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I. ZAKLADNE POJMY

Definicia 1.1.

Nech X je mnozina. Potom systém 7 C P(X) sa nazyva topoldgia na mnozine X ak plati:

(1) 0. X er

(2) AkU,Ver, takUNVer

(3) AkSCr tak | JUer

ves

Ak 7 je topoldgia na X, tak (X, 7) sa nazyva topologicky priestor. Prvky 7 sa nazyvaji otvorené

mnoziny.

Priklady.

1.1. 0, X si vzdy topoldgie; Tinq = {0, X} je topoldgia a nazyva sa indiskrétna topoldgia na X.

1.2. X; 7455 = P(X) je topoldgia na X a nazyva sa diskrétna topoldgia.

1.3. Ry7q ={U € P(R); Va e U e > 0: (a—¢,a+¢) C U} obuykld (standardnd, kanonickd) topoldgia
na R.

14. Ry 7, = {U € PR); Va € U ¢ < a : (¢,a] C U} topolégia na R. U,V € 7,, a e UNV,
g <a:(c1,a) CU, ca<a:(eg,al CV,e=max{cr,c2} <a, (c,al CVNU, 74 C .

1.5. R; 7—, = {0,R} U {(a,0),a € R} — topoldgia na R.

1.6. R; 7o = {U € P(R); R\ U je konecnd } U {0} — kofinitnd topoldgia .

Metrika: d: X x X — R:

(1) VYa,be X :d(a,b) >0

(2) Va,b e X :d(a,b) =d(b,a)

(3) Va,b,c € X :d(a,c) <d(a,b)+ d(b,c)

(4) Va,be X : d(a,b) =0 a=0
Priklady.

1.7. Nech (X,d) je metricky priestor. Potom 74 = {U € P(X) : Va € UJe > 0: O(a) C U} — je
topoldgia dand metrikou d.

1.8. (R, 74); (a,b) je otvorend, ale (a, b] nie je otvorend.

1.9. (R,7;); (a,b) je otvorend, a (a,b] tiez.
Definicia 1.2. Nech (X, 1) je topologicky priestor. Podmnozina A C X sa nazyva uzavretd v (X, 7), ak
X\Aer.

Veta 1.1. Nech (X, T) je topologicky priestor. Potom plati:
(1) X,0 st uzavreté.
(2) Ak A, B st uzavreté v (X,7), tak AU B je uzavretd v (X, 7).
(3) Ak L je lubovolny systém uzavretych mnoZin, tak m A je uzavretd mnoZzina.
AcLl

Priklady.
1.10. [a,b] je v R s obvyklou topolégiou uzavreta.
1.11. (a,b] nie je uzavretd v (R, 74).
1.12. (a,b] je uzavreta v (R, 7,).
Definicia 1.3. Nech (X, 7) je topologicky priestor. Potom systém B C 7 sa nazyva bdza topoldgie, ak
pre kazdé U € 7 existuje L C B tak, ze U = U V.
verl
Ak B je baza topolégie, tak aj B\ {0} je béza topoldgie.
Veta 1.2. Systém B C 7 je bdza v (X,7) & pre kazdé U € 7 a pre kaZdé x € U existuje V € B tak, Ze
zreV CU.
Dokaz.
[=] NechUecrtaxecU. . ILCB, U= U V. Potom existuje V€ L, x € V. Plati V € B,V CU.
veL
[} NechUerazclU. IV, eBizcV,eB L={V,,2cU}CB; | JVa=U.
zeU
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Priklady.
1.13. (R,7q); B={(a,b):a<b, a,beR} —bdzary. U€crg, x€U, z€(x—c,x+¢)CU.
1.14. (R,7y4); B={(a,b):a <b, a,b € Q} je bdza 74.
1.15. (R, 7.); B={(a,b] : a < b, a,b € R} je baza 7.
1.16. (R, 7,); B={(a,b] :a < b, a,b € Q}. Je to baza 7, ?
1.17. (X, 7ais); B={{a},a € X} je baza (X, Tais)-

1.18. (X,d) je metricky priestor. B ={0O:(z); z € X, ¢ >0} aB={01(z); z € X, n € N} st bdzy
priestoru (X, 74).

Veta 1.3. Nech B je bdza topoldgie v priestore X. Potom plati:

i Jv=x.
veB
(ii) Ak Vi,Vo € B a x € V1 N Va, tak existuje V3 € B tak, Ze x € V3 C Vi NVs.

Veta 1.4. Nech B je systém podmnozin mnoZiny X , ktory md vlastnosti (i) a (i). Potom systém mnoZin
={UeP(X):YacU3IVeB:acV CU} je topoldgia na X a B je bdza 3.

Dékaz. O € 73, X € 753 z (i). Nech U,Us € 75. Nech a € U; NUs. Potom a € Uy, a € Us a existuju
Vi,Vo e Btak,zea € Vi CU;,ae€ Vo CUs,a € ViNVy PotomdVz € B: ae V3 CViNV, CULTNUy =
UiNUs €75 SCrs,aeW=|JU. Potom3U €S, acUDIVeB acVCUcCW=

Ues
Werg, BC1, VeB=YacUIVeB=Vem UernppasVacU IV eB:acV CU.

Priklady.
1.19. X, B= {{a}, a <€ X} TB = Tdis
1.20. Nech (A4, <) je usporiadand mnozina a ma aspon 2 prvky. Pre a<b, a,b € A : (a,b) = {x€A,
a<z<b},a) = {x€A, z<a}, (b] = {z € A, 2>b}. B={(a,b); a,b € A, a<b}U{[a), a € AYU{(}], b€ A}
je baza topoldgie na A. 73 = T< je topolégia urcend usporiadanim <.
Definicia 1.4. Nech (X, 7) je topologicky priestor. Systém S C 7 sa nazyva subbdza topolédgie 7, ak
k
{ﬂ W;, k€ N, W; € §} je baza topoldgie 7.
i=1
Priklad.

1.21. (R, 74) S ={(—o00,a], a € R} N{(b,00), b € R} — subbéza 4.
k

{(\Wi, k€N, W; € S} =8N {(a,b); a,b€R, a<byU{0}; Bs 2 B={(a,b), a,b€R, a<b}.

=1

Veta 1.5. Ak S je subbdza topoldgie T na X, tak U V=X.

vVes
k
Dékaz. Nech Bgz{ﬂ Wi, keN, W,;eS} je béza 7. Potom U V = X. Nech U W=YCX,
i=1 VeBs wes
WeBsWeS:VeW= |J Vc |JW=Y¢Xspors ().
VeBs wes
k
Veta 1.6. Nech S CP(X) a U W =X . Potom Bs = {m Wi, ke N, W, € 8} spliia (i), (i) a T8,
wes i=1
je urcend bdzou Bs je topolégia na X pre ktori S je subbdza.
Doékaz.
SCBs= |JV2|JW=X= (i) pre Bs. AkV,V' € Bs = VNV’ € Bs = plati (ii) pre Bs.
VeBs wes

Potom 75, = {U € P(X), Ya € U 3V € Bs : a € V C U} je topolégia na X a Bs je bdza 75, = S je
k

subbaza 73,. S CBs C18s = S C 185 & {ﬂ Wi, keN, W;eS} = Bs je baza 13, = S je subbdza 73;.

i=1
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k
s =78s ={U € P(X), Va€ U, Ik e NIWy,--- , Wi €S:ac [ |W: CU}L
i=1
Definicia 1.5. Nech (X, 7) je topologicky priestor, p € X. Kazd4 otvorend mnozina U € 7 pre ktoru

p € U sa nazyva okolim bodu p. Systém vsetkych okoli bodu p: n(p).
Plati: Ak U, U’ € n(p) = UNU" € n(p).

Definicia 1.6. Nech p € X, (X, 1) je topologicky priestor. Systém B(p) C n(p) sa nazyva bdza okoli
bodu p ak YU € n(p) 3V € B(p) tak, ze V C U.

Priklad.
1.22. (X, d) je metricky priestor, p € X. B(p) = {O:(p), € > 0} — bédza okoli bodu p v (X, 74).
1.23. B'(p) = {O1(p), n € N} — béza okoli bodu p v (X, 74).
1.24. (R,7.) B(p) ={(p—¢,p|, € >0} — baza okoli v p.
1.25. (R, 74is) B(p) = {{p}} — béza okoli p.

Veta 1.7.
(1) Ak B je bdza topoldgie v (X,7) ap € X, tak B(p) ={V € B, p € V} je baza okoli v p.

(2) Ak preVp e X B(p) je bdza okoli v (X, T), tak U B(p) = B je bdza topoldgie v (X, T).
peX

Dokaz.

(1) Nech U je okolie p. Teda U € 7 ap € U. Potom existuje Ve B:peV CU. V€ B(p), VCU.
(2) Nech U je otvorend mnozina tj. U e r,peU. IV e B(p)C B, VCU, peV CU.

Veta 1.8. Nech (X, 7) je priestor a pre kazdé p € X je dand bdza okoli B(p). Potom plati:
(i) vpe X : B(p) #0
(ii) VW € B(p) peV
(iii) Ak Vi N'Vs je okolie p potom V3 € B(p) : V3 C Vi N V4.
(iv) VW € B(p) Vge V IW € B(q) : W C V.
(v) U je otvorend v (X,7) < V¥VpeU IV € B(p):VCU.

Dokaz.

(i) X enlp)=3VeB(p) VCX=Bp #0.
(iii) V1 N Vs je okolie p = 3V5 € B(p) tak, ze V3 C V3 N k.
(iv) Nech V € B(p), ¢ V. V€T =1V jeokolie g =3IW € B(q) : W C V.
(v) [=] U je otvorend a p € U. Potom U € n(p) = 3V € B(p) tak, ze V C U.
(S} YgeUV,€B(q):V,CU. qeV,, Vyer, U= |JVer
qeV

Veta 1.9. Nech X je mnozina a ¥p € X je dany systém B(p) C P(X) pricom si splnené podmienky (i)
az (w). Potom 1 ={U € P(X), Vpe U IV € B(p), V C U} je topoldgia na X takd, Ze pre vietky p € X
je B(p) bdza okoli bodu p.

Dékaz. 0,X e, UU' e peUNU' = 3V,V' €Bp), VCU, V' cU' WavreBp):
V'V nV=V"CcunU.UNU e€r. Ak S C 7, tak U V € 7 je zrejmé. Nech p € X. Chceme
ves
ukdzat’, ze B(p) je bdza okoli p v (X, 7).
1. B(p) € n(p) € 7. Nech V € B(p), g € V. Podla (iv) IW € B(q) W CV = V € 7. Podla (ii)
YV eB(p) :peV.
2.VUenlp)IVeBp) VCU. Uenp)=Uecr; pcU=3VeBp =V_CU.

Priklad.

1.26. Pi=RxRJ,m1) Oc(a,b)={(c,d)eRxR{; \/(a — )2+ (b—d)? < e}. Ak (a,b) € RxRJ a
b>0 tak B(a,b)={O.(a,b); ¢ > 0}. O.(a,0)={(c,d)eRxR{;\/(a — )2+ d% < &, d > 0} N {(a,0)}.
B(a,0)={O.(a,0); ¢ > 0}.

1.27. P := (R x R, 7), B(a,b) = {O(a,b), € > 0} pre b > 0. B(a,0) = {O(a,0), e > 0},

)

0.(a,0)=0.(a,e) U{(a,0)}.
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Definicia 1.7. Nech A C (X, 7). Potom mnozina A = ({V € P(X); V je uzavretd v (X,7) a A C V}
sa nazyva uzdver mnoziny A.

Veta 1.10. Nech A, B st podmnozZiny v (X, 7). Potom plati:

AC BCB, AQBfuzavreté@AQB.
(5) AUB C AUB je uzavretd == AUBC AUB; ACAUBCAUB=ACAUB,BCAUB=
AUBCAUB= AUB=AUB.

[=] B C B - uzavretd = B C B. Podla (1) plati B C B.
:B=B (:>) B je uzavreta.
(7) A je uzavretd = (A) = A.

Veta 1.11. Nech X je mnoZina a cl : P(X) — P(X); A clA je zobrazenie, ktoré md nasledujice
vlastnosti:

(c11) VAeP(X): ACdA.
(cl 2) cl 0=0.

(c13) el (AUB)=cl AUcl B.
(c14) ¢l (clA) =cl A.

Potom 7 ={U € P(X), ¢l (X\U) = X\ U} je topoldgia na X a pre kazdé A € P(X):cl A= A.

Veta 1.12. Nech A je podmnozina X, (X, 7) je topologicky priestor a p € X a B(p) je bdza okoli bodu
p. Potompe A=YV € B(p): VNA#D.

Doékaz.

- [=] Nech 3V € B(p) : VN A=0. Potom AC X \V -~ uzavretd. Potom AC X \V = p¢ A.

: p & A— uzavretd. Potom p € X \ A —otvorend = IV € B(p) VC X\A=VNA=0=
VﬂA 0. O

Nech X je topologicky priestor, A C X potom Int A =J{U € P(X), U je otvorend, U C A}.

Priklad.
1.28. Int [0,1] = (0,1), Int Q =A (# 0)

Definicia 1.8. Priestor X sa nazyva separabilny, ak v X existuje spocitatelnd hustd podmnozina.
Definicia 1.9. Mnozina A C X je hustd v X , ak jej uzaver je cely topologicky priestor. A = X.

Veta 1.13. Podmnozina A priestoru X, ktorého bdza je B. Potom A C X je hustd v X & VYV € B,
V#AD:VNA#D.

Dokaz.

[= ] Nech existuje V€ B, V # 0 tak, ze VN A =0. Potom A C X\ V - uzavretd mnozina. Potom
ACX\V#X=A+#X = Anie je hustd v X.

[<] Nech A nie je hustd v X tj. A # X. Potom X \ A # 0, X \ A je otvorend. Nech ¢ € X \ A.
W eBtak, zece VCX\A V£0D, VAA=0=VNA=0.

Priklady.
1.29. Q =R, (R,74) B=1{(a,b), a<b, a,bc R}~ biza 4. (a,b) N Q # 0.
1.30. (R,7), B={(a,b], a <b, a,b e R} Q=R
1.31. (R,74i5), B={{a}, a € R} Q#R.
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Definicia 1.10. Hovorime, ze X splia 1. axidmu spocitatelnosti (resp. 2. axidmu spocitatelnosti), ak
pre kazdé a € X existuje spocitatelnd baza okoli v a. (resp. X ma spocitatelni bézu topoldgie.)

Priklady.

1.32. (R,74), (R,7,) — separabilné, Q — spocitatelnd hustd. (R, 74;s) nie je separabilny.

1.33. (]R Teofin)s N = R - separabilny, N — uzavret4 mnozina.

1.34. (R,74), (X,d) — metricky priestor. (X, 74) splia 1. axiému spocitatelnosti. Va € X : B(a) =
= {(9%( a); n € N}

1.35. (R,7.) a€R:B(a)={(a— 2, a], n € N} - baza okolf a spliia 1. axiému spocitatelnosti.

1.36. (R, 74is) B(a) ={{a}} — splna 1. axiému spocitatelnosti.

1.37. (R, Teor),0 € R. Nech B(0) je spocitatelnd béza okoli 0. B(0) = {Vi,---,V,,- -} spocitatelny
systém. Vn € N: X \ V,, je koneénd. A = ﬂ Vo, X\A= U (X \ V,,) spocitatelnd, potom A je

neN

nespocitatelnd. Nech a€A, a#0. Potom W=R\ {a} je okolie bodu 0 VYneN aeV,, = V, NR\W # 0 =
Vi, € W spor s tym, ze B(0) je baza. Teda (R, 7., r) nesplia 1. axiému spocitatelnosti.

1.38. (R,7q) B = {(a,b); a <b, a,b € Q} — spocitatelnd béza v (R,74). U € 74, a € U : Je>0 :
(a—e,a+e)CU. Ire(a—ea)NQ; Is€ (a,a+e)NQ. a€ (r,s) C(a—e,a+¢) CU.

——
€B

1.39. (R, 74is) nemé spocitatelni bézu. B — l'ubovolnd baza 74;5. Ya € R, {a} je otvorend a € {a} =

VeB aceV C{a} =V ={a} = {a} € B. card B>C.

Veta 1.14.

(1) Ak X spliia 2. axidmu spocitatelnosti, tak splhia 1. aziému spocitatelnosti.
(2) Ak X spliia 2. azidmu spoéitatelnosti, tak je separibilny.

Dokaz.

(1) Nech B je spocitatelna baza v X. Potom Va € X, B(a) = {V € B; a € V} je spocitatelnd béza
okoli a.

(2) Nech B je spocitatelnd bdza X. VV € B\ {0} vyberieme zy € V. A = {zy, V € B\ {0}}
spocitatelnd AC X, VW e B, V4D, VNASzy =VNA#D. Teda A=X.

Priklady.
1.40. (R, 74;) splia 1. axiému spocitatelnosti, nesplia 2. axiému spocitatelnosti.
1.41. (R, T.0f) separabilny a nesplna 2. axiému spocitatelnosti ani 1. axiému spocitatelnosti.
1.42. (R, 7,) separabilny, splfia 1. axiému spocitatelnosti, ale nesplia 2. axiému spocitatelnosti.

Veta 1.15. Nech (X, 7) je topologicky priestor, Y CX. Potom systém mnozin |y ={V € P(Y), AUer :
V =Y NU} je topoldgia na Y.

Dékaz. 0,Y € 7]y. Nech V1,V € 7]y. Potom AU;,Us € 7 tak, z2e Vi = Y NUy, Vo =Y NU,.
VinVa=nNnU)N Y NU;) =Y N(U; NU3). Nech § C 7]y. Potom VV € S vyberme Uy € 7 tak, ze
V=ynUy. |JV=@nuy)=yn(lJUy) = JVerly

ves ves ves ves

Definicia 1.11. Nech (X, 7) je priestor, Y C X. Potom priestor (Y, 7]y ) sa nazyva podpriestor (X, ).

Priklady.
1.43. (R, 7q), [0,1] — podpriestor (R,74). (3,1] =1[0,1]N(3,2). (3,1] je otvorend v [0,1].
1.44. (R, 7q), (0,1] — podpriestor (R,74). (0, 1] je uzavreta v (0,1].

Veta 1.16. Nech (X, 1) je topologicky priestor a (Y,T[y) je podpriestor (X, 7). Potom plati:
(1) Podmnozina priestoru (Y, T|y) je uzavretd < erxistuje uzavretd podmnozina B v (X,T) tak, Ze
A=Y nNB.
) V je okolie bodu b v (Y, 7]y ) = existuje okolie U bodu b v (X,T) tak, Z2e V=Y NU.
) AkbeY, B(b) je bdza okolib v (X,T), tak By (b) ={Y NV, V € B(b)} je bdza okolib v (Y, Ty ).
) Ak B je bdza topoldgie v (X, T), tak Bly ={Y NV, V € B} je bdza topoldgie v (Y, T]y).
)

(2
(3
(4
(5) Ak ACY, tak AY = AXNY.
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Dékaz.
4) Bly C7ly U€ETly,ceU. W er,U=YNU". ceU =3IV eB:ceV CU.
VAY =W eBly,ce W,W=VAY CUNY =U.

Désledok. Ak X m4 spocitatelni bazu (resp. splfia 1. axiému spocitatelnosti) a Y je podpriestor X, tak
Y mé spocitatelni bézu (resp. splma 1. axidmu spocitatelnosti).

Uloha. N3§jst’ v predchadzajuicich prikladoch separabilny priestor obsahujici podpriestor, ktory nie je
separabilny.
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Axiémy oddelitel’nosti.

Definicia 1.12. Priestor X sa nazyva

(1) Ty-priestor, ak pre Va,b € X, a # b existuje okolie U bodu a tak, ze b ¢ U alebo existuje okolie
V bodu b tak, ze a ¢ V.

(2) Ty-priestor, ak pre Ya,b € X, a # b existuje okolie U bodu a tak, ze b ¢ U a existuje okolie V
bodu b tak, ze a ¢ V.

(3) Ty-priestor (Hausdorffouskyj), ak pre Tubovolné a,b € X, a#b, 3U(a) a V(b) : UNV = .

Tvrdenie. Kazdy Ts-priestor je Ti-priestor; kazdy Ty -priestor je Ty-priestor.

Priklady.

1.45. ({0,1}, Ting) nie je Tp-priestor.

1.46. ({0,1},7s) 75 ={0,{1},{0,1}} je To-priestor, ale nie je Ty-priestor. Tg sa nazyva Sierpinského
priestor.

1.47. (R,7_,) je Tp-priestor, ale nie je Tj-priestor.

1.48. (R,7eop); U =R\ {b} 32 a, V =R\ {a} > b. Je to Ty-priestor, ale nie je Th-priestor, lebo:
acU=R\K, beV=R\L UNV =R\ (KUL) #0.

1.49. (X,d) je metricky priestor. (X,7y4) je To-priestor, lebo: a,beX, a # b, d(a,b)=6>0, 5>g7
O%(a) N Og(b) =.

