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Continuity and sequential continuity

Continuity at x:

(∀ε > 0)(∃δ > 0)|y − x| ≤ δ ⇒ |f(y)− f(x)| ≤ ε (C)

Continuity in topological space: Let O(x) denotes a system of open neigh-
borhoods of a point x.

(∀E ∈ O(f(x)))(∃D ∈ O(x))f [D] ⊆ E (D)

Of course, we can take a local base for O(x). The last condition corresponds to
x ∈ D ⇒ f(x) ∈ E, thus it reduces to (C) for the usual base on R.

Theorem 1. (AC) A function f : R → R is continuous (at x ∈ R) if and only
if it is sequential continuous (at x ∈ R).

The usual proof includes AC in the implication ⇐. We show here that the
same holds for the global continuity without the AC.

Lemma 1. Let X, Y be topological spaces. If f : X → Y is continuous, then it
is sequential continuous.

Proof. Let xn → x. For any neighborhood V of f(x) the set f−1(V ) contains all
but finitely many members of the sequence (xn)∞n=1. Therefore V contains all
but finitely many members of (f(xn))∞n=1. This means that f(xn) → f(x).

Lemma 2. If f : R → R is sequential continuous at x ∈ R, then f |Q∪{x} is
continuous at x.

Proof. The proof follows the same lines as the AC-proof, but we use the fact
that we can obtain (explicitly, without AC) Q as the set of all members of
a sequence. Therefore we have choice function χ : P(Q) \ {∅} → Q given by
f(A) = qn0 , where n0 = min{n ∈ N; qn ∈ A} and (qn)∞n=1 is the enumeration of
Q.

Assume that f |Q∪{x} is not continuous at x. Then there exists ε > 0 such
that (C) doesn’t hold. This means that for each n ∈ N there exists y ∈ Q with
|x − y| < 1

n such that |f(x) − f(y)| > ε. We put yn = χ({y; |x − y| < 1
n ∧

|f(x)− f(y)| > ε}).
Thus we obtain a sequence (yn) with yn → x and f(yn) 6→ f(x), a contra-

diction.

Theorem 2. A function f : R→ R is (globally!) continuous if and only if it is
sequentially continuous.1

Proof. Lemma 1 yields the implication ⇒
On the other hand, if f is sequentially continuous at each point, then from

Lemma 2 we have that for any x the restriction on the set Q∪{x} is continuous.
This means that for ε > 0 there exists δ > 0 with

(z ∈ Q) ∧ (|x− z| < δ) ⇒ |f(x)− f(z)| < ε

2
.

1The proof is made according to the hint in [H].
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For any y ∈ R such that |x− y| < δ there exists δy with

(z ∈ Q) ∧ (|y − z| < δy) ⇒ |f(y)− f(z)| < ε

2
.

Moreover, Ay := {z ∈ Q; |z − y| < δy, |z − x| < δ} 6= ∅, since Q is dense subset
of R. Therefore we have zy := χ(Ay) and

|f(x)− f(y)| ≤ |f(x)− f(zy)|+ |f(zy)− f(y)| < ε

2
+

ε

2
= ε.

Question: How can be the above proof generalized?
I think one could prove the following:

If Q is a countable set than there exists a choice function on P(Q) \ {∅}. (Just
use the bijection N→ Q.)
If f : X → Y is sequentially continuous at x then for any countable set D ⊆ X
the restriction f |D∪{x} is continuous at x.

But I wasn’t able to find the condition for Y such that the above proof would
work.

At least this seems to be valid: If X is a countable dense, first countable
space and Y be a metric space, then a function f : X → Y is continuous if and
only if it is sequentially continuous.

Question: Under AC it holds second countable ⇒ countable density. Does
it hold without AC?

Dependent (countable) choice

Some choice principles, which are interesting for us:
[H, Definition 3.7]
DC = Principle of dependent choices: For every pair (X, %), where X is a

non-empty set and % is a relation on X such that for each x ∈ X there exists
y ∈ Y with x%y, there exists a sequence (xn) in X with xn%xn+1 for each n ∈ N.

