ∀α ∈ I pα :
∏

α∈I
(Xα, τα)→ (X, τα) je spojité zobrazenie.

(2) Ak f ∈ (Z, τZ)→
∏

α∈I
(Xα, τα) je zobrazenie, tak f je spojité ⇔ ∀α ∈ I : pα◦f je spojité.

(3) Ak τ ′ je topológia na X a ∀α ∈ I pα : (X, τ ′)→ (Xα, τα) je spojité, tak τ ⊆ τ ′.
(4) Ak ∀α ∈ I Bα je báza topológie τα; S ′ = {(pα)−1(V ), α ∈ I, V ∈ Bα} a τS′ je topológia určená

tým systémom S ′, tak τS′ = τ . Systém B′ = {
k⋂

i=1

(pαi)−1Vi : k ∈ N, α1, · · · , αk∈I, V1 ∈ Bαi} je

báza τS′ .
(5) ∀α ∈ I pα : (X, τ)→ (Xα, τα) je otvorené zobrazenie a teda aj faktorové zobrazenie.

Dôkaz.
(1) jasné.
(2) ⇒ : zrejmá. ⇐ : Nech V ∈ S tj. ∃α ∈ I a ∃U ∈ τα tak, že V = (pα)−1(U). f−1(V ) =

= f−1((pα)−1(U)) = (pα◦f︸ ︷︷ ︸
spoj.

)−1(U) ∈ τZ ⇒ f je spojité.

(3) ∀α ∈ I pα : (X, τ ′)→ (Xα, τα) je spojité, tak ∀α ∈ I ∀U ∈ τα (pα)−1(U) ∈ τ . Potom S ⊆ τ ⊆ τ ′.
(4) Nech α ∈ I, pα : (X, τS′)→ (Xα, τα);∀V ∈ Bα (pα)−1(V ) ∈ S ′ ⊆ τS′ ⇒ pα je spojité ∀α ∈ I (3)⇒

τ ⊆ τS′ . S ′ ⊆ S ⇒ τS′ ⊆ τ . τ = τS′ .
(5) Nech α ∈ I, pα : (X, τ)→ (Xα, τα). Nech V ∈B je štandardná báza. Potom ∃α1, · · · , αk∈I,

U1 ∈ τα1 , · · · , Uk ∈ ταk : V =
k⋂

i=1

(pαi)−1(Ui). Ak ∃i : Ui = ∅ potom pα(V ) = ∅.

Ak ∀i : Ui 6= ∅, tak pα(V ) =
{
Ui pre α = αi patŕı ταi napr. p2(U1 ×X2 × U3) = X2

Xα pre α /∈ {α1, · · · , αk} ∈ τα p2(X1 × U2 × U3) = U2

Potom pα je otvorená.
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Poznámka. ((Xα, τα))α∈I ; ∀α ∈ I : (Xα, τα) = (X, τ) potom ṕı̌seme
∏

α∈I
(Xα, τα) = (X, τ)I . x ∈

∏

α∈I
Xα

x : I →
⋃

α∈I
Xα, x(α) ∈ Xα.

Pŕıklady.
3.6. D2 = {0, 1} diskrétny; B = {{0}, {1}} báza D2. D2

2 = {0, 1}×{0, 1}. B1 = {{0}×{0}, {1}×{0},
{0} × {1}, {1} × {1}} báza D2

2. D2
2 je zasa diskrétna topológia.

3.7. DN2 nemôže byt’diskrétny priestor. Jeho báza je nekonečný kartézsky súčin, ktorý od istého členu
obsahuje činitele {0, 1}. napr. {0} × {1} × {1} × · · · × {0} × {1} × {0, 1} × · · · × {0, 1} × · · · .

3.8. I nekonečná. ((Xα, τα))α∈I ∀α Uα ∈ τα ∅ 6= Uα 6= Xα.
∏

α∈I
Uα nie je otvorená v

∏

α∈I
(Xα, τα).

x ∈
∏

α∈I
Uα, x ∈

k⋂

i=1

(pαi)−1(Ui) 6⊆
∏

α∈I
Uα.

Veta 3.6. Nech ((Xα, τα))α∈I je systém priestorov a ∀α ∈ I : Aα je neprázdna podmnožina Xα. Potom
plat́ı:

(1)
∏

α∈I
Aα je uzavretá v

∏

α∈I
(Xα, τα).

(2)
∏

α∈I
Aα =

∏

α∈I
Aα.

Dôkaz.

(1) ⇒ : A je uzavretá:
∏

α∈I
Aα = A = Ā =

∏

α∈I
Aα; ∀α ∈ I, Aα 6= ∅, Aα 6= ∅ ⇒ ∀α ∈ I : Aα = Aα ⇒

Aα je uzavretá.
⇐ : Ā =

∏

α∈I
Āα =

∏

α∈I
Aα = A⇒ A je uzavretá.

(2) ∀α ∈ I : pα :
∏

α∈I
Xα → Xα je spojité. pα[Ā] ⊆ pα[A] = Āα ⇒ Ā ∈ (pα)−1(Āα) =

∏

β∈I
Yβ ;

Yα = Āα, Yβ = Xβ pre ∀β ∈ I. Potom Ā ⊆ ⋂α∈I(pα)−1(Āα) =
∏

α∈I
Āα.

Opačná inklúzia: ⊇: Nech x ∈
∏

α∈I
Āα ⇒ ∀α ∈ I pα(x) ∈ Āα. Nech V je prvok štandardnej

bázy
∏

α∈I
Xα taký, že x∈V . ∃α1, · · · , αk ∈ I a ∃U1, · · · , Uk : ∀i = 1, · · · , k : Ui je otvorená

podmnožina Xαi . V =
k⋂

i=1

(pαi)−1(Ui) =
∏

α∈I
Yα. Yαi = Ui ∀i = 1, · · · , k : Yαi = Xα pre

α = α1, · · · , αk. ∀α ∈ I Yα je otvorená v Xα. x ∈ V ⇒ ∀α ∈ I pα(x) ∈ Āα a Yα je okolie
pα(x)⇒ Yα ∩Aα 6= ∅. V ∩A =

∏

α∈I
Yα ∩

∏

α∈I
Aα =

∏

α∈I
(Yα ∩Aα︸ ︷︷ ︸

6=∅

) 6= ∅ ⇒ x ∈ Ā :
∏

α∈I
Āα ⊆ Ā.

Veta 3.7.

(1) Ak ∀α ∈ I : Xα je Ti-priestor (i = 0, 1, 2), tak
∏

α∈I
Xα je Ti-priestor.

(2) Ak ∀n ∈ N Xn je separabilný (resp. vyhovuje 1. axióme spočitatel’nosti; má spočitatel’nú bázu),
tak

∏

n∈N
Xn je separabilný (resp. vyhovuje 1. axióme spočitatel’nosti; má spočitatel’nú bázu).

Dôkaz.

(1) Napr. pre i=2: ∀α∈I : Xα je T2-priestor; x, y∈
∏

α∈I
Xα, x6=y. Potom ∃α∈I : pα(x) 6= pα(y). pα(x),

pα(y)∈Xα ⇒ existujú otvorené U, V v Xα tak, že pα(x)∈U , pα(y)∈V a U ∩ V = ∅. (pα)−1(U),
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(pα)−1(V ) sú otvorené v
∏

α∈I
Xα; x ∈ (pα)−1(U), y ∈ (pα)−1(V ), (pα)−1(U) ∩ (pα)−1(V ) = ∅.

Teda
∏

α∈I
Xα je T2-priestor.

(2) Nech ∀n∈N : Xn je separabilný tj. ∃Mn⊆Xn, M̄n⊆Xn, Mn je spočitatel’ná. A=
∏

n∈N
Mn. Zvol’me

l’ubovol’ný a∈A. ∀n∈N : pn(a)∈Mn. M = {b ∈ A; {k ∈ N, pk(b)6=pk(a)} je konečná}.
M je spočitatel’ná: Nech x ∈

∏

n∈N
Xn. Nech V je prvok štandardnej bázy topológie

∏

n∈N
Xn,

x ∈ V . ∃n1, · · · , nk ∈ N a ∃U1, · · · , Uk kde Ui je otvorená v Xni . V =
k⋂

i=1

(pni)−1(Ui) =
∏

n∈N
Yn.

Yni = Ui; Yn = Xn ak n 6= n1, · · · , nk. ∀n∈N : pn(x) ∈ Yn otvorená v Xn. pn(x) ∈ M̄n = Xn ⇒
Yn ∩Mn 6= ∅ ⇒ V ∩M =

∏

n∈N
Yn ∩

∏

n∈N
Mn =

∏

n∈N
Yn ∩Mn 6= ∅ ⇒ X ∈ M̄ ⇒

∏

n∈N
Xn ⊆ M̄ .

IV. FAKTOROVÉ ZOBRAZENIE

Veta 4.1. Nech (X, τ) je topologický priestor, Y je množina a f : X → Y je surjekt́ıvne zobrazenie.
Potom τf = {V ∈ P(Y ), f−1(V ) ∈ τ} je topológia na Y a zobrazenie f : (X, τ) → (Y, τf ) je faktorové
zobrazenie.

Dôkaz. ∅, Y ∈ τf , V, V ′ ∈ τf , (f−1)(V ), f−1(V ′) ∈ τ . f−1(V ∩V ′) = f−1(V )∩f−1(V ′) ∈ τ ⇒ V ∩V ′ ∈ τf .

S ⊆ τf , ∀U ∈ S : f−1(U) ∈ τ . f−1

( ⋃

U∈S
U

)
=
⋃

U∈S
f−1(U) ∈ τf . f je spojité, surjekt́ıvne. Nech V ⊆ Y

a f−1(V ) ∈ τ . Potom V ∈ τf .

Defińıcia 4.1. Topológia τf z Vety 4.1 sa nazýva faktorová topológia určená zobrazeńım f .

Pŕıklady.
4.1. R s obyčajnou topológiou. f : R → {0, 1}; ∀x ∈ Q : f(x) = 0; ∀x ∈ R \ Q : f(x) = 1.

V ∈ τf ⇔ f−1(V ) je otvorená v R. ∅ ∈ τf , {0, 1} ∈ τf , f−1({1}) = R \Q nie je otvorená v R⇒ {1} /∈ τf .
f−1({0}) = Q nie je otvorená v R. ⇒ {0} /∈ τf . τf = {∅, {0, 1}} indiskrétna topológia.

4.2. g : R → {0, 1}; g(x) = 0 pre x > 0; g(x) = 1 pre x ≤ 0. τg = {∅, {0, 1}, {0}}. g−1({0}) = (0,∞)
otvorená v R. g−1({1}) = (−∞, 0] nie je otvorená.

4.3. h : Q → {0, 1}; h(x) = 0 pre x <
√

2, h(x) = 1 pre x >
√

2. τh = {∅, {0, 1}, {0}, {1}}.
h−1({0}) = (

√
2,∞) ∩Q otvorená v Q; h−1({1}) = (−∞,√2) ∩Q otvorená v Q.

Defińıcia 4.2. Nech (X, τ) je topologický priestor, E je relácia ekvivalencie na X; X/E = {E(x);x ∈ X}
je faktorová množina (rozklad X) určená reláciou E a pE : X → X/E; pE(x) = E(x). Nech τE = τpE
je faktorová topológia na X/E určená zobrazeńım pE . Potom priestor (X/E, τE) sa nazýva faktorový
priestor priestoru (X, τ) určený reláciou E.

Pŕıklady.
4.4. R; x ∼ y ⇔ ak sú naraz racionálne, alebo iracionálne. R/ ∼= {Q,R \ Q}. p∼ : R → R/ ∼;

p∼(x) = Q pre ∀x ∈ Q; p∼(x) = R \Q pre ∀x ∈ R \Q. τ∼ = {∅, {Q,R \Q}}.
4.5. R; x ∼ y ⇔ x = y alebo x, y ∈ N; R/ ∼= {N} ∪ {{a}, a ∈ R \ N}. p : R → R/ ∼, p(a) = {a},

a ∈ R \ N, p(n) = N pre ∀n ∈ N .

Veta 4.3. Nech f : X → Y je spojité zobrazenie a Ef je relácia ekvivalencie na X definovaná aEfb ⇔
f(a) = f(b). Nech g : X/Ef → Y je zobrazenie g(Ef (x)) = f(x) a pEf : X → X/Ef je prirodzená
projekcia priestoru X na faktorový priestor X/Ef . Potom g je spojité zobrazenie. Navyše ak f je
faktorové zobrazenie, tak g je homeomorfizmus.

Dôkaz. f = g ◦ pEf pEf : X → X/Ef , pEf (x) = Ef (x) potom to vidno z defińıcie: g ◦ Ef = f . g ◦ pEf
je spojité; pEf je faktorové ⇒ g je spojité. Nech f je faktorové zobrazenie. Potom f je surjekt́ıvne ⇒ g

je surjekt́ıvne. g je prosté ⇒ g je bijekt́ıvne. f = g ◦ pEf ; pEf = g−1 ◦ f ⇒ g−1 je spojité. Teda g je
homeomorfizmus.
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Pŕıklady.
4.6. R s obvyklou topológiou. xEy ⇔ x − y ∈ Z. E(0) = Z, E( 1

2 ) = 1
2 + Z, a ∈ R : E(a) = a + Z;

a ∈ [0, 1] ⇒ E(a) – všetky triedy. (R/E, τE) f : R → S1 f(x) = (cos 2πx, sin 2πx) je to spojité,
otvorené, surjekt́ıvne ⇒ faktorové. xEfy ⇔ f(x) = f(y)⇔ x− y ∈ Z Ef = E.

4.7. R; xEy ⇔ x, y ∈ Q alebo x, y ∈ R \ Q. R/E = {Q,R \ Q}. f(x) = 0 ak x ∈ Q; f(x) = 1 ak
x ∈ R \Q.

4.8. R; xEy ⇔ x = y alebo x, y ∈ N, R/E = {{x}; x ∈ R \ N} ∪ {N} g−→ R \ {n ∈ N; n ≥ 2},
f : R→ R \ {n ∈ N; n ≥ 2} = R̃ f(x) = x ak x /∈ N, f(x) = 1 ak x ∈ N. g({x}) = x, g(N) = 1. (R̃, τf )
nevyhovuje 1.axióme spočitatel’nosti;
1 nemá spočitatel’nú bázu okoĺı. Predpokladajme, že existuje spočitatel’ná báza okoĺı V1, · · · , Vn, · · ·
bodu 1 v (R̃, τf ). 1 ∈ V1; f−1(V1) otvorená v R; N ⊆ f−1(V1) otvorená ∃ε1 > 0 , ε1 < 1

2 tak, že
(1− ε1, 1 + ε1) ⊆ f−1(V1), f((1− ε1, 1 + ε1)) = (1− ε1, 1 + ε1) ⊆ V1.

1 ∈ V2; N ⊆ f−1(V2) ⇒ 2 ∈ f−1(V2) otvorená. ∃ε2 > 0, ε2 < 1
2 , (2 − ε2, 2 + ε2) ⊆ f−1(V2).

f(2− ε2, 2 + ε2) = {1} ∪ ((2− ε2, 2 + ε2) \ {2}).
1 ∈ Vn ⇒ N ⊆ f−1(Vn) ⇒ n ∈ f−1(Vn) otvorená. ∃ 1

2 > εn > 0 : (n − εn, n + εn) ⊆ f−1(Vn) ⇒
f((n− εn, n+ εn)) = {1} ∪ ((n− εn, n+ εn) \ {n}).

Definujme si: V = (1− ε1

2
, 1 +

ε1

2
)∪

∞⋃
n=2

[
(n− εn

2
, n+

εn
2

) \ {n}
]
⊆ R̃. f−1(V ) =

∞⋃
n=1

(n− εn
2
, n+

εn
2

)

otvorená v R⇒ V je otvorená v (R̃, τf ). Bod 1 + ε1
2 ∈ V1 \V ⇒ V1 * V · · · 1 + εn

2 ∈ Vn \V ⇒ Vn * V · · ·
spor s tým, že V1, V2, · · · je báza okoĺı bodu 1.

Topologický súčet.

Defińıcia 4.3. Nech ((Xα, τα)α∈I) je systém topologických priestorov a ∀α, β ∈ I : ak α 6= β, tak
Xα ∩ Xβ = ∅. Nech X =

⋃

α∈I
Xα. Potom τ = {U ∈ P(X),∀α ∈ I : U ∩ Xα ∈ τα} je topológia na X.

⋃

α∈I
τα je báza τ . Priestor (X, τ) sa nazýva topologický súčet systému ((Xα, τα)α∈I)

ozn.: (X, τ) =
⊕

α∈I
(Xα, τα) (X ∪ Y, τ) = (X, τX)⊕ (Y, τY ).

Vlastnosti. Nech (X, τ) =
⊕

α∈I
(Xα, τα). Potom

(1) Pre každé α je Xα otvorená a súčasne uzavretá v (X, τ).
(2) Ak ∀α ∈ I : (Xα, τα) je Ti-priestor (i = 0, 1, 2) (vyhovuje 1. axióme spočitatel’nosti), tak⊕

α∈I
(Xα, τα) je Ti-priestor (resp. vyhovuje 1. axióme spočitatel’nosti).

(3) ∀α ∈ I : (Xα, τα) je podpriestor
⊕

α∈I
(Xα, τα).

V. REGULÁRNE, ÚPLNE REGULÁRNE A NORMÁLNE PRIESTORY

Defińıcia 5.1. Nech X je topologický priestor. Potom:

(1) X sa nazýva regulárny, ak pre každú uzavretú množinu A v X a každé c ∈ X \A existujú otvorené
množiny U, V ∈ X tak, že c ∈ U , A ⊆ V a U ∩ V = ∅.

Regulárny T1-priestor sa nazýva T3-priestor.
(2) X sa nazýva úplne regulárny, ak pre každú uzavretú množinu A v X a každé c ∈ X \ A existuje

spojité zobrazenie f : X → [0, 1] také, že f(c) = 1, f [A] ⊆ {0}.
Úplne regulárny T1-priestor sa nazýva T3 1

2
-priestor.

(3) X sa nazýva normálny, ak pre l’ubovol’né uzavreté množiny A,B v X také, že A∩B = ∅ existujú
otvorené množiny U, V pre ktoré A ⊆ U , B ⊆ V a U ∩ V = ∅.

Normálny T1-priestor sa nazýva T4-priestor.

Pŕıklad.
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5.1. R s obvyklou topológiou je T3, T3 1
2
, T4-priestor. Nech A ⊆ R je uzavretá. c ∈ R \ A. ∃ε > 0 :

(c − ε, c + ε) ∩ A = ∅. (c − ε
2 , c + ε

2 ) ⊆ [c − ε
2 , c + ε

2 ] ⊆ (c − ε, c + ε). V = R \ [c − ε
2 , c + ε

2 ] ⊇ A,
c ∈ (c− ε

2 , c+ ε
2 ) = U otvorená. ⇒ U ∩ V = ∅. A ⊆ R \ (c− ε, c+ ε). f(c) = 1, f [A] ⊆ {0}.

5.2. (R, τz) je T3 1
2
-priestor. A je uzavretá v (R, τz). c /∈ A. ∃ε > 0 : (c− ε, c] ∩ A = ε. (c− ε, c] je aj

otvorená aj uzavretá ⇒ aj jej komplement je uzavretý aj otvorený.

f : (R, τz)→ [0, 1], f(x) =
{

1 x ∈ (c− ε, c]
0 x /∈ (c− ε, c] je to spojité zobrazenie.

{[0, b), b ∈ (0, 1)} ∪ {(a, 1], a ∈ (0, 1)} je subbáza topológie [0, 1]. f(c) = 1, f [A] ⊆ {0}.
Veta 5.1. Každý úplne regulárny priestor je regulárny.

Dôkaz. Nech X je úplne regulárny. Nech A ⊆ X, A uzavretá, c /∈ A. Existuje spojité zobrazenie
f : X → [0, 1]; f(c) = 1; f [A] ⊆ {0}. f−1( 1

2 , 1] = U otvorená; c ∈ U ; V = f−1[0, 1
2 ) je otvorená, A ⊆ V ,

U ∩ V = ∅. Teda X je regulárny.