Veta 1.17. X je Ty-priestor < Va € X {a} je uzavretd.

Doékaz.
[=] Necha € X, Vb € X\ {a} existuje okolie U, také, ze Uy, C X \ {a} U = U Up=X\{a} =
beA
{a} = X\ U je uzavreta.
[<] Nech a,b € X, a # b, {a},{b} uzavretd. U = X \ {b} otvorend a € U, b ¢ U,V = X \ {a}
otvorend. b€V, a ¢ V = X je Tj-priestor.

Veta 1.18. Ak X je T;-priestor (i =0,1,2) a Y je podpriestor X, tak'Y je T;-priestor.

Dokaz.
Ty: X je Ty-priestor. Nech b € Y. {b} je uzavretd v X. {b} =Y N{b} uzavretd vY. Y je Ti-priestor.
Ty: Nech a,b € Y, a # b. Existuju otvorené U,V € X také, ze a € U, b € VaUNV =,
U=0NnY,V =VnNnYsiotvorené vY. ac U, beV' U NV' =0,Y je Tr-priestor.

II. SPOJITE ZOBRAZENIA
Analyza: f:R—->R, Va € RVe>035>0: f((a—3d,a+0)) <(f(a) —¢, f(a) +¢).

Definicia 2.1. Nech X,Y su topologické priestory. Zobrazenie f : X — Y sa nazyva spojité, ak pre
kazdu otvorend mnozinu V priestoru Y je f_1(V) ={a € X, f(a) € V} otvorend v X.

Priklady.

21. f: X =Y, Yae X: f(a) =by € Y. (konstantné zobrazenie). V je otvorena v Y, ak by € V tak
fo1(V)=X;ak by ¢ V tak f_1(V) =0.

2.2. X — diskrétny, Y — l'ubovolny, f : X — Y je l'ubovolné. Potom f je spojité.

2.3. X — lubovolny, Y — indiskrétny, f : X — Y je l'ubovolné. Potom f je spojité.

24. f:(X,d) — (Y,d) je spojité tak f: (X,1q4) — (Y, 7)) je spojité.

2.5. idx : X — X je spojité.

2.6. idg : (R,74) — (R, 7,) nie je spojité.

2.7.idgr : (R,7,) — (R, 7q) je spojité.

Pozndmka. f[A] C f[A].

Veta 2.1. Nech X,Y si topologické priestory. Pre kazdé a € X B(a) je dand bdza okoli a a pre kaZdé
beY je dand bdza okoli B'(b) bodu b a f: X — Y je zobrazenie. Potom si ekvivalentné:

(1

(2
(3
(4

) f: X =Y je spojité.

) Pre kazdi uzavreti podmnozinu B priestoru’Y  f_1(B) je uzavretd v X.
) Pre kazdii podmmozinu A priestoru X : f[A] C f[A].

) Pre kazdé a € X a kazdé V € B'(f(a)) existuje U € B(a) tak, Ze flu] CV.
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Doékaz.
(1)=(2): Nech B je uzavretd v Y. Potom Y \ B je dand otvorend v Y a teda f_1(U) je otvorena v X.
fo1(B) = f1(Y\U) =X\ f_1(U) je uzavretd v X.

(2)=(3): Nech AC X, a € A: fy(fla]) 2 fr(F1A]) 2 A= fi(FIA]) 2 A = f[A] C FTAL
~~ N~~~ o
(3)=(4): Nech a€X a IVEB(f(a)) tak, ze YUEB(a), f(U)ZV. Potom UZLf_1(V) = UNX\ f_1(V)
je neprézdna. Potom a € X \ f_1(V) a teda f(a) € f(X\ fo1(V)) = f(foa(Y\V)) =Y\ V =Y \V
Spor.
(4)=(1): Nech V je otvorend v Y. Treba dokdzat, ze f_1(V) je otvorend v X. Nech a € f_1(V).
Potom f(a)eV = IWeB'(f(a)) : WCV. 3Se€B(a) : f(S)CW = S C f_1(W) C f_1(V) je otvorena.

Veta 2.2. Nech f: X — Y je zobrazenie, B je bdza topolégie vY a S je subbdza topolégie vY. Potom
nasledujice vyroky su ekvivalentné:

(1) f: X =Y je spojité.

(2) Pre kazdé V € B: f_1(V) je otvorend mnoZina v X.

(3) Pre kazdé W € S: f_1(W) je otvorend v X .

Dékaz. (1) = (2) = (3) je jasné.

(3) = (1): Nech V je otvorend mnozina v Y. Treba dokdzat, ze f_1(V) je otvorend v X. Nech
a € f_l(V) Potom f(a) € V. Existuja Sy,---, Sk € S tak, ze f((l) € ﬂSZ cV. f_l(ﬂ Sl) = ﬂf_1(57)
f=1(S;) otvorené. a € f_1(Si) C f-1(V).
Definicia 2.2. Nech X,Y su topologické priestory, f: X — Y, a € X. Hovorime, Ze f je spojité v bode
a, ak pre kazdé okolie V(f(a)) bodu f(a) existuje okolie U bodu a tak, ze f[U] C V.

Veta 2.3. Nech f: X — Y je zobrazenie, X' je podpriestor X aY' je podpriestorY taky, Ze f(X) CY'.
Ak f: X =Y je spojité, tak aj f1x, : X' =Y aj f': X =Y, f'(a) = f(a) Va € X si spojité.
Veta 2.4. Nech f: X — Y je zobrazenie, U je systém otvorenich podpriestorov priestoru X taky, Ze
U U= X. Potom f je spojité = VYU €U fly : U —Y je spojité.
Ueu
Dokaz.

[=] je zrejmé.

[<] Nech V je otvorend vY. VU € U : (flyy)-1(V) je otvorend v X. U je otvorenad = (f[y)-1(V) =
=f_1(V)NU jeotvorend v X. f_1(V) = U (f—=1(V)NU) otvorend v X.

Ueu

Veta 2.5. Nech X,Y su topologické priestory a V je konecny systém uzavretych podpriestorov priestoru
X taky, zZe U V =X. Potom f: X =Y je spojité & VV €V f[, : V =Y je spojité.

Vey
Priklad.
2.8. ) )
k -1
-1 keelph
f(x) = ! ak z € (-1 —1] je spojité.

x+1 )
11
4 k -z
x  akaxe( 2,2)

Veta 2.6. Ak f: X =Y, g:Y — Z su spojité zobrazenia, tak go [ je spojité z X — Z.
Dékaz. W otvorend v Z. (go f)_1(W) = f_1(g—1(W)) je otvoren4.
Otdzka. Ak go f: X — Z je spojité, ¢i niektoré z f, g musi byt spojité?

Definicia 2.3. Nech X,Y su topologické priestory. Zobrazenie f : X — Y sa nazyva homeomorfizmus
ak f je spojité, bijektivne a f_; je spojité tiez.

Priklady.
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2.9. idgr : (R, 74i5) — (R, Ting) spojité bijektivne. idl_z1 =1idg : (R, Tina) — (R, Tais) je spojité, teda je
to homeomorfizmus.

2.10. Zobrazenie z prikladu ¢. 8 je homeomorfizmus.

2.11. idx : X — X je homeomorfizmus.

Veta 2.7. Ak f: X =Y, g:Y — Z si homeomorfizmy, tak go f : X — Z je homeomorfizmus.

Priklad.
2.12. St ={(z,y) €R?: /22 + (y— 3)2 =1}; f: 51\ {0,1} = R x {0} je homeomorfizmus.

1
V Rl gn — {(z1, -, Tpi1), ( x?) + (Tng1 — §)2 =1}.
=1

Definicia 2.4. Spojité zobrazenie f : X — Y sa nazyva otvorené (uzavreté) ak pre kazdi otvorent
(uzavretd) mnozinu U v X je f[U] otvorend (uzavretd).

Priklad 2.15.
idg : (R, 75)— (R, 74) je spojité (a,b) je otvorend v (R, 7,). idr((0,1])=(0, 1] nie je otvorend v (X, 74).

Veta 2.8. Nech B je bdza topoldgia X a f : X — Y je spojité zobrazenie. Potom f je otvorené
<YV e B f(V) je otvorend v'Y.

Doékaz.
[= ] zrejmé. [<]: Nech U je otvorend v X. Potom existuje S C B, U = U V,f{U)=f ( U V> =
ves ves
= U f(V) otvorena = je otvorena.
ves
Priklady.

214. X =R, Y = {(z,y)eR%, 22 + 2 =1} = S, f: R — S, f(x) = (cos(2mx),sin(27z))€S?!,
B={(a,b); a,bER, a<b, b—a< 3}
2.15. p1 : R? = R, pi(x,y) — x projekcia na prvii zlozku — otvorené zobrazenie.

Definicia 2.5. Spojité zobrazenie f : X — Y sa nazyva faktorové zobrazenie ak f je surjektivne a pre
kazdé V C Y plati: ak f_1(V) je otvorend mnozina, tak V je otvorend.

Priklady.
0ak z € Q

Potom f1(V)=0=V =0. Ak f_1(V) =0 = Fref_1(V). Potom Fe>0: (r—e,r+e)Cf_1(V); Is€Q,
teR\Q, s,te(r—e,r+¢e)C f_1(V) je faktorové zobrazenie.

2.17. idg : (R, 7a4is) — (R, Ting) je spojité, surjektivne, nie je faktorové, lebo id;'{r} = {r} otvorend
v (R, 74:i5), ale nie je otvorend v (R, Tinq).

je spojité. VC{0,1} a f_1(V) je otvorend?

Veta 2.9a. Nech f: X — Y je spojité surjektivne zobrazenie. Potom f je faktorové < YV C'Y plati:
ak f_1(V) je uzavretd v X, tak V je uzavretd vY.

Veta 2.9b. Ak f: X—=Y ag:Y—Z su faktorové zobrazenia, tak aj go f : X—Z je faktorové zobrazenie.

Dékaz. Nech V.C Z a(go f)_1(V) je otvorend v X. (go f)_1(V) = g_1(f-1(V)) je otvorend = g_1(V)
je otvorend = V je otvorena.

Veta 2.9c. Ak f : X — Y je surjektivne a otvorené (uzavreté) spojité zobrazenie, tak f je faktorové
zobrazenie.

Dékaz. Nech V.CY a f_1(V) je otvorend v X. f je otvorené = f(f_1(V)) =V je otvorena.

Priklad.
2.18. f:R — S f(z) = (cos(2mz),sin(27z)) otvorené zobrazenie = faktorové.
2.19. p1 : R? = R p;(z,y) = x otvorené = faktorové.

Definicia 2.6. Spojité zobrazenie f : X — Y je wnorenie, ak f : X — f(X) (podpriestor Y) je
homeomorfizmus.
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Veta 2.10. Spojité zobrazenie f : X — Yje vnorenie < f je injektivne a pre kaZdu otvorent (uzavretd)
podmnozinu V v X, f(V) je otvorend (uzavretd) v f(X).

Priklady.

2.20. Ak A je podpriestor X, tak j: A — X, j(z) = x je vnorenie. j(A) = A, j: A — j(A) = A,
j = idy je vnorenie.

2.21. f:R —R? f(x) = (z,2) je spojité, injektivne, otvorené = vnorenie.

2.22. f: Rt - R? f(z) = (z,2) je spojité, injektivne, otvorené = vnorenie.

III. TOPOLOGICKY SUCIN TOPOLOGICKYCH PRIESTOROV

Definicia 3.1. Nech (X,7x), (Y,7y) st topologické priestory, S={UxY, Uerx} U {XxV, Very}
Bs ={UxV, U é€r1x, V€ry} Nech1s = 75 je topoldgia uréend subbdzou S resp. Bs. Potom
(X x Y, 75) sa nazyva topologicky sicin priestorov (X, 7x), (Y, 7y ); S(B) sa nazyva Standardnd subbdza
(bdza) sucinnej topoldgie 15, .

Oznacenie. (X xY,m8) = (X,7x) x (Y, 7vy).

Veta 3.1. Nech (X,7x), (Y, 7y) sid priestory, 7p je sicinnd topoldgia na X XY a1 je lubovolnd topoldgia
na X xY takd, Ze px : (X xY,7) — (X, 7x) aj py : (X xY,7) = (Y, 7y) st spojité. Potom 75 C 7.

Dékaz. px spojitd VU € 7x : (px)-1(U) =U XY € 7x. py spojitd VVery : (py)-1(V)=X x VETy.
Tedla SCT=>715=11CT.

Veta 3.2. Nech (X,7x), (Y,7y) st topologické priestory, Bx je subbdza topoldgie Tx, By je bdza Ty .
Nech B={U xV;U € Bx,V € By}. Potom B je bdza topolégie g na X xY a plati 75 = 13.

Dékaz. U wxv)= < U U>><< U V) = XxXY.UxV,U'xV' e B, (UxV)N(U'xV') =
(U, V)eBx x By UeBx VeBy

= (UNU)x (VNV'). (a,b) € (Ux V)N (U xV'). Potoma e UNU',be VNV = 3IW € By,

W eBy:aceWC(UNU'),beW CVAV'. (a,b) e W x W C (Ux V)N (U xV'). Bbéza topolgie

eB

na (X xY,75). BCB=15C 715 V€By U (UxV)= ( U U> xV = X xV € 1. Symetricky:
UeBx UeBx
VUeBx: |J UxV)=UxYerg px: (X xY,75) — (X,7x); YU €Bx:(px)1(U)=UxY €
VeBx
Tg. Px spojité. py : (X xY,75) — (Y,7v); VV € By : (py)-1(V) = X x V € 75. py spojité. px,py
su spojité potom 75 C T5.
B = Tg-

Veta 3.3. Nech X,Y,Z su topologické priestory a X x Y je topologicky siucin o f : Z — XXY je
zobrazenie. Potom f je spojité < pxof aj fopy su spojité.

Doékaz.
[=] zrejmé.
[<] Nech S je standardna subbdza sticinovej topolégie S={UxY,U je otvorend v X} N {XxV,
V je otvorend v Y}. ZobermesiU xY €S, f1(UXY) = f_1((px)-1(U)) = (pxof)-1(U) = otvorend
—_———

spoj.

vZ. [ X xV)=f_1((py)-1(V)) = (pyof)-1(V) otvorend v Z.

spoj.

Priklad.

3.1. RxR topologicky sicin = (RxR, 7y), d((a,b), (c,d)) = ((a — ¢)®> + (b — d)*)/2. f: Rt - R x R,
f(@) = (z,1). fjespojité & piof, pof st spojité. piof = p1(f(x))=x, p2o f(x) = p2(f(x)) = . Oba
idi z Rt do R.



12 GYURKI PISTA

Veta 3.4. Ak (A,74) je podpriestor (X,7x) a (B,7B) je podpriestor (Y,7y), tak (A,74) x (B,7B) je
podpriestor (X, 7x) x (Y, 7y).

Dékaz. Ax BC X xXY; Baxp ={U xV;U € 74,V € 15}, Bxxy = {U' x V', U € 7x,V' € 7v}.
VU X V € Baxp 3U' €7x, V! €7y tak, 2e U=U'NA, V=V NB = (U NA) x (V' NB) =

= U xV)YN(AxB). Baxp ={({U" xV')N(Ax B),U" xV’' € Bxxy} bdza podpriestoru uréeného
AxBv (X,7x) x (Y,1y).

Priklady.

3.2. S1={(z,y) € R? 22 +y? = 1}; [0,1] = S'x][0,1] je podpriestor R3. S1x[0,1] = {(a,b, c)€R?;
a?+b=1,0<c<1}.

3.3. S x S' - térus, anuloid.

3.4. [0,1] x [0,1] — stvorec.

3.5. (XasTa))acr; H X, 2% X, :Va e I. YU otvorenti v Xo: (pa)—1(U) je otvorens.

acl
(Pa)1(U) = [[ Vo Ya = U : VB # a ¥ = Xp. (par)-1(U) N (pax) 1 (V) = [[ Y5, Yy = U,
pel yel

YO&Q =V: V"}/ ¢ {011,042}, Y’y - X'y~
Definicia 3.2. Nech ((Xa,7a))acr je systém topologickych priestorov (I je indexovd mnozina). Nech
X = H KXoy S ={(pa)-1(U) : « € I, U € 7,} a 7 je topolégia na X urcend subbdzou S. Potom (X, 7)

acl
sa nazyva topologicky sucin systému ((Xa,7a))acr; S sa nazyva Standardnd subbdza stcinovej topoldgie
k

a systém B = {ﬂ(pai),l(Ui); keN;ay, - ,ar € I,U; € 1,,Vi=1,---  k} sa nazyva §tandardnd bdza
i=1
sucinovej topolégie. Ozn. (X, 7) = H(Xa,Ta).
aecl

Veta 3.5. Nech (X,7) = H(Xa,ra) je topologicky sucin priestorov ((Xa,Ta))acr- Potom plati:
acl
(1) YVae I py : H(XQ,TQ) — (X, 1q) je spojité zobrazenie.
acl
(2) Ak f € (Zy17) — H(Xa,Ta) je zobrazenie, tak f je spojité < Vo € I : paof je spojité.
acl
(3) Ak 7' je topoldgia na X aVa € I py : (X,7') = (X, Ta) je spojité, tak T C 7.
(4) Ak Va € I B, je bdza topoldgie 1o; 8" = {(pa)-1(V),a € I,V € B,} a Ts/ je topoldgia urcéend
k

tym systémom S’, tak s = 7. Systém B = {ﬂ(pai)_lVi ckeN, ar, - ,ar€l, Vi € By, } je
i=1
bdza Tg:.
(5) Vae Tl py:(X,7)— (Xa,Ta) je otvorené zobrazenie a teda aj faktorové zobrazenie.

Dokaz.
(1) jasné.
(2) [=] zrejmé. [ Nech Ve Stj. JacladU e, tak, ze V = (po)-1(U). f-1(V) =
= f-1((Pa)-1(U)) = (paof)-1(U) € 7z = [ je spojité.
——"
spoj.
(B) Va eI py: (X,7") — (Xa,Ta) je spojité, tak Va € I VU € 74 (pa)-1(U) € 7. Potom S C 7 C 7.

(4) Nech o € I,py : (X,7s) = (Xa,Ta);VV € By (pa)-1(V) € 8’ C 75/ = pq je spojité Va € T @

7T Cr71s0. S/QS:>TS/QT.T:TS/.

(5) Nech v € I, po : (X, 7) — (X4, 7o) Nech VEB je standardnd baza. Potom 3oy, -, ar€l,
k

Ur€Tay, Uy €7, 1V = ﬂ(pai),l(Ui). Ak i : U; = 0 potom p,o (V) = 0.
i=1

Ak Vi : U; # 0, tak po(V) = {

Potom p,, je otvorena.

U; pre o = oy patri 7, napr. pa(Us X Xo x Us) = Xo
on prea%{a17"'7ak}€’ro¢ pZ(XIXUQXU3):U2
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Pozndmka. (Xa,Ta))aer; Yo € I 1 (X4, 7a) = (X, 7) potom piseme H(Xa,Ta) =(X,7). z € H Xa
acl acl
z: I — UXm z(o) € Xa.
acl

Priklady.

3.6. Dy = {0,1} diskrétny; B = {{0},{1}} bdza Dy. D3 = {0,1} x {0,1}. B! = {{0} x {0}, {1} x {0},
{0} x {1}, {1} x {1}} baza D32. D3 je zasa diskrétna topoldgia.

3.7. DY neméze bytdiskrétny priestor. Jeho baza je nekoneény kartézsky sti¢in, ktory od istého élenu
obsahuje ¢initele {0,1}. napr. {0} x {1} x {1} x -+ x {0} x {1} x {0,1} x --- x {0,1} x ---.

3.8. I nekonecnd. ((Xo,7a))acr Yo Uy € 7o 0 # Uy # Xo. H U, nie je otvorend v H(XQ,TQ).

acl acl
k
T € H Uy, T € ﬂ(pai)_l(Ui) gz H U,.
acl i=1 acl

Veta 3.6. Nech ((Xo,7a))acr je systém priestorov a Vo € I : A, je neprdzdna podmnozina X,. Potom
plati:

(1) H A, je uzavretd v H(Xa,’ra).

acl acl
(2) IIAAa:: II;E;
a€cl acl
Dokaz.
(1) [=] A je uzavreta: HAO[:A:A:HTQ;VQEI,AQ#V),A*Q7£®:>VQEI:A(X:A7Q:>

acl acl
A, je uzavreta.