[H, Theorem 3.8] DC ⇒ CC (countable choice)
[H, Definition 3.11]
PIT = Boolean Prime Ideal Theorem: Every boolean algebra such that 0 6= 1

has a maximal ideal.
UFT = Ultrafilter Theorem: On any set every filter can be enlarged to an

ultrafilter.
[H, Theorem 3.12] UFT ⇔ PIT

Hamel basis

This part is written according to [A].

Definition 1. Let V be a vector space. We say that B is a Hamel basis in V
if B is linearly independent and every vector v ∈ V can be obtained as a linear
combination of vectors from B.

Theorem 3. (AC) Every vector space V over field F has a Hamel basis. More-
over, every linearly independent subset W of V can be enlarged to a Hamel bases
B ⊇ W .

2



Sketch of the proof. Union of a chain of linearly independent sets is again lin-
early independent. Thus by maximality principle there exists a maximal linearly
independent set B containing a given subset W . We claim that B is a base.

For any x ∈ V the set B ∪ {x} is not linearly independent (by the maximal-
ity). Thus there exists a, a1, . . . , an ∈ F and b1, . . . , bn with ax + a1b1 + . . . +
anbn = 0. Thus x = − 1

a (a1b1 + . . . + anbn) is a linear combination of vectors
from B.

Theorem 4. (AC) Every two Hamel bases of a vector space X have the same
cardinality.

Proof. Let B1, B2 be two Hamel bases of X. For each x ∈ B1 let B2(x) be the
(uniquely determined) finite sets of elements of the basis B2, such that x is the
linear combination of these elements. We first show that for every y ∈ B2 there
exists x ∈ B1 such that y ∈ B2(x).

Suppose, on the contrary, that y ∈ B2(x) for none x. Then B1 ⊆ [B2 \ {y}]
([V ] denotes the linear hull of a set V ⊆ X). Since B1 is a base, we have
[B2 \{y}] = X and thus y is a linear combination of elements from B2 \{y}. We
have shown that B2 is not linearly independent. This is a contradiction with
the assumption that B2 is a Hamel basis.

We have shown so far (∀y ∈ B2)(∃x ∈ B1)y ∈ B2(x). This implies B2 =⋃
x∈B1

B2(x) and cardB2 = card(
⋃

x∈B1

B2(x)) ≤ card B1.ℵ0 = card B1 (in the

last equality we used the fact that card B1 is infinite.) The same way as we
have shown card B2 ≤ card B1, we can show the opposite inequality. card B1 ≤
card B2. From these two inequalities (by Cantor-Bernstein theorem) we get
card B2 = card B1. 2

Cauchy equation

We are interested in functions f : R→ R fulfilling

f(x + y) = f(x) + f(y). (1)

Note that if we put x = y = 0, we get f(0) = f(0) + f(0), so (1) implies

f(0) = 0. (2)

Observe that R can be understood as a vector space over the field Q. We
will denote this vector space by VR(Q).

Lemma 3. Any function f : R → R fulfilling (1) is a linear map in the space
VR(Q) .

Proof. We need to show that f(cx) = cf(x), for any x ∈ R and any c ∈ Q, i.e.,
for any c of the form c = p

q , p ∈ Z, q ∈ N \ {0}.
From (1) we show by induction that

f(cx) = cf(x) for c ∈ N.

2This proof is made according to an exercise in [NS]
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From (2) we have 0 = f(0) = f(x − x) = f(x) + f(−x), thus f(x) = −f(−x)
for any x ∈ R. This implies

f(cx) = cf(x) for c ∈ Z.

From this we get

p · f(x) = f(px) = f(q · p

q
x) = q · f

(
p

q
x

)
,

p

q
f(x) = f

(
p

q
x

)
.

Theorem 5. Any continuous solution of (1) has the form f(x) = ax from some
a ∈ R.

Proof. By Lemma 3 f is a linear map in VR(Q). Thus it is linear on the linear
subspace Q, which is generated by 1. So we have f(x) = x.f(1) = a.x for any
x ∈ Q. Since Q is dense in R and f is continuous, the equation f(x) = ax holds
for every x ∈ R.

Theorem 6. There exists a non-continuous solution of (1).

Proof. There exists a Hamel basis B of VR(Q) containing the independent set
{1,

√
2}. By putting f(b) = 1 for any b ∈ B we obtain a linear map in VR(Q)

(thus a solution of (1) and (2)) which has not form f(x) = ax. Therefore f is
not continuous by Theorem 5.
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