Dôsledok. Každý T3 1
2
-priestor je T3-priestor.

Pŕıklad.
5.3. A2 je indiskrétny priestor na {0, 1}, je regulárny, nie je T2-priestor.

Veta 5.2. Každý T3-priestor je T2-priestor.

Dôkaz. X je T3-priestor. Nech a, b ∈ X, a 6= b. {b} uzavretá, a /∈ {b} X reg.⇒ ∃U, V otvorená také, že
a ∈ U , {b} ⊆ V , U ∩ V = ∅. X je T2-priestor.

Veta 5.3. Nech X je topologický priestor a pre každé c ∈ X Bc je báza okoĺı bodu c. Potom plat́ı: X
je regulárny ⇔ ∀U ∈ Bc ∃V ∈ Bc : V̄ ⊆ U .

Dôkaz. ⇒ : Nech U ∈ Bc. A = X \ U je uzavretá množina a c /∈ A. X je regulárny potom existujú
otvorené W,W ′ tak, že c ∈ W , A ⊆ W ′ a W ∩W ′ = ∅. X \ A ⊇ X \W ′. W ⊆ X \W ′ je uzavretá.
Potom W̄ ⊆ X \W ′ ⊆ X \ A = U . W je okolie c ⇒ ∃V ∈ Bc tak, že W ⊇ V ⇒ W̄ ⊇ V̄ . Teda máme
V̄ ⊆ W̄ ⊆ U .
⇐ : Nech A je uzavretá množina v X. c ∈ X \ A. X \ A je okolie c ⇒ ∃U ∈ Bc, c ∈ U ⊆ X \ A.

Existuje V ∈ Bc, V̄ ⊆ U . c ∈ V otvorená. W = X \ V̄ ⊇ X \ U = A. c ∈ V , A ⊆W V ∩W = ∅.
Pŕıklady.

5.4. P1 = R × [0,∞) je T2-priestor a nie je regulárny (ani T3). O1(c, 0) = {(x, y) ∈ R × [0, 1), y > 0
a (x− c)2 + y2 < 1} ∪ {(c, 0)} uzavretá menšieho okolia O2 nebude ⊆ O1, lebo bude obsahovat’ aj body
typu (c± ε, 0).

5.5. P4; ([0,∞), τ) Ba = {(a− ε, a+ ε) ∩ [0,∞); ε>0} pre a > 0. B0 = {[0, ε) \ { 1
n , n ∈ N}; ε>0}.

[0, δ) \ { 1
n , n ∈ N} = [0, δ). 0 /∈ A. P4 je T2-priestor a nie je regulárny.

Veta 5.4. Nech X je priestor a S je subbáza topológie priestoru X. Potom X je úplne regulárny
⇔ ∀c ∈ Xα∀U ∈ S také, že c ∈ U existuje spojité zobrazenie f : X → [0, 1] také, že f(c) = 1 a
f [X \ U ] ⊆ {0}.
Dôkaz. ⇒ : X \ U uzavretá. c /∈ X \ U ⇒ existuje f : X → [0, 1] spojité, f(c) = 1, f [X \ U ] = {0}.
⇐ : Nech A je uzavretá v X a c ∈ X \ A otvorená. Potom existujú U1, · · · , Uk ∈ S také, že

c ∈
∞⋂

i=1

Ui ⊆ X \ A. A ⊆ X \
∞⋂

i=1

Ui =
∞⋃

i=1

(X \ Ui). ∀i : c ∈ Ui ∈ S potom existujú spojité zobrazenia

fi : X → [0, 1], fi(c) = 1 a f [X \ Ui] ⊆ {0}. Nech f : X → [0, 1]; ∀x ∈ X : f(x) = min{f1(x), · · · , fk(x)}
spojité. f(c) = min{f1(c), · · · , fk(c)} = 1. Nech a ∈ A. Potom ∃i : a ∈ X \ Ui ⇒ fi(a) = 0⇒ f(a) =
= min{f1(a)︸ ︷︷ ︸

≥0

, · · · , fi(a)︸ ︷︷ ︸
=0

, · · · , fk(a)︸ ︷︷ ︸
≥0

} = 0. tj. f [A] ⊆ {0}.

g : X → [0, 1]k; g(x) = (f1(x), · · · , fk(x)) spojité. pi ◦ g = fi.
h : [0, 1]k → [0, 1] spojité h(x1, · · · , xk) = min{x1, · · · , xk} f = h ◦ g
h−1[a, 1] = [a, 1]k, h−1[0, b) = [0, b)× [0, 1]k−1 ∪ [0, 1]× [0, 1] ∪ [0, b) ∪ [0, 1]k−2 ∪ · · · ∪ [0, 1]k−1 × [0, b).
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Veta 5.5.
(1) Každý podpriestor regulárneho (resp. T3-; úplne regulárneho; T3 1

2
-) priestoru je regulárny (resp.

T3-, úplne regulárny, T3 1
2
-) priestor.

(2) Ak (Xα)α∈I je systém regulárnych (resp. T3-, úplne regulárnych, T3 1
2
-) priestorov, tak X =

∏

α∈I
Xα

je regulárny (resp. T3-, úplne regulárny, T3 1
2
-) priestor.

Dôkaz.
(1) Nech X je regulárny a Y je podpriestor X. Nech a ∈ Y , B je uzavretá podmnožina Y a a /∈ B.

Potom existuje uzavretá podmnožina B′ priestoru X taká, že B′∩Y = B. a ∈ Y , a /∈ B ⇒ a /∈ B′.
X je regulárna potom existujú otvorené U, V ∈ X také, že a ∈ U , B′ ⊆ V , U∩V = ∅. U ′ = U∩Y ,
V ′ = V ∩ Y , U ′, V ′ sú otvorené v Y , a ∈ U ′, B ⊆ V ′ a U ′ ∩ V ′ = ∅.

(2) Nech ∀α∈I Xα je regulárny. Nech X =
∏

α∈I
Xα. Nech x∈X. Bx = {V ∈P(x), x∈V a V je prvok

štandardnej bázy súčinovej topológie }. Nech V ∈Bx, potom existujú α1, · · · , αk∈I a ∀i = 1, · · · , k,

Ui je otvorená v Xαi , V =
k⋂

i=1

(pαi)
−1(Ui). x ∈ V ⇒ ∀i = 1, · · · , k : pαi(x) ∈ Ui. Systém všetkých

okoĺı ηpαi v Xα je báza okoĺı. Xα regulárna. Ui ∈ ηpαi (x) ⇒ existuje Vi ∈ ηpαi (x) také, že

V̄i ⊆ Ui. U =
k⋂

i=1

(pαi)
−1(Vi) ∈ Bx; x ∈ U ⇒ x ∈ Bx. U =

k⋂

i=1

(pαi)
−1(Vi) ⊆

k⋂

i=1

(pαi)
−1(V̄i) ⊆

⊆
k⋂

i=1

(pαi)
−1(Ui) = V ⇒ Ū ⊆

k⋂

i=1

(pαi)
−1(V̄i) ⊆ V .

Dôsledok Vety 5.3. X je regulárny ⇔ ∀c ∈ X ∀U ∈ η(x) ∃V ∈ η(x) : V̄ ⊆ U .

Dôkaz. Nech ∀α∈I Xα je úplne regulárny. X=
∏

α∈I
Xα. Nech S je štandardná subbáza súčinovej topológie.

Nech V ∈S, x∈V v X. ∃α0 ∈ I ∃U ∈ Xα0 otvorená: V = (pα0)−1(U). x∈V ⇒ pα0(x)∈U . Pretože Xα0

je úplne regulárny existuje spojité zobrazenie fα0 : Xα0 → [0, 1]; fα0(pα0(x)) = 1, fα0 [Xα0 \ U ] ⊆ {0}.
Nech f = fα0 ◦ pα0 : X → [0, 1] je spojité. f(x) = (fα0 ◦ pα0)(x) = 1. ∀y ∈ X \ V pα0(y) ∈ Xα0 \ U ⇒
fα0(pα0(y)) = 0 = f(y)⇒ f [X \ V ] ⊆ {0}. Teda X je úplne regulárny.

Veta 5.6. (o reprezentácii T3 1
2
-priestorov)

Priestor X je T3 1
2
-priestor⇔ existuje A tak, že X je homeomorfný s niektorým podpriestorom priestoru

[0, 1]A.

Dôkaz.
⇒ : Nech X je T3 1

2
-priestor. A = C(X, [0, 1]) množina všetkých spojitých zobrazeńı f : X → [0, 1].

∀f : pf (h(x)) = f(x). Chceme ukázat’, že X je homeomorfný s h[X]. ∀f ∈ C(X, [0, 1]) : pf ◦ h = f je
spojité ⇒ h je spojité. Nech x, x′ ∈ X, x 6= x′. {x′} je uzavretá. x /∈ {x′} ⇒ ∃f : X → [0, 1] spojité
také, že f(x) = 1, f(x′) = 0. pf (h(x)) = f(x) 6= f(x′) = pf (h(x′))⇒ h(x) 6= h(x′)⇒ h je spojité.

Nech A je uzavretá v X. Chceme ukázat’, že h[A] je uzavretá v h[X]. Nech y ∈ h[X] \ h[A]. Potom
∃x ∈ X : h(x) = y ⇒ x /∈ A. X je úplne regulárny, potom existuje spojité f : X → [0, 1], f(x) = 1 a
f [A] ⊆ {0}. f = pf ◦ h. f(A) = pf (h(A)) ⊆ {0}; f(x) = pf (h(x)) = pf (y) = 1. U = (pf )−1(0, 1] je
otvorená v C(X, [0, 1]). h[A] ∩ U = ∅, y ∈ U . U ′ = U ∩ h(x) otvorená v h[X]. y ∈ U ′, U ′ ∩ h[A] = ∅.
Teda h[A] je uzavretá v h[X] a h : X → h[X] je homeomorfizmus.
⇐ : Nech X je homeomorfný nejakému podpriestoru X ′ priestoru [0, 1]A. Priestor [0, 1] je T3 1

2
-

priestor. [0, 1]A je tiež T3 1
2
-priestor ⇒ X ′ je T3 1

2
-priestor potom X je T3 1

2
-priestor.

Poznámka. Ak X je T4-priestor, tak X je T3-priestor.

Pŕıklady.
5.6. Pŕıklad na T3 1

2
-priestor, ktorý nie je normálny a teda ani T4-priestor.

P6 = (R, τz)× (R, τz) {(a, b], a, b ∈ R, a < b} báza τz.
{(a, b]× (c, d], a, b, c, d ∈ R; a<b<c<d} je báza topológie v (R, τz)× (R, τz).
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D := {(x,−x); x ∈ R} ⊆ R× R, V := (−b− 1,−b]× (b− 1, b] je otvorená v P6. V ∩D = {(−b, b)} je
otvorená v D. D je diskrétny aj uzavretý v P6. P6 je separabilný. Q×Q je hustá v P6. ((a, b]× (c, d])∩
∩(Q×Q) 6= ∅. Nech P6 je normálny. ∀A ⊆ D A je uzavretá v D ⇒ A je uzavretá v P6. Nech teda A ⊆ D
je l’ubovol’ná. Potom A,D \A sú uzavreté v D a teda aj v P6 a A∩ (D \A) = ∅. Potom existujú otvorené
UA, VA v P6: UA ⊇ A, VA ⊇ D \A, UA ∩ VA = ∅. card P(D) = 2C (kardinalita potenčnej množiny D).

Pre ∀A ∈ P(D) vyberieme UA a polož́ıme U ′A = UA ∩ (Q × Q). P(D) → P(Q × Q); A 7→ U ′A. Nech
A,A′ ∈ P(D), A 6= A′. Potom A \A′ 6= ∅ ∨A′ \A 6= ∅. Nech A \A′ 6= ∅. Chceme ukázat’, že U ′A 6= U ′A′ .
Nech c ∈ A \ A′. U ′A = UA ∩ (Q×Q), U ′A′ = UA′ ∩ (Q×Q). ∃VA : A ⊆ UA, D \ A ⊆ VA, UA ∩ VA = ∅,
UA, VA sú otvorené. ∃VA′ : A′ ⊆ UA′ , D \A′ ⊆ VA′ , UA′ ∩ VA′ = ∅, UA′ , VA′ sú otvorené.
c ∈ A, c ∈ D \ A′ ⇒ c ∈ UA ∩ VA′ 6= ∅ ⇒ W := (UA ∩ VA′) ∩ (Q×Q) = ∅, W ⊆ U ′A. W ∩ UA′ = ∅ ⇒

W ∩ U ′A′ = ∅ ⇒ U ′A′ 6= U ′A. card P(D) = 2C , card(Q×Q) = C spor, lebo neplat́ı: 2C ≤ C.
Teda P6 nie je normálny. (R, τz) je T3 1

2
-priestor ⇒ P6 = (R, τz)× (R, τz) je T3 1

2
-priestor.

Veta 5.7. Ak X je regulárny a má spočitatel’nú bázu, tak X je normálny.

Dôkaz. Nech A,B sú uzavreté v X, A ∩ B = ∅. Nech B je spočitatel’ná báza X. ∀x ∈ A; x /∈ B
tj. x ∈ X \ B otvorená tj. X \ B ∈ η(x). X je regulárna ⇒ ∃U ′x ∈ η(x) tak, že Ūx ⊆ X \ B tj.
Ūx ∩ B = ∅. Ux je otvorená, x ∈ Ux ⇒ ∃Vx ∈ B tak, že x ∈ Vx ⊆ Ux. Potom V̄x ⊆ Ūx ⇒ V̄x ∩ B = ∅.
SA = {Vx, x ∈ A} ⊆ B ⇒ SA = {Vn}∞n=1;

⋃

n∈N
Vn =

⋃

x∈A
Vx ⊇ A, ∀n ∈ N : V̄n ∩B = ∅.

Podobne dostaneme SB = {Wn}∞n=1 ⊆ B,
⋃

n∈N
Wn ⊇ B a ∀n ∈ N : W̄n ∩A = ∅. ∀n ∈ N :

Ṽn = Vn \
⋃

p≤n
W̄p otvorená. Ṽ =

⋃

n∈N
Ṽn ⊇ A. W̃m = Wm \

⋃

p≤m
V̄p otvorená W̃ =

⋃

m∈N
W̃m ⊇ B.

Zoberme l’ubovol’né Ṽn, W̃m. Ukážeme, že sú disjunktné.
1.) m ≤ n : Ṽn ∩ W̃m = ∅, hned’ vidno: Ṽn ∩ W̃m = ∅, W̃m ⊆Wm ⊆ W̄m ⇒ Ṽn ∩ W̃m = ∅.
2.) n ≤ m : W̃m ∩ V̄n = ∅, Ṽn ⊆ Vn ⊆ V̄n ⇒ Ṽn ∩ W̃m = ∅.

Pŕıklad.
5.7. R s obvyklou topológiou je normálny priestor.

Veta 5.8. X je normálny ⇒ pre každú uzavretú množinu A a každú otvorenú množinu U ⊇ A existuje
otvorená množina V tak, že A ⊆ V , V̄ ⊆ V .

Dôkaz. ⇒ : A uzavretá, U otvorená. A ⊆ U . A, X \ U sú otvorené, A ∩ X \ U = ∅, teda existujú
otvorené V,W tak, že A ⊆ V , X \ U ⊆ W , V ∩ W = ∅. X \ U ⊆ W ⇒ U ⊇ X \ W uzavretá.
V ∩W = ∅ ⇒ V ⊆ X \W uzavretá ⇒ V̄ ⊆ X \W ⊆ U .
⇐ : podobne.

Veta 5.9. Urysohnova Lema
X je normálny ⇔ pre l’ubovol’né uzavreté množiny A,B v X, A ∩ B = ∅ existuje spojité zobrazenie

f : X → [0, 1], f [A] ⊆ {0}, f [B] ⊆ {1}.
Dôkaz. ⇒ : Nech X je normálny, A,B sú uzavreté v X a A∩B = ∅. Nech [0, 1]Q := [0, 1]∩Q. Utvoŕıme
systém Vr, r ∈ [0, 1]Q , ktorý má nasledujúce vlastnosti:

(1) ∀r ∈ [0, 1]Q je Vr otvorená.
(2) Ak r < r′, tak V̄r ⊆ Vr′ .
(3) A ⊆ V0, B ⊆ X \ V1.

[0, 1]Q môžeme zoradit’ do postupnosti {rk}∞k=1, kde r1 = 0, r2 = 1.
Indukciou:

1◦: k = 2 : V1 = X \ B otvorená. A ⊆ V1
5.8⇒ ∃U otvorená: A ⊆ U , Ū ⊆ V1. V0 = U , V0 = Vr1 ,

V1 = Vr2 otvorené. r1 < r2 ⇒ V̄r1 ⊆ V̄r2 , A ⊆ Vr1 , B ⊆ X \ Vr2 . V̄r1 ⊆ Vr2 ∃U otvorená V̄r1 ⊆ U ,
Ū ⊆ Vr2 . Vr3 = U . Vr1 , Vr2 , Vr3 . V̄r3 ⊆ Vr2 . r1 < r3 ⇒ V̄r1 ⊆ Vr3 .

2◦ Indukčný krok: Nech k ≥ 2 a existuje už systém Vr1 , · · · , Vrk taký, že
(1k) ∀i ≤ k : Vri je otvorená.
(2k) ∀i, j ≤ k : Ak ri < rj tak V̄ri ⊆ V̄rj .
(3k) A ⊆ Vr1 , B ⊆ X \ Vr2 .
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rk+1: Nech l,m ≤ k sú také, že rl je najväčšie z ri, i ≤ k také, že rl ≤ rk+1 a rm je najmenšie
z ri, i ≤ k také, že rk+1 < rm. Potom existuje otvorená W tak, že V̄rl ≤ W , W̄ ⊆ Vrm , Vrk+1 = W .
Máme systém Vr1 , · · · , Vrk+1 taký, že:
(1k+1) ∀i ≤ k + 1 : Vri je otvorená.
(2k+1) ∀i, j ≤ k+1 : ak ri < rj , tak V̄ri ⊆ Vrj . Lebo: ak i 6= k+1 6= j tak OK. Nech j = k+1, i < k+1,

ri < rk+1. Potom ri ≤ rl ⇒ V̄ri ⊆ Vrl ⊆ V̄rl ⊆ Vrk+1 . Teraz nech i = k + 1, j ≤ k, rk+1 < rj .
Potom rm ≤ rj . V̄rk+1 ⊆ Vrm ⊆ Vrj .

(3k+1) A ⊆ Vri , B ⊆ X \ Vrj .
Indukciou dostaneme Vr1 , · · · , Vrk , · · · tj. (Vr, r ∈ [0, 1]Q) ktorý sṕlňa:

(1) ∀r ∈ [0, 1]Q : Vr je otvorená.
(2) Ak r < r′ tak V̄r ⊆ Vr′ . Pretože r = ri, r′ = rj . i ≤ j potom pre Vr1 , · · · , Vrj použijeme (2j)

ri < rj ⇒ V̄ri ⊆ Vrj .
(3) A ⊆ Vr1 = V0, B ⊆ X \ Vr2 = V1.

Teraz definujeme zobrazenie f : X → [0, 1] takto: f(x) = inf{r ∈ [0, 1]Q;x ∈ Vr}; x ∈ V1 a f(x) = 1
pre x ∈ X \ V1. f [B] ⊆ {1} plat́ı. ∀x ∈ A : x ∈ V0 ⇒ f(x) = inf{r ∈ [0, 1]Q;x ∈ Vr} = 0, f [A] ⊆ {0}.
f je spojité: S = {[0, a); a∈(0, 1)} ∪ {(b, 1]; b∈(0, 1)} je subbáza [0, 1]. Zoberme x∈f−1([0, a)) ⇔

f(x)<a ⇔ ∃r∈[0, 1]Q, r<a : x∈Vr ⇔ x∈
⋃
r<a

r∈[0,1]Q

Vr otvorená. x∈f−1[(b, 1)] ⇔ b < f(x) ⇒ ∃r′ ∈ [0, 1]Q :

b < r′ < r < f(x) ⇒ ∃r, r′ ∈ [0, 1]Q : b < r′ < r : V̄r′ ⊆ Vr x /∈ Vr ⇒ ∃r′ ∈ [0, 1]Q : b < r′ x ∈ X \ V̄r ⇒
x ∈

⋃

r′∈[0,1]Q
b<r′

(X \ V̄r′). Ukázali sme, že f−1[(b, 1]] =
⋃

b<r′
(X \ Vr′) otvorená.