(<] A:HAQ:HAQ:AﬁAjeuzavreté.

acl ael
(2) Va € I : p, : HXa — X, je spojité. pa[A] C pu[A] = Ay = A € (pa)-1(4s) = HYﬁ;
acl Bel
Yo = Aq, Y3 = X5 pre VB € I. Potom A C (N ¢;(pa)-1(Aa) = [ [ 4a-
acl
Opacné inklizia: D: Nech z € H Ay = Va € I po(x) € A,. Nech V je prvok standardnej
acl
bazy HXa taky, ze x€V. day,---,ap € I a JUy,--- U : Vi = 1,--- ,k : U; je otvorend
acl
k
podmnozina X,,. V = ﬂ(pm)_l(Ui) = HYQ. Yo = U Vi=1,---k Y, = X, pre
i=1 acl
a=ap, - ,ap Ya € 1Y, jeotvorend v X,. © €V = Va € I py(z) € A, a Y, je okolie
Pa(z) =>YoNAL#0. VNA= HYQHHAQ: H(YaﬂAa)#[béxE;l: H;lagfl.
acl aecl aecl acl
£0
Veta 3.7.
(1) AkVa eI : X, je T;-priestor (i = 0,1,2), tak H X je T;-priestor.

ael
(2) AkVn e N X, je separabilny (resp. vyhovuje 1. axidme spocitatelnosti; md spocitatelni bdzu),

tak H X, je separabilny (resp. vyhovuje 1. axidme spocitatelnosti; md spocitatelni bdzu).
neN

Dokaz.

(1) Napr. prei=2: Va€el : X, je Ty-priestor; x, y€ H Xo, x#y. Potom Fa€l : po(x) # pa(y). palx),
acl
Pa(y)EX, = existuji otvorené U,V v X, tak, ze po(2)€U, po(y)€V a UNV =0. (pa)-1(U),
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(Pa)-1(V) sti otvorené v [[ Xa; 2 € (pa)-1(U), ¥ € (Pa)-1(V), (pa)-1(U) N (pa)-1(V) = 0.
acl
Teda H X, je Tx-priestor.
ael
(2) Nech VneN : X,, je separabilny tj. IM,CX,,, M, CX,,, M, je spocitatelnd. A= H M,,. Zvol'me

neN
lubovolny acA. VneN : p,(a)eM,,. M = {bec A; {k € N, p(b)#pr(a)} je konecna}.

M je spocitatelna: Nech z € H X,. Nech V je prvok standardnej bazy topoldgie H Xn,

neN neN
k
zeV. Ing, - ,np € Na Uy, ,Ug kde U; je otvorend v X,,,. V = m(pm)_l(Ui) = H Y,..
=1 neN

Yo, =U; Y, =X, akn#ny, - ,ng. ¥YneEN: p,(x) €Y, otvorend v X,,. p,(z) € M,, = X,, =

YoMy #0=VoM=][Yan[[Ma=]][Yan My #0=Xe M= [] X, C M.
neN neN neN neN

IV. FAKTOROVE ZOBRAZENIE

Veta 4.1. Nech (X, 1) je topologicky priestor, Y je mnoZina a f : X — Y je surjektivne zobrazenie.
Potom 1y = {V € P(Y), f—1(V) € T} je topoldgia na Y a zobrazenie f : (X,7) — (Y, 7y) je faktorové
zobrazenie.

Dékaz. 0.Y € 75, V,V' € 75, (f-1)(V), for (V) € 7. f1(VAV) = L (V)Nf (V) e = VNV €1y,

SCrp, VWU eS: f1(U)eT. fq U U) = U f=1(U) € 7y. f je spojité, surjektivne. Nech V C Y
Ues Ues
a f_1(V) € 7. Potom V € 7.

Definicia 4.1. Topolégia 7¢ z Vety 4.1 sa nazyva faktorovd topoldgia urcend zobrazenim f.

Priklady.

4.1. R s obycajnou topolégiou. f : R — {0,1}; V& € Q : f(z) = 0; Vo2 € R\ Q : f(z) = 1.
Verrs fo1(V)jeotvorenda v R. @ € 74, {0,1} € 74, f-1({1}) = R\ Q nie je otvorend v R = {1} ¢ 7.
f-1({0}) = Q nie je otvorend v R. = {0} ¢ 7¢. 7y = {0, {0, 1}} indiskrétna topolégia.

42. g: R —{0,1}; g(z) =0 pre x > 0; g(z) =1 pre z < 0. 7, = {0,{0,1},{0}}. g_1({0}) = (0, 0)
otvorend v R. g_1({1}) = (=00, 0] nie je otvoren4.

43. h:Q — {0,1}; h(x) = 0 pre * < V2, h(z) = 1 pre = > 2. 7, = {0,{0,1},{0},{1}}.
h_1({0}) = (v/2,00) N Q otvorend v Q; h_1({1}) = (—o0,v/2) N Q otvorens v Q.

Definicia 4.2. Nech (X, 7) je topologicky priestor, E je reldcia ekvivalencie na X; X/F = {E(z);z € X}
je faktorovd mnoZina (rozklad X) urcend reliciou E a pg : X — X/E; pp(x) = E(z). Nech 75 = 7,
je faktorovd topoldégia na X/E uréend zobrazenim pg. Potom priestor (X/E,7g) sa nazyva faktorovy
priestor priestoru (X, 7) urceny reldciou E.

Priklady.

44. R; x ~ y & ak st naraz raciondlne, alebo iraciondlne. R/ ~= {Q,R\ Q}. p. : R — R/ ~;
p(z) =Qpre Ve € Q; po(z) =R\ Qpre Vz e R\ Q. 7. = {0,{Q,R\ Q}}.

45 Rz ~y < x=yaleboxz,y € Ny R/ ~= {N}U{{a},a e R\N}. p: R = R/ ~, p(a) = {a},
a € R\N, p(n) =N pre Vn € N.

Veta 4.3. Nech f: X — Y je spojité zobrazenie a Ey je relicia ekvivalencie na X definovand aEsb <
fla) = f(b). Nech g : X/E; — Y je zobrazenie g(Ey(v)) = f(z) a pg, : X — X/Ey je prirodzend
projekcia priestoru X na faktorovy priestor X/E;. Potom g je spojité zobrazenie. Navyse ak f je
faktorové zobrazenie, tak g je homeomorfizmus.

Dokaz. f=gopr, pe,:X — X/Ef, pg,(x) = Ef(x) potom to vidno z definicie: go Ef = f. gopg,
je spojité; pg, je faktorové = g je spojité. Nech f je faktorové zobrazenie. Potom f je surjektivne = g
je surjektivne. g je prosté = g je bijektivne. f = gopg,; pp, = g~ ' o f = g~' je spojité. Teda g je
homeomorfizmus.
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Priklady.

4.6. R s obvyklou topolégiou. zEy < v —y € Z. E(0) =Z, E(3) =+ +Z,a € R: E(a) = a + Z;

€ [0,1] = E(a) — vetky triedy. (R/E,7) f:R — S' f(z) = (cos2mz,sin27rz) je to spojité,
otvorené, surjektivne = faktorové. zEry < f(z) = f(y) v —y€Z E;=E.

4.7. R; 2FEy & z,y € Q alebo 2,y € R\ Q. R/E = {Q,R\Q}. f(z) =0akz € Q; f(z) =1 ak
zeR\Q.

48. R; By & x = y alebo z,y € N, R/E = {{z}; 2 e R\N}U{N} L R\ {n € N; n > 2},
fIRR\{neN;n>2)=R f(x)=zakz¢N, f(x) =1akzeN. g({z}) =z, g(N) = 1. (R, 7)
nevyhovuje 1l.axiéme spocitatelnosti;

1 nemd spocitatelni bazu okoli. Predpokladajme, ze existuje spocitatelnd baza okoli Vi, - -- ,Vn, e
bodu 1 v (R,7f). 1 € Vi; f_1(Vi) otvorena v R; N C f_;(V}) otvorend 3e; > 0 , g < 1 tak, ze
(I—e,l+e1) Cfaa(V1), fF(L—e1,14¢€1)) = (1—81,1+€1) cW.

1€ Vo; NC fq(Vo) = 2 € f1(V2) otvorend. Jeg > 0, g2 < %, (2 —€2,2+2) C f1(Va).
f(2—e2,24 ) ={1} U((2— 2,2 +e2) \ {2}).

1€V, =NC f 1(Vn) :> n € f-1(V,) otvorend. 31 > ¢, > 0: (n—ep,n+¢,) C f1(Vy) =

F(n=ennten)) = {1} U ((n—ennt20) \ {n)). R
Definujme si: V = (1 2,1+2>unL=J2 (= S+ S\ {n}| SR £ (V) = g(n?,n@)

otvorend v R = V je otvorend v (R,7;). Bod 1+ 5 e Vi\V =V ¢V - 1+ % € V,\V=V, ¢V
spor s tym, ze V7, Vs, -+ je baza okoli bodu 1.

Topologicky sucet.

Definicia 4.3. Nech ((Xa,Ta)acr) je systém topologickych priestorov a Yo,3 € I : ak o # 3, tak

XoNXz=10. Nech X = U Xo. Potom T ={U € P(X),VYa € I : UN X, € 7o} je topoldgia na X.
acl

U Ta je bdza 7. Priestor (X, 1) sa nazgva topologicky sicet systému ((Xa, Ta)acr)

acl

om.: (X,7) =P (Xar7a)  (XUY,7)=(X,7x) @ (V,7y).

acl

Vlastnosti. Nech (X,7) = @(XQ,TQ). Potom
acl
(1) Pre kazdé a je X, otvorend a sucasne uzavretd v (X, 7).
(2) Ak Va € I : (Xa,7a) je Ti-priestor (i = 0,1,2) (vyhovuje 1. axidme spoditatelnosti), tak
@(Xan‘a) je T;-priestor (resp. vyhovuje 1. axidme spocitatelnosti).
acl
(3) Ya € I: (Xq,Ta) je podpriestor @(Xa,m).
acl

V. REGULARNE, UPLNE REGULARNE A NORMALNE PRIESTORY

Definicia 5.1. Nech X je topologicky priestor. Potom:
(1) X sanazyva reguldrny, ak pre kazdd uzavretd mnozinu A v X a kazdé ¢ € X'\ A existujd otvorené
mnoziny U,V € X tak,2e ce U, ACV aUNV = .
Regularny T-priestor sa nazyva T5-priestor.
(2) X sa nazyva uplne reguldrny, ak pre kazdd uzavretd mnozinu A v X a kazdé ¢ € X \ A existuje
spojité zobrazenie f : X — [0, 1] také, ze f(c) =1, f[4] C {0}.
Uplne reguldrny T7-priestor sa nazyva T. 31 -priestor.
(3) X sa nazgyva normdlny, ak pre l'ubovolné uzavreté mnoziny A, B v X také, ze AN B = ) existuju
otvorené mnoziny U,V pre ktoré ACU, BCV aUNV =0.
Normalny T;-priestor sa nazyva Ty-priestor.

Priklad.
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5.1. R s obvyklou topolégiou je T3,T3%,T4—priestor. Nech A C R je uzavretd. ¢ € R\ A. 3¢ > 0 :
(c—egc+e)NA=0. (c=5,c+5)Cle—5c+5]C(c—egc+e). V=R\[c—35c+5] DA
ce(c—5,c+5)=Uotvorend. == UNV =0. ACR\ (c—¢,c+e). f(c) =1, fl[A] C{0}.

5.2. (R,72) je Tsi-priestor. A je uzavretd v (R,7.). c¢ A. 32> 0:(c—e,NA=ec. (c—¢, jeaj
otvorend aj uzavretd = aj jej komplement je uzavrety aj otvoreny.

1 ze€(c—¢,c
f:R, ) —1[0,1], f(z) = { ( ) je to spojité zobrazenie.
0 z¢(c—e,(
{[0,0), b€ (0,1)} U{(a,1], a € (0,1)} je subbéza topoldgie [0,1]. f(c) =1, f[A] C {0}.

Veta 5.1. Kazdy uplne reguldrny priestor je reguldrny.

Dékaz. Nech X je tplne reguldrny. Nech A C X, A uzavretd, ¢ ¢ A. Existuje spojité zobrazenie
f:X —[0,1]; f(c) =1; f[A] C{0}. f-1(3,1] = U otvorend; c € U; V = f_1]0, 3) je otvorend, A C V,
UNV =0. Teda X je reguldrny.

Dosledok. Kazdy T3% -priestor je Ts-priestor.

Priklad.
5.3. Ay je indiskrétny priestor na {0, 1}, je reguldrny, nie je Th-priestor.

Veta 5.2. Kazdy Ts-priestor je To-priestor.

Dékaz. X je Ts-priestor. Nech a,b € X, a # b. {b} uzavretd, a ¢ {b} Xz 3U,V otvorend také, Ze
acU,{b} CV,UNV =0. X je Ty-priestor.

Veta 5.3. Nech X je topologicky priestor a pre kazdé c € X B, je bdza okoli bodu c. Potom plati: X
je requldrny < VYU € B, Ve B.: V CU.

Dékaz. [= ] Nech U € B.. A = X \U je uzavretd mnozina a ¢ ¢ A. X je reguldrny potom existuju
otvorené W, W' tak, zece W, ACW aWnW =0. X\ADX\W. W C X\ W je uzavreta.
Potom W C X \ W' C X\ A= U. W je okolie c = 3V € B, tak, z2e W DV = W D V. Teda mame
VCWCU.

[<] Nech A je uzavretd mnozina v X. ¢ € X \ A. X \ A je okolie c = U € B., c € U C X \ A.
Existuje V € B, VCU. c€V otvorend. W=X\V2O2X\U=A. ceV,ACW VW=

Priklady.

5.4. P = R x [0,00) je Ta-priestor a nie je reguldrny (ani 73). O1(c,0) = {(z,y) € R x [0,1), y > 0
a (z—c)?2+y? <1} U{(c,0)} uzavretd mensieho okolia Oy nebude C Oy, lebo bude obsahovat’ aj body
typu (¢ x¢€,0).

5.5. Py; ([0,00),7) By ={(a—e,a+¢)N[0,00); e>0} pre a > 0. By = {[0,e) \ {£, n € N};e>0}.
[0,6)\{%, n€ N} =[0,6). 0¢ A. Py je To-priestor a nie je reguldrny.

Veta 5.4. Nech X je priestor a S je subbdza topolégie priestoru X. Potom X je uplne reguldrny
& Ve € X VU € S také, zZe ¢ € U existuje spojité zobrazenie f : X — [0,1] také, Ze f(c) = 1 a
SIXA\U] € {0}

Dékaz. [= ] X\ U uzavreta. ¢ ¢ X \ U = existuje f: X — [0,1] spojité, f(c) =1, f[X \ U] = {0}.
- Nech A je uzavretd v X ac 6 X \ A otvorend. Potom existuju Uy,--- ,Ux € S také, ze

ce ﬂ Ui CX\A AC X\ ﬂ U, = U(X \U;). Vi:ceU; €S potom existuji spojité zobrazenia
=1 =1
fi: X =1[0,1], file) =1a f[X\UJ C {0}. Nech f: X — [0,1]; Vo € X : /(&) = min{/i(2), - , fu(x)}
spojité. f(c) =min{fi(c), - -, fu(c)} =1. Nech a € A. Potom Ji:a € X \U; = fi(a) =0= f(a) =
- min{fl(a)a"' 7fi(a’)7”' 7fk(a’)} = 0. t.] f[A] g {0}
—~ ——

> % 35
g X = (0,115 g(x) = (fa(®),++ , fu()) spojité. pi o g = fi
h:[0,1]% — [0, 1] spojité h(xy,--- ,x) = min{z{,--- ,2x} f=hog
h_1la,1] = [a,1]%, h_1[0,b) = [0,b) x [0, 1]*"1 U [0,1] x [0,1] U [0,b) U [0,1]*~2U---U[0,1]F~1 x [0,b).
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Veta 5.5.
(1) Kazdy podpriestor reguldrneho (resp. Ts-; iplne reguldrneho; T3%‘) priestoru je reguldrny (resp.
Ts-, uplne reguldrny, T3%-) priestor.
(2) Ak (Xo)aer je systém reguldrnych (resp. Ts-, dplne requldrnych, TS%-) priestorov, tak X = H X,

acl
je reguldrny (resp. Ts-, dplne reguldrny, T3%-) priestor.

Dokaz.

(1) Nech X je reguldrny a Y je podpriestor X. Nech a € Y, B je uzavretd podmnozina Y a a ¢ B.
Potom existuje uzavretd podmnozina B’ priestoru X takd, ze BNY =B. a€Y,a ¢ B=a ¢ B'.
X je reguldrna potom existuju otvorené U,V € X také, zea € U, B’ CV,UNV =0. U =UNY,
Vi=VnNY, U,V stotvorené vY,ac U BCV aU NV =40.

(2) Nech Vael X, je reguldrny. Nech X = H Xo. Nech zeX. B, = {VeP(z), z€V a V je prvok

acl
standardnej bazy sicinovej topoldgie }. Nech VEB,,, potom existuji ay, -+ ,ax€l aVi=1,---  k,
k

U; je otvorend v X,,, V = ﬂ(pai)_l(Ui). x €V =Vi=1,---k:py(x) € U. Systém vsetkych

okolf 7, v X, je bdza okoli. X, reguldrna. U; € np, (z) = existuje V; € n,, (v) také, ze
k k k
Vi CUi. U= [\0a,) ' (Vi) €Bsz €U =2 €By. U= [ )(pa,) (Vi) € ((Par,) " (Vi) C

i=1 =1 i=1

k
(Pa:) ' (U) =V =T C ﬂ cVv.

Dw

i=1
Désledok Vety 5.3. X je requldrny < Ve € X VU € n(x) 3V €n(z): V C U.

Dokaz. NechVael X, je tiplne regularny. X= H Xa. Nech S je standardné subbaza stucinovej topoldgie.
ael

Nech V€S, €V v X. 3ag € I U € X, otvorend: V = (pa,) 1 (U). 2EV = po,(z)€U. Pretoze X,,

je uplne reguldrny existuje spojité zobrazenie fo, : Xog — [0,1]; fao(Pao(®)) = 1, faolXas \ U] C {0}.

Nech f = fa, ©Pay : X — [0,1] je spojité. f(z) = (fay 0 Pao)(®) = 1. Vy € X \V pa,(y) € Xy \U =

fooPao () =0= f(y) = fIX \ V] C {0}. Teda X je tiplne reguldrny.

Veta 5.6. (o reprezentdcii T3, -priestorov)

Priestor X je T3% -priestor < existuje A tak, Ze X je homeomorfny s niektorym podpriestorom priestoru
[0,1]4
Dokaz.

[=] Nech X je Tg%—priestor. A = C(X,[0,1]) mnozina vSetkych spojitych zobrazeni f : X — [0, 1].
Vf :ps(h(z)) = f(z). Checeme ukézat’, ze X je homeomorfny s h[X]. Vf € C(X,[0,1]) : pfoh = [ je
spojité = h je spojité. Nech z,2’ € X, z # /. {2’} je uzavretd. = ¢ {2’} = 3f : X — [0, 1] spojité
také, 70 f(2) = 1, f(2') = 0. py(h(e) = F(x) £ f(2') = ps(h(a')) = h(z) £ h(z’) = h je spojité.

Nech A je uzavretd v X. Chceme ukdzat), ze h[A] je uzavretd v h[X]. Nech y € h[X]\ h[A4]. Potom
Jr e X :h(z) =y= 2 ¢ A. X je uplne reguldrny, potom existuje spojité f : X — [0,1], f(z) =1 a
fIA] € {0}, f=pyoh. f(A) =ps(h(A)) C{0}; f(z) = ps(h(z)) = ps(y) = 1. U = (ps)~"(0,1] je
otvorend v C'(X,[0,1]). h[AJNU =0,y € U. U = U N h(z) otvorend v h[X]. y € U', U’ ﬁh[A] = 0.
Teda h[A] je uzavretd v h[X] a h : X — h[X] je homeomorfizmus.

[€] Nech X je homeomorfny nejakému podpriestoru X’ priestoru [0,1]4. Priestor [0,1] je Ty1-
priestor. [0, 1]A je tiez Tgé—priestor = X' je T3%—priestor potom X je Tgé—priestor.

Pozndamka. Ak X je Ty-priestor, tak X je T3-priestor.
Priklady.
5.6. Priklad na Tgé—priestor7 ktory nie je normalny a teda ani Ty-priestor.

Ps=R,7.) x (R,7,) {(a,b], a,b €R, a < b} bdza ..
{(a,b] x (¢,d], a,b,c,d € R;a<b<c<d} je bdza topolégie v (R, 7.) X (R, 7,).



18 GYURKI PISTA

D:={(z,—2); teR}CR xR, V:=(-b—1,-b] x (b—1,b] je otvorend v Ps. VN D = {(—=b,b)} je
otvorend v D. D je diskrétny aj uzavrety v Ps. Pg je separabilny. Q x Q je hustd v Ps. ((a,b] X (¢, d])N
N(Qx Q) # 0. Nech Ps je normédlny. VA C D A je uzavretd v D = A je uzavretd v Ps. Nech teda A C D
je Pubovolnd. Potom A, D\ A st uzavreté v D a teda aj v Ps a AN(D\ A) = (. Potom existuji otvorené
Ua,Vav Ps: Us 2 A, VA2 D\ A, UsNVa=0. card P(D) = 2¢ (kardinalita potencnej mnoziny D).

