Continuity and sequential continuity

Continuity at x :

$$
\begin{equation*}
(\forall \varepsilon>0)(\exists \delta>0)|y-x| \leq \delta \Rightarrow|f(y)-f(x)| \leq \varepsilon \tag{C}
\end{equation*}
$$

Continuity in topological space: Let $O(x)$ denotes a system of open neighborhoods of a point x.

$$
\begin{equation*}
(\forall E \in O(f(x)))(\exists D \in O(x)) f[D] \subseteq E \tag{D}
\end{equation*}
$$

Of course, we can take a local base for $O(x)$. The last condition corresponds to $x \in D \Rightarrow f(x) \in E$, thus it reduces to (C) for the usual base on \mathbb{R}.

Theorem 1. ($A C$) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous (at $x \in \mathbb{R}$) if and only if it is sequential continuous (at $x \in \mathbb{R}$).

The usual proof includes AC in the implication \Leftarrow. We show here that the same holds for the global continuity without the AC.

Lemma 1. Let X, Y be topological spaces. If $f: X \rightarrow Y$ is continuous, then it is sequential continuous.
Proof. Let $x_{n} \rightarrow x$. For any neighborhood V of $f(x)$ the set $f^{-1}(V)$ contains all but finitely many members of the sequence $\left(x_{n}\right)_{n=1}^{\infty}$. Therefore V contains all but finitely many members of $\left(f\left(x_{n}\right)\right)_{n=1}^{\infty}$. This means that $f\left(x_{n}\right) \rightarrow f(x)$.

Lemma 2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is sequential continuous at $x \in \mathbb{R}$, then $\left.f\right|_{\mathbb{Q} \cup\{x\}}$ is continuous at x.

Proof. The proof follows the same lines as the AC-proof, but we use the fact that we can obtain (explicitly, without AC) \mathbb{Q} as the set of all members of a sequence. Therefore we have choice function $\chi: \mathcal{P}(\mathbb{Q}) \backslash\{\emptyset\} \rightarrow \mathbb{Q}$ given by $f(A)=q_{n_{0}}$, where $n_{0}=\min \left\{n \in \mathbb{N} ; q_{n} \in A\right\}$ and $\left(q_{n}\right)_{n=1}^{\infty}$ is the enumeration of \mathbb{Q}.

Assume that $\left.f\right|_{\mathbb{Q} \cup\{x\}}$ is not continuous at x. Then there exists $\varepsilon>0$ such that (C) doesn't hold. This means that for each $n \in \mathbb{N}$ there exists $y \in \mathbb{Q}$ with $|x-y|<\frac{1}{n}$ such that $|f(x)-f(y)|>\varepsilon$. We put $y_{n}=\chi\left(\left\{y ;|x-y|<\frac{1}{n} \wedge\right.\right.$ $|f(x)-f(y)|>\varepsilon\})$.

Thus we obtain a sequence $\left(y_{n}\right)$ with $y_{n} \rightarrow x$ and $f\left(y_{n}\right) \nrightarrow f(x)$, a contradiction.

Theorem 2. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is (globally!) continuous if and only if it is sequentially continuous. ${ }^{1}$

Proof. Lemma 1 yields the implication \Rightarrow
On the other hand, if f is sequentially continuous at each point, then from Lemma 2 we have that for any x the restriction on the set $\mathbb{Q} \cup\{x\}$ is continuous. This means that for $\varepsilon>0$ there exists $\delta>0$ with

$$
(z \in \mathbb{Q}) \wedge(|x-z|<\delta) \Rightarrow|f(x)-f(z)|<\frac{\varepsilon}{2}
$$

[^0]For any $y \in \mathbb{R}$ such that $|x-y|<\delta$ there exists δ_{y} with

$$
(z \in \mathbb{Q}) \wedge\left(|y-z|<\delta_{y}\right) \Rightarrow|f(y)-f(z)|<\frac{\varepsilon}{2}
$$