⇐ : Nech A,B sú uzavreté v X, A ∩ B = ∅. Potom existuje spojité zobrazenie f : X → [0, 1];
f [A] ⊆ {0}, f [B] ⊆ {1}. Potom U = f−1[[0, 1

3 ]], V = f−1[(2
3 , 1]]. A ⊆ U , B ⊆ V , U, V otvorené

U ∩ V = ∅ ⇒ X je normálny.

Dôsledok. Každý T4-priestor je T3-priestor.

Pŕıklad.
5.8. Ak (X, d) je metrický priestor, tak (X, τd) je normálny. Nech A,B sú uzavreté v (X, τd), A∩B = ∅,

A 6= ∅ 6= B. f : (X, τd)→ [0, 1], f(x) =
d(x,A)

d(x,A) + d(x,B)
. f(x) je spojitá.

5.9. Y = (R, τz)×(R, τz) je T3 1
2
-priestor, ale nie je normálny. Y ∼= Y ′ ⊆ [0, 1]A kompaktný T2-priestor,

teda je normálny. Y ′ nie je normálny. Teda Y ′ je nenormálny podpriestor normálneho priestoru. (R, τz)
je normálny, ale (R, τz)× (R, τz) nie je normálny.

Veta 5.10. (Tietzeho Veta)
Ak X je normálny, A je uzavretý podpriestor priestoru X a f : A → R je spojité zobrazenie, tak

existuje spojité zobrazenie g : X → R také, že ∀x ∈ A : g(x) = f(x).

VI. KOMPAKTNÉ PRIESTORY

Defińıcia 6.1.

(1) Systém S podmnož́ın priestoru X sa nazýva pokrytie priestoru X (resp. podmnožiny A priestoru
X) ak X =

⋃

S∈S
S (resp. A ⊆

⋃

S∈S
S ). Ak všetky prvky S sú otvorené množiny v X, tak U sa

nazýva otvorené pokrytie.
(2) Priestor X sa nazýva kompaktný, ak pre každé otvorené pokrytie U priestoru X existuje konečné

podpokrytie U ′ priestoru X tak, že U ⊇ U ′.
(3) Podmnožina A priestoru X sa nazýva kompaktná, ak podpriestor priestoru X určený A je kom-

paktný priestor.

Pŕıklady.
6.1. Každý konečný priestor je kompaktný.
6.2. Každý indiskrétny priestor je kompaktný.
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6.3. Nech X je množina a τ je kofinitná topológia na X. τ = {U ∈ P(X); X \ U je konečná } ∪ {∅}.
(X, τ) je kompaktný T1-priestor. Dôkaz: U je otvorené pokrytie (X, τ). U∈U , U 6=∅, X \U={x1, · · · , xk}
existujú U1, · · · , Uk ∈ U : x1 ∈ U1, · · · , xk ∈ Uk. U ′ = {U,U1, · · · , Uk} je konečné pokrytie X, U ′ ⊆ U .

6.4. [a, b] ⊂ R s obvyklou topológiou je kompaktný T2-priestor. Dôkaz: U je otvorené pokrytie [a, b].
K := {c ∈ [a, b]; existuje konečné pokrytie U ′ intervalu [a, c], U ⊆ U ′}. K 6= ∅, lebo a ∈ K. Nech
d := supK. Existuje U ∈ U tak, že d ∈ U . Ak d = a, tak d ∈ K. Nech d > a. ∃ε > 0 tak,
že (d − ε, d + ε) ∩ [a, b] ⊆ U . d − ε < d ⇒ ∃c ∈ K : c > d − ε, (c ≤ d). [c, d] ⊆ (d − ε, d] ⊆ U ,
c ∈ K ⇒ ∃U1, · · · , Uk ∈ U ; [a, c] ⊆ U1 ∪ · · · ∪ Uk. Potom [c, d] ⊆ U1 ∪ · · · ∪ Uk ∪ U . Teda d ∈ K. Nech
d < b, U ∈ U , d ∈ U . [d, d+ ε) ⊆ U . Nech c′ ∈ (d, d+ ε). [d, c′] ⊆ U , [a, c′] ⊆ U1 ∪ · · · ∪Uk ∪U ⇒ c′ ∈ K,
c′ > d . . . spor. Teda d = b ∈ K.

Veta 6.1. Nech X je priestor a A je podmnožina X. Potom A je kompaktná ⇔ pre l’ubovol’né pokrytie
U množiny A otvorenými množinami v X existuje konečné pokrytie S ′ množiny A tak, že S ′ ⊆ U .

Dôkaz.
⇒ : Nech V je systém otvorených množ́ın v X taký, že

⋃

V ∈V
V ⊇ A. Potom U = {V ∩ A, V ∈ V}

otvorené pokrytie podpriestoru A. A je kompaktný priestor ⇒ ∃V1 ∩A, . . . , Vk ∩A tak
k⋃

i=1

(Vi ∩A) = A.

Potom
k⋃

i=1

Vi ⊇ A tj. {V1, · · · , Vk} ⊆ V je konečné pokrytie A.

⇐ : Nech V je otvorené pokrytie priestoru A. Pre každé V ∈ V vyberme otvorenú množinu UV
v priestore X; UV ∩ A = V . Potom U = {UV , V ∈ V} je systém otvorených množ́ın v X, pre ktorý
⋃

V ∈V
UV ⊇ A. Potom existujú V1, · · · , Vk ∈ V tak, že

k⋃

i=1

UVi ⊇ A ⇒
k⋃

i=1

UVi = A. (UVi ∩ A = Vi).

{V1, · · · , Vk} ⊆ V. Teda A je kompaktný.

Defińıcia 6.2. Systém S podmnož́ın priestoru X sa nazýva centrovaný, ak pre l’ubovol’ný konečný

neprázdny systém {A1, · · · , Ak} ⊆ S plat́ı
k⋂

i=1

Ai 6= ∅.

Pŕıklady.
6.6. {A ∈ P(R); 0 ∈ A} je centrovaný.

6.7. S = {U ∈ P(R), R\U je konečná } je centrovaný. Dôkaz: U1, · · · , Uk;
k⋂

i=1

Ui 6= ∅ ⇔ R\
k⋂

i=1

Ui 6= R.

R \
k⋂

i=1

Ui =
k⋃

i=1

(R \ Ui) je konečná.

Veta 6.2. Ak X je topologický priestor, tak nasledujúce výroky sú ekvivalentné:

(1) X je kompaktný.
(2) Pre každý centrovaný systém V uzavretých podmnož́ın priestoru X:

⋂

V ∈V
V 6= ∅.

(3) Pre každý centrovaný systém S podmnož́ın X:
⋂

A∈S
Ā 6= ∅.

Dôkaz. (1)⇒ (2): Nech V je centrovaný systém uzavretých podmnož́ın X taký, že
⋂

V ∈V
V = ∅. Nech

U = {X \ V ; V ∈ V}.
⋃

V ∈V
(X \ V ) = X \

⋂

V ∈V
V = X ⇒ U je otvorené pokrytie X. Nech U1, · · · , Uk je

l’ubovol’ný neprázdny konečný systém prvkov z U . Potom existujú V1, · · · , Vk ∈ V tak, že U1 = X \ V1,

. . . , Uk = X \ Vk.
k⋃

i=1

Ui =
k⋃

i=1

(X \ Vi) = X \
k⋂

i=1

Vi 6= X, lebo
k⋂

i=1

Vi 6= ∅.
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(2)⇒ (3): Ak S je centrovaný systém, tak aj S ′ = {Ā; A ∈ S} je centrovaný systém uzavretých

množ́ın ⇒
⋂

A∈S
Ā 6= ∅.

(3)⇒ (1): Nech X nie je kompaktný. Potom existuje otvorené pokrytie U priestoru X také, že

pre l’ubovol’ný konečný systém {U1, · · · , Uk} ⊆ U plat́ı
k⋃

i=1

Ui 6= X. S := {X \ U , U ∈ U} je to

centrovaný systém. Nech ∅ 6= {X \ U1, · · · , X \ Uk} ⊆ S.
k⋂

i=1

(X \ Ui) = X \
k⋃

i=1

Ui 6= ∅. S je centrovaný
⋂

A∈S
Ā =

⋂

U∈U
(X \ U) =

⋂

U∈U
(X \ U) = X \

⋃

U∈U
U = X \X = ∅.

Veta 6.3. Nech X je priestor, B je báza topológie X. Potom X je kompaktný ⇔ pre l’ubovol’né pokrytie
S priestoru X také, že S ⊆ B existuje konečné pokrytie S ′ ⊆ S priestoru X.

Dôkaz. ⇒ : zrejmá.
⇐ : Nech U je otvorené pokrytie X. Pre každé x ∈ X vyberme Ux ∈ U tak, že x ∈ Ux. Pre každé
x vyberme Vx ∈ B tak, že x ∈ Vx ⊆ Ux. S = {Vx, x ∈ X} ⊆ B, S je pokrytie X tj.

⋃

x∈X
Vx = X.

Existuje k ∈ N, x1, · · · , xk ∈ X tak, že Vx1 ∪ · · · ∪ Vxk = X. ∀i = 1, · · · , k : Vxi ⊆ Uxi a
k⋃

i=1

Uxi = X.

{Ux1 , · · · , Uxk} ⊆ U .

Pŕıklad 6.8. (0, 1) ⊆ [0, 1], ale (0, 1) nie je kompaktný. Teda podpriestor kompaktnej množiny nemuśı
byt’ kompaktný.

Veta 6.4.
(1) Každý uzavretý podpriestor A kompaktného priestoru X je kompaktný.
(2) Každý kompaktný podpriestor A T2-priestoru X je uzavretý podpriestor.

Dôkaz.
(1) Nech S je centrovaný systém uzavretých podmnož́ın priestoru A. Potom, pretože A je uzavretý,
S je centrovaný systém uzavretých podmnož́ın v X, X je kompaktný ⇒

⋂

C∈S
C 6= ∅. Teda A je

kompaktný.
(2) Nech c /∈ A. ∀a ∈ A existujú otvorené množiny Ua, Va tak, že a ∈ Va, c ∈ Ua. {Va; a ∈ A} je

otvorené pokrytie A. Existuje a1, · · · , ak ∈ A: V := Va1 ∪ · · · ∪ Vak ⊇ A , U = Ua1 ∩ · · · ∩ Uak
otvorená, c ∈ U , U ∩ V = ∅, A ⊆ V ⇒ U ∩A = ∅. X \A je otvorená ⇒ A je uzavretá.

Dôsledok. Ak X je kompaktný T2-priestor a A ⊆ X, tak A je kompaktná ⇔ A je uzavretá.

Pŕıklad 6.9. Nech (X, τX) je l’ubovol’ný topologický priestor. Nech c /∈ X. Y = X ∪ {c}, τY = τX ∪ {Y }.
Potom (Y, τY ) je topológia, je to kompaktný priestor. Ak U je otvorené pokrytie (Y, τY ), tak existuje
U ∈ U : c ∈ U ⇒ U = Y ⇒ {Y } ⊆ U . (X, τX) je otvorený podpriestor (Y, τY ). Ak (X, τX) je T0-priestor,
tak aj (Y, τY ) je T0-priestor. Ak X 6= ∅, tak (Y, τY ) nie je T1-priestor.

Veta 6.5. Nech X je T2-priestor a A,B sú kompaktné podmnožiny v X, A ∩ B = ∅. Potom existujú
otvorené množiny U, V ∈ X tak, že A ⊆ U , B ⊆ V a U ∩ V = ∅.
Dôkaz.

a) Nech a ∈ A. Potom ∀b ∈ B, a 6= b a teda existujú otvorené množiny Ub, Vb tak, že a ∈ Ub, b ∈ Vb a
Ub ∩ Vb = ∅. V = {Vb, b ∈ B} je otvorené pokrytie B – kompaktná, preto existuje b1, · · · , bk ∈ B, k ∈ N

tak, že B ⊆ Vb1 ∪ · · · ∪ Vbk = V je otvorená. Ub1 , · · · , Ubk , ∀i : a ∈ Ubi , U =
k⋂

i=1

Ubi otvorená množina.

∀i = 1, · · · , k: U ∩ Vbi = ∅, (Ubi ∩ Vbi = ∅). Potom U ∩ V = ∅. a ∈ U , b ∈ V .
b) Podl’a a) pre každé a ∈ A existujú otvorené množiny Wa, Sa tak, že a ∈Wa, B ⊆ Sa, Wa ∩Sa = ∅.

W = {Wa, a ∈ A} je otvorené pokrytie A – kompaktná ⇒ ∃a1, · · · , am ∈ A, m ∈ N, A ⊆
m⋃

i=1

Wai = W
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otvorená. ∀i : B ⊆ Sai ⇒ B ⊆
m⋂

i=1

Sai = S otvorená; ∀i : S ∩Wai ⊆ Sai ∩Wai = ∅ ⇒ S ∩W = ∅, A ⊆W ,

B ⊆ S.

Veta 6.6. Ak X je kompaktný T2-priestor, tak X je normálny (a aj T4-priestor).

Dôkaz. Ak A,B sú uzavreté v X, A ∩B = ∅, tak A,B sú kompaktné v X. Ďal’ej použijeme vetu 6.5.

Dôsledok. Ak X je kompaktný T2-priestor, tak X a aj každý jeho podpriestor je T3 1
2
-priestor (a teda aj

T3-priestor).

Veta 6.7. Nech f : X → Y je spojité zobrazenie. Potom plat́ı:
(1) Ak A je kompaktná podmnožina X, tak f [A] je kompaktná podmnožina Y . (Špeciálne: Ak X je

kompaktný, tak f [X] je kompaktný v Y .)
(2) Ak X je kompaktný a Y je T2-priestor, tak f je uzavreté zobrazenie. Ak naviac f je surjekt́ıvne,

tak f je aj faktorové zobrazenie.
(3) Ak X je kompaktný a Y je T2-priestor a f je bijekt́ıvne, tak f je homeomorfizmus.
(4) Ak Y = R a X 6= ∅ je kompaktný, tak existujú a, b ∈ X tak, že ∀x ∈ X: f(a) ≤ f(x) ≤ f(b).

Dôkaz.
(1) Nech V je otvorené pokrytie f [A], tj. f [A] ⊆

⋃

V ∈V
V . Potom U = {f−1(V ), V ∈ V} je otvorené

pokrytie A v X. Teda ∃V1, · · · , Vk ∈ V, A ⊆
k⋃

i=1

f−1(Vi)⇒ f [A] ⊆
k⋃

i=1

Vi. {V1, · · · , Vk} ⊆ V. f [A]

je kompaktná.
(2) Nech A je uzavretá v X. Potom A je kompaktná v X a teda f [A] je kompaktná v Y . Y je

T2-priestor, potom f [A] je uzavretá v Y .
(3) Stač́ı ukázat’, že f−1 je spojité. Nech A je uzavretá v X. Potom (f−1)−1[A] = f [A] je uzavretá

v Y a teda f je spojité.
(4) f [X] 6= ∅ je kompaktná v R. Potom f [X] je ohraničená v R. Nech c := inf f [X], d := sup f [X].

f [X] je kompaktná ⇒ f [X] je uzavretá ⇒ c, d ∈ f [X]. Existujú a, b ∈ X tak, že f(a) = c,
f(b) = d a ∀x ∈ X : f(a) = c ≤ f(x) ≤ d = f(b).

Defińıcia 6.3. Priestor X sa nazýva lokálne kompaktný, ak pre každé a ∈ X existuje okolie U bodu a
také, že Ū je kompaktná množina v X.

Pŕıklady.
6.10. Každý kompaktný priestor je lokálne kompaktný.
6.11. Každý diskrétny priestor je lokálne kompaktný.
6.12. R s obyčajnou topológiou je lokálne kompaktný.
6.13. Q ako podpriestor R je topologický priestor, ktorý nie je lokálne kompaktný. Dôkaz: Nech U

je okolie bodu 0 v Q také, že Ū je kompaktný v Q. Existuje ε > 0 tak, že (−ε, ε)Q = (−ε, ε) ∩ Q.
(−ε, ε)Q ⊆ U . Nech δ ∈ R \Q : 0 < δ < ε. Potom (−δ, δ)Q ⊆ U . Potom (−δ, δ)Q ⊆ Ū a teda (−δ, δ)Q je

kompaktná. (−δ, δ)Q
Q

= (−δ, δ)Q
R

= [−δ, δ] ∩ Q = (−δ, δ)Q. Potom (−δ, δ)Q je kompaktná v Q. Nech
{rn}∞n=1 je postupnost’ kladných racionálnych č́ısel taká, že rn → δ v R.

⋃

n∈N
(−rn, rn) = (−δ, δ). Potom

⋃

n∈N
(−rn, rn)Q = (−δ, δ)Q. Systém {(−rn, rn)Q, n ∈ N} je otvorené pokrytie Q, ale nedá sa z neho

vybrat’ konečné podpokrytie. Keby áno: (−rk1 , rk1), · · · , (−rkm , rkm). rkj := max{rk1 , · · · , rkm} ⇒
m⋃

i=1

(−rki , rki) = (−rkj , rkj ) ( (−δ, δ)Q. Teda (−δ, δ)Q nie je kompaktný. Spor.

Veta 6.8.
(1) Ak X je lokálne kompaktný T2-priestor, tak pre každé a ∈ X a každé okolie U bodu a existuje

okolie V bodu a také, že V̄ je kompaktná množina a V̄ ⊆ U .
(2) Ak X je regulárny lokálne kompaktný priestor, tak pre každé a ∈ X a každé okolie U bodu a

existuje okolie V bodu a také, že V̄ je kompaktná množina a V̄ ⊆ U .
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Dôkaz.
(1) Nech a ∈ X a U je okolie a v X. Existuje okolie W bodu a také, že W̄ je kompaktná množina.

Potom U ∩ W =: U ′ je okolie bodu a v X a aj v podpriestore W̄ . W̄ je kompaktný ⇒ W̄
je regulárny priestor. Potom existuje okolie V bodu a vo W̄ tak, že V̄ ⊆ U ′. V je okolie a aj
v podpriestore U ′ priestoru W̄ . (V ∩U ′ = V ). Teda V je otvorená v U ′; U ′ je otvorená v X, potom
V je otvorená aj v X a teda V je okolie a v X. V ⊆ W̄ uzavretá v X. Potom V̄ X = V̄ W̄ resp.
(V̄ X ⊆ W̄X). V̄ je uzavretý podpriestor W̄ . Potom V̄ je kompaktná množina v X, V̄ ⊆ U ′ ⊆ U .
V je okolie a v X, V̄ je kompaktná, V̄ ⊆ U .

Veta 6.9. Alexandrovova kompaktifikácia
Nech (X, τX) je lokálne kompaktný T2-priestor, c /∈ X. Nech Y = X∪{c} a τY = τX∪{V ∈P(Y ) : c∈V ,

X \ V je kompaktná množina v (X, τX)}. Potom (Y, τY ) je kompaktný T2-priestor, (X, τX) otvorený
podpriestor (Y, τY ) a ak (X, τX) nie je kompaktný, tak X̄ = Y v (Y, τY ).