Pre VA € P(D) vyberieme Uy a polozime Uy = Us N (Q x Q). P(D) — P(Q x Q); A~ U/;. Nech
A A e P(D), A+ A'. Potom A\ A" #0v A"\ A#(. Nech A\ A" # (). Chceme ukézat), ze U/, # U,.
Nechc € ANA. Uy =Uan(QxQ), U,y =UsN(QxQ). IVa:ACUs, DNACV4, UsNVy =0,
Ua,Va st otvorené. Va1 A" CUxr, D\ A" CVa, Uas NVar =0, Uar, Var st otvorené.

CEA,CGD\A’ﬁCEUAﬂVA/#@#W:Z(UAOVA/)Q(QXQ)ZQ),WQUIIL‘. WnNnUy =0 =
WUy =0 = U, #U,. card P(D) = 2°, card(Q x Q) = C spor, lebo neplati: 2¢ < C.

Teda Ps nie je normalny. (R,7.) je T51-priestor = P = (R,7:) x (R, 7;) je Ty1-priestor.

Veta 5.7. Ak X je requldrny a md spocitatelni bdzu, tak X je normdlny.

Dékaz. Nech A, B st uzavreté v X, AN B = (. Nech B je spocitatelnd baza X. Vo € A; z ¢ B
tj. = € X\ B otvorend tj. X \ B € n(z). X je regularna = 3JU; € n(z) tak, ze U, C X \ B tj.
U,NB=0. U, je otvorend, x € U, = IV, € B tak, ze v € V, C U,. Potom V, CU, = V, N B = (.

Sa={Ve,x € A}CB=Sa={Va}i2; JVu=J Va2 A4, VneN:V,nB=0.
neN TEA
Podobne dostaneme Sg = {W,,}22, C B, U W,2o2BaVneN:W,NA=0. VYneN:
neN
v, = Vi \ U Wp otvorend. V = U V, DA W,, = Wi\ U Vp otvorend W = U W,, 2 B.
p<n neN p<m meN
Zoberme l'ubovolné f/n, W, Ukézeme, ze su disjunktné.
1, m<n:V, Wy, =0, hned vidno: V,, "\ W,,, =0, Wy, € W, € Wy, = V,, N W,y = 0.
29n<m: Wy, NV, =0,V, CV, CV,=V,NW,, =0.

Priklad.
5.7. R s obvyklou topolégiou je normélny priestor.

Veta 5.8. X je normdlny = pre kaZdi uzavreti mnoZinu A a kaZdi otvorenid mnoZinu U 2 A existuje
otvorend mnoZina V tak, Ze ACV,V CV.

Dokaz. [=]: A uzavretd, U otvorend. A C U. A, X \ U st otvorené, AN X \ U = 0, teda existuju
otvorené V,W tak, z2e A C V, X\U_Q W, VW =0. X\UCW = U 2 X\ W uzavretd.
VAW =0=VCX\W uavretd =V C X\ W CU.

[<] podobne.

Veta 5.9. Urysohnova Lema
X je normdiny < pre lubovolné uzavreté mnoziny A,B v X, AN B = () existuje spojité zobrazenie

[ X —=[0,1], fl[A] € {0}, f[B] € {1}.

Dékaz. [=]: Nech X je normélny, A, B st uzavreté v X a ANB = (). Nech [0,1]g := [0, 1]NQ. Utvorime
systém V;., r € [0,1]g , ktory m4 nasledujice vlastnosti:

(1) Vr € [0,1]g je V; otvorené.

(2) Ak r <7/, tak V. C V..

(3) AC Vo, BC X\ V.

[0, 1] mézeme zoradit’ do postupnosti {ry}32,, kde r1 =0, rp = 1.

Indukciou:

1 k=2:V; = X\ B otvorend. A C Vi 23U otvorend: A C U, UCW. Vo =U, Vo = V,,,
Vi =V, otvorené. r <rg = V,, CV,,, ACV,, BC X\V,,. V., CV,, 3U otvorend V,, C U,
UCViy Viy =U . V[, Vi, Viy. Viy SV 1y <13 = Vi C V.

2° Indukény krok: Nech k > 2 a existuje uz systém V,.,,--- , V. taky, ze

(1x) Vi < k:V,, je otvorena.

(2%) Vi, j <k:Akr; <r; tak V.. C Vrj.

(3,) ACV,, BCX\V,,.
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re+1: Nech I,m < k sd také, ze r; je najvacsie z r;, ¢ < k také, ze r; < ri41 a rp, je najmensie

z 1, @ < k také, Ze rpy1 < rp,. Potom existuje otvorend W tak, ze V,, < W, W CV, V., . =W.
Méame systém V., -+, V., taky, Ze:

(1k41) Vi <k+1:V,, je otvorend.
(2k41) Vi, j <k+1:akr; <rj, tak V,, CV,,. Lebo: aki # k+1# j tak OK. Nech j = k+1,i < k+1,
r; <rgpy1. Potomr; <=V, CV, CV, CV, . Teraznechi=Fk+1,75 <k, rpy1 <rj.

Potom ry, < 7. Vo, €V SV
(3k41) ACV,, BC X\ V..
Indukciou dostaneme V., -+, V.., tj. (V;, 7 € [0,1]g) ktory splita:
(1) ¥Vr € [0,1]q : V; je otvorend.
(2) Ak r <1’ tak V;. C Vi». Pretoze r = r;, ' = r;. i < j potom pre V, ,---,V,, pouzijeme (2;)

Ti<7"j:>‘/ri QVTJ
(3) ACV,=V,, BCX\V, =W.
Teraz definujeme zobrazenie f : X — [0,1] takto: f(z) =inf{r € [0,1]jg;z € Vi}; z € V1 a f(z) =1
pre zx € X \ V4. f[B] C {1} plati. Ve € A:xz € Vp = f(x) =inf{r € [0,1]g;z € V;.} =0, f[4] C {0}.
f je spojité: S = {[0,a); a€(0,1)} U {(b,1]; b€(0,1)} je subbdza [0,1]. Zoberme z€f_1([0,a)) <
f(x)<a & Ire(0,1]g, r<a : z€V, & 2 U V, otvorend. zef_1[(b,1)] © b < f(z) = I € [0,1]g :

r<a
ref0,1]g

b<r <r<fl@)=3Irnr cl0,lg:b<r <r:VuCV,zgV,=I c[0lg:b<r z€X\V, =
x € U (X \ V). Ukézali sme, ze f_1[(b,1]] = U (X \ V,v) otvorend.

' ef0,1]g b<r’
b<r’
[<] Nech A,B st uzavreté v X, AN B = (. Potom existuje spojité zobrazenie f : X — [0,1];

flA] € {0}, f[B] € {1}. Potom U = f4[[0,1]], V = f1[(3,1]]. A C U, B CV, U,V otvorené
UNV =0 = X je normélny.

Dosledok. Kazdy Ty-priestor je Ts-priestor.

Priklad.
5.8. Ak (X, d) je metricky priestor, tak (X, 74) je norméalny. Nech A, B sti uzavreté v (X, 74), ANB =0,
d(xz, A) . .
A B. f: (X 1 = . .
A0 B 5 (Xom) = 011, f(0) = g S0 @) e spojitd

59.Y = (R, ) x (R, ) je T3, -priestor, ale nie je normalny. Y =Y’ C [0, 1]4 kompaktny Th-priestor,
teda je normdlny. Y’ nie je normdlny. Teda Y” je nenormélny podpriestor normdlneho priestoru. (R, 7,)
je normélny, ale (R, 7,) x (R, 7,) nie je normélny.

Veta 5.10. (Tietzeho Veta)
Ak X je normdlny, A je uzavrety podpriestor priestoru X a f : A — R je spojité zobrazenie, tak
existuje spojité zobrazenie g : X — R také, ze Vo € A : g(x) = f(z).

VI. KOMPAKTNE PRIESTORY
Definicia 6.1.

(1) Systém S podmnozin priestoru X sa nazyva pokrytie priestoru X (resp. podmnoziny A priestoru

X)ak X = U S (resp. A C U S ). Ak vsetky prvky S su otvorené mnoziny v X, tak U sa

ses ses
nazyva otvorené pokrytie.

(2) Priestor X sa nazyva kompaktny, ak pre kazdé otvorené pokrytie U priestoru X existuje konecné
podpokrytie U’ priestoru X tak, ze U D U’.

(3) Podmnozina A priestoru X sa nazyva kompakind, ak podpriestor priestoru X urceny A je kom-
paktny priestor.

Priklady.
6.1. Kazdy konecny priestor je kompaktny.
6.2. Kazdy indiskrétny priestor je kompaktny.
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6.3. Nech X je mnozina a 7 je kofinitnd topoldgia na X. 7 = {U € P(X); X \ U je konecnd } U {0}.
(X, 7) je kompaktny Tj-priestor. Dokaz: U je otvorené pokrytie (X, 7). Ueld, U#D, X \U={z1, - ,z1}
existuji Uy, -+, Uy €U 121 € Uy, -+ ,x € Up. U ={U, Uy, -+ ,Ux} je konecéné pokrytie X, U’ CU.

6.4. [a,b] C R s obvyklou topoldgiou je kompaktny Th-priestor. Dokaz: U je otvorené pokrytie [a, b].
K := {c € [a,b]; existuje konetné pokrytie U’ intervalu [a,c], U C U'}. K # 0, lebo a € K. Nech
d := sup K. Existuje U € U tak, ze d € U. Ak d = a, tak d € K. Nech d > a. Jde > 0 tak,
ze (d—e,d+e)Nja,b) CU. d—e<d=3ce K:c>d-¢, (c<d). [¢,d] C (d—e,d CU,
ce K= 3Uy, -, Uy €U; [a,c] CUL U+ UUg. Potom [e,d] CU U---UU,UU. Teda d € K. Nech
d<bUel,deU. [dd+e) CU. Nech ¢ € (d,d+e). [d,¢| CU, [a,d] CULU---UU,UU = ¢ € K,
¢ >d...spor. Tedad=0b¢€ K.

Veta 6.1. Nech X je priestor a A je podmnozina X. Potom A je kompakind < pre lubovol'né pokrytie
U mnoziny A otvorengmi mnozinami v X existuje konecné pokrytie S’ mnoziny A tak, ze S' CU.

Dokaz.
[=] Nech V je systém otvorenych mnozin v X taky, Ze U V2A PotomU ={VNAV eV}
Vey
k
otvorené pokrytie podpriestoru A. A je kompaktny priestor = IVi N A, ..., Vp N A tak U(W NA)=A.
i=1
k

Potom U Vi 2 Atj. {Vi, -+, Vk} CV je konecné pokrytie A.
i=1
[<] Nech V je otvorené pokrytie priestoru A. Pre kazdé V' € V vyberme otvorenti mnozinu Uy

v priestore X; Uy N A = V. Potom U = {Uy, V € V} je systém otvorenych mnozin v X, pre ktory
k k

J Uv 2 A. Potom existuji Vi,---, Vi € V tak, ze | JUy, 2 A = [ JUy, = A (Uy, n 4 =V)).

vev i=1 i=1
{Vi,-++,Vik} C V. Teda A je kompaktny.

Definicia 6.2. Systém & podmnozin priestoru X sa nazyva centrovany, ak pre l'ubovolny konecny
k

neprazdny systém {A;,---, Ax} C S plati ﬂ A; # 0.
i=1
Priklady.
6.6. {A € P(R); 0 € A} je centrovany.

k k
6.7. S ={U € P(R), R\U je konecnd } je centrovany. Dokaz: Uy, -, U; m U #0 < R\ﬂ U, #R.

i=1 i=1
k

k
R\ ﬂ U, = U(R \ U;) je kone¢na.
i=1

i=1
Veta 6.2. Ak X je topologicky priestor, tak nasledujice vijroky siu ekvivalentné:
(1) X je kompaktny.
(2) Pre kazdy centrovany systém V uzavretyjch podmnoZin priestoru X : ﬂ V £0.
vey
(3) Pre kazdy centrovany systém S podmmnozin X : ﬂ A#£0Q.
AeS

Dékaz. (1) = (2): Nech V je centrovany systém uzavretych podmnozin X taky, ze ﬂ V = 0. Nech

Vvey
U={X\v;vev} U (X\V) =X\ ﬂ V = X = U je otvorené pokrytie X. Nech Uy,--- ,Uy je
vey vey
Pubovolny neprézdny konecny systém prvkov z U. Potom existuju Vi,---, Vi € V tak, ze Uy = X \ V1,

k k

k k
U= X\ Ve Ui = X\ V) = X\ Vi # X, lebo (| V; £ 0.

i=1 i=1 i=1 i=1
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(2) = (3): Ak S je centrovany systém, tak aj S’ = {A4; A € S} je centrovany systém uzavretych
mnozin = ﬂ A#£0.
AeS
(3) = (1): Nech X nie je kompaktny. Potom existuje otvorené pokrytie U priestoru X také, ze

k
pre lubovolny koneény systém {Uj,---,Uxr} C U plati UUi # X. §:={X\U, U € U} je to

i=1
k k

centrovany systém. Nech ) # {X \ Uy, -, X \ U} CS. ﬂ(X \U;) =X\ U U; # 0. S je centrovany
i=1 i=1

A=) E\U)=E\U)=Xx\ |JU=x\Xx=0.

Aes veu veu veu

Veta 6.3. Nech X je priestor, B je bdza topoldgie X. Potom X je kompaktny < pre lubovolné pokrytie
S priestoru X také, ze S C B existuje konecné pokrytie S’ C S priestoru X.

Dékaz. [= ] zrejmA.
[<] Nech U je otvorené pokrytie X. Pre kazdé x € X vyberme U, € U tak, ze x € U,. Pre kazdé
x vyberme V, € B tak, ze x € V, C U,. 8§ = {V,, x € X} C B, 8 je pokrytie X tj. | J Va = X.

zeX
k

Existuje k € N, zq,--- ;2 € X tak, ze Vo, U--- UV, =X. Vi=1,--- k:V,, CU,, a UUM = X.
i=1
{Usys-++ U} CU.
Priklad 6.8. (0,1) C [0,1], ale (0,1) nie je kompaktny. Teda podpriestor kompaktnej mnoziny nemusi
byt kompaktny.
Veta 6.4.
(1) Kazdy uzavrety podpriestor A kompaktného priestoru X je kompaking.
(2) Kazdy kompaking podpriestor A To-priestoru X je uzavrely podpriestor.
Dokaz.
(1) Nech S je centrovany systém uzavretych podmnozin priestoru A. Potom, pretoze A je uzavrety,
S je centrovany systém uzavretych podmnozin v X, X je kompaktny = ﬂ C # (. Teda A je

CeS
kompaktny.
(2) Nech ¢ ¢ A. Va € A existuji otvorené mnoziny U,,V, tak, ze a € Vg, ¢ € U,. {Va; a € A} je
otvorené pokrytie A. Existuje aj,---,ar € A: V=V, U---UV,, DA,U=U, N---NU,,

otvorend, ce U, UNV =0, ACV =UNA=0. X\ A je otvorend = A je uzavreta.

Désledok. Ak X je kompaktny Ts-priestor a A C X, tak A je kompaktnd < A je uzavretd.

Priklad 6.9. Nech (X, 7x) je l'ubovolny topologicky priestor. Nech ¢ ¢ X. Y = X U{c}, v = 7x U{Y}.
Potom (Y, 7y) je topolégia, je to kompaktny priestor. Ak U je otvorené pokrytie (Y, 7y ), tak existuje
UeU:ceU=U=Y = {Y}CU. (X,7x) je otvoreny podpriestor (Y, y). Ak (X, 7x) je Top-priestor,
tak aj (Y, 7y) je To-priestor. Ak X # (), tak (Y, 7y) nie je Ti-priestor.

Veta 6.5. Nech X je Th-priestor a A, B si kompaktné podmnoziny v X, AN B = (. Potom existuji
otvorené mnoziny U,V € X tak, 26 ACU, BCV aUNV ={.

Dokaz.
a) Nech a € A. Potom Vb € B, a # b a teda existuju otvorené mnoziny Uy, V; tak, ze a € Up, b€V} a
UynNV,=0. V=1{V,, b€ B} je otvorené pokrytie B — kompaktnd, preto existuje by,--- ,bp € B, k € N
k
tak, ze B C WV, U---UV,, =V je otvorend. Up,, - ,Up,, Vi:a € U, U= m U, otvorend mnozina.
i=1
Vi=1,--- k: UNWV, =0, (Up, "V, =0). Potom UNV =0. a€ U, be V.
b) Podla a) pre kazdé a € A existuji otvorené mnoziny W, S, tak, ze a € W,, B C S,, W,NS, = 0.

W = {W,,a € A} je otvorené pokrytie A — kompaktnd = Jay, - ,a, € A, me N, A C U We, =W

i=1
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otvorend. Vi: BC S,, = B C ﬁ Sa, = S otvorend; Vi : SNW,, CS;, "W, =0=SNW =0, ACW,
BCS. -

Veta 6.6. Ak X je kompaktny Ts-priestor, tak X je normdlny (a aj Ty-priestor).

Dékaz. Ak A, B st uzavreté v X, AN B = (), tak A, B st kompaktné v X. Dalej pouzijeme vetu 6.5.

Dosledok. Ak X je kompaktny Ts-priestor, tak X a aj kazdy jeho podpriestor je Tg%-priestor (a teda aj
T5-priestor).
Veta 6.7. Nech f: X — Y je spojité zobrazenie. Potom plati:
(1) Ak A je kompaktnd podmnoZzina X, tak f[A] je kompaktnd podmnozina Y. (Specidlne: Ak X je
kompakiny, tak f[X] je kompaktng vY.)
(2) Ak X je kompaktng a Y je Ty-priestor, tak [ je uzavreté zobrazenie. Ak naviac f je surjektivne,
tak f je aj faktorové zobrazenie.

je kompaktnyj a Y je Ty-priestor a f je bijektivne, tak f je homeomorfizmus.
3) Ak X je kompaking a Y je Ty-pri F je bijekts kfjeh fi
(4) ALY =R a X # 0 je kompaking, tak existuji a,b € X tak, ZeVx € X: f(a) < f(z) < f(b).

Dokaz.

(1) Nech V je otvorené pokrytie f[A], tj. f[A] C U V. Potom U = {f_1(V), V € V} je otvorené
Vey

k k
pokrytie A v X. Teda V3, , Vi €V, AC | f1(Vi) = fIAI € (Vi {Vi,-+, Vi} C V. f[4]
i=1 i=1
je kompaktna.
(2) Nech A je uzavretda v X. Potom A je kompaktnd v X a teda f[A] je kompaktnd v V. Y je
Ts-priestor, potom f[A] je uzavretd v Y.
(3) Staci ukdzat), ze f~! je spojité. Nech A je uzavretd v X. Potom (f~1)7[A] = f[A] je uzavretd
vY ateda f je spojité.
(4) f[X] # 0 je kompaktnd v R. Potom f[X] je ohrani¢end v R. Nech ¢ := inf f[X], d := sup f[X].
f[X] je kompaktnd = f[X] je uzavretd = c¢,d € f[X]. Existuji a,b € X tak, ze f(a) = ¢,
J6) =davre X fla)=c< f(z) < d= f()

Definicia 6.3. Priestor X sa nazyva lokdlne kompakiny, ak pre kazdé a € X existuje okolie U bodu a
také, ze U je kompaktnd mnozina v X.

Priklady.

6.10. Kazdy kompaktny priestor je lokdlne kompaktny.

6.11. Kazdy diskrétny priestor je lokdlne kompaktny.

6.12. R s obyc¢ajnou topoldgiou je lokalne kompaktny.

6.13. Q ako podpriestor R je topologicky priestor, ktory nie je lokdlne kompaktny. Dokaz: Nech U
je okolie bodu 0 v Q také, ze U je kompaktny v Q. Existuje e > 0 tak, ze (—¢,¢)g = (—¢,¢) N Q.

(—€,6)g CU. Nech § e R\ Q:0 < § <. Potom (—6,8)g C U. Potom (—4,0)g C U a teda (=6,8)q je

kompaktnd. (—d, 5)QQ = (-4, §)QR =1[-4,0]NQ = (—9,0)g. Potom (—4,d)q je kompaktnd v Q. Nech

{rn}22, je postupnost’ kladnych raciondlnych ¢isel taka, ze r, — 6 v R. U (=7rp,mn) = (—0,9). Potom
neN

U (—=Tnsmn)o = (—0,8)g. Systém {(—r,7mn)g, n € N} je otvorené pokrytie Q, ale nedd sa z neho

neN

vybrat’ konecné podpokrytie. Keby ano: (—rp,, 7%, ), (=Tkps Tk, ). Thy 2= Max{rr,, -+ Tk, } =
m

U(—rki,rki) = (=rk;,7k;) € (=0,0)q. Teda (=6, )q nie je kompaktny. Spor.

i=1

Veta 6.8.

