
Tento dokument vznikol ako reakcia na niektoré otázky položené na blogu Michala Le-
hutu http://lehuta.blog.sme.sk/c/100142/. Určite by to bolo lepšie napísať priamo do
diskusie na blogu, ale http://diskusie.sme.sk dáko moc nepodporuje písanie matematiky
;-) Ak budete nato chcieť nejako zareagovať, IMHO najlepšie v diskusii k blogu. Pretože sa
dokument (a tým aj číslovanie) môže meniť, je lepšie odvolať sa na rovnicu pomocou kódu
pri nej ako pomocou čísla.
Dúfam, že som tam nespravil priveľa chýb a preklepov.

Fibonacciho špirála

Fibonacciho čísla:
Fn+2 = Fn + Fn+1 (1) {EQFIB}

a F0 = F1 = 1;

Fn =
ϕn+1 − (1− ϕ)n+1√

5
, (2) {EQFIBUZ}

kde ϕ = 1+
√
5

2 .
1

Uvedieme (bez dôkazu) ešte 2 identity, ktoré by mohli byť pre nás užitočné2

F2n+1 = Fn(Fn−1 + Fn+1) = FnFn−1 + FnFn+1 (3) {EQF2N}
F2n+2 = Fn−1Fn+1 + Fn+2Fn (4) {EQF2N1}

Fibonacciho špirála (pozri http://lehuta.blog.sme.sk/c/100142/) vznikne tak, že z
bodu (0, 0) ideme postupne o F0 na západ, o F1 na sever, o F2 na východ, o F3 na juh atď.
Zaujímajú nás vlastnosti tejto špirály, konkrétne by sme chceli zistiť asymptoty. ku ktorým
sa tieto body blížia.

Súradnice bodov

Zaoberajme sa len bodmi po každých 4 úsekoch. Tieto body majú súradnice x0 = y0 = 0 a

xn = (F3 − F1) + (F7 − F5) + · · ·+ (F4n−1 − F4n−3),

yn = (F4 − F2) + (F8 − F6) + · · ·+ (F4n − F4n−2).

Po využití (1) to upravíme na

xn = F2 + F6 + · · ·+ F4n−2 =
n−1∑
k=0

F4k+2 (5) {EQXN}

yn = F3 + F7 + · · ·+ F4n−3 =
n−1∑
k=0

F4k+3 (6) {EQYN}

1Pozor! Niekde sa vyskytuje definícia v tvare F1 = F2 = 1 (alebo ekvivalentne F0 = 0 a F1 = 1). Preto
je dôležité, ak čerpáme z rôznych prameňov, porovnať aj definície a veci, ktoré chceme použiť upraviť tak,
aby súhlasili s definíciou, ktorú používame my. V tomto texte budeme všetky veci uvádzať tak, ako plati pre
Fibonacciho postupnosť definovanú počiatočnými hodnotami F0 = F1 = 1, ako sme uviedli na začiatku. (Aby
som bol úprimný, definícia, ktorú som uviedol ja je asi oveľa menej štandardná, ako tá druhá; ale už sa mi to
nechcelo všetko opravovať naspäť.)
2ak chcete dôkaz môžete sa pozrieť napríklad na vetu 2.8 v http://is.muni.cz/th/106232/prif_b/fp.pdf,

ktorá je dokonca všeobecnejšia.
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Prvé hodnoty:
x0 = 0, x1 = 2, x2 = 2 + 13 = 15, x3 = 2 + 13 + 89 = 104, x4 = 2 + 13 + 89 + 610 = 714
y0 = 0, y1 = 3, y2 = 3 + 21 = 24, y3 = 3 + 21 + 144 = 168, y4 = 3 + 21 + 144 + 987 = 1155