Dôkaz. Ak V ∈ τY , tak V ∩X ∈ τX . V ∈ τY ⇒ V ∈ τX alebo c ∈ V a X \ V je kompaktný v (X, τX).
Potom V ∩ X = V ∈ τX alebo c ∈ V , X \ V = X \ (V ∩ X) je kompaktná a teda uzavretá v (X, τX).
Potom V ∩X ∈ τX . Treba ukázat’, že τY je topológia na Y :
∅, Y ∈ τY . Nech U, V ∈ τY . Ak U, V ∈ τX ⇒ U ∩ V ∈ τX ⊆ τY . Nech U ∈ τX , V ∈ τY \ τX . Potom

V ∩X ∈ τX a aj U ∩ V = U ∩ (V ∩X) ∈ τX ⊆ τY . Podobne ak U ∈ τY \ τX , V ∈ τX .
Nech U, V ∈ τY \ τX . Potom c ∈ U ∩ V . X \ (U ∩ V ) = (X \ U) ∪ (X \ V ), X \ U a X \ V sú

kompaktné v (X, τX) a aj ich (konečné) zjednotenie je kompaktné v (X, τX). Teda U ∩ V ∈ τY . Nech
S ⊆ τY . Ak S ⊆ τX , tak

⋃

S∈S
S ∈ τX ⊆ τY . Nech ∃V ∈ S, c ∈ V . Potom X \ V je kompaktná v (X, τX).

W :=
⋃

A∈S
A 3 c. Vieme, že ∀A ∈ S : A ∩ X ∈ τX ⇒ X \ (A ∩ X) = X \ A je uzavretá v (X, τX).

X \W =
⋂

A∈S
(X \A) je uzavretá v (X, τX),

⋂

A∈S
(X \A) ⊆ X \ V je kompaktná.

⋂

A∈S
(X \A) je uzavretá

v (X \ V ), potom X \W =
⋂

A∈S
(X \ A) je kompaktná v (X \ V ), a teda aj v (X, τX). Teda W ∈ τY .

Teda (Y, τY ) je topologický priestor a (X, τX) je podpriestor (Y, τY ).
Nech a, b ∈ Y , a 6= b. (X, τX) je T2-priestor, tak existujú U, V ∈ τX ⊆ τY , a ∈ U , b ∈ V , U ∩ V = ∅.

Nech a ∈ X, b = c. (X, τX) je lokálne kompaktný, existuje okolie U bodu a v (X, τX) tak, že Ū je
kompaktná v (X, τX). c /∈ Ū . V = (X \ Ū)∪ {c} ∈ τY , lebo c ∈ V a X \ V = Ū je kompaktná v (X, τX);
U ∩ V = ∅. Teda (Y, τY ) je T2-priestor.

Nech U je otvorené pokrytie (Y, τY ). Potom existuje Uc ∈ U tak, že c ∈ Uc. Pre každé U ∈ U \ {Uc},
UX = U ∩X je otvorená v (X, τX). X \ Uc je kompaktná v (X, τX).

⋃

U∈U\{Uc}
U ⊇ X \ Uc, X \ Uc ⊆ X,

preto
⋃

U∈U\{Uc}
UX ⊇ X \Uc. {UX : U ∈ U \{Uc}} je otvorené pokrytie X \Uc v (X, τX). Potom existujú

U1, · · · , Uk ∈ U \ {Uc}. UX1 ∪ · · · ∪ UXk ⊇ X \ Uc ⇒ U1 ∪ · · · ∪ Uk ⊇ X \ Uc ⇒ U1 ∪ · · · ∪ Uk ∪ Uc = Y .
Teda (Y, τY ) je kompaktný.

Ak (X, τX) nie je kompaktný, tak {c} /∈ τY , teda pre každé okolie V bodu c plat́ı V 6= {c} a teda
V ∩X 6= ∅. Teda c ∈ X̄ v (Y, τY ). �
Dôsledok. Každý lokálne kompaktný T2-priestor je T3 1

2
-priestor.

Pŕıklad 6.14. X = (0, 1), f(x) = (cos 2πx, sin 2πx), Y = f [X]. Kompaktné množiny v Y sú uzavreté
intervaly, ktoré neobsahujú bod [1, 0]. Ich komplementy tvoria systém okoĺı bodu [1, 0].

Veta 6.10.
(1) Ak A je uzavretý podpriestor lokálne kompaktného priestoru X, tak A je lokálne kompaktný.
(2) Ak A je otvorený podpriestor lokálne kompaktného T2-priestoru X, tak A je lokálne kompaktný.

Dôkaz.
(1) Nech c ∈ A. c ∈ X ⇒ existuje okolie U v X bodu c tak, že Ū je kompaktný v X. V = U ∩ A je

okolie c v A. V̄ A ⊆ Ū , V̄ A je uzavretá v A, A ∩ Ū je uzavretá v Ū a teda aj kompaktná. V̄ A je
uzavretá v A ∩ Ū je kompaktná, potom V̄ A je kompaktná v A.
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(2) Nech c ∈ A. A je okolie c v X a podl’a vety 6.8 existuje okolie V bodu c v X tak, že V̄ je
kompaktná v X a V̄ ⊆ A. Potom V je okolie c v A a V̄ A = V̄ kompaktná, teda A je lokálne
kompaktná.

Centrované systémy, filtre a ultrafiltre.

Defińıcia 6.4. Nech X je množina.

(1) Systém C ⊆ P(X) sa nazýva centrovaný systém na X a pre l’ubovol’né k ∈ N a C1, · · · , Ck ∈ C

plat́ı
k⋂

i=1

Ci 6= ∅.

(2) Systém H sa nazýva báza filtra na X, ak H 6= ∅, ∅ /∈ H a pre l’ubovol’né U, V ∈ H existuje W ∈ H
tak, že W ⊆ U ∩ V .

(3) Systém ∅ 6= F ⊆ P(X) sa nazýva filter na X, ak
1.) ∅ /∈ F .
2.) Ak F, F ′ ∈ F tak F ∩ F ′ ∈ F .
3.) Ak F ∈ F a V ∈ P(X) taká, že F ⊆ V , tak V ∈ F .

(4) Filter U na X sa nazýva ultrafilter na X, ak pre každý filter G na X, pre ktorý U ⊆ G plat́ı U = G.
tj. U je maximálny vzhl’adom na ⊆.

Pŕıklady. 6.15. C = {N \ {n}; n ∈ N} je centrovaný systém na N, ktorý nie je báza filtra.
6.16. c ∈ R, H = {(c− ε, c+ ε), ε > 0} je báza filtra a nie je to filter.
6.17. Každá báza okoĺı bodu v topologickom priestore je báza filtra.
6.18. F = {A ∈ P(R); R \A je konečná}, zrejme ∅ /∈ F . Je to filter, ale nie je to ultrafilter.
6.19. G = {A ∈ P(R); R \A je spoč́ıtatel’ná} je filter na R, F ( G, lebo R \ N ∈ G \ F .
6.20. U = {A ∈ P(R), 0 ∈ A} je ultrafilter na R.
6.21. Y ⊆ X, F je filter na Y , tak F je báza filtra na X.

Veta 6.11.

(1) Ak C je centrovaný systém, tak HC = {H ∈ P(X); ∃k ∈ N ∃C1, · · · , Ck ∈ C : H =
k⋂

i=1

Ci} je báza

filtra.
(2) Ak H je báza filtra na X, tak FH = {V ∈ P(X); ∃H ∈ H : H ⊆ V } je filter na X.
(3) Ak F je filter a H ⊆ F taká, že ∀F ∈ F ∃H ∈ H : H ⊆ F , tak H je báza filtra a FH = F . (F je

generovaný H).

Dôkaz.

(1) ∅ 6= C ⊆ HC ; ∅ /∈ HC . Ak H,H ′ ∈ HC , tak H ∩H ′ ∈ HC .
(2) ∅ /∈ FH. Ak A,B ∈ FH tak ∃H,H ′ ∈ H : H ⊆ A, H ′ ⊆ B. Potom existuje H ′′ ∈ H tak, že

H ′′ ⊆ H ∩H ′ ⊆ A ∩ B. Teda A ∩ B ∈ FH. Nech F ∈ FH a U ∈ P(X) tak, že F ⊆ U . Potom
existuje H ∈ H, H ⊆ F ⊆ U ⇒ U ∈ FH.

Veta 6.12.

(1) Ak C je centrovaný systém na X; f : X → Y je zobrazenie, tak f [C] = {f [C]; C ∈ C} je centrovaný
systém na Y .

(2) Ak H je báza filtra na X a f : X → Y je zobrazenie, tak f [H] = {f [H];H ∈ H} je báza filtra
na Y .

Dôkaz.
(2) Ak H ∈ H, tak H 6= ∅ a f [H] 6= ∅, teda ∅ /∈ f [H]. Nech A,B ∈ f [H]. Potom existujú C,D ∈ H :

A = f [C], B = f [D]. Existuje F ∈ H, F ⊆ C ∩ D. Potom f [F ] ⊆ f [C ∩ D] ⊆ f [C] ∩ f [D] = A ∩ B;
f [F ] ∈ f [H]. Teda f [H] je báza filtra na Y .

Pŕıklad 6.22. Obraz filtra nemuśı byt’ filter: F je filter na X; Y má aspoň dva prvky; c ∈ Y a f : X → Y ;
f(x) = c pre ∀x ∈ X. f [F ] = {{c}} je báza filtra, ale nie je to filter, lebo Y /∈ f [F ].
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Veta 6.13. Ak C je centrovaný systém na X, tak existuje centrovaný systém U na X taký, že C ⊆ U a
pre každý centrovaný systém V na X taký, že U ⊆ V plat́ı U = V. (tj. U je maximálny centrovaný systém
na X vzhl’adom na ⊆. Naviac U je vždy ultrafilter.)

Dôkaz. Nech S je množina všetkých centrovaných systémov na X, pre ktoré C ⊆ D. S 6= ∅, (S,⊆) je
čiastočne usporiadaná množina. Nech ∅ 6= R je ret’azec v (S,⊆). Nech M =

⋃

D∈R
D. M 6= ∅. Nech

M1, · · · ,Mk ∈ M. ∀i = 1, · · · , k ∃Di ∈ R : Mi ⊆ Di. Existuje n ∈ {1, · · · , k} tak, že ∀i = 1, · · · , k :

Di ⊆ Dn. Potom M1, · · · ,Mk ∈ Dn ⇒
k⋂

i=1

Mi 6= ∅. Teda M je centrovaný systém na X. C ⊆ M (lebo

∀D ∈ R : C ⊆ D) tj. M ∈ S a ∀D ∈ R : D ⊆ M, teda M je horné ohraničenie R. Podl’a Zornovej lemy
existuje maximálny prvok U v (S,⊆).

Zrejme C ⊆ U . Nech V je centrovaný systém na X, pre ktorý U ⊆ V. Pretože C ⊆ U ⊆ V, C ⊆ V a
teda V ∈ S. U ⊆ V a U je maximálny v (S,⊆), tak U = V. Ukážeme, že U je ultrafilter. ∅ /∈ U . Nech
A,B ∈ U . Nech V = U ∪{A∩B} je centrovaný systém na X; U ⊆ V ⇒ U = V ⇒ A∩B ∈ U . Nech A ∈ U
a V ∈ P(X) taká, že A ⊆ V . V := U ∪{V } je centrovaný systém na X. U ⊆ V ⇒ U = V ⇒ V ∈ U . Teda
U je filter na X. Nech U ′ je filter na X a U ⊆ U ′. Potom U ′ je centrovaný systém na X a teda U = U ′.
Teda U je ultrafilter. �
Dôsledok. Ak F je centrovaný systém (v. báza filtra, v. filter) na X, tak existuje ultrafilter U na X,
pre ktorý F ⊆ U .

Veta 6.14. Nech F je filter na X. Potom plat́ı:
(1) F je ultrafilter na X ⇔ pre každé U ∈ P(X), pre ktoré ∀F ∈ F : U ∩ F 6= ∅ plat́ı U ∈ F .
(2) F je ultrafilter na X ⇔ ∀A ∈ P(X), A ∈ F alebo X \A ∈ F .

Dôkaz.
(1) ⇒ : U ∈ P(X), ∀F ∈ F : U ∩ F 6= ∅. V = F ∪ {U} je centrovaný systém. F ⊆ V. Existuje

maximálny centrovaný systém W na X, pre ktorý V ⊆ W. W je ultrafilter. F ⊆ W ⇒ F =W a
U ∈ W = F .
⇐ : Nech F nie je ultrafilter. Potom ∃G na X taký, že F ( G. Nech U ∈ G \ F . Zrejme
∀F ∈ F : F ∈ G potom F ∩ U ∈ G ⇒ F ∩ U 6= ∅. tj. ∃U ∈ P(X), U /∈ F a ∀F ∈ F : U ∩ F 6= ∅.

(2) ⇒ : Nech A ⊆ X taká, že A /∈ F . Podl’a (1) muśı existovat’F ∈ F : A∩F = ∅. Potom F ⊆ X \A
a teda X \A ∈ F .
⇐ : Nech F nie je ultrafilter. Potom existuje filter G na X také, že F ( G. ∃A ∈ G \ F :
A ∈ G ⇒ X \A /∈ G ⇒ X \A /∈ F . Teda ∃A ⊆ X tak, že A /∈ F a aj X \A /∈ F .

Kompaktné priestory (pokračovanie).

Veta 6.15. Ak (Xα, α ∈ I) je systém kompaktných priestorov, tak aj X =
∏

α∈I
Xα je kompaktný priestor.

Dôkaz. I = ∅ :
∏

α∈∅
Xα = {∗} vždy kompaktný. Ak ∃α ∈ I : Xα = ∅, tak X =

∏

α∈I
Xα = ∅ je

kompaktný. Ak I 6= ∅ a ∀α ∈ I Xα 6= ∅ : X =
∏

α∈I
Xα. Nech C je centrovaný systém na X. Chceme

dokázat’, že
⋂

C∈C
C̄ 6= ∅. Nech U je ultrafilter na X taký, že C ⊆ U .

⋂

V ∈U
V̄ ⊆

⋂

C∈C
C̄. Stač́ı ukázat’, že

⋂

V ∈U
V̄ 6= ∅. Nech α ∈ I. Potom pα[U ] = {pα[V ], V ∈ U} je báza filtra a teda aj centrovaný systém

na Xα. Teda
⋂

V ∈U
pα[V ] 6= ∅ (lebo Xα je kompaktný.) ∀α ∈ I vyberieme cα ∈

⋂

V ∈U
pα[V ] a zoberieme

c ∈ X taký, že pα(c) = cα. Ukážeme, že c ∈
⋂

V ∈U
V̄ . Nech V ∈ U a U je l’ubovol’né okolie c v X.

Existujú α1, · · · , αk ∈ I a U1 otvorené v Xα1 , · · · , Uk otvorené v Xαk tak, že c ∈
k⋂

i=1

(pα1)−1(Ui) ⊆ U .
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Pre ∀i = 1, · · · , k : pαi(c)=cαi ∈ Ui. cαi ∈ pαi [V ] ⇒ Ui ∩ pαi [V ] 6= ∅. (pαi)−1(Ui) ∩ V 6= ∅. Teda

∀V ∈U : (pαi)−1(Ui)∩V = ∅ ⇒ (pαi)−1(Ui) ∈ U . ∀i = 1, · · · , k : (pαi)−1(Ui) ∈ U ⇒
k⋂

i=1

(pαi)−1(Ui)∈U ⇒

U ∈ U ⇒ ∀V ∈ U : U ∩ V 6= ∅. Potom ∀V ∈ U : c ∈ V̄ a teda c ∈
⋂

V ∈U
V̄ 6= ∅. Teda X je kompaktný.

Poznámka. Veta 6.15. sa občas nazýva aj Tichonovova veta, ale vo všeobecnosti to dokázal Čech. Opačná
implikácia plat́ı za predpokladu neprázdneho systému s neprázdnymi množinami.

Dôsledok 1. Pre l’ubovol’nú množinu A je [0, 1]A kompaktný T2-priestor.

Dôsledok 2. Každá uzavretá ohraničená množina v Rn je kompaktná.

Veta 6.16. (o reprezentácii kompaktných T3 1
2
-priestorov)

Priestor X je kompaktný T2-priestor ⇔ existuje množina A tak, že X je homeomorfný s uzavretým
podpriestorom [0, 1]A.

Dôkaz. ⇒ : Nech X je kompaktný T2-priestor. Potom X je T3 1
2
-priestor. Potom existuje A tak, že X je

homeomorfný s podpriestorom X ′ priestoru [0, 1]A. Priestor X ′ je kompaktný a teda uzavretý v [0, 1]A

(lebo [0, 1]A je T2-priestor.).
⇐ : Nech X je homeomorfný s uzavretým podpriestorom X ′ = [0, 1]A. Pretože [0, 1]A je kompaktný
T2-priestor ⇒ X ′ je kompaktný T2-priestor ⇒ X je kompaktný T2-priestor.

Defińıcia 6.5. Nech X je priestor. Usporiadaná dvojica (bX , B(X)) sa nazýva kompaktifikácia priestoru
X, ak B(X) je kompaktný T2-priestor; bX : X ↪→ B(X) je vnorenie a bX [X] ⊆ B(X).

Veta 6.17. Pre každý T3 1
2
-priestor existuje kompaktifikácia (bX , B(X)).

Dôkaz. Ak X je T3 1
2
-priestor, tak existuje množina A a vnorenie jX : X ↪→ [0, 1]A. B(X) = jX [X] je

kompaktný podpriestor [0, 1]A. bX : X → B(X), ∀a ∈ X, bX(a) = jX(a); (bX , B(X)) je kompaktný v X.

Pŕıklad 6.23. Podpriestor normálneho priestoru nemuśı byt’ normálny:
X = (R, τz)×(R, τz) je T3 1

2
-priestor, ale nie je normálny. Existuje kompaktifikácia (bX , B(X)) priestoru

X. bX(X) = X ′ je podpriestor kompaktného T2-priestoru B(X)⇒ X ′ je T4-priestor ⇒ je normálny, ale
X ′ nebol normálny.

Pŕıklad 6.24. N s diskrétnou topológiou; N∗ je Alexandrovova kompaktifikácia na N ∪ {ω}.
τN∗ = P(N) ∪ {U ∈ P(N ∪ {ω}); ω ∈ U a N \ U je konečná }.
Pŕıklad 6.25. R s diskrétnou topológiou; R∗ je Alexandrovova kompaktifikácia v R na R ∪ {∞}.
τR∗ = P(R) ∪ {V ∈ P(R) ∪ {∞}); ∞ ∈ U a R \ U je konečná }. N∗, R∗ sú kompaktné T2-priestory a aj
R∗ × N∗ je kompaktný T2-priestor, teda aj T4-priestor.

Nech Y = (R∗ × N∗) \ {(∞, ω)} je podpriestor otvoreného priestoru (R∗ × N∗), ktorý je lokálne
kompaktný. A′ := R∗ × {ω} je uzavretá v X := R∗ × N∗; B′ := {∞} × N∗ je uzavretá v X. A′ ∩ Y =
= R×{∞} = A je uzavretá v Y , B′∩Y = {∞}×N = B je uzavretá v Y ; A∩B = ∅. Nech U je otvorená
v Y a plat́ı B ⊆ U . Podpriestor R∗×{n} v X (n ∈ N) je homeomorfný s R∗. R∗×{n} je podpriestor v Y .
Un = U ∩ (R∗ × {n}) je otvorená v R∗ × {n} ⇒ Un = Wn × {n}. An = R \Wn je konečná. A =

⋃

n∈N
An

je spoč́ıtatel’ná ⇒ ∅ 6= R \ A =
⋂

n∈N
R \ An =

⋂

n∈N
Wn = W . ∀n ∈ N : W × {n} ⊆ Wn × {n} = Un. Teda

W × N ⊆ U . Nech V je otvorená v Y taká, že A ⊆ V . Potom V je otvorená aj v X. Zoberme si r ∈W .
{r} × N∗ je podpriestor Y ; {r} × N∗ ∼= N∗. V ∩ ({r} × N∗) je otvorená v {r} × N∗ ⇒ V ∩ ({r} × N∗) =
= {r} × Vr, N \ Vr je konečná ⇒ ∅ 6= Vr \ {(r, ω)} tj. ∃k ∈ N : (r, k) ∈ V ∩ ({r} × N∗) ⇒ (r, k) ∈ V .
r ∈W ⇒ (r, k) ∈W × N ⊆ U ⇒ V ∩ U 6= ∅. Teda Y je normálny.

