Continuity and sequential continuity

Continuity at \(x \):

\[
(\forall \varepsilon > 0) (\exists \delta > 0) |y - x| \leq \delta \Rightarrow |f(y) - f(x)| \leq \varepsilon
\]

Continuity in topological space: Let \(O(x) \) denotes a system of open neighborhoods of a point \(x \).

\[
(\forall E \in O(f(x)))(\exists D \in O(x)) f[D] \subseteq E
\]

Of course, we can take a local base for \(O(x) \). The last condition corresponds to \(x \in D \Rightarrow f(x) \in E \), thus it reduces to (C) for the usual base on \(\mathbb{R} \).

Theorem 1. (AC) A function \(f: \mathbb{R} \to \mathbb{R} \) is continuous (at \(x \in \mathbb{R} \)) if and only if it is sequential continuous (at \(x \in \mathbb{R} \)).

The usual proof includes AC in the implication \(\Leftarrow \). We show here that the same holds for the global continuity without the AC.

Lemma 1. Let \(X, Y \) be topological spaces. If \(f: X \to Y \) is continuous, then it is sequential continuous.

Proof. Let \(x_n \to x \). For any neighborhood \(V \) of \(f(x) \) the set \(f^{-1}(V) \) contains all but finitely many members of the sequence \((x_n)_{n=1}^{\infty} \). Therefore \(V \) contains all but finitely many members of \((f(x_n))_{n=1}^{\infty} \). This means that \(f(x_n) \to f(x) \). \(\square \)

Lemma 2. If \(f: \mathbb{R} \to \mathbb{R} \) is sequential continuous at \(x \in \mathbb{R} \), then \(f|_{\mathbb{Q} \cup \{x\}} \) is continuous at \(x \).

Proof. The proof follows the same lines as the AC-proof, but we use the fact that we can obtain (explicitly, without AC) \(\mathbb{Q} \) as the set of all members of a sequence. Therefore we have choice function \(\chi: \mathcal{P}(\mathbb{Q}) \setminus \{\emptyset\} \to \mathbb{Q} \) given by \(f(A) = q_{n_0} \), where \(n_0 = \min\{n \in \mathbb{N}; q_n \in A\} \) and \((q_n)_{n=1}^{\infty} \) is the enumeration of \(\mathbb{Q} \).

Assume that \(f|_{\mathbb{Q} \cup \{x\}} \) is not continuous at \(x \). Then there exists \(\varepsilon > 0 \) such that (C) doesn’t hold. This means that for each \(n \in \mathbb{N} \) there exists \(y \in \mathbb{Q} \) with \(|x - y| < \frac{1}{n} \) such that \(|f(x) - f(y)| > \varepsilon \). We put \(y_n = \chi(\{y; |x - y| < \frac{1}{n} \land |f(x) - f(y)| > \varepsilon\}) \).

Thus we obtain a sequence \((y_n) \) with \(y_n \to x \) and \(f(y_n) \not\to f(x) \), a contradiction. \(\square \)

Theorem 2. A function \(f: \mathbb{R} \to \mathbb{R} \) is (globally!) continuous if and only if it is sequentially continuous.\(^1\)

Proof. Lemma 1 yields the implication \(\Rightarrow \).

On the other hand, if \(f \) is sequentially continuous at each point, then from Lemma 2 we have that for any \(x \) the restriction on the set \(\mathbb{Q} \cup \{x\} \) is continuous.