Moreover, $A_{y}:=\left\{z \in \mathbb{Q} ;|z-y|<\delta_{y},|z-x|<\delta\right\} \neq \emptyset$, since \mathbb{Q} is dense subset of \mathbb{R}. Therefore we have $z_{y}:=\chi\left(A_{y}\right)$ and

$$
|f(x)-f(y)| \leq\left|f(x)-f\left(z_{y}\right)\right|+\left|f\left(z_{y}\right)-f(y)\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Question: How can be the above proof generalized?
I think one could prove the following:
If Q is a countable set than there exists a choice function on $\mathcal{P}(Q) \backslash\{\emptyset\}$. (Just use the bijection $\mathbb{N} \rightarrow Q$.)
If $f: X \rightarrow Y$ is sequentially continuous at x then for any countable set $D \subseteq X$ the restriction $\left.f\right|_{D \cup\{x\}}$ is continuous at x.

But I wasn't able to find the condition for Y such that the above proof would work.

At least this seems to be valid: If X is a countable dense, first countable space and Y be a metric space, then a function $f: X \rightarrow Y$ is continuous if and only if it is sequentially continuous.

Question: Under AC it holds second countable \Rightarrow countable density. Does it hold without AC?

Dependent (countable) choice

Some choice principles, which are interesting for us:
[H, Definition 3.7]
$\mathrm{DC}=$ Principle of dependent choices: For every pair (X, ϱ), where X is a non-empty set and ϱ is a relation on X such that for each $x \in X$ there exists $y \in Y$ with $x \varrho y$, there exists a sequence $\left(x_{n}\right)$ in X with $x_{n} \varrho x_{n+1}$ for each $n \in \mathbb{N}$.
[H, Theorem 3.8] DC $\Rightarrow \mathrm{CC}$ (countable choice)
[H, Definition 3.11]
PIT $=$ Boolean Prime Ideal Theorem: Every boolean algebra such that $0 \neq 1$ has a maximal ideal.

UFT $=$ Ultrafilter Theorem: On any set every filter can be enlarged to an ultrafilter.
$[\mathrm{H}$, Theorem 3.12] UFT \Leftrightarrow PIT

Hamel basis

This part is written according to [A].
Definition 1. Let V be a vector space. We say that B is a Hamel basis in V if B is linearly independent and every vector $v \in V$ can be obtained as a linear combination of vectors from B.

Theorem 3. (AC) Every vector space V over field F has a Hamel basis. Moreover, every linearly independent subset W of V can be enlarged to a Hamel bases $B \supseteq W$.

Sketch of the proof. Union of a chain of linearly independent sets is again linearly independent. Thus by maximality principle there exists a maximal linearly independent set B containing a given subset W. We claim that B is a base.

For any $x \in V$ the set $B \cup\{x\}$ is not linearly independent (by the maximality). Thus there exists $a, a_{1}, \ldots, a_{n} \in F$ and b_{1}, \ldots, b_{n} with $a x+a_{1} b_{1}+\ldots+$ $a_{n} b_{n}=0$. Thus $x=-\frac{1}{a}\left(a_{1} b_{1}+\ldots+a_{n} b_{n}\right)$ is a linear combination of vectors from B.

Theorem 4. (AC) Every two Hamel bases of a vector space X have the same cardinality.

Proof. Let B_{1}, B_{2} be two Hamel bases of X. For each $x \in B_{1}$ let $B_{2}(x)$ be the (uniquely determined) finite sets of elements of the basis B_{2}, such that x is the linear combination of these elements. We first show that for every $y \in B_{2}$ there exists $x \in B_{1}$ such that $y \in B_{2}(x)$.

Suppose, on the contrary, that $y \in B_{2}(x)$ for none x. Then $B_{1} \subseteq\left[B_{2} \backslash\{y\}\right]$ ($[V]$ denotes the linear hull of a set $V \subseteq X$). Since B_{1} is a base, we have $\left[B_{2} \backslash\{y\}\right]=X$ and thus y is a linear combination of elements from $B_{2} \backslash\{y\}$. We have shown that B_{2} is not linearly independent. This is a contradiction with the assumption that B_{2} is a Hamel basis.