VII. SÚVISLÉ PRIESTORY A LINEÁRNE SÚVISLÉ PRIESTORY

Defińıcia 7.1. Priestor X sa nazýva súvislý, ak sa nedá vyjadrit’ ako zjednotenie dvoch neprázdnych
otvorených a disjunktných podmnož́ın. tj. ak X = U ∪ V , U ∩ V = ∅, U, V sú otvorené ⇒ U = ∅ alebo
V = ∅. Podmnožina A priestoru X sa nazýva súvislá, ak podpriestor určený množinou A priestoru X je
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súvislý. Priestor X sa nazýva lokálne súvislý, ak každý prvok a ∈ X má bázu okoĺı, ktorej všetky prvky
sú súvislé množiny.

Pŕıklad 7.1. Jednoprvkový priestor je súvislý.
7.2. Každý indiskrétny priestor je súvislý.
7.3. Každý diskrétny priestor s aspoň dvomi prvkami nie je súvislý.
7.4. X = (0, 1) ∪ [2, 3] podpriestor priestoru R. U = (0, 1), V = [2, 3] sú otvorené v X, disjunktné,

preto X nie je súvislý.

Tvrdenie 7.1. Podmnožina I priestoru R s obvyklou topológiou je súvislá ⇔ I = ∅, alebo I je jedno-
prvková, alebo I je interval.

Dôkaz. ⇒ : Nech I má aspoň dva prvky a I nie je interval. Teda ∃a, b ∈ I; a < b a ∃c ∈ R : a < c < b
a c /∈ I. U := (−∞, c) ∩ I; V := (c,∞) ∩ I. U, V sú otvorené v I, U ∩ V = ∅, U ∪ V = I. a ∈ U 6= ∅,
b ∈ V 6= ∅. I nie je súvislá.
⇐ : ∅ √; jednoprvková

√
. Nech teda I je interval v R. Predpokladajme, že I nie je súvislý pod-

priestor. Potom existujú U, V otvorené v I, U ∩ V = ∅, U 6= ∅ 6= V , U ∪ V = I. Nech a ∈ U , b ∈ V ,
a < b. Nech A′ = {x ∈ U , x ≤ b} ⊆ U , a ∈ A′ 6= ∅. Nech c = supA. Plat́ı teda a ≤ c ≤ b. Potom c ∈ I a
teda c ∈ U , alebo c ∈ V . Nech c ∈ U . U je otvorená v I ⇒ ∃ε > 0 : (c− ε, c+ ε) ∩ I ⊆ U(⊆ I). Pretože
b > c ⇒ b ≥ c + ε. Nech d = c + ε

2 ∈ U , ale d < b, d ∈ U ⇒ d ∈ A′. Lenže d > c čiže spor. Teda nech
c ∈ V . ∃ε > 0 : (c − ε, c + ε) ∩ I ⊆ V . ∀x ∈ A′, x < c, (c − ε, c) ⊆ V ⇒ ∀x ∈ A′, x ≤ c − ε ⇒ c − ε je
horné ohraničenie A′, c− ε < c – spor.

Pŕıklad 7.5. Podpriestory X = [0, 1] ∪ [2, 3], Y = {0, 1} nie sú súvislé podpriestory R.
7.6. [0, 1] je súvislý priestor.

Veta 7.1. Ak f : X → Y je surjekt́ıvne zobrazenie a X je súvislý priestor, tak aj Y je súvislý priestor.

Dôkaz. Nech Y nie je súvislý. Potom existujú otvorené podmnožiny U, V v Y tak, že U 6= ∅ 6= V ,
U ∩ V = ∅, U ∪ V = Y . Nech U ′ = f−1(U), V ′ = f−1(V ). Potom U ′, V ′ sú otvorené, U ′ 6= ∅ 6= V ′,
U ′ ∩ V ′ = ∅ a U ′ ∪ V ′ = X. Teda X nie je súvislý – spor.

Dôsledok. Ak f je spojité, f : X → Y a A je súvislá podmnožina X, tak f [A] je súvislá podmnožina Y .

Veta 7.2. Nech (Aα, α ∈ I) je systém súvislých podmnož́ın priestoru X a
⋂

α∈I
Aα 6= ∅. Potom A =

⋃

α∈I
Aα

je súvislá množina.

Dôkaz. Nech p ∈
⋂

α∈I
Aα; U, V sú otvorené podmnožiny A, U ∩ V = ∅, U ∪ V = A⇒ p ∈ U alebo p ∈ V .

BUNO p ∈ U a α ∈ I. Potom Uα = U ∩Aα, Vα = V ∩Aα sú otvorené v Aα, Uα ∩Vα = ∅, Uα ∪Vα = Aα,

p ∈ Uα 6= ∅ ⇒ Vα = ∅. Teda ∀α ∈ I : V ∩ Aα = ∅ ⇒ V ∩
(⋃

α∈I
Aα

)
= ∅ ⇒ V ∩ A = V = ∅. Teda A je

súvislý.

Defińıcia 7.2. Nech p ∈ X a Cp =
⋃
{A; A je súvislá podmnožina X a p ∈ A}. Potom Cp sa nazýva

komponenta súvislosti X obsahujúca p.

Veta 7.3. Nech A je súvislá podmnožina v priestore X a A ⊆ B ⊆ Ā. Potom B je súvislá v X.

Dôkaz. Nech B nie je súvislá. Potom existujú otvorené množiny U, V v podpriestore B také, že U∩V = ∅,
U ∪ V = B, U, V 6= ∅. Nech a ∈ U . Potom a ∈ B ⊆ Ā. Existuje U ′ otvorená v X, U ′ ∩ B = U . a ∈ U ′
okolie a. Potom U ′ ∩ A = U ∩ A 6= ∅. Nech b ∈ V . Potom podobne z toho vyplýva, že V ∩ A 6= ∅.
U1 = U ∩A, V1 = V ∩A sú otvorené v A, U1 ∩ V1 = ∅, U1 6= ∅ 6= V1, U1 ∪ V1 = A. Teda A nie je súvislá.

Dôsledok. Ak A je súvislá podmnožina X, tak aj Ā je súvislá podmnožina X.

Pŕıklad 7.7. X = R2; A = {(x, y) ∈ R2; x ∈ (0, 1], y = sin π
x}. f : (0, 1]→ R2, f(x) = (x, sin π

x ) je spojité
a A = f((0, 1]). A ∪ {(0, 0)}, (0, 0) ∈ Ā. A ∪ {(0, 0)} je súvislá v R2. Ā = A ∪ ({0} × [−1, 1]) je súvislá
množina v R2.
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Veta 7.4. Nech X je priestor. Potom pre každé p ∈ X komponenta súvislosti Cp je najväčšia súvislá
množina obsahujúca p a Cp je uzavretá. Ak p, q ∈ X, tak Cp = Cq, alebo Cp ∩ Cq = ∅.
Dôkaz. maximalita OK. Nech p ∈ X; Cp je súvislá a preto C̄p je súvislá. p ∈ C̄p ⇒ C̄p ⊆ Cp ⇒ Cp = C̄p
teda Cp je uzavretá.

Nech p, q ∈ X a Cp ∩ Cq 6= ∅. Nech a ∈ Cp ∩ Cq. Potom Cp je súvislá množina obsahujúca a, potom
Ca ⊇ Cp. Potom Ca je súvislá množina, p ∈ Ca ⇒ Ca ⊆ Cp. Teda Cp = Ca. Podobne Cq = Ca.⋃

p∈X
Cp = X; {Cp; p ∈ X} rozklad X na uzavreté súvislé množiny = komponenty súvislosti.

Pŕıklady.
7.8. R; ∀a ∈ R : Ca = R.
7.9. X je diskrétny priestor. ∀a ∈ X : Ca = {a}.
7.10. (R, τz), a ∈ R, Ca = {a}. Ak b ∈ Ca, b < a, tak (−∞, b) ∩ Ca je otvorená a súčasne uzavretá

v Ca; A 6= ∅, A 6= Ca spor.

Defińıcia 7.3. PriestorX sa nazýva totálne nesúvislý, ak má aspoň dva rôzne prvky a všetky komponenty
súvislosti sú jednoprvkové.

Veta 7.5. Ak (Xα, α ∈ I) je l’ubovol’ný systém súvislých priestorov, tak aj X =
∏

α∈I
Xα je súvislý priestor.

Dôkaz. Nech I 6= ∅ a ∀α ∈ I : Xα 6= ∅. Nech p ∈ X. Nech K = {q ∈ X; {α ∈ I, qa 6= pa} je konečná }.
Dokážeme, že K ⊆ Cp. Nech q ∈ K, q 6= p a {a ∈ I; pα 6= qα} = {α1, · · · , αn}. q ∈ Cp?

Indukciou vzhl’adom na n:
1◦ n = 1, {α ∈ I, qα 6= pα} = {α1}. X(α1)

p = {α ∈ X, ∀α 6= α1, aα = pα} = {· · · {pα}× · · ·× · · ·Xαi ×
· · · × {pα} · · · }. X(α1)

p je homeomorfný s Xα1 a teda súvislý. p ∈ X(α1)
p ⇒ X

(α1)
p ⊆ Cp ⇒ q ∈ Cp.

2◦ Plat́ı pre l’ubovol’né p a n ∈ N. Dokážeme, že plat́ı pre l’ubovol’né p a n + 1. Nech {α ∈ I,
qα 6= pα} = {α1, · · · , αn, αn+1}. Nech q′ ∈ X. q′α1

= qα1 , · · · , q′αn = qαn , q′αn+1
= pαn+1 . {α ∈ I,

q′α 6= pα} = {α1, · · · , αn} a z indukčného predpokladu q′ ∈ Cp. Teda C ′q = Cp. q′ ∈ X. {α ∈ I;

q′α 6= qα} = {αn+1}. X(αn+1)
q′

∼= Xαn+1 je súvislý ⇒ X
(αn+1)
q′ ⊆ Cq′ , q ∈ X(αn+1)

q′ ⇒ q ∈ Cq′ = Cp. Teda
pre ∀q ∈ K : q ∈ Cp ⇒ K ⊆ Cp. Plat́ı K̄ = X, Cp je uzavretý ⇒ X = K̄ ⊆ Cp.
Pŕıklad 7.11. P7 = ([0,∞), τ); B(a) = {(a− ε, a+ ε) ∩ [0,∞); ε > 0; B(0) = {[0, ε) \ { 1

n , n ∈ N}, ε > 0}.
P7 je súvislý, ale nie je lokálne súvislý. Totiž: Y = (0,∞) je podpriestor P7, je totožný s podpriestorom
v R. Y je súvislý podpriestor. P7 = Ȳ je súvislý. V bode 0 neexistuje báza okoĺı, ktoré sú všetky súvislé.
Nepriamo: Nech B′(0) je taká báza okoĺı. O1 = [0, 1) \ { 1

n , n ∈ N} okolie 0. Existuje V ∈ B′(0), V ⊆ O1,
0 ∈ V , ∃ε > 0 : [0, ε) \ { 1

n , n ∈ N} ⊆ V , 0 ∈ V : ∃a ∈ V , a > 0. Potom ∃k ∈ N : 1
k < a, 1

k /∈ O1 ⇒ 1
k /∈ V .

[0, 1
k ) je otvorená v P7. ( 1

k ,∞) je otvorená v P7. U1 = [0, 1
k ) ∩ V otvorená vo V ; U2 = ( 1

k ,∞) ∩ V je
otvorená vo V . U1 ∪ U2 = V , U1 ∩ U2 = ∅ ⇒ V nie je súvislá, spor.

Lineárne súvislé priestory.

Defińıcia 7.4. Priestor X sa nazýva lineárne súvislý, ak pre každé a, b ∈ X existuje spojité zobrazenie
f : [0, 1] → X tak, že f(0) = a, f(1) = b. Podmnožina A priestoru X sa nazýva lineárne súvislá, ak
podpriestor určený A je lineárne súvislý.
X je lokálne lineárne súvislý, ak ∀a ∈ X existuje báza okoĺı a, ktoré sú všetky lineárne súvislé.

Pŕıklad 7.12. (R, τd) je lineárne súvislý; je aj lokálne lineárne súvislý.
7.13. Každý interval v R je lineárne súvislá množina.
7.14. Rn je lineárne súvislý a aj lokálne lineárne súvislý.
7.15. (R, τz) nie je lineárne súvislý.

Veta 7.6. Ak X je lineárne súvislý, tak X je súvislý.

Dôkaz. Nech a ∈ X, Ca je komponenta súvislosti a. Nech b ∈ X. Potom existuje spojité zobrazenie
f : [0, 1]→ X, f(0) = a, f(1) = b. B = f [0, 1] je súvislý podpriestor X, a ∈ B ⇒ B ⊆ Ca, b ∈ B ⇒ b∈Ca.
Teda X ⊆ Ca ⇒ X je súvislý.

Pŕıklad 7.16. P8 je podpriestor R × R. A = {(x, sin π
x ), x ∈ (0, 1]}. f : x 7→ (x, sin π

x ) je spojité
zobrazenie. A = f [[0, 1]] je súvislá. (0, 0) ∈ Ā ⇒ P8 = A ∪ {(0, 0)} je súvislý. Zoberme si body (0, 0) a
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(1, 0) ∈ P8. Nech existuje spojité zobrazenie g : [0, 1] → P8, g(0) = (0, 0), g(1) = (1, 0). Nech existuje
a ∈ (0, 1) : (a, sin π

a ) 6= g(t) pre ∀t ∈ [0, 1]. g([0, 1]) je súvislá množina v P8. Nech p je priamka x = a.
p ∩ g([0, 1]) = ∅. Zoberme si U = {(x, y) , x > a} je otvorená v R × R. V = {(x, y), x < a} je
otvorená v R × R. U ′ = U ∩ g([0, 1]) je otvorená v g([0, 1]). V ′ = V ∩ g([0, 1]) je otvorená v g([0, 1]).
(0, 0) ∈ U ′, (1, 0) ∈ V ′ ⇒ U ′ 6= ∅, V ′ 6= ∅, U ′ ∪ V ′ = g([0, 1]). Teda g([0, 1]) nie je súvislý. Spor. Teda
g([0, 1]) = P8 ⇒ P8 je kompaktný⇒ P8 je uzavretý podpriestor v R×R. spor. P8 nie je lineárne súvislý.

Veta 7.7. Ak X je lineárne súvislý, f : X → Y je spojité a surjekt́ıvne zobrazenie, tak aj Y je lineárne
súvislý.

Dôkaz. Nech c, d ∈ Y . Potom ∃a, b ∈ X tak, že f(a) = c, f(b) = d. X je lineárne súvislý, potom existuje
spojité g : [0, 1]→ X, g(0) = a, g(1) = b. h = f ◦ g : [0, 1]→ Y , h(0) = f(g(0)) = c, h(1) = f(g(1)) = d.
Teda Y je lineárne súvislý.

Dôsledok. Ak f : X → Y je spojité, A je lineárne súvislá podmnožina X, tak f [A] je lineárne súvislá
podmnožina Y .

Veta 7.8. Ak (Xα, α ∈ I) je systém lineárne súvislých priestorov, tak X =
∏

α∈I
Xα je lineárne súvislý.

Dôkaz. Nech I 6= ∅, ∀α ∈ I : Xα 6= ∅. (Inak triviálne plat́ı.) Nech a, b ∈ X. ∀α ∈ I, pα(a), pα(b) ∈ Xα a
teda existuje spojité fα : [0, 1]→ Xα; fα(0) = pα(a), fα(1) = pα(b). pα ◦ f = fα, f je spojité. f(0) = a,
f(1) = b. pα(f(0)) = pα(a) = fα(0), pα(f(1)) = pα(b) = fα(1). Teda X je lineárne súvislý.

Veta 7.9. Nech X je priestor a ∼ je relácia na X definovaná nasledovne: Pre každé x, y ∈ X : x ∼ y ⇒
existuje spojité f : [0, 1]→ X, f(0) = x, f(1) = y. Potom ∼ je relácia ekvivalencie na X a všetky triedy
ekvivalencie sú lineárne súvislé množiny. Ak A je lineárne súvislá podmnožina X, tak existuje L ∈ X/ ∼
tak, že A ⊆ L.

Dôkaz. ∀x ∈ X: x ∼ x je zrejmé. Nech x ∼ y. Potom existuje spojité f : [0, 1]→ X, f(0) = x, f(1) = y.
Potom g : [0, 1] → X, ∀t ∈ [0, 1] : g(t) = f(1 − t) je spojité a g(0) = f(1) = y, g(1) = f(0) = x a teda
y ∼ x. Tranzit́ıvnost’: Nech x ∼ y, y ∼ z. Potom existujú spojité zobrazenia f, g : [0, 1]→ X, f(0) = x,

f(1) = y, g(0) = y, g(1) = z. Definujme h : [0, 1] → X, h(t) =
{
f(2t) pre t ∈ [0, 1

2 ]

g(2t− 1) pre t ∈ [ 1
2 , 1]

je spojité.

h(0) = x, h(1) = z ⇒ x ∼ z.
∀A ∈ X/ ∼ je A lineárne súvislá: Nech a, b ∈ A ⇒ a ∼ b a existuje spojité f : [0, 1] → X, f(0) = a,

f(1) = b. Ukážeme, že f([0, 1]) ⊆ A tj. f je spojié zobrazenie z [0, 1] do A. Nech c ∈ f([0, 1]). Potom
∃r ∈ [0, 1] : f(r) = c. Nech c 6= a, b ⇒ r ∈ (0, 1). Nech g : [0, 1] → [0, r], g(t) = r · t, g je spojité
g(0) = 0, g(1) = r. Potom h : [0, 1] → X, h(t) = f(g(t)) je spojité, h(0) = f(g(0)) = f(0) = a,
h(1) = f(g(1)) = f(r) = c ⇒ a ∼ c ⇒ c ∈ A. Teda f([0, 1]) ⊆ A, a f : [0, 1] → A je spojité, f(0) = a,
f(1) = b, teda A je lineárne súvislý priestor. Nech B je lineárne súvislá podmnožina X, B 6= ∅, nech a ∈ B
potom B ⊆ L(a) = {c ∈ X; c ∼ a}. Nech b ∈ B ⇒ existuje spojité f : [0, 1]→ B, f(0) = a, f(1) = b. B
podpriestor X ⇒ f : [0, 1]→ X je spojité, potom a ∼ b v X potom b ∈ L(a)⇒ B ⊆ L(a). �
Defińıcia 7.4. Triedy ekvivalencie relácie ∼ z vety 7.9 sa nazývajú komponenty lineárnej súvislosti
priestoru X. tj. ak a ∈ X, tak L(a) = {b ∈ X, a ∼ b} je komponenta lineárnej súvislosti obsahujúca a.

(b ∈ L(a)⇔ L(a) = L(b), b /∈ L(a)⇔ L(a) ∩ L(b) = ∅); a ∈ X ⇒ L(a) ⊆ Ca.

VIII. KONVERGENCIA V TOPOLOGICKÝCH PRIESTOROCH

Defińıcia 8.1. Nech {an}n∈N je postupnost’ v priestore X. Hovoŕıme, že {an}n∈N konverguje k a ∈ X,
ak pre l’ubovol’né okolie U bodu a existuje n0 ∈ N tak, že ∀n ≥ n0 : an ∈ U .

Pŕıklady.
8.1. (R, τind) {n} : 1, 2, 3, · · · lim

n→∞
n = a, ∀a ∈ R, R je jediné okolie obsahujúce všetky prvky.

8.2. (R, τdis), (R, τ), τ = {U ∈ P(R), R \ V je spoč́ıtatel’ná } ∪ {∅}. an→a v (R, τdis). {a} je okolie a,
∃n0 : ∀n ≥ n0 : an = a. V (R, τ): an → a, {n ∈ N, an 6= a} = K; U = R \ {an, n ∈ K}︸ ︷︷ ︸

spoč.

∈ τ , a ∈ U , U je

okolie a, ∃n0 : ∀n ≥ n0 : an ∈ U ⇒ n /∈ K; ∀n ∈ K : n ≤ n0 ⇒ K je konečná= {n ∈ N, an 6= a}. (skoro
konštantná postupnost’)
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Konvergencia pomocou filtrov.
Nech an → a v X, ∀n ∈ N : Fn = {ak, k ≥ n} , ∅ 6= H = {Fn, n ∈ N} je báza filtra v X. an ∈ Fn 6= ∅,

n ≤ m : Fn ∩ Fm = Fm. Pre každé okolie U bodu a existuje n0 ∈ N : An0 ⊆ U . an → a ⇔ FH ⊇ η(a);
an → a⇔ ∃Fn ∈ H : Fn ⊆ U .

