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R. Engelking: General Topology

I started to make these notes from [E1] and only later the newer edition [E2] got
into my hands. I don’t think that there were too much changes in numbering
between the two editions, but if you’re citing some results from either of these
books, you should check the book, too.

Introduction

Algebra of sets. Functions

Cardinal numbers

For every cardinal number m, the number 2m, also denoted by expm, is defined
as the cardinality of the family of all subsets of a set X satisfying |X| = m.

To every well-ordered set X an ordinal number α is assigned; it is called the
order type of X.

Order relations. Ordinal numbers

Any ordinal number can be represented as λ + n where λ is a limit ordinal
number and n ∈ N. The number λ+ n is even (odd) if n is even (odd).

A subset A of set X directed by ≤ is cofinal in X if for every x ∈ X there
exists an a ∈ A such that x ≤ a. Cofinal subsets of linearly ordered sets and of
ordered sets are defined similarly.

The axiom of choice

Suppose we are given a set X and a property P pertaining to subsets of X; we
say that P is a property of finite character if the empty set has this property
and a set A ⊂ X has property P if and only if all finite subsets of A have this
property.

Lemma (Teichmüller-Tukey lemma). Suppose we are given a set X and a prop-
erty P of subsets of X. If P is a property of finite character, then every set
A ⊂ X which has property P is contained in a set B ⊂ X which has property
P and is maximal in the family of all subset of X that have P ordered by ⊂.

Real numbers

1 Topological spaces

1.1 Topological spaces. Open and closed sets. Bases. Clo-
sure and interior of a set

A family B ⊂ O is called a base for a topological space (X,O) if every non-empty
open subset of X can be represented as the union of a subfamily of B.
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(B1) For any U1, U2 ∈ B and every point x ∈ U1 ∩U2 there exists a U ∈ B such
that x ∈ U ⊂ U1 ∩ U2.

(B2) For every x ∈ X there exists a U ∈ B such that x ∈ U .

If for some x ∈ X and an open set U ⊂ X we have x ∈ U , we say that U is
a neighbourhood of x.

A family B(x) of neighbourhoods of x is called a base for topological space
(X,O) at the point x if for any neighbourhood V of x there exists a U ∈ B(x)
such that x ∈ U ⊂ V .

The smallest cardinal number of the form |B|, where B is a base for a topo-
logical space (X,O), is called the weight of the topological space (X,O) and is
denoted by w(X,O).

A family P ⊂ O is called a subbase for a topological space (X,O) if the
family of all finite intersections U1 . . . Uk, where Ui ∈ P for i = 1, 2, . . . , k, is a
base for (X,O).

base for topology → base at point
union of bases at point = base for topology
The character of a point x in a topological space (X,O) is defined as the

smallest cardinal number of the form |B(x)|, where B(x) is a base for (X,O) at
the point x; this cardinal number is denoted by χ(x, (X,O)). The character of a
topological space (X,O) is defined as the supremum of all numbers χ(x, (X,O))
for x ∈ X; this cardinal number is denoted by χ((X,O)).

χ(X) ≤ ℵ0=first-countable
w(X) ≤ ℵ0=second-countable
Let (X,O) be a topological space and suppose that for every x ∈ X a base

B(x) for (X,O) at x is given; the collection {B(x)}x∈X is called a neighbourhood
system for the topological space (X,O). We shall show that any neighbourhood
system {B(x)}x∈X has the following properties:

(BP1) For every x ∈ X, B(x) 6= ∅ and for every U ∈ B(x), x ∈ U .

(BP2) If x ∈ U ∈ B(y), then there exists a V ∈ B(x) such that V ⊂ U .

(BP3) For any U1, U2 ∈ B(x) there exists a U ∈ B(x) such that U ⊂ U1 ∩ U2.

Corollary. (1.1.2) If U is an open set and U ∩A = ∅, then also U ∩A = ∅.