This means that for \(\varepsilon > 0 \) there exists \(\delta > 0 \) with

\[
(z \in \mathbb{Q}) \land (|x - z| < \delta) \Rightarrow |f(x) - f(z)| < \frac{\varepsilon}{2}.
\]

\(^1\)The proof is made according to the hint in [H].
For any \(y \in \mathbb{R} \) such that \(|x - y| < \delta\) there exists \(\delta_y \) with
\[
(z \in \mathbb{Q}) \land (|y - z| < \delta_y) \Rightarrow |f(y) - f(z)| < \frac{\varepsilon}{2}.
\]
Moreover, \(A_y := \{ z \in \mathbb{Q}; |z - y| < \delta_y, |z - x| < \delta \} \neq \emptyset \), since \(\mathbb{Q} \) is dense subset of \(\mathbb{R} \). Therefore we have \(z_y := \chi(A_y) \) and
\[
|f(x) - f(y)| \leq |f(x) - f(z_y)| + |f(z_y) - f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
\]

Question: How can be the above proof generalized?
I think one could prove the following:
If \(Q \) is a countable set than there exists a choice function on \(\mathcal{P}(Q) \setminus \{\emptyset\} \). (Just use the bijection \(\mathbb{N} \rightarrow Q \).)
If \(f: X \rightarrow Y \) is sequentially continuous at \(x \) then for any countable set \(D \subseteq X \) the restriction \(f|_{D \cup \{x\}} \) is continuous at \(x \).
But I wasn’t able to find the condition for \(Y \) such that the above proof would work.
At least this seems to be valid: If \(X \) is a countable dense, first countable space and \(Y \) be a metric space, then a function \(f: X \rightarrow Y \) is continuous if and only if it is sequentially continuous.
Question: Under \(\text{AC} \) it holds second countable \(\Rightarrow \) countable density. Does it hold without \(\text{AC} \)?

Dependent (countable) choice

Some choice principles, which are interesting for us:

[H, Definition 3.7] DC = Principle of dependent choices: For every pair \((X, g)\), where \(X \) is a non-empty set and \(g \) is a relation on \(X \) such that for each \(x \in X \) there exists \(y \in Y \) with \(xgy \), there exists a sequence \((x_n)\) in \(X \) with \(x_n \vDash x_{n+1} \) for each \(n \in \mathbb{N} \).

[H, Theorem 3.8] DC \(\Rightarrow \) CC (countable choice)

[H, Definition 3.11] PIT = Boolean Prime Ideal Theorem: Every boolean algebra such that \(0 \neq 1 \) has a maximal ideal.

UFT = Ultrafilter Theorem: On any set every filter can be enlarged to an ultrafilter.

[H, Theorem 3.12] UFT \(\iff \) PIT

Hamel basis

This part is written according to [A].

Definition 1. Let \(V \) be a vector space. We say that \(B \) is a Hamel basis in \(V \) if \(B \) is linearly independent and every vector \(v \in V \) can be obtained as a linear combination of vectors from \(B \).

Theorem 3. (\(\text{AC} \)) Every vector space \(V \) over field \(F \) has a Hamel basis. Moreover, every linearly independent subset \(W \) of \(V \) can be enlarged to a Hamel bases \(B \supseteq W \).
Sketch of the proof. Union of a chain of linearly independent sets is again linearly independent. Thus by maximality principle there exists a maximal linearly independent set \(B \) containing a given subset \(W \). We claim that \(B \) is a base.

For any \(x \in V \) the set \(B \cup \{x\} \) is not linearly independent (by the maximality). Thus there exists \(a, a_1, \ldots, a_n \in F \) and \(b_1, \ldots, b_n \) with \(ax + a_1b_1 + \ldots + a_nb_n = 0 \). Thus \(x = -\frac{1}{a}(a_1b_1 + \ldots + a_nb_n) \) is a linear combination of vectors from \(B \).

Theorem 4. (AC) Every two Hamel bases of a vector space \(X \) have the same cardinality.

Proof. Let \(B_1, B_2 \) be two Hamel bases of \(X \). For each \(x \in B_1 \) let \(B_2(x) \) be the (uniquely determined) finite sets of elements of the basis \(B_2 \), such that \(x \) is the linear combination of these elements. We first show that for every \(y \in B_2 \) there exists \(x \in B_1 \) such that \(y \in B_2(x) \).