Defińıcia 8.2. c je hromadný bod {an}n∈N, ak ∀U ∈ η(c) ∀n ∈ N ∃k > n : ak ∈ U ⇔ ∀U∈η(c) ∀Fn∈H,
Fn ∩ U 6= ∅ ⇔ ∀Fn ∈ H : a ∈ F̄n ⇔ a ∈

⋂

Fn∈H
F̄n.

Defińıcia 8.3. Nech X je topologický priestor, a ∈ X, H je báza filtra na X, F je filter na X a η(a) je
systém všetkých okoĺı bodu a. Potom hovoŕıme, že:

(1) F konverguje k a v X, ak F ⊇ η(a).
(2) a je hromadný bod filtra F , ak a ∈

⋂

F∈F
F̄ .

(3) H konverguje k a, ak ∀U ∈ η(a) ∃H ∈ H tak, že H ⊆ U . (tj. FH ⊇ η(a))
(4) a je hromadný bod H, ak a ∈

⋂

H∈H
H̄.

Ozn. F → a, a ∈ limF , a = limita F ak F → a. H → a⇔ FH → a.

Veta 8.1.

(1) Ak H je báza filtra v priestore X, H → a, tak a je hromadný bod H.
(2) Ak U je ultrafilter na X; a je hromadný bod U , tak U → a.

Dôkaz.
(1) Nech U ∈ η(a) a F ∈ H. Existuje F ′ ∈ H, F ′ ⊆ U . Existuje F ′′ ∈ H také, že F ′′ ⊆ F ′ ∩ F .

Potom F ′′ ⊆ U , F ′′ ⊆ F ⇒ ∅ 6= F ′′ ⊆ U ∩ F 6= ∅ ⇒ ∀F ∈ H, a ∈ F ⇒ a ∈
⋂

F∈H
F̄ .

(2) Nech U ∈ η(a), a ∈
⋂

F∈U
F̄ ⇒ ∀F ∈ U : U ∩ F 6= ∅ ⇒ U ⊇ η(a)⇒ U → a. �

Poznámka. {an}n∈N, Fn = {a}, ∀n ∈ N : H = {{a}}, FH = {F ⊆ P(X); a ∈ F}.
Pŕıklad.

8.3. Treba nájst’ filter G, ktorý konverguje k 0 v R s obvyklou topológiou.
G = {G ∈ P(R), ∃ε > 0 : (−ε, ε) ∩ Q ⊆ G} je filter na R. G → 0: U ∈ η(a), ∃ε > 0 : (−ε, ε) ⊆ U ⇒
(−ε, ε) ∩Q ⊆ U .

Veta 8.2.

(1) Ak Fa je filter v priestore X taký, že Fa = {F ∈ P(X); a ∈ F}, tak Fa → a.
(2) Ak F ,G sú filtre v priestore X, F ⊆ G a F → a v X, tak aj G → a.
(3) Ak a je hromadný bod filtra F v X, tak existuje filter G v X, G ⊇ F a G → a.

Dôkaz. F → a ⇔ F ⊇ η(a); báza filtra H → a ⇔ FH → a. F ∈ FH ⇔ ∃H ∈ H : H ⊆ F , η(a) ⊆ FH,
H → a⇔ ∀U ∈ η(a) ∃H ∈ H : H ⊆ U . a je hromadný bod filtra (bázy filtra) F ⇔ a ∈

⋂

F∈F
F̄ .

(1) η(a) ⊆ Fa ⇒ Fa → a.
(2) F → a, G ⊇ F ⇒ η(a) ⊆ F ⊆ G ⇒ η(a) ⊆ G ⇒ G → a.
(3) a ∈

⋂

F∈F
F̄ ⇔ ∀U ∈ η(a), ∀F ∈ F : U∩F 6= ∅. Nech H = {U∩F , U ∈ η(a), F ∈ F}. H bude báza

filtra X. ∅ /∈ H. Ak H1,H2 ∈ H, tak existujú U1, U2 ∈ η(a), F1, F2 ∈ F tak, že H1 = U1 ∩ F1,
H2 = U2 ∩ F2 a H1 ∩ H2 = U1 ∩ F1 ∩ U2 ∩ F2 = U1 ∩ U2︸ ︷︷ ︸

∈η(a)

∩F1 ∩ F2︸ ︷︷ ︸
∈F

∈ H. η(a) ⊆ H ⊆ FH;

F ⊆ H ⊆ FH ⇒ G := FH → a⇒ G ⊇ F .

xn → a v x, ak ∀U ∈ η(a), ∃n0 ∈ N ∀n ≥ n0 : xn ∈ U .

Pŕıklady.
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8.4. (R, τ) τ = {U ∈ P(R), R \ U je spoč́ıtatel’ná} ∪ {∅}. xn → a {k ∈ N, xk 6= a} je spoč́ıtatel’ná,
potom {xk, xk 6= a} je spoč́ıtatel’ná, potom R \ {xk, xk 6= a} = U je okolie a. ∃n0 ∈ N, ∀n ≥ n0:
xn∈U ⇔ xn = a.

8.5. {xn, n ∈ N}, xn → a. Ako k tomu priradit’ filter? An = {xk, k ≥ n}, H = {An, n ∈ N} bude báza
filtra. xn → a⇔ ∀U ∈ η(a) ∃An0 ∈ H : An0 ⊆ U ; FH; xn → a⇔ η(a) ⊆ FH.

8.6. Podpostupnosti: n1 < n2 < · · · < nk < · · · . {xnk}∞k=1 H′ = {A′nk , k ∈ N}. A′nk = {xnk ,
l ≥ k} ⊆ Ank = {xp, p ≥ nk}. A′nk ⊆ Ank ⊆ Ak ⇒ FH′ ⊇ H ⇒ FH′ ⊇ FH.

8.7. Konštantné postupnosti: xn = a, ∀n : An = {a}.
Cvičenie. A ⊆ X a G je báza filtra (filter) na A, tak G je báza filtra v X.

Veta 8.3. Nech X je topologický priestor, A ⊆ X, c ∈ X. Potom plat́ı c ∈ Ā ⇔ existuje báza filtra na
A, ktorá konverguje k c v X. (tj. ako báza filtra na X.)

Dôkaz.
⇒ : Nech c ∈ Ā. Položme H = {U ∩ A, U ∈ η(c)}. H je báza filtra na A. H → c v X ? Nech

U ∈ η(c). Potom U ∩A ∈ H a U ∩A ⊆ U . Teda H → c v X.
⇐ : Nech H je báza filtra na A a H → c v X. Nech U ∈ η(c). Potom ∃H ∈ H : H ⊆ U . Potom

∅ 6= H ⊆ U ∩A⇒ U ∩A 6= ∅. Teda c ∈ Ā.

Veta 8.4. Priestor X je T2-priestor ⇔ každý filter v X má najviac jednu limitu.

Dôkaz.
⇒ : Nepriamo. Nech existuje filter F na X taký, že F → a, F → b a a 6= b. Potom existuje U ∈ η(a),

V ∈ η(b) tak, že U ∩ V = ∅. F → a⇒ U ∈ F , F → b⇒ V ∈ F ⇒ U, V ∈ F ⇒ ∅ = U ∩ V ∈ F spor.
⇐ : Nepriamo. Nech X nie je T2-priestor. Potom ∃a, b ∈ X, a 6= b také, že ∀U ∈ η(a), ∀U ∈ η(b)

plat́ı U ∩ V 6= ∅. Nech H = {U ∩ V , U ∈ η(a), V ∈ η(b)} je báza filtra. η(a) ⊆ H, η(b) ⊆ H
⇒ η(a) ∩ η(b)⊆FH ⇒ FH → a, b spor.

Veta 8.5. Nech (Xα, α ∈ I) je systém topologických priestorov, X =
∏

α∈I
Xα je topologický súčin (Xα, α ∈

I) a F je báza filtra (filter) na X, c ∈ X. Potom F → c v X ⇔ ∀α ∈ I : pα[F ] → pα(c), kde
pα[F ] = {pα[F ], F ∈ F}.
Dôkaz.
⇒ : Nech F → c v X a α ∈ I. Nech U je okolie pα(c) v Xα. Potom (pα)−1(U) je okolie c v X.

Potom ∃F ∈ F tak, že F ⊆ (pα)−1(U). Potom pα[F ] ⊆ U . Teda pα[F ]→ pα(c) v Xα.
⇐ : Nech ∀α ∈ I : pα[F ] → pα(c) v Xα. Nech W je okolie c v X. Potom ∃α1, · · · , αk ∈ I a

otvorené množiny U1 v Xα1 , . . . , Uk v Xαk tak, že c ∈
k⋂

i=1

(pαi)−1(Ui) ⊆ W . Potom ∀i = 1, · · · , k:

pαi(c) ∈ Ui tj. Ui je okolie pαi(c). Potom ∀i = 1, · · · , k ∃Fi ∈ F tak, že pαi(Fi) ⊆ Ui. Potom

∀i = 1, · · · , k : Fi ⊆ (pαi)−1(Ui) ⇒
k⋂

i=1

Fi ⊆
k⋂

i=1

(pαi)−1(Ui) ⊆ W . Existuje F ∈ F tak, že F ⊆
k⋂

i=1

Fi a

teda F ⊆W . Teda F → c.

Pŕıklad 8.8. id:(R, τ)→ (R, τdis). xn → a v (R, τ)⇔ ∃n0 ∈ N, ∀n ∈ N, n ≥ n0 : xn = a⇒ id(xn)→ a v
(R, τdis). Zachováva konvergenciu, ale nie je spojitá.

Veta 8.6. Nech X,Y sú topologické priestory, f : X → Y je zobrazenie. Potom f je spojité ⇔ pre každé
a ∈ X a každú bázu filtra G v X takú, že G → a plat́ı f [G]→ f(a) v Y .

Dôkaz.
⇒ : Nech V je okolie f(a) v Y . Potom f−1(V ) je okolie bodu a v X. Potom ∃H ∈ G tak, že

H ⊆ f−1(V ). Potom f(H) ⊆ V , f(H) ∈ f [G]. Teda f [G]→ f(a) v Y .
⇐ : Nech f nie je spojité. Potom ∃a ∈ X a okolie V bodu f(a) v Y tak, že pre každé okolie U ∈ η(a)

plat́ı f [U ] * V . η(a) je báza filtra v X. η(a) → a. f [η(a)] = {f(U), U ∈ η(a)} 9 f(a), lebo existuje
okolie V bodu f(a) také, že ∀H ∈ f [η(a)], H * V . �

Pŕıklad.
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8.9. F je ultrafilter a ∈
⋂

F∈F
F̄ , U ∈ η(a), ∀F ∈ F , U ∩ F 6= ∅. Potom U ∈ F ⇒ F → a.

8.10. R, F = {F ∈ P(R), R \ F je konečná} je filter. (a − 1, a + 1) /∈ F ⇒ F 9 a. a ∈ R, F ∈ F ,
R \F je konečná. U je okolie a. U * R \F ⇔ U ∩F 6= ∅. a ∈

⋂

F∈F
F̄ . a je limitou, ale nie je hromadným

bodom.
(R, τcof ), τ = {U ∈ P(R), R \ U je konečná} ∪ {∅}. F → a pre ∀a ∈ R v (R, τcof ).

IX. SIETE

Defińıcia 9.1. Usporiadaná dvojica (A,≤), kde A 6= ∅ je množina a ≤ je relácia na A, sa nazýva
usmernená množina, ak plat́ı:

(1) ∀a ∈ A : a ≤ a.
(2) ∀a, b, c ∈ A : a ≤ b ∧ b ≤ c⇒ a ≤ c.
(3) ∀a, b ∈ A ∃c ∈ A : a ≤ c ∧ b ≤ c.

Pŕıklady.
9.1. (N,≤) je usmernená množina.
9.2. A = {K ∈ P(R), K je konečná}, (A,⊆) usmernená množina. K,L ∈ A ⇒ K ∪ L ∈ A,

K,L ⊆ K ∪ L.
9.3. X je topologický priestor a ∈ X, B(a) je báza okoĺı a; (B(a),≤), U ≤ V ⇔ U ⊇ V , (B(a),⊇).
9.4. (R,≤), kde a ≤ b⇔ a = b; nie je usmernená, lebo neplat́ı (3).

Defińıcia 9.2. Nech (Σ,≤) je usmernená množina, X je topologický priestor. Potom l’ubovol’né zobraze-
nie f : Σ→ X sa nazýva siet’ v X.
Ozn. S = (Xσ, σ ∈ Σ).

Defińıcia 9.3. Nech X je topologický priestor, c ∈ X a S = (Xσ, σ ∈ Σ) je siet’ v X. Hovoŕıme,
že siet’ S = (Xσ, σ ∈ Σ) konverguje k c v X, ak pre každé okolie U ∈ η(c) existuje σ0 ∈ Σ tak, že
∀σ ≥ σ0 : Xσ ∈ U . Bod c sa nazýva limita siete S. Ozn. lim

σ∈Σ
Xσ = c; Xσ → c. Bod c sa nazýva

hromadný bod siete S, ak pre každé U ∈ η(c) a σ ∈ Σ existuje σ′ ∈ Σ tak, že σ′ ≥ σ a Xσ′ ∈ U .

Veta 9.1. Nech X je priestor, A ⊆ X, c ∈ X. Potom c ∈ Ā ⇔ existuje siet’ (Xσ, σ ∈ Σ) v A taká, že
Xσ → c.

Dôkaz.
⇒ : Nech c ∈ Ā. (Σ,≤) = (η(c),⊆) je usmernená množina. η(c) 7→ A, XU ∈ U ∩ A( 6= ∅),

(XU , U∈η(c)) je siet’ v A. Ukážeme, že XU → c. Nech V je l’ubovol’né okolie bodu c (tj. V ∈ η(c)).
U0 = V , ∀U ∈ η(c), U0 ⊇ U , XU ∈ U ⊆ U0 = V .
⇐ : Nech (Xσ, σ ∈ Σ) je siet’ v A, Xσ → c. Nech U ∈ η(c). Potom ∃σ0 ∈ Σ ∀σ ≥ σ0 : Xσ ∈ U .

Potom Xσ ∈ U ∩A⇒ U ∩A 6= ∅.
Pŕıklad 9.5. (R, τ), τ = P(R\{0})∪{U ∈ P(R), 0 ∈ U a R\U je spoč́ıtatel’ná}. Je jasné, že 0 ∈ R \ {0}.
Nech (Xn, n ∈ N) je l’ubovol’ná postupnost’ v R \ {0}. tj. ∀n ∈ N : xn 6= 0. U = R \ {xn, n ∈ N} je
okolie 0. Neplat́ı, že xn → 0.

Defińıcia 9.4. Nech (Xσ, σ ∈ Σ) a (Yσ′ , σ′ ∈ Σ′) sú siete v X. Potom siet’ (Yσ′ , σ′ ∈ Σ′) sa nazýva
podsiet’ siete (zjemnenie) (Xσ, σ ∈ Σ), ak existuje zobrazenie φ : Σ′ → Σ tak, že plat́ı:

(1) Pre každé σ0 ∈ Σ existuje σ′0 ∈ Σ′ tak, že pre všetky σ′ ∈ Σ′: ak σ′ ≥ σ′0, tak φ(σ′) ≥ σ0.
(2) Pre každé σ′ : Xφ(σ′) = Yσ′ .

Veta 9.2. Nech X je priestor, S = (Xσ, σ ∈ Σ) je siet’ v X a c ∈ X. Potom plat́ı:
(1) Ak Xσ → c, tak pre každú podsiet’ (Yσ′ , σ′ ∈ Σ′) siete (Xσ, σ ∈ Σ) plat́ı Yσ′ → c.
(2) Ak c je hromadný bod siete (Xσ, σ ∈ Σ), tak existuje podsiet’ (Yσ′ , σ′ ∈ Σ′) siete (Xσ, σ ∈ Σ) taká,

že Yσ′ → c.

Dôkaz.
(1) Nech Xσ → c a (Yσ′ , σ′ ∈ Σ′) je podsiet’ (Xσ, σ ∈ Σ). Teda ∃φ : Σ′ → Σ také, že ∀σ0 ∈ Σ
∃σ′0 ∈ Σ′ ∀σ > σ0 : φ(σ) ≥ σ′0 a Yσ′ = Xφ(σ′) pre ∀σ′ ∈ Σ′. Nech U ∈ η(c). Potom ∃σ0 ∈ Σ tak,
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že ∀σ ≥ σ0 : Xσ ∈ U . ∃σ′0 ∈ Σ′ tak, že ∀σ′ ≥ σ′0 : φ(σ′) ≥ σ0. Nech σ′ ≥ σ′0. Potom φ(σ′) ≥ σ0 a
Yσ′ = Xφ(σ′) ∈ U , teda Yσ′ → c.

(2) Nech c je hromadný bod (Xσ, σ ∈ Σ). Teda ∀U ∈ η(c) ∀σ0 ∈ Σ ∃σ ≥ σ0 : Xσ ∈ U .
Σ′ = {(σ,U) ∈ Σ×η(c); Xσ ∈ U} 6= ∅. Definujme: (σ1, U1) ≤ (σ2, U2) ⇔ U1 ⊇ U2 ∧ σ1 ≤ σ2.
(Σ′,≤) je usmernená množina. (σ,U) ≤ (σ,U) ⇔ U ⊇ U ∧ σ ≤ σ. (σ1, U1) ≤ (σ2, U2),
(σ2, U2) ≤ (σ3, U3) ⇒ U1 ⊇ U2, U2 ⊇ U3, σ1 ≤ σ2, σ2 ≤ σ3 ⇒ U1 ⊇ U3 ∧ σ1 ≤ σ3. (σ1, U1),
(σ2, U2) ∈ Σ′; U = U1 ∩ U2 ∈ η(c) : ∃σ3 ≥ σ1, σ3 ≥ σ2 ∃σ4 ≥ σ3 : Xσ4 ∈ U . Potom
(σ4, U) ∈ Σ′, σ1 ≤ σ4, U1 ⊇ U a σ2 ≤ σ4, U2 ⊇ U ⇒ (σ1, U1) ≤ (σ4, U) a (σ2, U2) ≤ (σ4, U).
Nech σ0 ∈ Σ. Existuje σ ≥ σ0, Xσ ∈ U . Potom (σ,U) ∈ Σ′. U1 ⊇ U ⇒ (σ1, U1) ≤ (σ,U);
U2 ⊇ U ⇒ (σ2, U2) ≤ (σ,U). (Σ′,≤) je usmernená množina. φ : Σ′ → Σ, φ(σ,U) = σ. Nech
σ0 ∈ Σ. Potom existuje σ1 ∈ Σ, σ1 ≥ σ0 tak, že Xσ1 ∈ U . σ′0 = (σ1, U). Nech (σ, V ) ∈ Σ′ a
(σ, V ) ≥ σ′0 = (σ1, U). Potom φ(σ, V ) = σ ≥ σ1 ≥ σ0 tj. φ(σ, V ) ≥ σ0. (Y(σ,V ), (σ, V ) ∈ Σ′).
Y(σ,V ) = Xσ = Xφ(σ,V ) je to siet’ v X tj. ∀(σ, V ) ∈ Σ′ plat́ı Y(σ,V ) = Xφ(σ,V ). (Y(σ,V ), (σ, V ) ∈ Σ′)
je podsiet’ (Xσ, σ ∈ Σ). Nech U ∈ η(c). Potom ∃σ0 ∈ Σ tak, že Xσ0 ∈ U tj. (σ0, U) ∈ Σ′. Nech
Σ′ 3 (σ, V ) ≥ (σ0, U). Potom Xσ ∈ V , σ ≥ σ0, V ⊆ U . Potom Y(σ,V ) = Xσ ∈ V ⊆ U . Ukázali
sme, že Y(σ,V ) → c.