Theorem. (1.1.3) The closure operator has the following properties:

(CO1) ∅ = ∅

(CO2) A ⊂ A

(CO3) A ∪B = A ∪B

(CO4) (A) = A

Theorem. (1.1.5) For every A ⊂ X we have IntA = X \X \A.

Theorem. (1.1.6) The interior operator has the following properties:

(IO1) IntX = X

(IO2) IntA ⊂ A
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(IO3) IntA ∩B = IntA ∩ IntB

(IO4) Int (IntA) = IntA

If O1 and O2 are two topologies on X and O2 ⊂ O1, then we say that
topology O1 is finer than the topology O2, or that topology O2 is coarser than
O1.

A family {As}s∈S of subsets of a topological space X is a locally finite if
for every point x ∈ X there exists a neighbourhood such that the set {s ∈ S :
U ∩As 6= ∅} is finite. If every point x ∈ X has a neighbourhood that intersects
at most one set of a given family, then we say that the family is discrete.

Theorem. (1.1.11) For every locally finite family {As}s∈S we have the equality⋃
s∈S

As =
⋃
s∈S

As.

Corollary. (1.1.12) Let F be a locally finite family and F =
⋃
F . If all mem-

bers of F are closed, then F is a closed set and if all members of F are clopen,
then F is clopen.

Theorem. (1.1.13) If {As}s∈S is locally finite (discrete), then the family {As}s∈S
also is locally finite (discrete).

Theorem. (1.1.14) If w(X) ≤ m, then for every family {Us}s∈S of open subsets
of X there exists a set S0 ⊂ S such that |S0| ≤ m and

⋃
s∈S0

Us =
⋃
s∈S

Us.

Theorem. (1.1.15) If w(X) ≤ m, then for every base B for X there exists a
base B0 such that |B0| ≤ m and B0 ⊂ B.

Remark. (1.1.16) Let us note that in the proof of Theorem 1.1.14 we did not
use the fact that the members of B are open (cf. the notion of network defined
in Section 3.1).

Theory of real numbers (as equivalence classes) was proposed independently
by Ch. Méray and G. Cantor.

(Exercise 1.1.C) A subset U of a topological space satisfying the condition
U = IntU is called an open domain.

1.2 Methods of generating topologies

Proposition. (1.2.1) Suppose we are given a set X and a family B of subsets
of X which has properties (B1)-(B2). Let O be the family of all subsets of X
that are unions of subfamilies of B, i.e., let

U ∈ O if and only if U =
⋃
B0 for a subfamily B0 of B.

The family O is a topology on X. The family B is a base for the topological
space (X,O).

Example. (1.2.2) Real numbers with topology defined by base 〈a, b) = K -
Sorgenfrey line.

Example. (1.2.4) L = {(x, y) ∈ R2 y ≥ 0}. For points of the line y = 0 we
define bases by circles touching it and for y 6= 0 as usual. We get Niemytzki
plane.
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1.3 Boundary of a set and derived set. Dense and nowhere
dense sets. Borel sets

Boundary of A: FrA = A ∩X \A = A \ IntA

Theorem. (1.3.2) The boundary operator has the following properties:

(i) IntA = A \ FrA

(ii) A = A ∪ FrA

(iii) Fr(A ∪B) ⊂ FrA ∪ FrB

(iv) Fr(A ∩B) ⊂ FrA ∩ FrB

(v) Fr(X \A) = FrA

(vi) X = IntA ∪ FrA ∪ Int(X \A)

(vii) FrA ⊂ FrA

(viii) Fr IntA ⊂ FrA

(ix) A is open if and only if FrA = A \A

(x) A is closed if and only if FrA = A \ IntA

(xi) A is clopen if and only if FrA = ∅

A point x in a topological space X is called an accumulation point of a set
A ⊂ X if x ∈ A \ {x}. The set of all accumulation points of A is called the
derived set of A and is denoted by Ad.