(1) Ak X je lokdlne kompaktnyg To-priestor, tak pre kazdé a € X a kazdé okolie U bodu a existuje
okolie V bodu a také, ze V je kompaktnd mnoZina a V C U.

(2) Ak X je reguldrny lokdlne kompaktnyg priestor, tak pre kazdé a € X a kazdé okolie U bodu a
existuje okolie V bodu a také, ze V je kompaktnd mnozina a V C U.



VSEOBECNA TOPOLOGIA 23

Dokaz.

(1) Nech @ € X a U je okolie a v X. Existuje okolie W bodu a také, ze W je kompaktna mnozina.
Potom U N W =: U’ je okolie bodu a v X a aj v podpriestore W. W je kompaktny = W
je regularny priestor. Potom existuje okolie V bodu a vo W tak, ze V C U’. V je okolie a aj
v podpriestore U’ priestoru W. (VNU' = V). Teda V je otvorena v U’; U’ je otvorend v X, potom
V je otvorend aj v X a teda V je okolie a v X. V C W uzavretd v X. Potom VX = VW resp.
(VX C WX). V je uzavrety podpriestor W. Potom V je kompaktna mnozina v X, V C U’ C U.
V je okolie a v X, V je kompaktna, V C U.

Veta 6.9. Alexandrovova kompaktifikacia

Nech (X, 7x) je lokdlne kompakiny Ty -priestor, c ¢ X. NechY = XU{c} aty = 7xU{VEP(Y) : c€V,
X \ 'V je kompaktnd mnozina v (X,7x)}. Potom (Y,7y) je kompakiny Ta-priestor, (X,7x) otvoreny
podpriestor (Y, 7y) a ak (X, Tx) nie je kompaktny, tak X =Y v (Y,7y).

Dékaz. Ak V €y, tak VNX €7rx. VETy =V €7x aleboc eV a X\ V je kompaktny v (X, 7x).
Potom VNX =V € rx alecboce V, X\ V =X\ (VN X) je kompaktnd a teda uzavretd v (X, 7x).
Potom V N X € 7x. Treba ukézat’, ze 7y je topoldgia na Y:

0,Y €ry. Nech U,V €1y. AkU,Verx =UNV €1x C1y. Nech U € 7x, V € 7y \ 7x. Potom
VNnXerxaajUnNV=UN(VNX)erx C7y. Podobne ak U € 7v \ 7x, V € 7x.

Nech U,V € 7y \ 7x. Potom c e UNV. X\ (UNV) = (X\U)UX\V), X\UaX\Vsu
kompaktné v (X, 7x) a aj ich (konecné) zjednotenie je kompaktné v (X,7x). Teda U NV € 1y. Nech
SCry. Ak S C 7x, tak U Serx Cr1y. Nech IV € S, ¢ € V. Potom X \ V je kompaktnd v (X, 7x).

Ses
W = U A>c Vieme, e VAe S: AnNX €7x = X\ (AN X) = X\ A je uzavretd v (X,7x).
AeS
X\W = ﬂ (X \ A) je uzavreta v (X, 7x), m (X\A) C X\V je kompaktnd. ﬂ (X'\ A) je uzavreta
Aes AeS AeS
v (X \V), potom X \ W = m (X \ A) je kompaktnd v (X \ V), a teda aj v (X,7x). Teda W € 7y.
AeS
Teda (Y, 7y) je topologicky priestor a (X, 7x) je podpriestor (Y, 1y ).

Nech a,b € Y, a # b. (X,7x) je Te-priestor, tak existuji U,V € 7x C 7y, a €U, beV,UNV = 0.
Nech a € X, b = c¢. (X,7x) je lokdlne kompaktny, existuje okolie U bodu a v (X, 7x) tak, ze U je
kompaktnd v (X,7x). c¢ U. V= (X\U)U{c} € 1y,leboce€ V a X\ V = U je kompaktna v (X, 7x);
UNV =(. Teda (Y, 7y) je To-priestor.

Nech U je otvorené pokrytie (Y, Ty). Potom existuje U. € U tak, ze ¢ € U,.. Pre kazdé U e U \ {U.},
UX =UNX je otvorend v (X, 7x). X \ U, je kompaktnd v (X, 7x). U UDX\U, X\U.CX,

UeU\{U.}
preto U UX D X\U.. {UX :U €U\{U.}} je otvorené pokrytie X \U, v (X, 7x). Potom existuji
Ueu\{U.}
U, U, e U\N{UL}. UFU---UUFX D X\U, = U, U---UU, 2 X\U. = U U---UU,UU, =Y.
Teda (Y, 7y) je kompaktny.

Ak (X,7x) nie je kompaktny, tak {c} ¢ 7y, teda pre kazdé okolie V bodu ¢ plati V' # {c} a teda

VNX#0. Tedace X v (Y,7y). O

Désledok. Kazdy lokdlne kompaktng Ts-priestor je T3% -priestor.

Priklad 6.14. X = (0,1), f(z) = (cos2mz,sin2nzx), Y = f[X]. Kompaktné mnoziny v Y si uzavreté
intervaly, ktoré neobsahuji bod [1,0]. Ich komplementy tvoria systém okoli bodu [1, 0].
Veta 6.10.

(1) Ak A je uzavrety podpriestor lokdlne kompaktného priestoru X, tak A je lokdlne kompakiny.
(2) Ak A je otvoreny podpriestor lokdlne kompaktného Ty-priestoru X, tak A je lokdlne kompaktny.

Dokaz.

1) Nech ¢ € A. ¢ € X = existuje okolie U v X bodu c tak, ze U je kompaktny v X. V=UnN A je

( € X = existu] 1 je kompaktny 14 j
okolie ¢ v A. V‘L_1 C U, VA je uzavretd v A, ANU je uzavretd v U a teda aj kompaktna. VA je
uzavretd v AN U je kompaktnd, potom V4 je kompaktnd v A.
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(2) Nech ¢ € A. A je okolie ¢ v X a podla vety 6.8 existuje okolie V' bodu ¢ v X tak, ze V je
kompaktnd v X a V C A. Potom V je okolie ¢ v A a VA = V kompaktnd, teda A je lokdlne
kompaktna.

Centrované systémy, filtre a ultrafiltre.

Definicia 6.4. Nech X je mnozina.
(1) Systém C C P(X) sa nazyva centrovany systém na X a pre lubovolné k € Na Cy,--- ,C, € C
k

platf (1) Ci # 0.
1=1

(2) Systém H sa nazyva bdza filtra na X, ak H # 0, § ¢ H a pre l'ubovolné U,V € H existuje W € H
tak, ze W CUNV.
(3) Systém 0 # F C P(X) sa nazyva filter na X, ak
1) 0 ¢ F.
2) Ak F,F'e Ftak FNF' € F.
3) Ak Fe FaV eP(X)takd, ze F CV, tak V € F.
(4) Filter U na X sa nazyva ultrafilter na X, ak pre kazdy filter G na X, pre ktory i C G plati f = G.
tj. U je maximalny vzhladom na C.

Priklady. 6.15. C = {N\ {n}; n € N} je centrovany systém na N, ktory nie je baza filtra.
6.16. ce R, H ={(c—¢,c+¢),e > 0} je béza filtra a nie je to filter.
6.17. Kazda baza okoli bodu v topologickom priestore je baza filtra.
6.18. F ={A € P(R); R\ A je konecnda}, zrejme () ¢ F. Je to filter, ale nie je to ultrafilter.
6.19. G = {A € P(R); R\ A je spocitatelnd} je filter na R, 7 C G, lebo R\ N e G\ F.
6.20. U = {A € P(R), 0 € A} je ultrafilter na R.
6.21. Y C X, F je filter na Y, tak F je béza filtra na X.

Veta 6.11.
k

(1) Ak C je centrovany systém, tak He = {H € P(X); 3k e N3Cy,--- ,Cr €C: H = ﬂ C;} je baza
i=1
filtra.
(2) Ak H je baza filtra na X, tak Fpy ={V € P(X); 3H € H: H C V'} je filter na X.
(3) Ak F je filter a H C F takd, 2e VF € F 3H € H: H C F, tak H je bdza filtra a Fpy = F. (F je
generovany H).

Dokaz.
(1) @#Cch;wééHc. Ak H, H' € He, tak HN H' € He.
(2) 0 ¢ Fyy. Ak A)B € Fyy tak 3H,H' € H : H C A, H' C B. Potom existuje H” € H tak, 7Ze
H'"CHNH CANB. Teda ANB € Fy. Nech F € Fp; aU € P(X) tak, ze FF C U. Potom
existuje He H, HC F CU = U € Fxy.

Veta 6.12.

(1) AkC je centrovany systém na X; f : X — Y je zobrazenie, tak f[C] = {f[C]; C € C} je centrovany
systém na Y.

(2) Ak H je bdza filtra na X a f : X — Y je zobrazenie, tak f[H] = {f[H]; H € H} je bdza filtra
na Y.

Dokaz.

(2) Ak H € H, tak H # 0 a f[H] # 0, teda 0 ¢ f[H]. Nech A, B € f[H]. Potom existuju C,D € H :
A = f[C], B = f[D]. Existuje F € H, F C CnD. Potom f[F] C f[C N D] C f[C]N fID] = AN B;
fIF] € f[H]. Teda f[H] je baza filtra na Y.

Priklad 6.22. Obraz filtra nemusi byt filter: F je filter na X; Y ma aspondvaprvky;c€Ya f: X — Y;
f(z) =cpre Vo € X. f[F] = {{c}} je bdza filtra, ale nie je to filter, lebo Y ¢ f[F].
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Veta 6.13. Ak C je centrovany systém na X, tak existuje centrovany systém U na X taky, 2¢e C CU a
pre kazZdy centrovany systém V na X taky, Zeld CV platid = V. (tj. U je mazimdlny centrovany systém
na X vzhladom na C. Naviac U je vZdy ultrafilter.)

Dékaz. Nech S je mnozina vsetkych centrovanych systémov na X, pre ktoré C C D. S # 0, (S,Q) je
¢lastoéne usporiadand mnozina. Nech () # R je retazec v (S,C). Nech M = U D. M # (). Nech

DER
My, M e M. Yi=1,--- k3ID; € R: M; C D;. Existuje n € {1,--- ,k} tak, ze Vi = 1,--- ,k :

k
D; C D,,. Potom My, -+, M € D, = n M; # 0. Teda M je centrovany systém na X. C C M (lebo

i=1
VDeR:CCD)tj. MeSaVD e R:D C M, teda M je horné ohranicenie R. Podla Zornovej lemy
existuje maximdlny prvok U v (S, Q).

Zrejme C C U. Nech V je centrovany systém na X, pre ktory Y C V. Pretoze CCU CV,CCV a
tedaV € S. U CV ald je maximalny v (S, C), tak U = V. Ukézeme, ze U je ultrafilter. ) ¢ U. Nech
A, B €U. Nech V =UU{AN B} je centrovany systémna X; U CV =U=V = ANB e U. Nech A e U
aV eP(X)takd, z2e ACV. V:=UU{V} je centrovany systémna X. U CV =U =V =V € U. Teda
U je filter na X. Nech U’ je filter na X a U C U’. Potom U’ je centrovany systém na X a teda U = U'.
Teda U je ultrafilter. O

Dosledok. Ak F je centrovany systém (v. bdza filtra, v. filter) na X, tak existuje ultrafilter U na X,
pre ktory F CU.

Veta 6.14. Nech F je filter na X. Potom plati:

(1) F je ultrafilter na X < pre kazdé U € P(X), pre ktoré VE € F: UNF # () plati U € F.
(2) F je ultrafilter na X & VA€ P(X), A€ F alebo X \ Ac F.

Dokaz.

W) [=FUePX),VFeF:UNF #0. V=FU{U} je centrovany systém. F C V. Existuje
maximalny centrovany systém W na X, pre ktory ¥V C W. W je ultrafilter. FCW = F =W a
UeWw=F.

[<] Nech F nie je ultrafilter. Potom 3G na X taky, ze 7 C G. Nech U € G\ F. Zrejme
VFeF:FeGpotom FNUeG=FNU#0.tj. 3 eP(X),U¢FaVFeF :UNF#I.

(2) [= Nech A C X taka, ze A ¢ F. Podla (1) musi existovat’ F' € F : ANF = (). Potom FF C X\ A
ateda X\ AeF.

[<] Nech F nie je ultrafilter. Potom existuje filter G na X také, ze F C G. JA € G\ F:
AcG=>X\A¢G=>X\A¢F Teda JAC X tak,ze A¢ FaajX\A¢gF.

Kompaktné priestory (pokracovanie).

Veta 6.15. Ak (X,,a € I) je systém kompaktngch priestorov, tak aj X = H X, je kompaktny priestor.
acl

Dékaz. I = 0 : HXa = {x} vzdy kompaktny. Ak Ja € I : X, = 0, tak X = HXO‘ =0 je

acl acl
kompaktny. Ak I #QaVael X, #0: X = H Xa. Nech C je centrovany systém na X. Chceme
ael
dokazat’, ze m C # (). Nech U je ultrafilter na X taky, ze C C U. m VvV C ﬂ C. Stac¢i ukézat), ze
cec veu cec

ﬂ V # (. Nech a € I. Potom p,[U] = {pa[V], V € U} je baza filtra a teda aj centrovany systém

veu

na X,. Teda ﬂ pa[V] # 0 (lebo X, je kompaktny.) Va € I vyberieme ¢, € ﬂ Pa|V] a zoberieme
Veu Veu

¢ € X taky, ze pa(c) = cq. Ukézeme, ze ¢ € ﬂ V. Nech V € U a U je l'ubovolné okolie ¢ v X.

Veu
k

Existujd aq,--- ,ap € I a Uy otvorené v X,,,- -+, Uy otvorené v X, tak, ze ¢ € ﬂ(pal)_l(Ui) cU.
i=1



26 GYURKI PISTA

Pre Vi = 1,--+ ,k : pa,(0)=Ca; € Ui. ca; € Po;[V] = Ui Npa,[V] # 0. (po;)-1(U;) NV #£ (. Teda
k

YVel : (pai)—1(U¢)ﬂV =0 = (poéi)_1(Ui) cU. Vi= 1,--- ,k : (pai)—l(Ui) cU = ﬂ(pai)_l(Ui)EL{ =
i=1
UcU=>VWeld:UNV #(. PotomVV €U :c €V atedace ﬂ V # (). Teda X je kompaktny.
Veu

Pozndmka. Veta 6.15. sa obéas nazyva aj Tichonovova veta, ale vo véeobecnosti to dokézal Cech. Opaéna,
implikacia plati za predpokladu neprazdneho systému s neprazdnymi mnozinami.

Désledok 1. Pre lubovolni mnozinu A je [0,1]* kompaktny Ty-priestor.

Désledok 2. Kazdd uzavretd ohranicend mnoZina v R™ je kompaktnd.

Veta 6.16. (o reprezenticii kompaktnych T3%-priestorov)

Priestor X je kompaktny Ts-priestor < existuje mnoZina A tak, Ze X je homeomorfny s uzavretym
podpriestorom [0,1]4.
Dékaz. [= ] Nech X je kompaktny T-priestor. Potom X je Tgé—priestor. Potom existuje A tak, ze X je
homeomorfny s podpriestorom X’ priestoru [0, 1]4. Priestor X’ je kompaktny a teda uzavrety v [0,1]4
(lebo [0,1]# je Ty-priestor.).
[<] Nech X je homeomorfny s uzavretym podpriestorom X’ = [0, 1]4. Pretoze [0,1]* je kompaktny
Ts-priestor = X' je kompaktny Ts-priestor = X je kompaktny T5-priestor.

Definicia 6.5. Nech X je priestor. Usporiadand dvojica (bx, B(X)) sa nazyva kompaktifikdcia priestoru
X, ak B(X) je kompaktny To-priestor; bx : X — B(X) je vnorenie a bx[X] C B(X).

Veta 6.17. Pre kazdy Ty -priestor existuje kompaktifikdcia (bx, B(X)).

Dokaz. Ak X je Tsy-priestor, tak existuje mnozina A a vnorenie jx : X — [0, 4. B(X) = jx[X] je
kompaktny podpriestor [0,1]4. bx : X — B(X), Va € X, bx(a) = jx(a); (bx, B(X)) je kompaktny v X.

Priklad 6.23. Podpriestor normalneho priestoru nemusi byt normélny:

X =R, )x(R,7,) je T3 -priestor, ale nie je normalny. Existuje kompaktifikdcia (bx, B(X)) priestoru
X. bx(X) = X’ je podpriestor kompaktného Tr-priestoru B(X) = X' je Ty-priestor = je normadlny, ale
X' nebol normélny.

Priklad 6.24. N s diskrétnou topoldgiou; N* je Alexandrovova kompaktifikdcia na NU {w}.
v =P(N)U{U € P(NU{w}); w e U a N\ U je kone¢nd }.

Priklad 6.25. R s diskrétnou topoldgiou; R* je Alezandrovova kompaktifikdcia v R na R U {oo}.
TR = PR)U{V € P(R) U{o0}); o0 € U a R\ U je kone¢nd }. N*, R* si kompaktné Th-priestory a aj
R* x N* je kompaktny Ts-priestor, teda aj Ty-priestor.

Nech YV = (R* x N*) \ {(co,w)} je podpriestor otvoreného priestoru (R* x N*), ktory je lokalne
kompaktny. A’ :=R* x {w} je uzavretd v X := R* x N*; B’ := {00} x N* je uzavretd v X. A'NY =
=Rx{oo} = Ajeuzavretd vY, B'NY = {0} x N = B je uzavretd vY; ANB = (). Nech U je otvorend
v Y aplati B C U. Podpriestor R* x {n} v X (n € N) je homeomorfny s R*. R* x {n} je podpriestor v Y.
U, =UnN(R* x {n}) je otvorend v R* x {n} = U, =W, x {n}. A, =R\ W, je konetna. A = U A,

neN
je spocitatelnd = ) #R\ A= (| R\ A, = [\ Wo=W. Vn € N: W x {n} C W, x {n} = U,. Teda
neN neN
W x N CU. Nech V je otvorenéev Y taka, ze il C V. Potom V je otvorend aj v X. Zoberme si r € W.
{r} x N* je podpriestor YV; {r} x N* 2 N*. VN ({r} x N*) je otvorend v {r} x N* =V n ({r} x N*) =
= {r} x V;., N\ V, je konetnd = 0 # V. \ {(r,w)} tj. Ik e N: (r,k) e VN ({r} xN*) = (r,k) € V.
reW=(rk)e WxNCU=VNU #§. Teda Y je normélny.

VII. SUVISLE PRIESTORY A LINEARNE SUVISLE PRIESTORY

Definicia 7.1. Priestor X sa nazyva suwvisly, ak sa neda vyjadrit’ ako zjednotenie dvoch neprazdnych
otvorenych a disjunktnych podmnozin. tj. ak X =U UV, UNV =0, U,V st otvorené = U = (J alebo
V = (0. PodmnozZina A priestoru X sa nazyva stvisld, ak podpriestor uréeny mnozinou A priestoru X je
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suvisly. Priestor X sa nazyva lokdlne suvisly, ak kazdy prvok a € X ma bazu okoli, ktorej vSetky prvky
su suvislé mnoziny.
Priklad 7.1. Jednoprvkovy priestor je sivisly.

7.2. Kazdy indiskrétny priestor je suvisly.

7.3. Kazdy diskrétny priestor s aspon dvomi prvkami nie je suvisly.

7.4. X = (0,1) U [2, 3] podpriestor priestoru R. U = (0,1), V = [2, 3] st otvorené v X, disjunktné,
preto X nie je suvisly.

Tvrdenie 7.1. PodmnoZina I priestoru R s obvyklou topoldgiou je sivisld < I = (), alebo I je jedno-
prvkovd, alebo I je interval.

Dékaz. [=] Nech I md aspoii dva prvky a I nie je interval. Teda Ja,b € I;a<badce€R:a<c<b
acgl. U:=(—o00,c)NI;V:=(c,o0)NI. UV stotvorend v, UNV =0 U0UV =1. aeU#0,
beV #£0. I nie je sivisl4.

[<] 0 /; jednoprvkové /. Nech teda I je interval v R. Predpokladajme, ze I nie je stvisly pod-
priestor. Potom existuju U,V otvorené v I, UNV =0, U #0 4V, UUV =1. Nechaec U,beV,
a<b Nech A ={zecU,z<b} CU,ac A #0. Nech c=sup A. Plati tedaa < c<b. Potomce I a
teda c € U, alebo c € V. Nech c € U. U je otvorena vI =3 >0:(c—¢e,c+e)NI CU(CI). Pretoze
b>c=>b>c+e Nechd=c+5cU,aled<b decU=dec A" Lenze d > c cize spor. Teda nech
ceV.3de>0:(c—e,c+e)NICV.VeeA,z<e, (c—e,c) CV=VeeA, xa<c—e=>c—cje
horné ohranicenie A’, ¢ — & < ¢ — spor.