Veta 9.3. Ak S = (Xσ, σ ∈ Σ) je siet’ v priestore X, tak FS = {F ∈ P(X); ∃σ0 ∈ Σ : {Xσ, σ ≥ σ0} ⊆ F}
je filter v X a plat́ı: Ak c ∈ X, tak S → c⇔ FS → c.

Dôkaz. X ∈ FS ⇒ F 6= ∅. F, F ′ ∈ FS : ∃σ0, σ
′
0 ∈ Σ : {Xσ, σ ≥ σ0} ⊆ F , {Xσ, σ ≥ σ′0} ⊆ F ′. Ked’̌ze Σ

je usmernená potom ∃σ1 ∈ Σ tak, že σ0, σ
′
0 ≤ σ1. {Xσ, σ ≥ σ1} ⊆ F ∩ F ′ ⇒ F ∩ F ′ ∈ FS . Ak F ∈ FS ,

U ⊆ X, F ⊆ U . ∃σ0 ∈ Σ ∀σ ≥ σ0 : {Xσ, σ ≥ σ0} ⊆ F ⊆ U ⇒ U ∈ FS . FS je filter.
⇒ : Nech S → c. Nech U je l’ubovol’né okolie c. Potom ∃σ0 ∈ Σ : {Xσ, σ ≥ σ0} ⊆ U ⇒ U ∈ FS ⇒

FS → c.
⇐ : Nech FS → c. Nech U je l’ubovol’né okolie c. Potom U ∈ FS . Potom ∃σ0 : {Xσ, σ ≥ σ0} ⊆ U ⇒

∃σ0 ∈ Σ ∀σ ≥ σ0 : Xσ ∈ U ⇒ S → c.

Veta 9.4. Nech F je filter v priestore X 6= ∅, Σ = {(x, F ) ∈ X×F ; x ∈ F} a (x, F ) ≤ (y,G)⇔ F ⊇ G.
Potom (Σ,≤) je usmernená množina, SF = {X(x,F ), (x, F ) ∈ Σ}, kde X(x,F ) = x je siet’ v X a plat́ı: ak
c ∈ X, tak F → c⇔ SF → c.

Dôkaz. x ∈ X, (x,X) ∈ Σ 6= ∅. (x, F ) ≤ (x, F ) ⇔ F ⊇ F plat́ı reflex́ıvnost’. (x, F ) ≤ (y,G),
(y,G) ≤ (z,H) ⇒ F ⊇ G, G ⊇ H ⇒ F ⊇ H ⇒ (x, F ) ≤ (z,H) tranzit́ıvnost’. (x, F ), (y,G) ∈ Σ ⇒
F,G ∈ F ⇒ F ∩ G ∈ F . z l’ubovol’né v F ∩ G, (z, F ∩ G) ∈ Σ, (x, F ) ≤ (z, F ∩ G) ⇔ F ⊇ F ∩ G,
(y,G) ≤ (z, F ∩G)⇔ G ⊇ F ∩G. Teda (Σ,≤) je usmernená množina.
(x, F ) 7→ x je zobrazenie Σ→ X. tj. SF = {X(x,F ), (x, F ) ∈ Σ} je siet’ v X.
⇒ : Nech F → c. Nech U je l’ubovol’né okolie c. Potom U ∈ F , σ0 = (c, U) ∈ Σ. Pre každé (x, F ) ∈ Σ

také, že (x, F ) ≥ (c, U) plat́ı F ⊆ U a teda X(x,F ) = x ∈ F ⊆ U tj. X(x,F ) ∈ U . Teda sme dokázali, že
SF → c.
⇐ : Predpokladajme, že SF → c. Nech U je okolie c. Potom ∃(x0, F0) ∈ Σ tak, že ∀(x, F ) ≥ (x0, F0) :

X(x,F ) ∈ U . Nech x ∈ F0. Potom (x, F ) ≥ (x0, F0). Potom X(x,F0) = x ∈ U . Teda F0 ⊆ U ⇒ U ∈ F .
Teda F → c.
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Pŕıklad 9.6.
Nech f je ohraničená funkcia na [a, b]. D = {a = x0 < x1 < · · · < xn = b} je delenie. di = [xi−1, xi].

(ξi) = (ξ1, · · · , ξn), ∀i : ξi ∈ di. Σ = {(D, (ξi)), D je delenie intervalu a (ξi) = (ξ1, · · · , ξn) ∈ Rn, ξi ∈ di}.
(D, (ξi)) ≤ (D′, (ξ′i))⇔ γ(D′) ≤ γ(D). (γ(D) je norma delenia D). (D, (ξi)) 7→ Sf (D, (ξi)) =

=
n∑

i=1

f(ξi) · (xi−xi−1). Sf (D, (ξi))→ a. ∀ε > 0 ∃(D0, (ξ0
i )) ∈ Σ : (D, (ξi)) ≥ (D0, (ξ0

i )). δ = γ(D0) > 0.

X. METRIZOVATEĽNÉ PRIESTORY, METRIZÁCIA TOPOLOGICKÝCH PRIESTOROV

Defińıcia 10.1. Nech X je množina. Zobrazenie d : X ×X → R sa nazýva pseudometrika, ak plat́ı:
(1) ∀x, y ∈ X : d(x, y) ≥ 0.
(2) ∀x ∈ X : d(x, x) = 0.
(3) ∀x, y ∈ X : d(x, y) = d(y, x).
(4) ∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z).

Ak naviac plat́ı:
(5) ∀x, y ∈ X : ak d(x, y) = 0⇒ x = y, potom d sa nazýva metrika na X.

Pŕıklady.
10.1. R, d(x, y) = |x− y| je metrika na R.

10.2. R, d1(x, y) =
{

0 ak x = y

1 inak
je metrika na R.

10.3. R, d2(x, y) = min{|x− y|, 1} je metrika na R.
10.4. R, ρ(x, y) = 0 pre ∀x, y ∈ R potom ρ je pseudometrika a nie je metrika.

Poznámka. Nech d je (pseudo-) metrika na X. Potom τd = {U ∈ P(X); ∀a ∈ U ∃ε > 0 : Oε(a) = {x ∈ X,
d(a, x) < ε} ⊆ U} je topológia na X.

Pŕıklady.
10.5. X, d(x, y) = 0 pre ∀x, y ∈ X. τd = {∅, X} indiskrétna topológia.

10.6. X, d1(x, y) =
{

1 x 6= y

0 x = y
, a ∈ X, 0 < ε < 1: Oε(a) = {a}, τd1 = P(X) diskrétna topológia.

Defińıcia 10.2. Priestor (X, τ) sa nazýva metrizovatel’ný, ak existuje metrika d na X tak, že τd = τ .

Pŕıklady.
10.7. (R, τ), τ– obvyklá topológia; d(x, y) = |x−y| ⇒ τ = τd; d1(x, y) = min{|x−y|, 1}. τd1 = τd = τ .

Bd(a) = {(a− ε, a+ ε); 0 < ε < 1}; Bd1(a) = {(a− ε, a+ ε); 0 < ε < 1}. Od1
2 (a) = R.

10.8. Priestor, ktorý nie je metrizovatel’ný: (R, τ→), τ→ = {(a,∞), a ∈ R} ∪ {∅,R}. Nie je metrizova-
tel’ný, lebo d(x, y) = r, zoberme si Or/2(x)∩Or/2(y) = ∅. To znamená, že každý metrizovatel’ný priestor
je T2-priestor.

Veta 10.1. Ak (X, τ) je metrizovatel’ný, tak každý podpriestor priestoru (X, τ) je metrizovatel’ný.

Dôkaz. Y ⊆ X; (Y, τY ) podpriestor (X, τ). τY = {U ∩ Y , U ∈ τ}. Existuje d : X × X → R, τd = τ .
d′ = d �Y×Y : Y × Y → R ⇒ d′ je metrika. U ∈ τd′ ⇔ ∀c ∈ U ∃ε > 0 Od′ε (c) ⊆ U ⇔ ∀c ∈ U ∃ε > 0
Odε(c) ∩ Y ⊆ U ⇔ U ∈ τY .

Lema 10.1. Ak (X, τ) je metrizovatel’ný priestor, tak existuje metrika d1 na X ohraničená 1,
(tj. ∀x, y ∈ X : d1(x, y) ≤ 1) tak, že τd = τ .

Dôkaz. (X, τ) je metrizovatel’ný, potom existuje metrika d na X tak, že τd = τ . Nech d1 : X ×X → R je

definovaná d1(x, y) = min{d(x, y), 1}. Potom d1 je metrika na X a τd1 = τd = τ , d2(x, y) =
d(x, y)

1 + d(x, y)
.

Veta 10.2.
(1) Ak (Xα, τα)α∈I je systém metrizovatel’ných priestorov a pre α, β ∈ I, α 6= β : Xα ∩Xβ = ∅, tak

aj priestor (X, τ) =
⊕

α∈I(Xα, τα) je metrizovatel’ný.
(2) Ak ((Xn, τn))n∈N je systém metrizovatel’ných priestorov, tak aj (X, τ) =

∏

n∈N
(Xn, τn) je metrizo-

vatel’ný.
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Dôkaz.
(1) X =

⋃

α∈I
Xα, ∀α ∈ I nech dα je metrika naXα okrem 1 taká, že τdα = τα. Definujme d : X×X→R,

d(x, y) =
{
dα(x, y) ak existuje α ∈ I tak, že x, y ∈ Xα

1 ak x ∈ Xα, y ∈ Xβ a α 6= β
d je metrikou na X a τd = τ .

(2) (X, τ) =
∏

n∈N
(Xn, τn). Pre ∀n ∈ N nech dn je metrika na Xn okrem 1 taká, že τdn = τn.

X =
∏

n∈N
(Xn, τn). Definujme d : X ×X → R, d(x, y) =

∑

n∈N

1
2n
· dn(pn(x), pn(y)).

0 ≤ 1
2n
dn(pn(x), pn(y)) ≤ 1

2n
.
∑

n∈N

1
2n

= 1. d(x, x) = 0, d(x, y) = d(y, x). ∀x, y, z ∈ X ∀n ∈ N:

dn(pn(x), pn(z)) ≤ dn(pn(x), pn(y)) + dn(pn(y), pn(z))⇒
∑

n∈N

1
2n
dn(pn(x), pn(z)) ≤

≤
∑

n∈N

1
2n

(dn(pn(x), pn(y)) + dn(pn(y), pn(z))) =
∑

n∈N

1
2n
dn(pn(x), pn(y))+

+
∑

n∈N

1
2n
dn(pn(y), pn(z))=d(x, y)+d(y, z).

pn : (X, τd) → (Xn, τn) = (Xn, τdn) je spojité. Nech x ∈ X, ε > 0. ∀y ∈ X pre ktoré

d(x, y) <
ε

2n
plat́ı:

1
2n
dn(pn(x), pn(y)) ≤ d(x, y) ⇒ dn(pn(x), pn(y)) ≤ 2nd(x, y) < ε. pn je

spojité pre ∀n, preto id : (X, τdn) →
∏

n∈N
(Xn, τn) = (X, τ) je spojité. pn◦id = pn je spojité pre

∀n ∈ N. Plat́ı τ ⊆ τd. Nech U ∈ τd, x ∈ U . ∃ε > 0 tak, že Odε(x) ⊆ U .

y ∈ Odε(x)⇔ d(x, y) =
1
2
d1(p1(x), p1(y)) + · · ·+ 1

2k
dk(pk(x), pk(y)) +

∞∑

n=k+1

1
2n
dn(pn(x), pn(y)).

∑

n∈N

1
2n

= 1⇒ pre
ε

2
> 0 ∃k ∈ N :

∞∑

n=k+1

1
2n
<
ε

2
⇒

∞∑

n=k+1

1
2n
dn(pn(x), pn(y)) ≤

∞∑

n=k+1

1
2n

<
ε

2
.

Odkε/2(pk(x)) je okolie pk(x) v (Xk, τk). MnožinaW = Od1
ε/2(p1(x))×· · ·×Odkε/2(pk(x))×Xk+1×· · · =

= (p1)−1

(
Od1
ε/2(p1(x))

)
∩· · ·∩ (pk)−1

(
Odkε/2(pk(x))

)
je prvkom štandardnej bázy τ a teda W ∈ τ ,

x ∈W . Nech y ∈W . Potom d1(p1(x), p1(y)) < ε
2 , . . . ,dk(pk(x), pk(y)) < ε

2 ⇒ 1
2d1(p1(x), p1(y))+

+ · · ·+ 1
2k
dk(pk(x), pk(y)) <

ε

2

(
1
2

+ · · ·+ 1
2k

)
<
ε

2
. Potom d(x, y) =

1
2
d1(p1(x), p1(y)) + · · ·+

+
1
2k
dk(pk(x), pk(y)) +

∞∑

n=k+1

1
2n
dn(pn(x), pn(y)) <

ε

2
+
ε

2
< ε. Teda y ∈ Odε(x) ⊆ U . Teda

W ⊆ U , U ∈ τ tj. τd = τ .

Dôsledok.

[0, 1]N je metrizovatel’ný priestor. napr. d(x, y) =
∞∑
n=1

1
2n
|xn − yn|, kde xn = pn(x), yn = pn(y).

Veta 10.3. Urysohnova metrizačná
Ak X je regulárny T1-priestor (=T3-priestor) so spoč́ıtatel’nou bázou, tak X je metrizovatel’ný.

Dôkaz. X je T3-priestor so spoč́ıtatel’nou bázou, potom X je T4-priestor, a teda normálny. Nech B je
spoč́ıtatel’ná báza topológie na X. Položme C = {(U, V ) ∈ B × B; Ū ⊆ V }. Je to spočitatel’ný systém a
teda [0, 1]C je metrizovatel’ný. Ukážeme, že X je homeomorfný s podpriestorom priestoru [0, 1]C . Nech
(U, V ) ∈ C, potom Ū ⊆ V a potom Ū ∩ (X \ V ) = ∅ a Ū , X \ V sú uzavreté. X je normálny, potom
(z Urysohnovej lemy) existuje spojité zobrazenie f(U,V ) : X → [0, 1]; f [Ū ] ⊆ {0}, f [X \ V ] ⊆ {1}. Potom
existuje spojité f : X → [0, 1]C také, že ∀(U, V ) ∈ C plat́ı: p(U,V ) ◦ f = f(U,V ).
f je prosté: Nech x, y ∈ X, x 6= y. x ∈ X \ {y} je otvorená. Existuje V ∈ B : x ∈ V ⊆ X \ {y}.

Bx = {W ∈ B, x ∈ W} je báza okoĺı v x. X je regulárny. V ∈ Bx ⇒ ∃U ∈ Bx : Ū ⊆ V . Potom x∈U ,
U∈B. (U, V ) ∈ C. f(U,V ) : X → [0, 1]; f(U,V )(x) = 0. x ∈ Ū , f(U,V )(y) = 1. f(U,V )(x) = p(U,V )(f(x)) 6=
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6= p(U,V )(f(y)) = f(U,V )(y) ⇒ f(x) 6= f(y). f : X → f [X] podpriestor [0, 1]C . Treba ešte ukázat’, že ak
A je uzavretá v X, tak f [A] je uzavretá v f [X]. Nech b ∈ f [X] \ f [A]. Potom existuje a ∈ X : f(a) = b,
pričom a /∈ A. a ∈ X \ A je otvorená v X, potom ∃V1 ∈ B, a1 ∈ V1 ⊆ X \ A. X je regulárny potom
∃U1 ∈ B, u ∈ U1, Ū1 ⊆ V1. f(U1,V1) : X → [0, 1], f(U1,V1)(a) = 0, f(U1,V1)[A] ⊆ {1}, lebo A ⊆ X \ V1.
W = (p(U1,V1))−1([0, 1

2 ]) je otvorená v [0, 1]C , p(U1,V1)(b) = p(U1,V1)(f(a)) = f(U1,V1)(a) = 0. Teda b ∈W .
Ak y ∈ f [A], tak y = f(x), x ∈ A. Potom p(U1,V1)(y) = p(U1,V1)(f(x)) = f(U1,V1)(x) = 1. Teda
f [A] ∩W = ∅. Nech W ′ = W ∩ f [X]. Potom W ′ je otvorená v f [X], b ∈ W ′, W ′ ∩ f [A] = ∅. Teda
f [A] je uzavretá v f [X] a teda f : X → f [X] je homeomorfizmus. f [X] je metrizovatel’ný, potom X je
metrizovatel’ný.

Veta 10.4. Ak (X, d) je metrický priestor, tak d : (X, τd)× (X, τd)→ R je spojité zobrazenie.

Dôkaz. (x, y), (x′, y′) ∈ X ×X. d(x, y), d(x′, y′). d(x, y) ≤ d(x, x′) + d(x′, y) ≤ d(x, x′) + d(y′, y)+
+d(x′, y′) ⇒ d(x, y) − d(x′, y′) ≤ d(x, x′) + d(y, y′). Podobne d(x′, y′) − d(x, y) ≤ d(x, x′) + d(y′, y).
Z toho: |d(x, y) − d(x′, y′)| ≤ d(x, x′) + d(y, y′). Nech ε > 0. Zoberme Odε/2(x) × Odε/2(y) okolie (x, y)

v (X, τd)× (X, τd). ∀(x′, y′) ∈ Oε/2(x)×Oε/2(y). |d(x, y)− d(x′, y′)| ≤ d(x, x′) + d(y, y′) <
ε

2
+
ε

2
= ε.

Veta 10.5. Ak (X, ρ) je pseudometrický priestor, tak d : (X, τρ)× (X, τρ)→ R je spojité zobrazenie.

Vzdialenosti. (X, d) je metrický priestor; A 6= ∅, A ⊆ X, c ∈ X: d(c, A) := inf{d(c, a), a ∈ A}. A,B ⊆ X,
A 6= ∅, B 6= ∅, d(A,B) = inf{d(a, b), a ∈ A , b ∈ B}.
Veta 10.6. Ak (X, τ) je topologický priestor, d je metrika na X taká, že d : (X, τ)×(X, τ)→ R je spojité
zobrazenie a A je l’ubovol’ná neprázdna podmnožina v X, tak zobrazenie fA : (X, τ)→ R, fA(x) = d(x,A)
je spojité. (Špeciálne fA : (X, τd)→ R je spojité.)

Dôkaz. Nech x, y ∈ X. Ukážeme, že |fA(x)−fA(y)| ≤ d(x, y), fA(x) = d(x,A), fA(y) = d(y,A). ∀a ∈ A:
d(x,A) ≤ d(x, y) + d(y, a), d(x,A) ≤ d(x, a) ≤ d(x, y) + d(y, a). ∀a ∈ A : d(x,A) − d(x, y) ≤ d(y, a) ⇒
d(x,A)− d(x, y) ≤ d(y,A); d(x,A)− d(y,A) ≤ d(x, y). Podobne: d(y,A)− d(x,A) ≤ d(y, x) = d(x, y)⇒
|d(x,A) − d(y,A)| ≤ d(x, y). Nech ε > 0 , (x, x) ∈ (X, τ) × (X, τ), d je spojité, existuje okolie U × V
bodu (x, x) tak, že ∀(y, y′) ∈ U × V a |d(x, x′)− d(y, y′)| < ε. U, V sú otvorené v (X, τ). U je okolie x.
Nech y ∈ U . Potom (y, x) ∈ U × V . Potom |d(x, x) − d(y, x)| = d(x, y) < ε. Teda existuje U okolie X
také, že ∀y ∈ U : |fA(x)− fA(y)| ≤ d(x, y) < ε. fA je spojité.

Defińıcia 10.3. Nech X je topologický priestor.
(1) Systém S ⊆ P(X) sa nazýva lokálne konečný (diskrétny) v X, ak pre každý a ∈ X existuje okolie

Ua ∈ η(a) tak, že {V ∈ S, V ∩ Ua} je konečná. (má najviac jeden prvok).
(2) Systém S ⊆ P(X) sa nazýva σ-lokálne konečný (diskrétny), ak S je zjednoteńım spoč́ıtatel’ného

systému lokálne konečných (resp. diskrétnych) systémov v X.
(3) Nech U ,V sú pokrytia X. Hovoŕıme, že U je zjemnenie V (ṕı̌seme U < V), ak ∀U ∈ U ∃V ∈ V :

U ⊆ V .