Chceli by sme nájsť predpis pre xn. Jedna možnosť je uhádnuť a dokázať matematickou
indukciou. Skúsme si všimnúť hodnoty xn a porovnať ich s Fibonacciho číslom nasledujúcim
hneď po poslednom sčítanci v xn. Po chvíli skúmania tabuľky prídeme na to, že ich rozdiel
sa dá získať vždy ako súčin 2 po sebe idúcich Fibonacciho čísel. (Význam posledného stĺpca
v nasledujúcej tabuľke vysvetlíme neskôr.)

n xn F4n−1 F2n−1F2n−2 F4n−1 − F2n−1F2n−2 G4n

1 2 3 1 2 11
2 15 21 6 15 76
3 104 144 40 104 521
4 714 987 273 714 3571
Teraz, keď už sme prišli na to, akú rovnosť chceme dokázať

xn =
n−1∑
k=0

F4k+2 = F4n−1 − F2n−1F2n−2 (7) {EQXNUZ}

malo by to ísť vcelku jednoducho. (Nevedel som vymyslieť postup, ako to dokazovať bez toho,
aby sme museli „hádaťÿ, čiže bez toho, aby sme vopred vedeli pravú stranu.)
Takéto rovnosti sa dajú dokazovať matematickou indukciou. Poznáme totiž hodnotu x1

a vieme, že všetky ďalšie hodnoty xn sú jednoznačne určené rovnosťou xn+1 − xn = F4n+2.
Na to, aby sme dokázali rovnosť (7) stačí zistiť, či takýto vzťah platí aj pre pravú stranu
rovnosti.
Skúsme teda upraviť príslušný rozdiel

F4n+3−F2n+1F2n−(F4n−1−F2n−1F2n−2) = F4n+3−F4n−1−(F2n+1F2n−F2n−1F2n−2) =

F4n+3 − F4n−1 − (F2n+1F2n + F2nF2n−1) + (F2nF2n−1 + F2n−1F2n−2)
(3)
=

F4n+3 − F4n−1 − F4n+1 + F4n−1 = F4n+3 − F4n+1 = F4n+2

Teraz celý postup zopakujeme pre yn

n yn F4n F2n−2F2n F4n − F2n−2F2n G4n+1

1 3 5 2 3 18
2 24 34 10 24 23
3 168 233 65 168 843
4 1155 1597 442 1155 5778

Chceme dokázať

yn =
n−1∑
k=0

F4k+3 = F4n − F2n−2F2n (8) {EQYNUZ}

V indukčnom kroku teraz dostaneme

F4n+4 − F2nF2n+2 − (F4n − F2n−2F2n) = F4n+4 − F4n − F2nF2n+2 + F2n−2F2n =

F4n+4 − F4n − (F2nF2n+2 + F2n−1F2n+1) + (F2n−2F2n − F2n−1F2n+1)
(4)
=

F4n+4 − F4n − F4n+2 + F4n = F4n+4 − F4n+2 = F4n+3
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Možno by mohlo byť užitočné vyjadriť yn a xn aj priamo pomocou ϕ. Kvôli prehladnosti
označme ψ = 1 − ϕ. Pre tieto čísla platí ϕψ = −1 a ϕ + ψ = 1. (Sú to korene kvadratickej
rovnice x2 − x− 1 = 0.) Tiež je užitočné všimnúť si, že ϕ− ψ =

√
5.

yn = F4n − F2nF2n−2 =
ϕ4n+1 − ψ4n+1√

5
− (ϕ

2n+1 − ψ2n+1)(ϕ2n−1 − ψ2n−1)
5

=

√
5(ϕ4n+1 − ψ4n+1)− (ϕ4n + ψ4n) + ϕ2n−1ψ2n−1(ϕ2 + ψ2)