Priklad 7.5. Podpriestory X = [0,1] U [2,3], Y = {0, 1} nie st stvislé podpriestory R.
7.6. [0,1] je stvisly priestor.

Veta 7.1. Ak f: X — Y je surjektivne zobrazenie a X je suvisly priestor, tak aj Y je suvisly priestor.

Doékaz. Nech Y nie je suvisly. Potom existuji otvorené podmnoziny U,V v Y tak, ze U # 0 # V,
UNV =0, UUV =Y. Nech U' = f_1(U), V' = f_1(V). Potom U’, V' st otvorené, U’ # § # V',
UNV' =0alU UV’ =X. Teda X nie je stivisly — spor.

Dosledok. Ak f je spojité, f : X — Y a A je sivisld podmnozina X, tak f[A] je sivisld podmnoZina Y .

Veta 7.2. Nech (A, « € I) je systém suvisljch podmnoZin priestoru X a ﬂ Ay # 0. Potom A = U Ag

acl aecl
je suvisld mnozina.

Dokaz. Nech p € ﬂ Aq; U,V st otvorené podmnoziny A, UNV =0, UUV =A=peUalebope V.
acl
BUNOpeUaaecl. PotomU,=UNA,, V,=VNA,stotvorené v A,, U, NV, =0, U, UV, = A,,

pelUy,#0=V,=0. TedaVaEI:VﬂAa:@:>Vﬁ<UAa>=@=>VQA=V:®. Teda A je
ael

suvisly.
Definicia 7.2. Nechp € X a C)p = U{A; A je stvisld podmnozina X a p € A}. Potom C), sa nazyva
komponenta suvislosti X obsahujica p.

Veta 7.3. Nech A je suvisld podmnozina v priestore X a A C B C A. Potom B je suvisld v X.

Dokaz. Nech B nie je stivisld. Potom existuji otvorené mnoziny U, V' v podpriestore B také, ze UNV = (),
UUV =B,U,V #0. Nech a € U. Potom a € B C A. Existuje U’ otvorend v X, U'NB=U. a € U’
okolie a. Potom U'NA =UNA # (. Nech b € V. Potom podobne z toho vyplyva, ze V N A # (.
U =UnNA Vi=VNnAsiotvorené v A, U NV =0, Uy #0 # Vi, Uy UV, = A. Teda A nie je stivisl4.

Désledok. Ak A je stvisld podmnozine X, tak aj A je stvisld podmnozina X .

Priklad 7.7. X =R*; A={(z,y) e R*; 2 € (0,1], y =sinZ}. f:(0,1] — R?, f(z) = (x,sin ) je spojité
a A= f((0,1]). AU{(0,0)}, (0,0) € A. AU{(0,0)} je stvisld v R%2. A = AU ({0} x [-1,1]) je sivisld

mnozina v R2.
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Veta 7.4. Nech X je priestor. Potom pre kaZdé p € X komponenta sivislosti C, je najvicsia suvisld
mnozina obsahujica p a C), je uzavretd. Ak p,q € X, tak Cp, = Cy, alebo C, N Cy = 0.

Dékaz. maximalita OK. Nech p € X; C), je stivisla a preto C), je stvisla. p € C, = C, C C, = C, = C,,
teda C), je uzavreta.

Nech p,qg € X a C,NCy # 0. Nech a € C, N Cy. Potom C,, je stivisld mnozina obsahujtica a, potom
Cy 2 Cp. Potom C, je suvisld mnozina, p € Cy = Cq C (). Teda C, = C,. Podobne C; = C,.
U Cp = X; {Cp; p € X} rozklad X na uzavreté sivislé mnoziny = komponenty suvislosti.
peX

Priklady.

78. R;VaeR:C, =R.

7.9. X je diskrétny priestor. Va € X : C, = {a}.

7.10. (R,7;), a € R, C, = {a}. Ak b € C,, b < a, tak (—o0,b) N C, je otvorend a sicasne uzavretd
v Oy A#0D, A+# C, spor.

Definicia 7.3. Priestor X sa nazyva totdlne nesuvisly, ak mé aspon dva roézne prvky a vSetky komponenty
suvislosti su jednoprvkové.

Veta 7.5. Ak (X, a € I) je lubovolng systém sivislych priestorov, tak aj X = H X, je suvisly priestor.
acl

Dékaz. Nech I #DaVael: X, #0. Nechpe X. Nech K ={q € X; {a €1, qu # pa} je koneénsa }.
Dokézeme, ze K C Cp. Nechge K, q#pa{a€l;ps #qu} ={0a, - ,an}t g€ Cp?

Indukciou vzhladom na n:

I°n=1,{a€l, gy #pat={a}. X,§“1> ={aeX,Va#ar,aa=pa}={ {pa} X - x-Xg, X
cox {pa} -} X5 je homeomorfny s X, a teda sivisly. p € X)) = X\ c €, = q € C,.

2° Plati pre Tubovolné p a n € N. Dokazeme, ze plati pre Tubovolné p a n + 1. Nech {a € I,
Go # Pat = {a1,--+  an,anp1}. Nech ¢ € X. g, = Gayy " 140, = Gans onyy = Pania- 10 € 1
4o # Pa} = {a1,- - ,an} a z indukéného predpokladu ¢ € €. Teda C; = Cp. ¢ € X. {a € I
G # o} = {ons ). XS = X, L e sivisly = X € Oy, g e XU 5 g e Cp = Gy Teda
preVge K :q€ C, = K CC,. Plat{ K = X, C, je uzavrety = X = K C C),.
Priklad 7.11. Pr = ([0,00),7); B(a) = {(a —€,a 4+ ) N[0,00); € > 0; B(0) = {[0,¢) \ {,n € N}, & > 0}.
P; je suvisly, ale nie je lokdlne suvisly. Totiz: ¥ = (0, 00) je podpriestor Py, je totozny s podpriestorom
v R. Y je stvisly podpriestor. P; =Y je stvisly. V bode 0 neexistuje baza okoli, ktoré s vietky stivislé.
Nepriamo: Nech B'(0) je takd baza okoli. O = [0,1)\ {2, n € N} okolie 0. Existuje V € B/(0), V C Oy,
0€V,F>0:[0,e)\{:,neN}CV,0eV:3aecV,a>0. PotomIkeN: ; <a,+ ¢01= 1 ¢V.
[0, +) je otvorend v Pr. (4,00) je otvorend v Pr. Uy = [0,1) NV otvorend vo V; Uy = (4,00) NV je
otvorena vo V. Uy UUy =V, Uy NUs = ) = V nie je suvisl4, spor.

Linearne suvislé priestory.

Definicia 7.4. Priestor X sa nazyva linedrne suvisly, ak pre kazdé a,b € X existuje spojité zobrazenie
f:10,1] — X tak, ze f(0) = a, f(1) = b. Podmnozina A priestoru X sa nazyva linedrne sivisld, ak
podpriestor uréeny A je linedrne sivisly.

X je lokdlne linedrne suvisly, ak Ya € X existuje baza okoli a, ktoré s vsetky linedrne suvislé.

Priklad 7.12. (R, 74) je linedrne suvisly; je aj lokélne linedrne sivisly.
7.13. Kazdy interval v R je linedrne sivisla mnozina.
7.14. R™ je linedrne suvisly a aj lokalne linearne suvisly.
7.15. (R, 7,) nie je linedrne stvisly.

Veta 7.6. Ak X je linedrne suvisly, tak X je sdvisly.

Doékaz. Nech a € X, C, je komponenta stuvislosti a. Nech b € X. Potom existuje spojité zobrazenie
f:100,1] — X, f(0) =a, f(1) =b. B = f[0,1] je stvisly podpriestor X,a € B= B C C,,b € B = beC,.
Teda X C C, = X je sivisly.

Priklad 7.16. Py je podpriestor R x R. A = {(z,sinZ), € (0,1]}. f : z — (z,sinT) je spojité
zobrazenie. A = f[[0,1]] je stvisld. (0,0) € A = Py = AU{(0,0)} je stvisly. Zoberme si body (0,0) a
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(1,0) € Ps. Nech existuje spojité zobrazenie g : [0,1] — Ps, g(0) = (0,0), g(1) = (1,0). Nech existuje
a € (0,1) : (a,sin 7) # g(t) pre vt € [0,1]. g([0,1]) je sivislda mnozina v Pg. Nech p je priamka z = a.
pNg([0,1]) = 0. Zoberme si U = {(z,y) , * > a} je otvorend v R x R. V = {(x,y), z < a} je
otvorend v R x R. U’ = U N g([0,1]) je otvorend v g([0,1]). V' =V Ng([0,1]) je otvorend v g([0,1]).
(0,00 €U, (1,00 eV =>U #£0, V' £0, U UV = g([0,1]). Teda g([0, 1]) nie je sivisly. Spor. Teda
9([0,1]) = Ps = P; je kompaktny = Py je uzavrety podpriestor v R x R. spor. Py nie je linedrne sivisly.

Veta 7.7. Ak X je linedrne suvisly, f : X — Y je spojité a surjektivne zobrazenie, tak aj Y je linedrne
stuwvisly.
Dékaz. Nech ¢,d € Y. Potom Ja,b € X tak, ze f(a) = ¢, f(b) = d. X je linedrne stvisly, potom existuje

spojité g : [0,1] — X, g(0) = a, g(1) =b. h = fog:[0,1] =Y, h(0) = f(g(0)) = ¢, (1) = f(g(1)) = d.
Teda Y je linedrne sivisly.

Déosledok. Ak f: X — Y je spojité, A je linedrne sivisld podmnozina X, tak f[A] je linedrne sdvisld
podmmnozina Y .

Veta 7.8. Ak (X,,a € I) je systém linedrne sivislych priestorov, tak X = H X, je linedrne suvisly.
acl

Dékaz. Nech I # 0, Va € I: X, # 0. (Inak trividlne plati.) Nech a,b € X. Va € I, py(a),pa(b) € X, a
teda existuje spojité f : [0, 1] — Xo; fa(o) = pa(a’)’ fa(l) = pa(b)' Pa© f = fa, [ je spojité. f(O) = a,
f(1) =b. pa(£(0)) = pala) = fa(0), pa(f(1)) = pa(b) = fa(1). Teda X je linedrne suvisly.

Veta 7.9. Nech X je priestor a ~ je reldcia na X definovand nasledovne: Pre kazdé x,y € X :x ~y =
existuje spojité f :[0,1] — X, f(0) =z, f(1) =y. Potom ~ je reldcia ekvivalencie na X a vietky triedy
ekvivalencie si linedrne sdvislé mnoziny. Ak A je linedrne sivisld podmnozina X, tak existuje L € X/ ~
tak, ze A C L.

Dékaz. Vx € X: x ~ x je zrejmé. Nech x ~ y. Potom existuje spojité f : [0,1] — X, f(0) =z, f(1) = y.
Potom ¢ : [0,1] — X, Vt € [0,1] : g(¢t) = f(1 —t) je spojité a g(0) = f(1) =y, g(1) = f(0) = z a teda
y ~ z. Tranzitivnost: Nech = ~ y, y ~ z. Potom existuju spojité zobrazenia f,¢g: [0,1] — X, f(0) = z,

f(1) =y, g(0) =y, g(1) = z. Definujme h : [0,1] — X, h(t) = { f@t)pret € [0, 3]

g(2t —1) pre t € [5,1]

h0)=z, h(l)=2=x ~ 2.

VA € X/ ~ je A linedrne suvisld: Nech a,b € A = a ~ b a existuje spojité f : [0,1] — X, f(0) = a,

) = b. Ukazeme, ze f([0,1]) C A tj. f je spojié zobrazenie z [0,1] do A. Nech ¢ € f([0,1]). Potom
Ir € [0,1] : f(r) = ¢. Nech ¢ # a,b = r € (0,1). Nech g : [0,1] — [0,7], g(t) = r - t, g je spojité
9(0) = 0, g(1) = r. Potom h : [0,1] — X, h(t) = f(g(t)) je spojité, h(0) = f(g(0)) = f(0) = a,
h(l) = f(g(1)) = f(r) =c=>a~c=ce A. Teda f([0,1]) C A, a f:]0,1] — A je spojité, f(0) = a,
f(1) = b, teda A je linedrne sivisly priestor. Nech B je linedrne stivisld podmnozina X, B # (), nech a € B
potom B C L(a) = {c € X; ¢ ~a}. Nech b € B = existuje spojité f : [0,1] — B, f(0) =a, f(1) =b. B
podpriestor X = f:[0,1] — X je spojité, potom a ~ b v X potom b € L(a) = B C L(a). O

je spojité.

Definicia 7.4. Triedy ekvivalencie relacie ~ z vety 7.9 sa nazyvaju komponenty linedrnej suvislosti
priestoru X. tj. ak a € X, tak L(a) = {b € X,a ~ b} je komponenta linedrnej stuvislosti obsahujica a.
(be L(a) & L(a) = L(b),b ¢ L(a) & L(a)NL(b) =0); a € X = L(a) C C,.

VIII. KONVERGENCIA V TOPOLOGICKYCH PRIESTOROCH

Definicia 8.1. Nech {a,}necn je postupnost’ v priestore X. Hovorime, ze {an }nen konverguje k a € X,
ak pre I'ubovolné okolie U bodu a existuje ng € N tak, ze Vn > ng : a, € U.

Priklady.

8.1. (R, Tina) {n}:1,2,3,--- lim n=a, Ya € R, R je jediné okolie obsahujiice vsetky prvky.

8.2. (R, 7ais), (R,7), 7={U € P(R), R\ V je spocitatelnd } U{0}. an—a v (R, 74s). {a} je okolie a,
Ing:Vn>ng:a,=a. V(R,7): a, —wa,{neN,a,#a}=K;U=R\{ap,ne K} er,ae€U,Uje

h,v_/
sSpoc.

okolie a, Ing :Vn >np:a, EU=n¢ K;Vn € K :n <ng= K je koneénd= {n € N, a, # a}. (skoro
konstantnd postupnost)
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Konvergencia pomocou filtrov.

Nech a, wav X,Vn e N: F, ={ax, k >n},0 #H={F,,n € N} je bdza filtra v X. a,, € F,, # 0,
n<m:F,NF, =F,. Pre kazdé okolie U bodu a existuje no € N: A,, CU. a, — a < Fy 2 n(a);
ap, —a<dF, e H: F, CU.

Definicia 8.2. ¢ je hromadny bod {an, }nen, ak YU € n(c) ¥Yn € N3k > n : a, € U & VUen(c) VF,€H,
F,NU#0=VE,eH:acF,<ac ﬂ E,.
Fn€H
Definicia 8.3. Nech X je topologicky priestor, a € X, H je béza filtra na X, F je filter na X a n(a) je
systém vsetkych okoli bodu a. Potom hovorime, ze:
(1) F konverguje k a v X, ak F D n(a).
2) a je hromadny bod filtra F, ak a € ﬂ F.

(

FeF
(3) H konverguje k a, ak VU € n(a) IH € H tak, Ze H C U. (tj. Fy 2 n(a))
(

4) a je hromadny bod H, ak a € ﬂ H.
HeH
Ozn. F — a,a € limF, a = limita F ak F —a. H — a < Fy — a.

Veta 8.1.

(1) Ak H je bdza filtra v priestore X, H — a, tak a je hromadny bod H.
(2) Ak U je ultrafilter na X; a je hromadny bod U, tak U — a.

Doékaz.
(1) Nech U € n(a) a F € H. Existuje F' € H, F' C U. Existuje F" € H také, ze F C F'NF.
Potom F" CU, F" CF=0#F' CUNF#0=VFeH,acF=ac [ F.
FeH

(2) Nech U € n(a), a € mF:>VF€U:U0F#®:>UQU(@):>U—>LL. O
Feu

Pozndmka. {an}tnen, Fn ={a}, Vn e N: H = {{a}}, Fy ={F C P(X); a € F}.

Priklad.

8.3. Treba najst’ filter G, ktory konverguje k 0 v R s obvyklou topolégiou.
G={GePR),Ie>0:(-c,e)NQ C G} jefilternaR. G — 0: U € n(a), IJe >0: (—e,e) CU =
(—5,e)NQCU.

Veta 8.2.
(1) Ak Fg je filter v priestore X taky, ze Fo, = {F € P(X); a € F}, tak Fo — a.

(2) Ak F,G s filtre v priestore X, F CG a F —a v X, tak aj G — a.
(3) Ak a je hromadny bod filtra F v X, tak existuje filter G v X, GO F a G — a.

Dékaz. F — a < F D na); bdza fitra H — a < Fy —a. F e Fy < 3IJH e H: HCF, na) C Fp,
H—a<VU €en(a) IH € H: H CU. aje hromadny bod filtra (bazy filtra) F < a € n F.
FeF
(1) n(a) € Fo = Fu — a.
2) F-a,G2F=na)CFCG=na)CGd=G—a.
(3) ac ()| Fe VU enla),VF € F:UNF #0. Nech’H = {UNF, U € n(a), F € F}. H bude baza
ﬁltrffi(f. 0 ¢ H. Ak Hy, Hs € H, tak existuju Uy, Us € n(a), Fy, Fy € F tak, ze Hy = U; N F,
H2 = UQﬂFQ aHlﬂHg = UlﬂFlﬂUzﬂFQ = UlﬂUgﬂFlﬂFg € H. ’17(0,) Q H Q .7:7-[;
—— ——

en(a) eF
FCHCFyu=G=Fy—>a=>GDF.

Tn — avx,ak YU € n(a), Ing e NVn >ngy:z, € U.
Priklady.
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84. (R,7) 7={U € P(R), R\ U je spocitatelna} U {0}. x, — a {k € N, z) # a} je spocitatelna,
potom {xk,zp # a} je spocitatelnd, potom R\ {zy,zp # a} = U je okolie a. Ing € N, Vn > ng:
z,€U &z, = a.

8.5. {zn,n € N}, z, — a. Ako k tomu priradit’ filter? A,, = {zy,k > n}, H = {A,,n € N} bude baza
filtra. ©, — a < VYU € n(a) F4,, € H: An, CU; Fu; xn — a < nla) C Fp.

8.6. Podpostupnosti: n; < np < --- < mp < . A{xg, J32, H = {A4,,, k e N}. A = {z,,
1>k} C Ay, :{Ipvpznk} A/nk CA,, CA,=Fy DH=>Fn 2 Fn.

8.7. Kongtantné postupnosti: x,, = a, Vn : A, = {a}.

Cvicenie. A C X a G je baza filtra (filter) na A, tak G je baza filtra v X.

Veta 8.3. Nech X je topologicky priestor, A C X, ¢ € X. Potom plati c € A < existuje bdza filtra na
A, ktord konverguje k ¢ v X. (tj. ako bdza filtra na X.)

Doékaz.

[=] Nech ¢ € A. Polozme H = {UNA, U € n(c)}. H je baza filtra na A. H — ¢ v X ? Nech
Uen(c). PotomUNAeHaUNACU. Teda H— cv X.

[<] Nech H je baza filtra na A a H — ¢ v X. Nech U € n(c). Potom 3H € H : H C U. Potom
D+AHCUNA=UNAH#(). Tedacec A.

Veta 8.4. Priestor X je Ty-priestor < kazdy filter v X md najviac jednu limitu.

Dokaz.
[= ] Nepriamo. Nech existuje filter F na X taky, ze 7 — a, F — b a a # b. Potom existuje U € n(a),
Venb tak,ze UNV =0. Fsa=UeF, F->b=>VeF=>UVeF=0=UNV € F spor.
[<] Nepriamo. Nech X nie je Ty-priestor. Potom Ja,b € X, a # b také, ze YU € n(a), YU € n(b)
platif UNV # 0. Nech H = {UNV, U € nla), V € n(b)} je béza filtra. n(a) C H, n(b) C H
= n(a) Nn(b)CFy = Fx — a,b spor.

Veta 8.5. Nech (X, a € I) je systém topologickijch priestorov, X = H X4 je topologicky sucin (X, « €

acl
I) a F je baza filtra (filter) na X, ¢ € X. Potom F — ¢ v X & Va € I : po[F] — palc), kde

pa[}-]:{pa[F]aFef}'

Dokaz.
[=] Nech F — c¢v X a«a € I. Nech U je okolie py(c) v Xo. Potom (po)-1(U) je okolie ¢ v X.
Potom 3F € F tak, ze F C (po)—1(U). Potom po[F] C U. Teda po[F] — palc) v Xa-

[<] Nech Va € I : po[F] — pa(c) v Xo. Nech W je okolie ¢ v X. Potom Jay,---,a; € I a
k

otvorené mnoziny Uy v X,,, ..., Up v X,, tak, ze ¢ € ﬂ(pai)q(Ui) C W. Potom Vi = 1,--- ,k:

pe.(c) € Us ti. Us je okolie pa.(c). Potom Vi = 1,-- k 3F; € F tak, 7e po.(F)) C Us. Potom
Vi=1,---,k:F C (pa;)-1(U;) = ﬁFz c ﬁ(pai)q(Ui) C W. Existuje F' € F tak, ze F C ﬁFi a
teda F C W. Teda F — c. = i=1
Priklad 8.8. id:(R,7) — (R, 74is). zn —av (R,7) & Ing e N, Vne N, n>ng: 2z, =a=id(z,) —av
(R, 74is). Zachovéva konvergenciu, ale nie je spojita.