Pŕıklady.
10.9. Každý konečný systém S ⊆ P(X) je lokálne konečný.
10.10. S = {(n, n+ 1), n ∈ N} lokálne konečný systém v R s obvyklou topológiou; nie je diskrétny.
10.11. Ak S je diskrétny systém v X, tak ∀U, V ∈ S : U ∩ V = ∅.
10.12. Ak S je systém množ́ın v metrickom priestore (X, d) a ∃r ∈ R+ tak, že ∀U, V ∈ S : d(U, V ) ≥ r,

tak S je diskrétny v (X, τd).
10.13. X, S = P(X), S ′ = {X} ⇒ S < S ′ a aj S ′ < S.

Veta 10.7. Nech (X, τ) je metrický priestor. Potom pre každé otvorené pokrytie U priestoru (X, τ)
existuje σ-diskrétne otvorené pokrytie S priestoru (X, τ) také, že S < U .

Dôkaz. Nech ∀U∈U : U 6=∅. Vyberme U∈U . Nech ≤ je dobré usporiadanie U tj. (U ,≤) je dobre uspori-

adaná množina. Un = {x∈U ; d(x,X \ U) ≥ 1
2n
}. U1 ⊆ · · · ⊆ Un ⊆ · · · . Plat́ı d(Un, X \ Un+1) ≥ 1

2n+1
.

Nech a ∈ Un, b ∈ X \ Un+1. Potom d(b,X \ U) <
1

2n+1
. Potom ∃c ∈ X \ U : d(b, c) <

1
2n+1

⇒
d(a, c)≥ 1

2n
⇒ −d(b, c) >

−1
2n+1

. d(a, c) ≤ d(a, b)+d(b, c)⇒ d(a, b) ≥ d(a, c)−d(b, c) ≥ 1
2n
− 1

2n+1
=

1
2n+1

.
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U∗n = Un \
⋃

V <U

Vn+1, U∗n ⊆ Un. Nech U, V ∈ U , V < U . V ∗n ⊆ Vn, U∗n ∩ Vn+1 = ∅ ⇒ U∗n ⊆ X \ Vn+1,

d(Vn, X \ Vn+1) ≥ 1
2n+1

; d(U∗n, V ∗n ) ≥ d(Vn, X \ Vn+1) ≥ 1
2n+1

. Ũn = {x ∈ X; d(x,U∗n) <
1

2n+3
} je

otvorená. (fU∗n : (X, τd) → R je spojité a Ũn = (fU∗n)−1(−∞, 1
2n+3

)). ∀U, V ∈ U , U 6= V : U < V alebo

V < U ⇒ d(U∗n, V
∗
n ) ≥ 1

2n+2
. ∀n ∈ N : Sn = {Ũn, U ∈ U} je diskrétny systém otvorených množ́ın.

Nech S ∈ S. Potom ∃U ∈ U , n ∈ N : S = Ũn ⊆ U ⇒ S < U . Nech a ∈ X. Existuje najmenš́ı prvok

U ∈ (U ,≤) tak, že a ∈ U . X \ U je uzavretá, ∃δ > 0 : Oδ(a) ∩ X \ U = ∅. ∃n ∈ N :
1
2n

< δ. Plat́ı:

d(a,X \ U) ≥ δ >
1
2n
⇒ a ∈ Un tj. ∃n ∈ N : a ∈ Un. ∀V < U , a /∈ V ⇒ a /∈ Vn+1. (Vn+1 ⊆ V ). Teda

a ∈ U∗n = Un \
⋃

V <U

Vn+1. ∀U ∈ U , n ∈ N Un je otvorená. a ∈ U∗n ⊆ Ũn ∈ Sn ⊆ S ⇒ S je pokrytie (X, τ).

Veta 10.8. Každý metrizovatel’ný priestor má bázu B, ktorá je σ-diskrétna.

Dôkaz. Un = {O1/n(x), x ∈ X} je otvorené pokrytie (X, τd). Predpokladali sme, že existuje metrika
d na X tak, že τd = τ . Potom existuje σ-diskrétne otvorené pokrytie Bn priestoru (X, τd) také, že
Bn < Un, B =

⋃

n∈N
Bn. Ak Bn =

⋃

k∈N
Sn,k ⇒ B =

⋃

n∈N

⋃

k∈N
Sn,k. B je σ-diskrétny. Ukážeme, že B

je báza τ . B ⊆ τ . ∃n ∈ N tak, že O1/n(c) ⊆ U . Bn je pokrytie (X, τ) ⇒ ∃V ∈ Bn : c ∈ V .
Bn < Un tj. ∃O1/n(y) ∈ Un tak, že V ⊆ O1/n(y). c ∈ V ⇒ c ∈ O1/n(y). Nech z ∈ O1/n(y).
Potom d(c, z) ≤ d(c, y) + d(y, z) < 1

n + 1
n = 2

n ⇒ z ∈ O1/n(c); V ⊆ O1/n(y) ⊆ O2/n(c) ⊆ U . Teda
∃V ∈ B : c ∈ V ⊆ U . B je báza v (X, τ).

Veta 10.9. Nech X je regulárny T1-priestor (tj. T3-priestor). Potom nasledujúce výroky sú ekvivalentné:
(1) X je metrizovatel’ný.
(2) X má σ-diskrétnu bázu.
(3) X má σ-lokálne konečnú bázu.

Dôkaz.
(1)⇒ (2) sme dokázali. (2)⇒ (3) je triviálna. (3)⇒ (1) je náročná.

Veta 10.10. Každý kompaktný metrizovatel’ný priestor má spoč́ıtatel’nú bázu (a teda je homeomorfný s
uzavretým podpriestorom [0, 1]N).

Dôkaz. Nech B je σ-diskrétna báza v X. B =
⋃

n∈N
Bn; Bn je diskrétny systém. ∀x ∈ X ∃U(x) ∈ η(x):

{V ∈ Bn, V ∩U(x) 6= ∅}má najviac jeden prvok. {U(x), x ∈ X} je otvorené pokrytieX ⇒ ∃x1, · · · , xk∈X
tak, že U(x1)∪· · ·∪U(xk) = X. ∅ 6= V ∈ Bn ⇒ ∃!V ∩U(xj) 6= ∅. Bn → {1, · · · , j}, V 7→ j, V ∩U(xj) 6= ∅
je prosté zobrazenie. Teda Bn je konečná, potom aj B je spoč́ıtatel’ná.
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XI. CVIČENIA

1. Základné pojmy.

Cvičenie 1.1.
Nech X je množina a V je systém podmnož́ın množiny X spĺňajúci nasledujúce podmienky:

(1) ∅, X ∈ V.
(2) Ak A,B ∈ V, tak A ∪B ∈ V.
(3) Ak S ⊆ V, tak

⋂

A∈S
A ∈ V.

Dokážte, že τV = {X \A,A ∈ V} je topológia na X a taká, že V je systém všetkých uzavretých množ́ın
v (X, τV).

Cvičenie 1.2.
Nech S je neprázdny systém topológíı na množine X. Dokážte, že τS :=

⋂

τ∈S
τ je topológia na X.

Cvičenie 1.3. Nájdite všetky topológie na {0, 1} resp. na {0, 1, 2}.
2. Metrika.

Cvičenie 2.1. R × R = R2, d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2, d1(x, y) = max{|x1 − y1|, |x2 − y2|},
d2(x, y) = |x1 − y1|+ |x2 − y2|. Dokážte, že τd = τd1 = τd2 .

Cvičenie 2.2. Nech d je metrika na X. Dokážte, že d1 : X × X → R2, d1(x, y) = min{d(x, y), 1} aj

d2 : X ×X → R2, d2(x, y) =
d(x, y)

1 + d(x, y)
sú metriky na X a τd = τd1 = τd2 .

Cvičenie 2.3.
Nech N je množina všetkých prirodzených č́ısel, a, b ∈ N. Označme Na,b = {a + n · b, n ∈ N ∪ {0}}.
Dokážte, že:

(1) Systém B = {Na,b; a, b ∈ N} je báza topológie na N.
(2) V topológii τB určenej bázou B sú množiny Na,b súčasne otvorené aj uzavreté.
(3) S využit́ım poznatku, že pre každé n ∈ N, n > 1 existuje prvoč́ıslo p také, že p deĺı n a s použit́ım

topológie τB dokážte, že prvoč́ısel je nekonečne vel’a.

Cvičenie 2.4. Nech B1 je báza topológie τ1 a B2 je báza topológie τ2 na X. Nech pre každé V ∈ B1 a
a ∈ V existuje W ∈ B2 tak, že x ∈W ⊆ V . Dokážte, že τ1 ⊆ τ2.

Cvičenie 2.5. Definujte pojem bázy (subbázy) pre systém všetkých uzavretých množ́ın v topologickom
priestore. Sformulujte analogické tvrdenia k tvrdeniam o báze (subbáze) topológie.

Cvičenie 2.6. Dokážte, že v l’ubovol’nom topologickom priestore plat́ı A ∩B = Ā ∩ B̄. Uved’te pŕıklad
topologického priestoru a jeho podmnož́ın A,B tak, aby platilo A ∩B ( Ā ∩ B̄.

Cvičenie 2.7. Nech X je topologický priestor, A ⊆ X, Int A =
⋃{U ∈ P(X), U je otv., U ⊆ A}.

Dokážte:
(1) Int A ⊆ A pre ∀A ∈ P(X).
(2) Int X = X.
(3) Int (A ∩B) = Int A ∩ Int B.
(4) Int (Int A) = Int A.
(5) A je ohraničená v X práve vtedy, ked’ Int A = A.

Cvičenie 2.8. Nech (X, τ) je topologický priestor, A ⊆ X. Bod c ∈ X sa nazýva hraničný bod množiny
A v (X, τ), ak pre každé okolie U bodu c: U ∩A 6= ∅ aj U ∩ (X \A) 6= ∅. b(A) označuje množinu všetkých
hraničných bodov množiny A.

(1) Určte b(Q), b(N), b((0, 1)), b([0, 1]) v (R, τd), (R, τz), (R, τ→), (R, τdis).
(2) Dokážte, že b(A) = Ā ∩X \A.
(3) Dokážte, že Ā = A ∪ b(A).
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Cvičenie 2.9. Nech (X, τ) je topologický priestor, A ⊆ B ⊆ X. Dokážte, že (A, τ |A) je podpriestor
(B, τ |B) a A, (τ |B)A) je podpriestor (X, τ).

Cvičenie 2.10. Určte nutnú a postačujúcu podmienku pre podmnožinu A priestoru (X, τ) tak, aby platilo:

(1) M ⊆ A je otvorená v (A, τ |A)⇔M je otvorená v (X, τ).
(2) M ⊆ A je uzavretá v (X, τ |A)⇔M je uzavretá v (X, τ).

3. Zobrazenia.

Cvičenie 3.1. Nech X,Y sú topologické priestory, f : X → Y je zobrazenie, a ∈ X, B(a) je báza okoĺı
a v X, B(f(a)) je báza okoĺı f(a) v Y . Dokážte, že nasledujúce výroky sú ekvivalentné:

(1) f je spojité v a.
(2) Pre každé V ∈ B(f(a)) existuje U ∈ B(a) tak, že f [U ] ⊆ V .
(3) Pre každú podmnožinu A ⊆ X ak a ∈ Ā, tak f(a) ∈ f [A].

Cvičenie 3.2. Dokážte, že ak f : X → Y , g : Y → Z sú sekvenciálne spojité zobrazenia, tak zobrazenie
g ◦ f : X → Z je sekvenciálne spojité.

Cvičenie 3.3. Dokážte, že ak f : X → Y je spojité v bode a a g : Y → Z je spojité v bode f(a), tak
g ◦ f : X → Z je spojité v a.

Cvičenie 3.4. Nech τ, τ ′ sú topológie na X. Dokážte, že idX : (X, τ) → (X, τ ′) je spojité zobrazenie
práve vtedy, ked’ τ ⊇ τ ′.
Cvičenie 3.5. Overte, že priestory (R, τd) a (R, τz) nie sú homeomorfné.

Cvičenie 3.6. Nech X = {a, b, c, d}, τ = {∅, {a}, {b}, {a, b}, {c, d}, X}. Nájdite všetky homeomorfizmy
(X, τ)→ (X, τ).

Cvičenie 3.7. Overte, že plat́ı:

(1) sin : [0, 2π]→ R je uzavreté a nie je otvorené.
(2) sin : R→ [−1, 1] je otvorené, ale nie je uzavreté.

Cvičenie 3.8.
Nech D2 = {(x, y) ∈ R2, x2 + y2 ≤ 1} je podpriestor R2 s obvyklou topológiou a [−1, 1] × [−1, 1] je tiež
podpriestor R2 s obvyklou topológiou. Ukážte, že D2 je homeomorfný s [−1, 1]× [−1, 1].

Cvičenie 3.9. Dokážte, že ak f : X → Y a g : Y → Z sú vnorenia, tak g ◦ f : X → Z je vnorenie.

Cvičenie 3.10. Nech f : X → Y je faktorové zobrazenie, A je podpriestor X, f [A] je podpriestor Y .
Ukážte na pŕıklade, že f |A : A→ f [A] nemuśı byt’ faktorové zobrazenie.

Cvičenie 3.11. Nech f : X → Y je faktorové zobrazenie, B ⊆ Y . Dokážte, že ak B je uzavreté alebo
otvorené v Y , tak zobrazenie f �f−1(B): f−1(B)→ B je faktorové zobrazenie.

Cvičenie 3.12. Dokážte, že zobrazenia + : R × R → R, (a, b) 7→ a + b, · : R × R → R, (a, b) 7→ a · b,
f : Rn → R, f(a1, · · · , an) = max{a1, · · · , an}, g : Rn → R, g(a1, · · · , an) = min{a1, · · · , an} sú spojité.

Cvičenie 3.13. Nech (X, d1), (Y, d2) sú metrické priestory. Dokážte, že d : (X,Y ) × (X,Y ) → R,
d((a, b), (c, d)) = d1(a, c)+d2(b, d) je metrika na X×Y . Ďalej dokážte, že (X×Y, τd) = (X, τd1)×(Y, τd2).

Cvičenie 3.14. Nech X,Y sú priestory a X × Y je ich topologický súčin. Dokážte, že:

(1) Pre každé a ∈ X je podpriestor {a} × Y priestoru X × Y homeomorfný s Y .
(2) Pre každé b ∈ Y je podpriestor X × {b} priestoru X × Y homeomorfný s X.

Cvičenie 3.15. Nech f, g : X → Y sú spojité zobrazenia, Y je T2-priestor a E = {a ∈ X, f(a) = g(a)}.
Dokážte, že E je uzavretá podmnožina X.

4. Faktorové priestory.
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Cvičenie 4.1. Nech S1={(x, y)∈R2, x2+y2=1} je podpriestor priestoru R2 a I=[0, 1] je podpriestor R.
(1) Nech E je relácia ekvivalencie na I taká, že xEy ⇔ x = y alebo {x, y} = {0, 1}. Dokážte, že

faktorový priestor I/E je homeomorfný s S1.
(2) Nech E je relácia ekvivalencie na I × I taká, že (x, y)E(x′, y′) ⇔ (x, y)=(x′, y′) alebo (y=y′ ∧
{x, x′}={0, 1}). Dokážte, že (I × I)/E je homeomorfný s priestorom S1 × I.

(3) Nech E je relácia ekvivalencie na I × I taká, že (x, y)E(x′, y′) ⇔ (x, y)=(x′, y′) ∨ (y = y′ ∧
{x, x′} = {0, 1}) ∨ (x=x′ ∧ {y, y′} = {0, 1}). Dokážte, že (I×I)/E je homeomorfný s priestorom
S1 × S1.

Cvičenie 4.2. Dokážte, že X je T2-priestor práve vtedy, ked’ podmnožina ∆x = {(x, x);x ∈ X} priestoru
X ×X je uzavretá v X ×X.

Cvičenie 4.3. Nech X,Y sú priestory, Y je T2-priestor a f : X → Y je spojité zobrazenie. Dokážte, že
potom množina {(x, f(x)), x ∈ X} je uzavretá v X × Y . Plat́ı obrátené tvrdenie?

Cvičenie 4.4. Nech ∀α ∈ I : Mα je podpriestor Xα. Dokážte, že
∏

α∈I
Mα je podpriestor

∏

α∈I
Xα.

Cvičenie 4.5. Nech X =
⊕

α∈I
Xα. Dokážte, že ak ∀α ∈ I : Xα je T1 (T2, T3, T3 1

2
, T4, regulárny, úplne

regulárny, normálny) tak aj X je T1 (T2, T3, T3 1
2
, T4, regulárny, úplne regulárny, normálny).

Cvičenie 4.6. Nech f1 : X1 → Y1, f2 : X2 → Y2 sú spojité zobrazenia. Dokážte, že potom aj f1 × f2 :
X1 ×X2 → Y1 × Y2, (f1 × f2)(x, y) = (f1(x), f2(y)) je spojité zobrazenie.

Cvičenie 4.7. Nech X =
∏

Xα a ∀α ∈ I je Xα 6= ∅. Zistite, či plat́ı: ak X je (úplne) regulárny, tak
∀α ∈ I Xα je (úplne) regulárny.

Cvičenie 4.8. Ukážte, že:
(1) Každý uzavretý podpriestor normálneho priestoru je normálny priestor.
(2) X je normálny ⇔ pre všetky otvorené množiny U, V v X také, že U ∪ V = X existujú uzavreté

podmnožiny A,B priestoru X také, že A ⊆ U , B ⊆ V a A ∪B = X.
(3) Ak X je normálny a f : X → Y je surjekt́ıvne, spojité, uzavreté zobrazenie, tak Y je normálny.
(4) Nájdite pŕıklad faktorového zobrazenia f : X → Y takého, že X je normálny a Y nie je normálny.

(Návod: 3-prvkový nenormálny, faktorové zobrazenie.)

5. Konvergencia.

Cvičenie 5.1. Zistite, či nasledujúci systém podmnož́ın danej množiny je báza filtra, resp. filter na danej
množine.

(1) F1 = {A ∈ P(R), R/A je spoč́ıtatel’ná} v R.
(2) F2 = {(a,∞), a ∈ Q} v R.
(3) B(a) – báza okoĺı bodu a v topologickom priestore X.

Cvičenie 5.2. Určte všetky hromadné body, resp. limity daných báz filtrov, resp. filtrov v daných
topologických priestoroch

(1) F1 = {A ∈ P(R), R/A je spoč́ıtatel’ná} v R s obyčajnou topológiou.
(2) F2 = {(a,∞), a ∈ Q} v R s obyčajnou topológiou a v R s topológiou τ→ = {(a,∞), a ∈ R}∪{∅,R}

Cvičenie 5.3. Nech X je topologický priestor. Dokážte, že nasledujúce výroky sú ekvivalentné:
(1) X je kompaktný.
(2) Každý filter v X má hromadný bod.
(3) Každý ultrafilter v X konverguje.

Cvičenie 5.4. Nech X je topologický priestor, a ∈ X a F je filter na X. Nech Xa je topologický priestor
definovaný na množine priestoru X nasledovne: U je otvorené v Xa ⇔ U ⊆ X/{a} alebo existuje F ∈ F
tak, že U = F ∪ {a}. Nech idX : Xa → X je identické zobrazenie. Dokážte, že F → a⇔ idX : Xa → X
je spojité zobrazenie.
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Cvičenie 5.5. Dokážte, že priestor X je T2-priestor práve vtedy, ked’ každá siet’ v X má najviac jednu
limitu.

Cvičenie 5.6. Nech f : X → Y je zobrazenie, X,Y sú topologické priestory, a ∈ X. Dokážte, že f je
spojité v a práve vtedy, ked’ pre l’ubovol’nú siet’ (xσ, σ ∈ Σ) v X taká, že xσ → a plat́ı f(xσ)→ f(a).

Cvičenie 5.7. Nech X =
∏
Xα je topologický súčin priestorov, (xσ, σ ∈ Σ) je siet’ v X. Dokážte, že

xσ → a v X ⇔ ∀α ∈ I: pα(xσ)→ pα(a).