5
=

(ϕ− ψ)(ϕ4n+1 − ψ4n+1)− (ϕ4n + ψ4n) + ϕ2n−1ψ2n−1(ϕ2 + ψ2)
5

=

ϕ4n+2 + ψ4n+2 − ϕψ(ϕ4n − ψ4n)− (ϕ4n − ψ4n)− 3
5

=
ϕ4n+2 + ψ4n+2 − 3

5

Ak označíme Gn = ϕn+1 + ψn+1, tak máme

yn =
G4n+1 − 3
5

. (9) {EQYNGN}

Pritom Gn je opäť postupnosť, ktorá spĺňa rekurenciu Gn+2 = Gn+1 + Gn. (Kto sa niekde
učil nejaké základy o riešení lineárnych rekurentných rovníc,3 vidí to hneď. Dá sa nato prísť
z toho, že túto rekurenciu spĺňajú postupnosti ϕn+1 aj ψn+1, teda aj všetky ich lineárne
kombinácie.) Vďaka tejto rekurencii z počiatočných rovníc vieme vypošítať všetky hodnoty
Gn:
G0 = ϕ+ ψ = 1
G1 = ϕ2 + ψ2 = 3
ďalšie hodnoty: 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778. . .
Môžeme si overiť, že skutočne y1 = 18−3

5 , y2 =
123−3
5 , y3 = 843−3

5 .4 Čísla Gn sa tiež zvyknú
volať Lucasove čísla – aj keď opäť je to štandardne o 1 posunuté oproti môjmu označeniu
http://en.wikipedia.org/wiki/Lucas_number.
Teraz sa pokúsme odvodiť niečo podobné pre xn.

xn = F4n−1 − F2n−1F2n−2 =
ϕ4n − ψ4n√

5
− (ϕ

2n − ψ2n)(ϕ2n−1 − ψ2n−1)
5

=

(ϕ− ψ)(ϕ4n − ψ4n)− (ϕ2n − ψ2n)(ϕ2n−1 − ψ2n−1)
5

=

(ϕ4n+1 + ψ4n+1)− ϕψ(ϕ4n−1 + ψ4n−1)− (ϕ4n+1 + ψ4n+1) + ϕ2n−1ψ2n−1(ϕ+ ψ)
5

=

(ϕ4n+1 + ψ4n+1)− (ϕ+ ψ)
5

=
G4n − 1
5

.

Získali sme teda rovnosť

xn =
G4n − 1
5

, (10) {EQXNGN}

ktorú môžeme opäť skontrolovať v tabuľke pre xn.

3http://en.wikipedia.org/wiki/Difference_equation
4TODO dopln Gn do tabulky
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Smernica asymptoty

Ak sa body so súradnicami (xn, yn) blížia k nejakej asymptote, tak jej smernica musí byť
limite podielu yn

xn
. Zo vzťahov (10), (9) dostaneme

lim
n→∞

yn

xn
= lim

n→∞

G4n+1 − 3
G4n − 1

= lim
n→∞

G4n+1
G4n

= ϕ

Posledná rovnosť sa dá odvodiť z predpisu Gn = ϕn+1 +ψn+1. (Je známe, že podiel po sebe
idúcich Fibonacciho čísel konverguje k zlatému rezu. Odvodenie podobného vzťahu pre Gn

je takmer rovnaké.)
Asymptota teda skutočne existuje a jej smernica je ϕ.
Ešte by sme tu odvodili ten istý fakt trochu iným spôsobom, ktorý je pekný v tom, že

nepotrebujeme na jeho odvodenie poznať vzťah popisujúci xn a yn pomocou Fibonacciho
čísel (resp. pomocou Gn), limitu vyrátame priamo z vyjadrenia yn a xn ako sumy niektorých
Fibonacciho čísel.
Využijeme Stolzovu vetu. Stolzova veta je akýsi ekvivalent L’Hospitalovho pravidla pre

rady.5

Veta 1 (Stolzova-Cesarova veta). Nech (xn) a (yn) sú postupnosti reálnych čísel. Nech
(yn) je kladná, ostro rastúca a lim

n→∞
yn = +∞. Ak existuje limita

lim
n→∞

xn+1 − xn

yn+1 − yn
= L,

tak potom aj

lim
n→∞

xn

yn
= L.