Theorem. (1.3.4) The derived set has the following properties:

(i) A = A ∪Ad

(ii) If A ⊂ B, then Ad ⊂ Bd.

(iii) (A ∪B)d = Ad ∪Bd

(iv)
⋃
s∈S

Ads ⊂ (
⋃
s∈S

As)
d

A set A ⊂ X is called dense in X if A = X.
A set A ⊂ X is called co-dense in X if X \A is dense.
A set A ⊂ X is called nowhere dense in X if A is co-dense.
A set A ⊂ X is called dense in itself if A ⊂ Ad.

Proposition. (1.3.5) The set A is dense in X if and only if every non-empty
open subset of X contains points of A.

The set A is co-dense in X if and only if every non-empty open subset of X
contains points of complement of A.

The set A is nowhere dense in X if and only if every non-empty open subset
of X contains a non-empty open set disjoint from A.

Theorem. (1.3.6) If A is dense in X, then for every open U ⊂ X we have
U = U ∩A.
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The density of a space X is defined as the smallest cardinal number of the
form |A|, where A is a dense subset of X. If d(X) ≤ ℵ0, then we say that the
space X is separable.

Theorem. (1.3.7) For every topological space X we have d(X) ≤ w(X).

Corollary. (1.3.8) Every second-countable space is separable.

Borel sets, Fσ, Gδ
Complement of Fσ set is Gδ set.

1.4 Continuous mappings. Closed and open mappings.
Homeomorphisms

Proposition. (1.4.1) Let X and Y be topological spaces and f a mapping of X
to Y . The following conditions are equivalent:

(i) The mapping f is continuous.

(ii) Inverse images of all members of a subbase for Y are open in X.

(iii) Inverse images of all members of a base for Y are open in X.

(iv) There are neighborhood systems {B(x)}x∈X and {D(y)}y∈Y for X and Y
respectively, such that for every x ∈ X and V ∈ D(f(x)) there exists a
U ∈ B(x) satisfying f(U) ⊂ V .

(v) For every A ⊂ X we have f(A) ⊂ f(A).

(vi) For every B ⊂ Y we have f−1(B) ⊂ f−1(B).

(vii) For every B ⊂ Y we have f−1(IntB) ⊂ Int f−1(B).

Let us observe in connection with the above theorem, that if f : X → Y then
for any Fσ (Gδ) B ⊂ Y the inverse image f−1(B) is an Fσ-set (Gδ-set). Inverse
image of Borel sets in Y are Borel sets in X. (1.4.G)

Theorem. (1.4.7) If a sequence (fi) of continuous functions from X to R or
I is uniformly convergent to a real-valued function f , then f is a continuous
function from X to R. If all fi’s are functions to I, then f : X → I.

Proposition. (1.4.8) Suppose we are given a set X, a family {Ys}s∈S of topo-
logical spaces and a family of mappings {fs}s∈S, where fs is a mapping of X
to Ys. In the class of all topologies on X that makes all fs’s continuous there
exists a coarsest topology; this is the topology O generated by the base consisting
of all sets of the form

k⋂
i=1

f−1
si [Vi],

where s1, s2, . . . , sk ∈ S and Vi is an open subset of Ysi for i = 1, 2, . . . , k.
The topology O is called the topology generated by the family of mappings

{fs}s∈S.
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Proposition. (1.4.9) A mapping f of a topological space X to a topological
space Y whose topology is generated by a family of mappings {fs}s∈S, where fs
is a mapping of Y to Ys, is continuous if and only if the composition fsf is
continuous for every s ∈ S.

Theorem. (1.4.10) If Y is a continuous image of X, then d(Y ) ≤ d(X).

Corollary. (1.4.11) Continuous images of separable spaces are separable.

A continuous mapping f : X → Y is called a closed (an open) mapping if for
every closed (open) set A ⊂ X the image f [A] is closed (open) in Y . Mappings
which are simultaneously closed and open are called closed-and-open mappings.