We have shown so far $\left(\forall y \in B_{2}\right)\left(\exists x \in B_{1}\right) y \in B_{2}(x)$. This implies $B_{2}=$ $\bigcup_{x \in B_{1}} B_{2}(x)$ and $\operatorname{card} B_{2}=\operatorname{card}\left(\bigcup_{x \in B_{1}} B_{2}(x)\right) \leq \operatorname{card} B_{1} \cdot \aleph_{0}=\operatorname{card} B_{1}$ (in the last equality we used the fact that card B_{1} is infinite.) The same way as we have shown card $B_{2} \leq$ card B_{1}, we can show the opposite inequality. card $B_{1} \leq$ card B_{2}. From these two inequalities (by Cantor-Bernstein theorem) we get $\operatorname{card} B_{2}=\operatorname{card} B_{1} .{ }^{2}$

Cauchy equation

We are interested in functions $f: \mathbb{R} \rightarrow \mathbb{R}$ fulfilling

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{1}
\end{equation*}
$$

Note that if we put $x=y=0$, we get $f(0)=f(0)+f(0)$, so (1) implies

$$
\begin{equation*}
f(0)=0 . \tag{2}
\end{equation*}
$$

Observe that \mathbb{R} can be understood as a vector space over the field \mathbb{Q}. We will denote this vector space by $V_{\mathbb{R}}(\mathbb{Q})$.

Lemma 3. Any function $f: \mathbb{R} \rightarrow \mathbb{R}$ fulfiling (1) is a linear map in the space $V_{\mathbb{R}}(\mathbb{Q})$.

Proof. We need to show that $f(c x)=c f(x)$, for any $x \in \mathbb{R}$ and any $c \in \mathbb{Q}$, i.e., for any c of the form $c=\frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N} \backslash\{0\}$.

From (1) we show by induction that

$$
f(c x)=c f(x) \quad \text { for } c \in \mathbb{N}
$$

[^1]From (2) we have $0=f(0)=f(x-x)=f(x)+f(-x)$, thus $f(x)=-f(-x)$ for any $x \in \mathbb{R}$. This implies

$$
f(c x)=c f(x) \quad \text { for } c \in \mathbb{Z}
$$

From this we get

$$
\begin{gathered}
p \cdot f(x)=f(p x)=f\left(q \cdot \frac{p}{q} x\right)=q \cdot f\left(\frac{p}{q} x\right), \\
\frac{p}{q} f(x)=f\left(\frac{p}{q} x\right) .
\end{gathered}
$$

Theorem 5. Any continuous solution of (1) has the form $f(x)=$ ax from some $a \in \mathbb{R}$.

Proof. By Lemma $3 f$ is a linear map in $V_{\mathbb{R}}(\mathbb{Q})$. Thus it is linear on the linear subspace \mathbb{Q}, which is generated by 1 . So we have $f(x)=x \cdot f(1)=a . x$ for any $x \in \mathbb{Q}$. Since \mathbb{Q} is dense in \mathbb{R} and f is continuous, the equation $f(x)=a x$ holds for every $x \in \mathbb{R}$.

Theorem 6. There exists a non-continuous solution of (1).
Proof. There exists a Hamel basis B of $V_{\mathbb{R}}(\mathbb{Q})$ containing the independent set $\{1, \sqrt{2}\}$. By putting $f(b)=1$ for any $b \in B$ we obtain a linear map in $V_{\mathbb{R}}(\mathbb{Q})$ (thus a solution of (1) and (2)) which has not form $f(x)=a x$. Therefore f is not continuous by Theorem 5 .

References

[A] B. Artmann. Der Zahlbegriff. Vandenhoeck und Ruprecht, Göttingen, 1983.
[H] H. Herrlich. The Axiom of Choice. in preparation.
[NS] A. Naylor and G. Sell. Teória lineárnych operátorov v technických a prírodných vedách (Linear Operator Theory in Engineering and Science). Alfa, Bratislava.

[^0]: ${ }^{1}$ The proof is made according to the hint in $[\mathrm{H}]$.

[^1]: ${ }^{2}$ This proof is made according to an exercise in [NS]