Stolzovu vetu môžeme preformulovať aj takto:

Dôsledok 1. Nech (an) a (bn) sú postupnosti reálnych čísel, pričom bn > 0 a
∑
bn = +∞

pre všetky n ∈ N. Ak existuje limita

lim
n→∞

an

bn
= L,

tak

lim
n→∞

∑n
k=1 ak∑n
k=1 bk

= L.

Použitím Stolzovej vety priamo dostaneme

lim
n→∞

yn

xn
= lim

n→∞

∑n−1
k=0 F4k+3∑n−1
k=0 F4k+2

= lim
n→∞

F4n+3
F4n+2

= ϕ

Asymptoty

Zistili sme už smer asymptoty. Priamok daného smeru je veľa – ešte chceme zistiť, kam je
asymptota posunutá. Bod, v ktorom asymptota pretína y-ovú os zistíme, keď vyrátame limitu

lim
n→∞

(yn − ϕxn).

5Dôkaz Stolzovej vety mozno nájsť napríklad tu http://planetmath.org/encyclopedia/
StolzCesaroTheorem.html, ak preferujete Češtinu/Slovenčinu, tak skúste http://thales.doa.fmph.
uniba.sk/sleziak/vyuka/tc2006/tc.pdf, http://www.karlin.mff.cuni.cz/~rataj/MA/MA-prednaska.pdf
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Začnime najprv upravovať

yn − ϕxn =
G4n+1 − 3− ϕ(G4n − 1)

5
=
ϕ4n+2 + ψ4n+2 − 3− ϕ(ϕ4n+1 + ψ4n+1 − 1)

5
=

ϕ4n+2 − ϕ4n+2 + (ψ − ϕ)ψ4n+1 − 3 + ϕ
5

=
F0ψ

4n+1 + ϕ− 3
5

=
ψ4n+1 + ϕ− 3

5
,

preto

lim
n→∞

yn − ϕxn =
ϕ− 3
5

.

Rovnica asymptoty je teda y = ϕ.x+ ϕ−3
5

n xn yn y = ϕ.x+ ϕ−3
5

1 2 3 2,9597
2 15 24 23,9941
3 104 168 167,9991
4 714 1597 1154,9999

Ostatné postupnosti

Smernice vyjdú rovnaké (resp. otočené o 90◦). Vidno to napríklad z toho, že odvodenie
pomocou Stolzovej vety vyjde aj pre ostatné postupnosti.
Zostáva otázka, či sa protiľahlé asymptoty stretnú v tom istom bode. Pretože som lenivý,

pozriem sa len na postupnosť protiľahlú k tej, ktorú som už vyrátal.
Tu budú súradnice

x′n = xn − F4n+1

y′n = yn − F4n+2

Limita, ktorú budeme rátať pri posune asymptoty sa teda zmení o hodnotu lim
n→∞

F4n+2−
ϕF4n+1 = 0. Teda skutočne budú existovať len 2 asymptoty, pretnú sa v niektorom bode (ale
určite to nebude bod (0,0), ako by to mohlo vyzerať z obrázku). Ten bod, takisto ako druhú
(kolmú) asymptotu som bol lenivý vyrátať.

Otázky

1. Dali by sa tie vzťahy odvodiť aj bez toho, aby sme najprv „uhádliÿ pravú stranu?

2. Dá sa bod, kde sa asymptoty pretnú, vyrátať bez toho, aby sme vyrátali priamo rovnice
asymptot?

3. Neverím, že by to už niekto niekde nerátal, ak to nájdete niekde na webe, dajte mi
vedieť – napríklad to napíšte do diskusie na spomínanom blogu. (Trochu som googlil,
ale nenašiel som príklad, kde by bol priamo zrátaný súčet každého štvrtého Fibonacciho
čísla.)
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