Theorem. (1.4.12) A mapping f : X → Y is closed (open) if and only if for
every B ⊂ Y and every open (closed) set A ⊂ X which contains f−1(B), there
exists an open (a closed) set C ⊂ Y containing B and such that f−1(C) ⊂ A.

Theorem. (1.4.13) A mapping f : X → Y is closed if and only if for every
point y ∈ Y and every open set U ⊂ X which contains f−1(y), there exists in
Y a neighbourhood V of the point y such that f−1(V ) ⊂ U .

Theorem. (1.4.14) A mapping f : X → Y is open if and only if there exists a
base B for X such that f [U ] is open in Y for every U ∈ B.

Theorem. (1.4.16) For every open mapping f : X → Y and every x ∈ X we
have χ(f(x), Y ) ≤ χ(x,X). If, moreover, f [X] = Y , then w(Y ) ≤ w(X) and
χ(Y ) ≤ χ(X).

Example. (1.4.17) X = R, Y = R/N , f : X → Y is closed and onto. We get
χ(Y ) > ℵ0 and w(Y ) > ℵ0, while w(X) = χ(X) = ℵ0.

A(α) = space on a set with cardinality α, topology= all subsets that do not
contain x0 and all subsets of X that have finite complement.

1.5 Axioms of separations

Theorem. (1.5.1) For every T0-space X we have |X| ≤ expw(X).

Proposition. (1.5.2) Suppose we are given a set X and a collection {B(x)}x∈X
of families of subsets of X which has properties (BP1)-(BP3). If in addition
the collection {B(x)}x∈X has the following property

(BP4) For every pair of distinct points x, y ∈ X there exist open set U ∈ B(x)
and V ∈ B(y) such that U ∩ V = ∅,

then the space X with the topology generated by the neighbourhood system {B(x)}x∈X
is a Hausdorff space.

Theorem. (1.5.3) For every Hausdorff space X we have |X| ≤ exp exp d(X)
and |X| ≤ [d(X)]χ(X).

Theorem. (1.5.4) For any pair f , g of continuous mappings of a space X into
Hausdorff space Y the set {x ∈ X : f(x) = g(x)} is closed.

A topological space X is called a T3-space or regular space, if X is a T1-space
and for every x ∈ X and every closed set F ⊂ X such that x /∈ F there exist
open sets U , V such that x ∈ U , F ⊂ V and U ∩ V = ∅.
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Proposition. (1.5.5) A T1-space X is a regular space if and only if for every
x ∈ X and every neighbourhood V of x in a fixed subbase P there exists a
neighbourhood U of x such that U ⊂ V .

Theorem. (1.5.6) For every regular space we have w(X) ≤ exp d(X).

A topological space is called a T3 1
2
-space or Tychonoff space or completely

regular space, if X is T1-space and for every x ∈ X and every closed set F ⊂ X,
x /∈ F there exists a continuous function f : X → I such that f(x) = 0 and
f(F ) = 1.

A topological space is called T4-space or normal space, if X is a T1-space
and for every pair of disjoint closed subsets A,B ⊂ X there exist open sets U ,
V such that A ⊂ U , B ⊂ V and U ∩ V = ∅.

Theorem (Urysohn’s lemma). (1.5.10) For every pair A, B of disjoint closed
subsets of a normal space X there exists a continuous function f : X → I such
that f(A) = 0 and f(B) = 1.

Corollary. (1.5.11) A subset A of a normal space X is a closed Gδ-set if and
only if there exists a continuous function f : X → I such that A = f−1(0).

Corollary. (1.5.12) A subset A of a normal space X is an open Fσ-set if and
only if there exists a continuous function f : X → I such that A = f−1((0, 1〉).

Two subsets A and B of a topological space X are called completely separated
if there exists a continuous function f : X → I such that f(A) = 0 and f(B) = 1.
We say that f separates sets A and B.

A subset A of a topological space X is called functionally closed1 if A =
f−1(0) for some f : X → I. Every functionally closed set is closed. The com-
plement of functionally closed set is called functionally open.