Veta 8.6. Nech X,Y su topologické priestory, f: X — Y je zobrazenie. Potom f je spojité < pre kazdé
a € X a kazdi bdzu filtra G v X taki, Ze G — a plati f[G] — f(a) vY.

Dokaz.

[=] Nech V je okolie f(a) v Y. Potom f_1(V) je okolie bodu a v X. Potom 3JH € G tak, zZe
H EJ1(V). Potom f(H) CV, f(H) € fIG). Teda f[G] — f(a) v Y.

[<=] Nech f nie je spojité. Potom Ja € X a okolie V bodu f(a) v Y tak, ze pre kazdé okolie U € 7(a)
plati f[U] € V. n(a) je béza filtra v X. n(a) — a. f[n(a)] = {f(U), U € n(a)} - f(a), lebo existuje
okolie V bodu f(a) také, ze VH € f[n(a)], HZ V. O

Priklad.
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8.9. F je ultrafilter a € (| F, U € n(a), VF € F,UNF #0. Potom U € F = F — a.
FeF
8.10. R, F = {F € P(R), R\ F je konecné} je filter. (a —1,a+1)¢ F = F »a. a€ R, F € F,
R\ F je konetnd. U je okoliea. UZR\F < UNF #0. a€ ﬂ F. a je limitou, ale nie je hromadnym

FeF
bodom.

(R, Teof), 7 ={U € P(R), R\ U je koneénd} U{0}. F — a pre Va € R v (R, 7¢o5).

IX. SIETE

Definicia 9.1. Usporiadand dvojica (4,<), kde A # () je mnozina a < je relacia na A, sa nazyva
usmernend mnozina, ak plati:

(1) Vae A:a<a.

(2) Va,b,ce A:a<b ANb<c=a<ec

(3) Va,be Adce A:a<c AN b<ec

Priklady.
9.1. (N, <) je usmernend mnozina.
92. A ={K € PR), K je konecna}, (A,C) usmernend mnozina. K,L € A = KUL € A,
K,LCKUL.
9.3. X je topologicky priestor a € X, B(a) je baza okoli a; (B(a),<),U <V & U 2V, (B(a), D).
94. (R, <), kde a < b < a = b; nie je usmernend, lebo neplat{ (3).

Definicia 9.2. Nech (¥, <) je usmernend mnozina, X je topologicky priestor. Potom I'ubovolné zobraze-
nie f: ¥ — X sa nazyva siet’v X.
Ozn. S = (X,,0 € %).

Definicia 9.3. Nech X je topologicky priestor, ¢ € X a S = (X,,0 € X) je siet’ v. X. Hovorime,

ze siet’ S = (X,,0 € X) konverguje k ¢ v X, ak pre kazdé okolie U € 7n(c) existuje op € X tak, ze

Vo > og : X, € U. Bod c sa nazyva limita siete S. Ozn. hn% X, = ¢; X, — ¢. Bod ¢ sa nazyva
(4SS

hromadny bod siete S, ak pre kazdé U € n(c) a o € ¥ existuje o’ € ¥ tak, ze 0/ > 0 a X, € U.

Veta 9.1. Nech X je priestor, A C X, ¢ € X. Potom ¢ € A & existuje siet’ (X5,0 €X) v A takd, Ze
X, —c.

Doékaz.

[=] Nech ¢ € A (%,<) = (n(c),C) je usmernend mnozina. n(c) — A, Xy € U N A(# 0)
(Xvu,Uen(c)) je siet’ v A. Ukdzeme, ze Xy — c¢. Nech V je lubovolné okolie bodu ¢ (tj. V' € n(c))
U():V,VUEU(C),U()QU,XUGUQU():V.

[<] Nech (X,,0 € X) je siet’ v A, X; — ¢. Nech U € n(c). Potom Jog € X Vo > 09 : X, € U.
Potom X, e UNA=UNAH#.

Priklad 9.5. (R,7), 7=PR\{0})U{U € P(R),0 € U a R\ U je spocitatelnd}. Je jasné, ze 0 € R\ {0}.
Nech (X,,n € N) je lubovolnd postupnost’ v R\ {0}. tj. vn e N:z, #0. U = R\ {z,,n € N} je
okolie 0. Neplati, ze x,, — 0.

)

Definicia 9.4. Nech (X,,0 € X) a (Y,/,0’ € ¥') st siete v X. Potom siet’ (Y,,0’ € ¥') sa nazyva
podsiet’siete (zjemnenie) (X,,0 € ¥), ak existuje zobrazenie ¢ : ¥’ — ¥ tak, ze plati:

(1) Pre kazdé o¢ € ¥ existuje o, € &/ tak, ze pre vietky o’ € ¥': ak o’ > o{), tak ¢(c’) > 0.

(2) Pre kazdé o' : Xy(or) = Yor.

Veta 9.2. Nech X je priestor, S = (X,,0 € X)) je siet’ v X a c € X. Potom plati:
(1) Ak X, — ¢, tak pre kazZdi podsiet’ (Y, ,0' € ¥') siete (X,,0 € X) plati Yy — c.
(2) Ak c je hromadny bod siete (X,,0 € 2), tak existuje podsiet’ (Y,:, 0’ € X') siete (X,,0 € X) takd,
e Y, — c.
Doékaz.

(1) Nech X, — c a (Yr,0' € ¥') je podsiet’ (X,,0 € £). Teda 3¢ : ¥/ — ¥ také, ze Voo € &
Jop € X' Vo > 0g: ¢(0) > 04 a Yo = Xy(or) pre Vo' € X/ Nech U € n(c). Potom Jog € ¥ tak,
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ze Vo > 09 : X, € U. o, € ¥/ tak, ze Vo' > o : ¢(0’) > 0p. Nech o’ > ;. Potom ¢(c¢’) > 09 a
Yor = Xy €U, teda Y, — c.
(2) Nech ¢ je hromadny bod (X,,0 € X). Teda YU € n(c) Voo € £ Jo > 09 : X, € U.

¥ ={(0,U) € £xn(c); X, € U} # 0. Definujme: (01,U1) < (02,Us) & Uy 2 Us A 01 < 09.
(¥, <) je usmernend mnozina. (o,U) < (o,U) & U DU A o < 0. (01,U1) < (02,U2),
(02,Uz) < (03,U3) = Uy D Uz, Uy DUz, 01 < 03,00 <03 = U1 DUz A oy <o3. (01,U1),
(02,U2) € X U =U;NUz € n(e) : o3 > 01, 05 > 09 Jog > 03 : X,, € U. Potom
(O’4,U) S E/, o1 < 04, Uy DU aogy < 04, U, DU = (O’l,Ul) < (O'4,U) a (O’Q,UQ) < (O'4,U).
Nech op € . Existuje 0 > 09, X, € U. Potom (o,U) € ¥'. Uy DU = (01,U1) < (0,U);
Uy DU = (02,U2) < (0,U). (¥,<) je usmernend mnozina. ¢ : ¥’ — X, ¢(o,U) = 0. Nech
oo € X. Potom existuje o1 € X, 01 > o0¢ tak, ze X,, € U. oy = (01,U). Nech (0,V) € &' a
(0,V) > 0y = (01,U). Potom ¢(0,V) =0 > 01 > 0g tj. ¢(0,V) > g0. (Y1), (0, V) € X).
Yr(a,v) = Xo’ = X¢(0’,V) je to siet’ v X tJ V(O‘7 V) S > plati Yr(a_rv) = X¢(U,V)' (ng’v)7 (O'7 V) S EI)
je podsiet’ (X,,0 € ¥). Nech U € n(c). Potom Jog € T tak, ze X,, € U tj. (00,U) € ¥'. Nech
¥ 3 (0,V) > (00,U). Potom X, € V, 0 > 09, V CU. Potom Y(,v) = X, € V C U. Ukézali
sme, ze Y5 v) — ¢

Veta 9.3. Ak S = (X,,0 € %) je siet’v priestore X, tak Fs = {F € P(X); Jog € ¥ : {X,,0 > 09} C F}
je filter v X a plati: Akce X, tak S — c& Fg — c.

Dokaz. X € Fs = F #0. F,F' € Fg : 30,04 € ¥ : {Xy,0 > 00} CF, {X,,0 > 03} C F'. Kedze &
je usmernend potom Jo; € ¥ tak, ze 0g,0) < 01. {Xp,0 > 01} CFNF = FNF' € Fs. Ak F € Fg,
UCX,FCU.JdogeXVo>o00:{Xs,0>00} CFCU=UE€Fg. Fg je filter.

[=] Nech S — ¢. Nech U je Tubovolné okolie ¢. Potom Jog € ¥ : {X,;,0 > 09} CU = U € Fg =
Fs — c.

[<] Nech Fs — c. Nech U je T'ubovolné okolie c. Potom U € Fg. Potom Jog : {X,,0 > 09} CU =
JogeXVo>09: X, €U =85 —c.

Veta 9.4. Nech F je filter v priestore X 0, X ={(z,F) e XxF;x € F} a (2, F) < (y,G) & F 2 G.

Potom (£, <) je usmernend mnozina, Sp = {X . r), (x,F) € ¥}, kde X, py = x je siet’ v X a plati: ak
ceX, takF —ce Sp —c.

Dékaz. v € X, (x,X) € ¥ # 0. (x,F) < (x,F) & F D F plati reflexivnost. (z,F) < (y,QG),
(y,G) < (2,H) = F2G, G2 H=FD2H= (2,F) < (2,H) tranzitivnost. (z,F),(y,G) € ¥ =
F,GeF=FnGeZF. zlubovolnév FNG, (:,FNG) € X, (z,F) < (2, FNG) < F D FnNQG,

(y,G) < (2, FNG) < G D FNG. Teda (3, <) je usmernend mnozina.
(7, F') — x je zobrazenie ¥ — X. tj. Sp = {X (4 5, (z, F) € £} je siet’ v X.

[=] Nech F — c. Nech U je I'ubovol'né okolie ¢. Potom U € F, 09 = (¢,U) € X. Pre kazdé (z,F) € X
také, ze (x, F') > (c,U) plati F C U ateda X, py =2 € F CU tj. X p) € U. Teda sme dokézali, ze
Sr — c.

[<] Predpokladajme, ze Sp — c. Nech U je okolie c. Potom 3(zq, Fp) € ¥ tak, ze V(z, F') > (xo, Fp) :
X(z,ry) € U. Nech x € Fy. Potom (z, F') > (0, Fp). Potom X, gy =2 € U. Teda Fy CU = U € F.
Teda F — c.
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Priklad 9.6.

Nech f je ohraniGend funkcia na [a,b]. D ={a =129 < 21 < -+ < x, = b} je delenie. d; = [z;_1,x4].
(&)= (&, ,&),Vi: & ed. T ={(D,(&)), D je delenie intervalu a (§;) = (&1, -+ ,&,) € R™, & € d;}.
(D, (&) < (D', (&) < (D) <~(D). (v(D) je norma delenia D). (D, (&)) — Sy(D, (&) =

=Y (&) (wi—mi1). Sp(D,(&)) = a. Ye > 0 3(Do, (£9)) € T : (D, (&) = (Do, (£2)). 6 = (Do) > 0.

=1

X. METRIZOVATELNE PRIESTORY, METRIZACIA TOPOLOGICKYCH PRIESTOROV

Definicia 10.1. Nech X je mnozina. Zobrazenie d : X x X — R sa nazyva pseudometrika, ak plati:
(1) Vz,y € X : d(z,y) > 0.
(2) Ve € X : d(z,x) =0.
(3) Va,y € X : d(x,y) = d(y, ).
(4) Vo,y,z € X 1 d(z,2) < d(z,y) + d(y, 2).
Ak naviac plati:
(5) Vo,y € X : ak d(z,y) = 0 = x = y, potom d sa nazyva metrike na X.

Priklady.
10.1. R, d(z,y) = |z — y| je metrika na R.
Oakz=y . .
10.2. R, di(z,y) = ) je metrika na R.
1 inak

10.3. R, da(z,y) = min{|z — y|, 1} je metrika na R.
10.4. R, p(x,y) =0 pre Va,y € R potom p je pseudometrika a nie je metrika.

Pozndmka. Nech d je (pseudo-) metrika na X. Potom 7y = {U € P(X);Va € U e > 0: O.(a) ={z € X,
d(a,z) < e} CUY} je topoldgia na X.
Priklady.

10.5. X, d(x,y) =0 pre Vz,y € X. 74 = {0, X} indiskrétna topolégia.

1
10.6. X, di(z,y) = { TFY ,a€e X,0<e<1: Oa) ={a}, 7q, = P(X) diskrétna topoldgia.

0 z=y
Definicia 10.2. Priestor (X, 7) sa nazyva metrizovatelng, ak existuje metrika d na X tak, ze 74 = 7.
Priklady.

10.7. (R, 7), 7— obvykla topoldgia; d(z,y) = |[x —y| = 7 = 74; d1(z,y) = min{|z —y|,1}. 74, = T4 = T.
Bla)={(a—c,a+¢);0<e<1}; B (a) ={(a—e,a+¢e);0 <e<1}. O (a)=R.

10.8. Priestor, ktory nie je metrizovatelny: (R,7—), 7. = {(a,00),a € R} U {0, R}. Nie je metrizova-
telny, lebo d(z,y) = r, zoberme si O, /2(x) N O, /2(y) = 0. To znamena, ze kazdy metrizovatelny priestor
je Th-priestor.

Veta 10.1. Ak (X, 1) je metrizovatelny, tak kaZdy podpriestor priestoru (X,T) je metrizovatelny.

Dékaz. Y C X; (Y,7y) podpriestor (X,7). 7v ={UNY, U € 7}. Existujed : X x X - R, 74 = 7.
d=dlyxy: Y xY - R=d jemetrikn. U €1y ©VeelUII>00%(c) CUVeelU I >0
O0d)NY CU U € Ty.

Lema 10.1. Ak (X, 7) je metrizovatelny priestor, tak existuje metrika di na X ohranicend 1,
(. Yo,y € X 1 dy(z,y) < 1) tak, Ze g = 7.
Dékaz. (X, T) je metrizovatelny, potom existuje metrika d na X tak, ze 7y = 7. Nech d; : X x X — R je

d
definovand d; (z,y) = min{d(x,y), 1}. Potom d; je metrika na X a 74, = 74 = 7, da(x,y) = H—(ZZ:E:ZUJ)y)

Veta 10.2.
(1) Ak (Xo,Ta)acr je systém metrizovatelnyjch priestorov a pre o, f € I, a # B : Xo N Xpg = 0, tak
aj priestor (X, 7) = @ c;(Xa, Ta) je metrizovatelns.
(2) Ak ((Xn,Tn))nen je systém metrizovatelngch priestorov, tak aj (X,7) = H(Xn,Tn) je metrizo-

neN
vatelny.
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Dokaz.

(1) X = U Xao, Vo € I nech d, je metrika na X, okrem 1 takd, ze 74, = 7. Definujme d : X x X —R,
acl

do(x,y) ak existuje o € I tak, ze x,y € X4 . .
d(z,y) = d je metrikou na X a 7g = 7.
1 akreXpyeXpaa#p

(2) (X,7) = H(X,“Tn). Pre Vn € N nech d, je metrika na X, okrem 1 takd, ze 74, = 7.

X = H\I():,Nrn). Definujme d : X x X — R, d(z,y) = z%] 2% “dn(pn (@), Pn(Y))-

0< ;i:dn(pn(x),pn(y)) < o nz;;?l" — 1. dz,z) = O?jed(ac,y) = d(y,2). ¥r,9,2 € X ¥n € N:
d(pn () pn(2)) < dn(pn (), pn(y)) + dn(pn é%zn n (P (), pn(2)) <

< ZN; (A pn(2), P (0) + (1), a (2))) = ZN 5B (2), B )+

+§::N ,Pn(2))=d(z, y)+d(y, 2). "

ot (Xy71a) = (Xn, ™) = (Xn,74,) je spojité. Nech x € X, ¢ > 0. Yy € X pre ktoré
€ , .
d(z,y) < o platl: Sodn(pa(2),pa(y)) < d(z,y) = du(pa(2),pa(y)) < 2"d(z,y) < e puje
spojité pre Vn, preto id : (X, 74,) — H(Xn,Tn) = (X, 7) je spojité. p,oid = p,, je spojité pre
neN
Vn € N. Plati 7 C 74. Nech U € 74, x € U. 3e > 0 tak, ze O%(z) C U.

oo

1 1 1
y € Od(z) & d(z,y) = 2@ (P1(@), p1(y)) + -+ S di(pr(z), pr(y)) + > 0 n(Pn (@), P (y))-
n=k+1
1 =1 =1 e
— e i < - s
Zgn 1:>pre2>03k€N Z <2 Z 2nd n(Pn (), Pn(y)) < Z on <2
neN n= k+1 n=k+1 n=k+1

O, (pr(x)) je okolie py(x) v (X, 7). Mnozina W = O, (p1(w))x- - -x O, (pg(2)) X Xppy1 %+ =
= (p1)-1 (05}2 (pl(x))) N--N(pr)-1 (C’)g’;Q (pr(z ))) je prvkom standardnej bézy 7 a teda W € T,
2 € W. Nechy € W. Potom dl(pl( 1Y) < 5, de(pr(),pr(y) < § = %dl(pl(x)7p1(y))+

1 1 1
o4 ?kdk(pk(l“),pk(y)) < 5 5 +--+ 2k> < . Potom d(z,y) = §d1(p1($),p1(y)) +-F

[\)

+2ikdk(pk(x),pk(y)) + Z 2indn(pn(a;),pn(y)) < ;—i—g < e Teday € Odx) C U. Teda
WCU,Uertj 14 :i.kﬂ
Désledok. -
[0, 1]N je metrizovatelnyj priestor. napr. d(x,y) = Z 2%|xn — Ynl|, kde 2, = pp(), Yn = pn(y).
n=1

Veta 10.3. Urysohnova metrizacna
Ak X je regquldrny Ty -priestor (=Ts-priestor) so spocitatelnou bdzou, tak X je metrizovatelny.

Dékaz. X je Ts-priestor so spocitatelnou bazou, potom X je Ty-priestor, a teda normélny. Nech B je
spoél'tatel’na baza topolégie na X. Polozme C = {(U,V) € B x B; U C V'}. Je to spocitatelny Systém a
teda [0, 1]¢ je metrizovatelny. Ukazeme, ze X je homeomorfny s podpriestorom priestoru [0, 1]¢. Nech
(U,V) € C, potom U CV apotom UN(X\V)=10aU, X\V st uzavreté. X je normalny, potom
(z Urysohnovej lemy) existuje spojité zobrazenie f(y vy : X — [0,1]; f[U] C {0}, f[X \ V] C {1}. Potom
existuje spojité f: X — [0,1]¢ také, ze V(U, V) € C plati: pw,vyof = fuv.

f je prosté: Nech z,y € X, z #y. « € X \ {y} je otvorend. Existuje Ve B:z € V C X\ {y}.
B, = {W € B, x € W} je baza okoli v x. X je regularny. V € B, = 3U € B, : U C V. Potom x€U,

UeB. (U,V) eC. fuvy: X —=0,1]; fuy)(x) =0. €U, fuv)(y) =1. fov (@) =pwv)(f(z) #
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#pwny(fW) = fov)(y) = fl@) # fy). f: X — f[X] podpriestor [0,1]¢. Treba este ukazat, ze ak
A je uzavretd v X, tak f[A] je uzavretd v f[X]. Nech b € f[X]\ f[A4]. Potom existuje a € X : f(a) = b,
pricom a ¢ A. a € X \ A je otvorend v X, potom 3V; € B, a; € V1 C X \ A. X je reguldrny potom
U, € B, uw € Uy, U; C V7. f(Uth) : X — [0,1], f(Uth)(a) =0, f(Uth)[A] C {1}, lebo A C X \ V.
W = (pwy,vi))-1([0, 3]) je otvorend v [0, 1], pr, 1) (D) = P va) (f(a)) = fw,v1)(a) = 0. Teda b€ W.
Ak y € f[A], tak y = f(x), z € A. Potom pw, vi)(y) = pw,v))(f(®)) = fw, v)(z) = 1. Teda
FIAJNW = (. Nech W' = W n f[X]. Potom W’ je otvorend v f[X], b € W, W' N f[A] = 0. Teda
fIA] je uzavretd v f[X] a teda f: X — f[X] je homeomorfizmus. f[X] je metrizovatelny, potom X je
metrizovatelny

Veta 10.4. Ak (X,d) je metricky priestor, tak d : (X,74) X (X,74) — R je spojité zobrazenie.