Suppose, on the contrary, that \(y \in B_2(x) \) for none \(x \). Then \(B_1 \subseteq [B_2 \setminus \{y\}] \) (\([V]\) denotes the linear hull of a set \(V \subseteq X \)). Since \(B_1 \) is a base, we have \([B_2 \setminus \{y\}] = X \) and thus \(y \) is a linear combination of elements from \(B_2 \setminus \{y\} \). We have shown that \(B_2 \) is not linearly independent. This is a contradiction with the assumption that \(B_2 \) is a Hamel basis.

We have shown so far \(\forall y \in B_2(\exists x \in B_1) y \in B_2(x) \). This implies \(B_2 = \bigcup_{x \in B_1} B_2(x) \) and \(\text{card } B_2 = \text{card} \left(\bigcup_{x \in B_1} B_2(x) \right) \leq \text{card } B_1 \setminus \{y\} = \text{card } B_1 \) (in the last equality we used the fact that \(B_1 \) is infinite.). The same way as we have shown card \(B_2 \leq \text{card } B_1 \), we can show the opposite inequality. card \(B_1 \leq \text{card } B_2 \). From these two inequalities (by Cantor-Bernstein theorem) we get card \(B_2 = \text{card } B_1 \). \(\square \)

Cauchy equation

We are interested in functions \(f: \mathbb{R} \to \mathbb{R} \) fulfilling

\[f(x + y) = f(x) + f(y). \]

(1)

Note that if we put \(x = y = 0 \), we get \(f(0) = f(0) + f(0) \), so (1) implies

\[f(0) = 0. \]

(2)

Observe that \(\mathbb{R} \) can be understood as a vector space over the field \(\mathbb{Q} \). We will denote this vector space by \(V_{\mathbb{R}}(\mathbb{Q}) \).

Lemma 3. Any function \(f: \mathbb{R} \to \mathbb{R} \) fulfilling (1) is a linear map in the space \(V_{\mathbb{R}}(\mathbb{Q}) \).

Proof. We need to show that \(f(cx) = cf(x) \), for any \(x \in \mathbb{R} \) and any \(c \in \mathbb{Q} \), i.e., for any \(c \) of the form \(c = \frac{p}{q} \), \(p \in \mathbb{Z} \), \(q \in \mathbb{N} \setminus \{0\} \).

From (1) we show by induction that

\[f(cx) = cf(x) \quad \text{for } c \in \mathbb{N}. \]

\(\square \)This proof is made according to an exercise in [NS]
From (2) we have $0 = f(0) = f(x - x) = f(x) + f(-x)$, thus $f(x) = -f(-x)$ for any $x \in \mathbb{R}$. This implies
$$f(cx) = cf(x) \quad \text{for } c \in \mathbb{Z}.$$ From this we get
$$p \cdot f(x) = f(px) = f(q \cdot \frac{p}{q} x) = q \cdot f \left(\frac{p}{q} x \right),$$
$$\frac{p}{q} f(x) = f \left(\frac{p}{q} x \right).$$

Theorem 5. Any continuous solution of (1) has the form $f(x) = ax$ from some $a \in \mathbb{R}$.

Proof. By Lemma 3 f is a linear map in $V_{\mathbb{R}}(\mathbb{Q})$. Thus it is linear on the linear subspace \mathbb{Q}, which is generated by 1. So we have $f(x) = x.f(1) = a.x$ for any $x \in \mathbb{Q}$. Since \mathbb{Q} is dense in \mathbb{R} and f is continuous, the equation $f(x) = ax$ holds for every $x \in \mathbb{R}$.

Theorem 6. There exists a non-continuous solution of (1).

Proof. There exists a Hamel basis B of $V_{\mathbb{R}}(\mathbb{Q})$ containing the independent set $(1, \sqrt{2})$. By putting $f(b) = 1$ for any $b \in B$ we obtain a linear map in $V_{\mathbb{R}}(\mathbb{Q})$ (thus a solution of (1) and (2)) which has not form $f(x) = ax$. Therefore f is not continuous by Theorem 5.

References