One readily verifies that a T1-space X is completely regular if and only if
the family of all functionally open sets is a base for X. In a normal space
functionally closed (open) sets coincide with closed Gδ-sets (open Fσ-sets).

Theorem. (1.5.13) Any disjoint functionally closed sets A, B in a topological
space X are completely separated; moreover, there exists a continuous function
f : X → I such that A = f−1(0) and B = f−1(1).

Lemma. (1.5.14) If X is a T1-space and for every closed set F ⊂ X and every
open W ⊂ X that contains F there exists a sequence W1,W2, . . . of open subsets

of X such that F ⊂
∞⋃
i=1

Wi and Wi ⊂ W for i = 1, 2, . . ., then the space X is

normal.

One can easily check that the condition in the above lemma is not only
sufficient but also necessary for normality of a T1-space X.

Theorem. (1.5.15) Every second-countable regular space is normal.

Theorem. (1.5.16) Every countable regular space is normal.

Example. (1.5.17) Sorgenfrey line K is a normal space.

1The terms “functionally closed set” and “functionally open set” adopted here seem more
suitable than the terms “zero-set” and “cozero-set” which are generally used.
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A family {As}s∈S of subsets of a set X is called a cover of X if
⋃
s∈S

As = X.

If X is a topological space and all sets As are open (closed), we say that the cover
{As} is open (closed). A family {As}s∈S is called point-finite (point-countable)
if for every x ∈ X the set {s ∈ S : x ∈ As} is finite (countable). Clearly every
locally finite cover is point-finite (:).

Theorem. (1.5.18) For every point-finite open cover {Us}s∈S of a normal space
X there exists an open cover {Vs}s∈S such that Vs ⊂ Us for every s ∈ S.

A topological space X is a perfectly normal space if X is a normal space and
every closed subset of X is a Gδ-set (equivalently every open subset is Fδ).

Theorem (The Vedenissoff theorem). (1.5.19) For every T1-space the following
conditions are equivalent:

(i) The space X is perfectly normal.

(ii) Open subsets of X are functionally open.

(iii) Closed subsets of X are functionally closed.

(iv) For every pair of disjoint closed subsets A,B ⊂ X there exists a continuous
function f : X → I such that f−1(0) = A and f−1(1) = B.

Theorem. (1.5.20) The class of all Ti-spaces for i = 1 and 4 and the class of
perfectly normal spaces are invariant under closed mappings.

1.5.C: A continuous mapping f : X → X is called a retraction of X, if
ff = f ; the set of all values of a retraction of X is called a retract of X.

Any retract of a Hausdorff space is closed.

1.6 Convergence in topological spaces: Nets and filters.
Sequential spaces and Fréchet spaces

We say that the net S′ = {xσ′ , σ′ ∈ Σ′} is finer than the net S = {xσ, σ ∈ Σ}
it there exists a function ϕ of Σ′ to Σ with following properties:

(i) For every σ0 ∈ Σ there exists a σ′0 ∈ Σ′ such that ϕ(σ′) ≥ σ0 whenever
σ′ ≥ σ′0.

(ii) xϕ(σ′) = xσ′ for σ′ ∈ Σ′.

A point x is called a cluster point of a net S = {xσ, σ ∈ Σ} if for every
σ0 ∈ Σ there exists a σ ≥ σ0 such that xσ ∈ U .

Proposition. (1.6.1) If x is a cluster point of the net S′ that is finer then S,
then x is a cluster point of S. If x is a limit of S, then it is a limits of S′. If
x is a cluster point of the net S, then it is a limit of some net S′ that is finer
than S.

Proposition. (1.6.3) The point x belongs to A if and only if there exists a net
consisting of elements of A and converging to X.

Corollary. (1.6.4) A set A is closed if and only if together with any net it
contains all its limits.

