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Continuity and sequential continuity

Continuity at x:
(Ve>0)36 > 0)[y — 2| < o= [f(y) — fla) <e (©)

Continuity in topological space: Let O(x) denotes a system of open neigh-
borhoods of a point z.

(VE € O(f(2)))3D € O(x)) f[D] C E (D)

Of course, we can take a local base for O(x). The last condition corresponds to
x € D= f(x) € E, thus it reduces to (C) for the usual base on R.

Theorem 1. (AC) A function f: R — R is continuous (at x € R) if and only
if it is sequential continuous (at x € R).

The usual proof includes AC in the implication <. We show here that the
same holds for the global continuity without the AC.

Lemma 1. Let X, Y be topological spaces. If f: X — Y is continuous, then it
is sequential continuous.

Proof. Let x,, — . For any neighborhood V of f(z) the set f~(V') contains all
but finitely many members of the sequence (z,,)52 ;. Therefore V' contains all
but finitely many members of (f(x,))5 ;. This means that f(x,) — f(z). O

Lemma 2. If f: R — R is sequential continuous at x € R, then flgus) 45
continuous at x.

Proof. The proof follows the same lines as the AC-proof, but we use the fact
that we can obtain (explicitly, without AC) Q as the set of all members of
a sequence. Therefore we have choice function x: P(Q) \ {#} — Q given by
f(A) = ¢n,, where ng = min{n € N; g, € A} and (g,,)52; is the enumeration of
Q.

Assume that f|guiz) is not continuous at x. Then there exists ¢ > 0 such
that (C) doesn’t hold. This means that for each n € N there exists y € Q with
[z —y| < 5 such that [f(z) — f(y)| > e. We put y, = x({y;|lz —y[ < & A
(@) — F)] > e}).

Thus we obtain a sequence (y,,) with y, — = and f(y,) /4 f(x), a contra-
diction. O

Theorem 2. A function f: R — R is (globally!) continuous if and only if it is
sequentially continuous.’

Proof. Lemma 1 yields the implication =
On the other hand, if f is sequentially continuous at each point, then from
Lemma 2 we have that for any x the restriction on the set QU{z} is continuous.
This means that for £ > 0 there exists 6 > 0 with

(: € QA (e =2 < ) = |f(x) - f(2)] < 5.

1The proof is made according to the hint in [H].



For any y € R such that |« — y| < § there exists J, with
5
(=€ Q Ayl <6) = 17) - FG)] < 5.

Moreover, A, :={z € Q; |z — y| < dy, |z — x| < §} # 0, since Q is dense subset
of R. Therefore we have z, := x(A4,) and

@) = FWI < 1f@) = =) +1£(z) - F@)] < 5+ 5 =<

Question: How can be the above proof generalized?

I think one could prove the following:

If Q is a countable set than there exists a choice function on P(Q) \ {0}. (Just
use the bijection N — @.)

If f: X — Y is sequentially continuous at = then for any countable set D C X
the restriction f|DU{Q,} is continuous at x.

But I wasn’t able to find the condition for Y such that the above proof would
work.

At least this seems to be valid: If X is a countable dense, first countable
space and Y be a metric space, then a function f: X — Y is continuous if and
only if it is sequentially continuous.

Question: Under AC it holds second countable = countable density. Does
it hold without AC?

Dependent (countable) choice

Some choice principles, which are interesting for us:

[H, Definition 3.7]

DC = Principle of dependent choices: For every pair (X, g), where X is a
non-empty set and o is a relation on X such that for each z € X there exists
y € Y with zpy, there exists a sequence (z,,) in X with x,, 02,41 for each n € N.

[H, Theorem 3.8] DC = CC (countable choice)

[H, Definition 3.11]

PIT = Boolean Prime Ideal Theorem: Every boolean algebra such that 0 # 1
has a maximal ideal.

UFT = Ultrafilter Theorem: On any set every filter can be enlarged to an
ultrafilter.

[H, Theorem 3.12] UFT « PIT

Hamel basis
This part is written according to [A].

Definition 1. Let V be a vector space. We say that B is a Hamel basis in V'
if B is linearly independent and every vector v € V' can be obtained as a linear
combination of vectors from B.

Theorem 3. (AC) Every vector space V over field F' has a Hamel basis. More-
over, every linearly independent subset W of V' can be enlarged to a Hamel bases
BDOW.



Sketch of the proof. Union of a chain of linearly independent sets is again lin-
early independent. Thus by maximality principle there exists a maximal linearly
independent set B containing a given subset W. We claim that B is a base.
For any « € V the set BU {x} is not linearly independent (by the maximal-
ity). Thus there exists a,a1,...,a, € F and by,...,b, with ax + a1b1 + ... +
anb, = 0. Thus z = —%(albl + ...+ ayby) is a linear combination of vectors
from B. O

Theorem 4. (AC) Every two Hamel bases of a vector space X have the same
cardinality.

Proof. Let By, By be two Hamel bases of X. For each x € By let Ba(x) be the
(uniquely determined) finite sets of elements of the basis Bsg, such that x is the
linear combination of these elements. We first show that for every y € By there
exists © € By such that y € By(x).

Suppose, on the contrary, that y € By(z) for none x. Then By C [Bs \ {y}]
([V] denotes the linear hull of a set V' C X). Since B; is a base, we have
[B2\ {y}] = X and thus y is a linear combination of elements from Bs\ {y}. We
have shown that Bs is not linearly independent. This is a contradiction with
the assumption that Bs is a Hamel basis.

We have shown so far (Vy € B2)(3x € B1)y € Ba(z). This implies By =

U Ba(z) and card By = card( |J Bz(x)) < card B1.8g = card By (in the
r€B; r€B1
last equality we used the fact that card By is infinite.) The same way as we
have shown card Bs < card By, we can show the opposite inequality. card B; <
card By. From these two inequalities (by Cantor-Bernstein theorem) we get
card By = card B;. 2 O

Cauchy equation

We are interested in functions f: R — R fulfilling

fx+y) = flz)+ fy). (1)
Note that if we put x =y = 0, we get f(0) = f(0) + f£(0), so (1) implies
7(0) =0, )

Observe that R can be understood as a vector space over the field Q. We
will denote this vector space by Vk(Q).

Lemma 3. Any function f: R — R fulfilling (1) is a linear map in the space
Vr(Q) .

Proof. We need to show that f(cx) = cf(zx), for any = € R and any ¢ € Q, i.e.,
for any c of the form ¢ = 2, p € Z, ¢ € N\ {0}.
From (1) we show by induction that

flex) =cf(x) for c € N.

2This proof is made according to an exercise in [NS]



From (2) we have 0 = f(0) = f(x — z) = f(z) + f(—x), thus f(z) = —f(—x)
for any x € R. This implies

flex) = cf(x) for c € Z.

From this we get

O

Theorem 5. Any continuous solution of (1) has the form f(x) = ax from some
a€R.

Proof. By Lemma 3 f is a linear map in Vg(Q). Thus it is linear on the linear
subspace Q, which is generated by 1. So we have f(z) = z.f(1) = a.x for any
z € Q. Since Q is dense in R and f is continuous, the equation f(x) = ax holds
for every z € R. O

Theorem 6. There exists a non-continuous solution of (1).

Proof. There exists a Hamel basis B of Vg(Q) containing the independent set
{1,4/2}. By putting f(b) = 1 for any b € B we obtain a linear map in Vi(Q)
(thus a solution of (1) and (2)) which has not form f(z) = ax. Therefore f is
not continuous by Theorem 5. O
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