Dékaz. (x,y), (¢',y') € X x X. d(z,y),d(x",y"). d(z,y) < d(z,2') +d(2',y) < d(z,2") +d(y', y)+
+d(2',y") = d(z,y) —d(«',y') < d(x,2’) +d(y,y'). Podobne d(z',y') — d(x,y) < d(z,2') + d(y',y).
Z toho: |d(z,y) — d(z',y')| < d(z,2') + d(y,y’). Nech € > 0. Zoberme Og/Q(x) X 05/2( y) okolie (z,vy)

v (Xo7a) % (X, 7). V(&' y') € Oca(w) X Ocpa(y). () — d(,y))] < dla,a!) +d(y,y) < 5 + 5 =

Veta 10.5. Ak (X, p) je pseudometricky priestor, tak d : (X,7,) x (X,7,) = R je spojité zobrazenie.

Vzdialenosti. (X, d) je metricky priestor; A # 0, A C X, c € X: d(c, A) := inf{d(c,a),a € A}. A,B C X,
A#0D, B+#0,d(A, B) =inf{d(a,b),a € A, bec B}.

Veta 10.6. Ak (X, 1) je topologicky priestor, d je metrika na X takd, zZe d : (X,7)x(X,7) — R je spojité
zobrazenie a A je Uubovolnd neprdzdna podmnozina v X, tak zobrazenie fu : (X,7) = R, fa(x) =d(z, A)
je spojité. (Specidlne fa : (X, 74) — R je spojité.)

Dékaz. Nech z,y € X. Ukdzeme, ze |fa(z)— fa(y)| <
d(z, A) < d(x,y) + d(y,a), d(z,A) < d(z,a) < d(z,y)
d(va) - d(x’y) < d(y7A); d(l‘,A) - d( A) < d( T,y ) dobne: d(y7 ) ( ) < d(y7 ) d(xvy) =
|d(z, A) — d(y, A)| < d(z,y). Nech e >0, (z,z) € (X,7) x (X, 7), d je spojité, existuje okolie U x V
bodu (z,z) tak, ze V(y,y') e U x V a |d(:r,x) d(y,y )| < e. U V su otvorené v (X, 7). U je okolie x.
Nech y € U. Potom (y,z) € U x V. Potom |d(z,z) — d(y,z)| = d(z,y) < e. Teda existuje U okolie X
také, ze Vy € U : |fa(x) — fa(y)| < d(x,y) <e. faje spojité.

d(z,y), falz) = d(z,A), faly) = d(y, A). Ya € A:
+dy, a). Ya € A:d(xz,A) —d(z,y) < d(y,a) =
Po

Definicia 10.3. Nech X je topologicky priestor.

(1) Systém S C P(X) sa nazyva lokdlne koneény (diskrétny) v X, ak pre kazdy a € X existuje okolie
U, € n(a) tak, ze {V € S, VNU,} je konetnd. (m4 najviac jeden prvok).

(2) Systém S C P(X) sa nazyva o-lokdlne konecny (diskrétny), ak S je zjednotenim spocitatelného
systému lokdlne konecnych (resp. diskrétnych) systémov v X.

(3) Nech U,V st pokrytia X. Hovorime, ze U je zjemnenie V (piseme U < V), ak VU e Y IV € V.
UCV.

Priklady.
10.9. Kazdy koneény systém S C P(X) je lokdlne kone¢ny.
10.10. S = {(n,n + 1), n € N} lokélne koneény systém v R s obvyklou topoldgiou; nie je diskrétny.
10.11. Ak S je diskrétny systém v X, tak VU,V € S: U NV = 0.
10.12. Ak S je systém mnozin v metrickom priestore (X,d) a Ir € RT tak, ze VU,V € S : d(U, V) > r
tak S je diskrétny v (X, 74).
10.13. X, S =P(X), S ={X}=8<8 aaj & <S.

Veta 10.7. Nech (X, 7) je metricky priestor. Potom pre kaZdé otvorené pokrytie U priestoru (X, T)
existuje o-diskrétne otvorené pokrytie S priestoru (X, 1) také, ze S <U.

Dékaz. Nech VUeU: U#(D. Vyberme Ueld. Nech < je dobré usporiadanie U tj. (U, <) je dobre uspori-

1 1
adand mnozina. U, = {z€U; d(z, X \U) > 27} U C---CU, C---. Plati d(Up,, X \ Up41) > SnFi

Nech a € U,, b € X\ Up11. Potom d(b, X \ U) < Potom Jc € X\ U : d(b,c) < il =
1 1 1
d(a,c) < d(a,b)+d(b,c) = d(a,b) > d(a,c)—d(b,c) > 37 3T = it

2n+1 .

1 _
d(a,C)ZQT = _d(b7 C) > W
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Uz = Un\ |J Vig1, U; CUn Nech UV €U,V <U. Vi C Vi Ui N Visr = 0= U © X\ Vo,
VU

d(‘/an \ th-i—l) Z Wv

S 1
- 2n+1 .

p . T 1
otvorend. (fyx : (X,7q) — R je spojité a U, = (fu:)_1(—o0, W)) YU,V eU,U#V: U<V alebo

~ 1 .
AU, V) > d(Vp, X \ Vat1) U, ={z € X; d(z,U}) < W} je

1 N
V < U= dU; V) > Jnia vn € N: S, = {U,,U € U} je diskrétny systém otvorenych mnozin.
Nech S € S. Potom 3U e U, ne N: S =U, CU = S < U. Nech a € X. Existuje najmensi prvok
1
Ue U,<) tak, ze a € U. X\ U je uzavretd, 36 > 0: Os(a) N X \U = 0. In € N : o < 0. Plati:

1
d(a,X\U)2(5>2—n:>a€Untj. neN:aelU, YW <U,a¢V=a¢ V1. Vor1 CV). Teda

acU=U,\ U Vit1. YU € U, n € N U, je otvorend. a € U} C U,€S,CS= S je pokrytie (X, 7).
V<U

Veta 10.8. Kazdy metrizovatelny priestor md bazu B, ktord je o-diskrétna.

Dokaz. Up, = {Oy/n(x), © € X} je otvorené pokrytie (X, 74). Predpokladali sme, ze existuje metrika
d na X tak, ze 7q = 7. Potom existuje o-diskrétne otvorené pokrytie B,, priestoru (X, 74) také, ze
B, < U,, B = U B,. Ak B, = U Spk = B = U U Snk- B je o-diskrétny. Ukazeme, ze B
neN kEN neN keN
je bdza 7. B C 7. dn € N tak, ze Oy/,(c) € U. B, je pokrytie (X,7) = IV € B, : c € V.
B, < Uy, tj. 301,,(y) € Uy, tak, 2 V C O1/p(y). ¢ € V. = ¢ € O1/(y). Nech z € Oyp/,(y).
Potom d(c,z) < d(c,y) +d(y,z) < L+ 1 =2 = 2¢€ 01),(c); V C O1,(y) € Os)n(c) C U. Teda
WV eB:ceVCU. Bjebizav (X,7).

Veta 10.9. Nech X je reguldrny Ty -priestor (tj. Ts-priestor). Potom nasledujice vyroky si ekvivalentné:
(1) X je metrizovatelny.
(2) X ma o-diskrétnu bdzu.
(3) X md o-lokdlne konecni bdzu.

Dokaz.
(1) = (2) sme dokézali. (2) = (3) je trividlna. (3) = (1) je ndrocnd.

Veta 10.10. KazZdy kompaktnyg metrizovatelny priestor md spocitatelni bdzu (a teda je homeomorfny s
uzavretym podpriestorom [0,1]N).

Doékaz. Nech B je o-diskrétna béza v X. B = U B.; B, je diskrétny systém. Vo € X AU (x) € n(x):
neN

{V € B,,VNU(x) # 0} manajviac jeden prvok. {U(z), z € X} je otvorené pokrytie X = Jzq1,--- ,z,€X

tak, ze U(z1)U---UU(xg) = X. 0 £V € B, = 3WVNU(xj) #0. B, = {1,--,j}, V=3, VNU(z;) # 0

je prosté zobrazenie. Teda B,, je konetna, potom aj B je spocitatelna.
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XI. CVICENIA

1. Zakladné pojmy.
Cvicenie 1.1.
Nech X je mnozina a 'V je systém podmnozin mnoziny X splnajici nasledujice podmienky:

(1) §,X e V.

(2) Ak A,Be€V, tak AUB € V.

(3) AkSCV, tak [ AeV.

AeS

Dokdzte, ze Ty = {X \ A, A € V} je topoldgia na X a takd, Ze V je systém vsetkych uzavretych mnozin
v (X7 Ty),
Cvicenie 1.2.
Nech S je neprdzdny systém topoldgii na mnozine X. Dokdzte, Ze 15 := ﬂ T je topoldogia na X.

TES

Cvicenie 1.3. Ndjdite vietky topoldgie na {0,1} resp. na {0,1,2}.
2. Metrika.

Cviéenie 2.1. R x R = R?, d(z,y) = \/(ml —y1)2 + (2 — y2)?, di(x,y) = max{|z1 — 1], |22 — 2|},
do(z,y) = |x1 — y1| + |x2 — y2|. Dokdzte, Ze 7q = T4, = Ta,-

Cvigenie 2.2. Nech d je metrika na X. Dokdzte, e di : X x X — R?, dy(z,y) = min{d(z,y),1} aj
dx,y) . ,
do: X x X = R2, dy(w,y) = H‘TM st metriky na X a 1q = T4, = Ta,-
Cvicenie 2.3.
Nech N je mnoZina vSetkych prirodzengch &isel, a,b € N. Oznacme Ny = {a+n-bn € NU{0}}.
Dokazte, Ze:
(1) Systém B = {Nyp;a,b € N} je bdza topoldgie na N.
(2) V topoldgii Tg urcenej bdzou B si mnoZiny N, sicasne otvorené aj uzavreté.
(3) S vyuzitim poznatku, Ze pre kazdé n € N, n > 1 existuje prvocislo p také, Ze p deli n a s pouZitim
topologie T dokdzte, Ze prvocisel je nekoneéne vell.

Cvicenie 2.4. Nech By je bdza topoldgie 71 a Bs je bdza topoldgie 7o na X. Nech pre kazdé V € By a
a €V existuje W € By tak, Z2e x € W C V. Dokdzte, Ze 71 C Ts.

Cvicenie 2.5. Definujte pojem bdzy (subbdzy) pre systém vsetkijch uzavretych mnoZin v topologickom
priestore. Sformulujte analogické tvrdenia k turdeniam o bdze (subbdze) topoldgie.

Cvicenie 2.6. Dokdzte, Ze v lubovolnom topologickom priestore plati AN B = AN B. Uvedte priklad
topologického priestoru a jeho podmnozin A, B tak, aby platilo ANB C AN B.

Cvicenie 2.7. Nech X je topologicky priestor, A C X, Int A = |J{U € P(X), U je otv., U C A}.
Dokdzte:
(1) Int AC A preVA € P(X).
) Int X = X.
) Int (AN B) = Int ANInt B.
) Int (Int A) = Int A.
) A je ohranicend v X prdve vtedy, ked Int A = A.

(2
(3
(4
(5

Cvicenie 2.8. Nech (X, 7) je topologicky priestor, A C X. Bod ¢ € X sa nazgva hraniény bod mnoZiny
A v (X,7), ak pre kazdé okolie U bodu c: UNA#Q aj UN(X\ A) # 0. b(A) oznacuje mnoZinu vietkyjch
hraniénych bodov mnoZiny A.

(1) Uréte b(Q), b(N), b((0,1)), b([0,1]) v (R, 74), (R,7.), (R, 7-), (R, Tais)-

(2) Dokdzte, 7e b(A) = AN X \ A.

(3) Dokdzte, e A= AUD(A).
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Cvicenie 2.9. Nech (X, 1) je topologicky priestor, A C B C X. Dokdzte, Ze (A, 7|a) je podpriestor
(B,7|B) a A, (T|B)a) je podpriestor (X, T).
Cvicenie 2.10. Uréte nutni a postacujicu podmienku pre podmnozinu A priestoru (X, ) tak, aby platilo:

(1) M C A je otvorend v (A, T|a) & M je otvorend v (X, 7).
(2) M C A je uzavretd v (X, 7|a) & M je uzavretd v (X, 7).

3. Zobrazenia.
Cvicéenie 3.1. Nech X,Y si topologické priestory, f: X — Y je zobrazenie, a € X, B(a) je bdza okold
a v X, B(f(a)) je baza okoli f(a) vY. Dokdzte, Ze nasledugice vjroky si ekvivalentné:

(1) f je spojité v a.

(2) Pre kazdé V € B(f(a)) existuje U € B(a) tak, ze fl[U] C V.

(3) Pre kazdi podmnozinu A C X ak a € A, tak f(a) € f[A].
Cvicenie 3.2. Dokdzte, Ze ak f : X =Y, g: Y — Z su sekvencidlne spojité zobrazenia, tak zobrazenie
go f: X — Z je sekvencidlne spojité.

Cvicenie 3.3. Dokdzte, ze ak f : X — Y je spojité v bode a a g : Y — Z je spojité v bode f(a), tak
gof:X — Z je spojité v a.

Cvicenie 3.4. Nech 7,7’ si topoldgie na X. Dokdzte, Ze idx : (X,7) — (X,7') je spojité zobrazenie
prdve vtedy, ked’ T D 7'.

Cvicenie 3.5. Querte, Ze priestory (R, 74) a (R, 7,) nie si homeomorfné.

Cvicenie 3.6. Nech X = {a,b,c,d}, 7 = {0,{a},{b},{a, b}, {c,d}, X}. Ndjdite vietky homeomorfizmy
(X,7) = (X,7).
Cvicenie 3.7. Qwverte, Ze plati:

(1) sin: [0,27] — R je uzavreté a nie je otvorené.
(2) sin: R — [—1,1] je otvorené, ale nie je uzavreté.

Cvicenie 3.8.
Nech Dy = {(z,y) € R?, 22 + y? < 1} je podpriestor R? s obvyklou topoldgiou a [—1,1] x [—1,1] je tieZ
podpriestor R? s obvyklou topoldgiou. Ukdzte, Ze Do je homeomorfny s [—1,1] x [—1,1].

Cvicenie 3.9. Dokdazte, ze ak f: X —Y ag:Y — Z si vnorenia, tak go f : X — Z je vnorenie.

Cvicenie 3.10. Nech f : X — Y je faktorové zobrazenie, A je podpriestor X, f[A] je podpriestor Y.
Ukdzte na priklade, Ze f|a: A — f[A] nemus? byt faktorové zobrazenie.

Cvicenie 3.11. Nech f : X — Y je faktorové zobrazenie, B C'Y. Dokdzte, Ze ak B je uzavreté alebo
otvorené v'Y, tak zobrazenie f [¢_ (py: f-1(B) — B je faktorové zobrazenie.

Cvicenie 3.12. Dokdzte, Ze zobrazenia + : R x R — R, (a,b) — a+b, - : RxR —= R, (a,b) — a-b,
f:R* =R, flar, -+ ,a,) = max{as, - ,an}, g: R" =R, g(ay, -+ ,a,) = min{ay, - ,a,} su spojité.
Cvicenie 3.13. Nech (X,dy), (Y,d2) sd metrické priestory. Dokdzte, ze d : (X,Y) x (X,Y) — R,
d((a,b), (e,d)) = dy(a,c)+dz2(b,d) je metrika na X xY . Dalej dokdzte, Ze (X xY,74) = (X, 74,) X (Y, Tay)-
Cvicenie 3.14. Nech X,Y su priestory a X XY je ich topologicky sucin. Dokdzte, Ze:

(1) Pre kazdé a € X je podpriestor {a} x Y priestoru X XY homeomorfny s Y.
(2) Pre kazdé b €'Y je podpriestor X x {b} priestoru X XY homeomorfny s X.

Cvicenie 3.15. Nech f,g: X — 'Y si spojité zobrazenia, Y je Tao-priestor a E = {a € X, f(a) = g(a)}.
Dokdzte, Ze E je uzavretd podmnoZina X .

4. Faktorové priestory.
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Cviéenie 4.1. Nech S'={(x,y)eR?, 22+y?>=1} je podpriestor priestoru R? a I=[0,1] je podpriestor R.

(1) Nech E je reldcia ekvivalencie na I takd, e xEy < x =y alebo {x,y} = {0,1}. Dokdzte, Ze
faktorovy priestor I/E je homeomorfny s S*.

(2) Nech E je reldcia ekvivalencie na I x I takd, Ze (z,y)E(z,y’) < (z,y)=(2',y’) alebo (y=y' A
{x,2'}={0,1}). Dokdzte, ze (I x I)/E je homeomorfny s priestorom S' x I.

(3) Nech E je reldcia ekvivalencie na I x I takd, Ze (x,y)E(z',y') < (x,y)=",y) vV y =y A
{z,2'} ={0,1}) V (z=2' A {y,y'} ={0,1}). Dokdzte, ze (I x I)/E je homeomorfny s priestorom
St x St

Cvicenie 4.2. Dokdzte, Ze X je Ty-priestor prdve vtedy, ked podmnoZina A, = {(z,z);x € X} priestoru
X x X je uzavretd v X x X.

Cvicenie 4.3. Nech X,Y su priestory, Y je To-priestor a f: X — Y je spojité zobrazenie. Dokdzte, Ze
potom mnoZina {(z, f(x)),x € X} je uzavretd v X x Y. Plati obrdtené turdenie?

Cvicenie 4.4. Nech Va € I: M, je podpriestor X,. Dokdzte, Ze H M, je podpriestor H X..
acl acl

Cvicenie 4.5. Nech X = @Xa. Dokazte, ze akVa € I : X, je Ty (T27T3,T3%,T4, requldrny, uplne
acl

reguldrny, normdlny) tak aj X je Ty (T, T5, T, 1 , Ty, requldrny, dplne reguldrny, normdlny).

Cvicenie 4.6. Nech f1: X1 — Y1, fo : Xo — Y5 su spojité zobrazenia. Dokdzte, Ze potom aj fi1 X fo :

X1 xXo =Y xYs, (fi X fo)(z,y) = (f1(x), f2(y)) je spojité zobrazenie.

Cvicenie 4.7. Nech X = HXQ aVa €I je X, # 0. Zistite, ¢i plati: ak X je (dplne) requldrny, tak
Va € I X, je (dplne) reguldrny.
Cvicenie 4.8. Ukdzte, zZe:
(1) Kazdy uzavrety podpriestor normdlneho priestoru je normdlny priestor.
(2) X je normdlny < pre vSetky otvorené mnoziny U,V v X také, Z2e U UV = X existuji uzavreté
podmnoziny A, B priestoru X také, 2¢e ACU, BCV a AUB=X.
(3) Ak X je normdlny a f: X — 'Y je surjektivne, spojité, uzavreté zobrazenie, tak'Y je normdlny.
(4) Ndjdite priklad faktorového zobrazenia f : X — Y takého, Ze X je normdlny a Y nie je normdlny.
(Ndvod: 3-prvkovy nenormdlny, faktorové zobrazenie.)

5. Konvergencia.

Cvicenie 5.1. Zistite, ¢i nasledujuci systém podmnozZin danej mnoziny je bdza filtra, resp. filter na danej
mnozine.

(1) Fr ={A € PR), R/A je spocitatelnd} v R.

(2) F2={(a,), a € Q} vR.

(3) B(a) — bdza okoli bodu a v topologickom priestore X .

Cvicenie 5.2. Urcte vSetky hromadné body, resp. limity danigch baz filtrov, resp. filtrov v dangch
topologickych priestoroch

(1) Fr ={A € P(R), R/A je spocitatelnd} v R s obycajnou topoldgiou.

(2) F2 ={(a,), a € Q} vR s obycajnou topoldgiou a v R s topoldgiou 7—, = {(a,0), a € R}U{),R}

Cvicenie 5.3. Nech X je topologicky priestor. Dokdzte, Ze nasledujice vyroky su ekvivalentné:
(1) X je kompaktng.
(2) Kazdy filter v X md hromadny bod.
(3) Kazdy ultrafilter v X konverguje.

Cvicenie 5.4. Nech X je topologicky priestor, a € X a F je filter na X. Nech X, je topologicky priestor
definovany na mnozine priestoru X nasledovne: U je otvorené v X, < U C X/{a} alebo ezistuje F € F
tak, 2e U = FU{a}. Nech idx : X, — X je identické zobrazenie. Dokdzte, e F — a & idx : X — X
je spojité zobrazenie.
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Cvicenie 5.5. Dokdzte, Ze priestor X je Ty-priestor prdave vtedy, ked kazdd siet’ v X md najviac jednu
limitu.

Cvicenie 5.6. Nech f: X — Y je zobrazenie, X,Y su topologické priestory, a € X. Dokdzte, Ze f je
spojité v a prdve vtedy, ked’ pre lubovolni siet’ (x,,0 € ¥) v X takd, Ze v, — a plati f(x,) — f(a).

Cvicenie 5.7. Nech X = [[ X, je topologicky sucin priestorov, (z,,0 € X) je siet’ v X. Dokdzte, Ze
o —avX &Vaecl: py(z,) — pala).