8



Corollary. (1.6.5) The point x belongs to Ad if and only if there exists a net
S = {xσ, σ ∈ Σ} converging to X, such that xσ ∈ A and xσ 6= x for every
σ ∈ Σ.

Proposition. (1.6.6) A mapping f of a topological space X to a topological
space Y is continuous if and only if

f [ lim
σ∈Σ

xσ] ⊂ lim
σ∈Σ

f(xσ)

for every net {xσ, σ ∈ Σ} in the space X.

Proposition. (1.6.7) A topological space X a Hausdorff space if and only if
every net in X has at most one limit.

LetR be a family of sets that contains together with A and B the intersection
A ∩B. By a filter in R we mean a non-empty subfamily F ⊂ R satisfying the
following conditions:

(F1) ∅ /∈ F

(F2) If A1, A2 ∈ F , then A1 ∩A2 ∈ F .

(F3) If A ∈ F and A ⊂ A1 ∈ R, then A1 ∈ R.

A filter-base in R is a non-empty family G ⊂ R such that ∅ /∈ G and
(FB) If A1, A2 ∈ G, then there exists an A3 ∈ G such that A3 ⊂ A1 ∩A2.

A point x is called a limit of a filter F if every neighborhood of x is a member
of F .

A point x is called a cluster point of a filter F if x belongs to closure of every
member of F .

We say that a filter F ′ is finer than a filter F if F ′ ⊃ F .

Proposition. (1.6.8) If x is cluster point of the filter F ′ that is finer than F ,
then x is a cluster point of the filter F . If x is a limit of F , then it is a limits
of F ′. If x is a cluster point of the filter F , then it is a limit of some filter F ′
that is finer than S.

Proposition. (1.6.9) The point x belongs to A if and only if there exists a
filter-base consisting of subsets of A converging to x.

Proposition. (1.6.10) A mapping f of a topological space X to a topological
space Y is continuous if and only if for every filter-base G in the space X and
the filter-base f [G] = {f [A] : A ∈ G} in the space Y we have

f [limG] ⊂ lim f [G].

Proposition. (1.6.11) A topological space X is a Hausdorff space if and only
if every filter in X has at most one limit.

Theorem. (1.6.12) For every net S = {xσ, σ ∈ Σ} in a topological space X,
the family F(S), consisting of all sets A ⊂ X with the property that there exists
a σ0 ∈ Σ such that xσ ∈ A whenever σ ≥ σ0, is a filter in the space X and

limF(S) = limS.

If a net S′ is finer than the net S, then the filter F(S′) is finer than the filter
F(S).
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Theorem. (1.6.13) Let F be a filter in a topological space X; let us denote by
Σ the set of all pairs (x,A), where x ∈ A ∈ F and let us define that (x1, A1) ≤
(x2, A2) if A2 ⊂ A1. The set Σ is directed by ≤, and for the net S(F) = {xσ, σ ∈
Σ}, where xσ = x for σ = (x,A) ∈ Σ, we have F = F(S(F)) and

limS(F) = limF .

sequential space, Fréchet space

Theorem. (1.6.14) Every first-countable space is a Fréchet space and every
Fréchet space is a sequential space.

Proposition. (1.6.15) A mapping f of a sequential space X to a topological
space Y is continuous if and only if f [limxi] ⊂ lim f(xi) for every sequence (xi)
in the space X.

Proposition. (1.6.16) If every sequence in a topological space X has at most
one limit, then X is a T1-space. If, moreover, X is first-countable then X is a
Hausdorff space.

Proposition. (1.6.17) A first-countable space X is a Hausdorff space if and
only if every sequence in the space X has at most one limit.

1.7 Problems

1.7.1 Urysohn spaces and semiregular spaces I

TODO Urysohn space 2

A topological space X is called a semiregular space if X is a T2-space and
the family of all open domains is a base for X.

Let (X,O) be a Hausdorff space. Generate on X a topology O′ ⊂ O by the
base consisting of all open domains of (X,O) and show that the space (X,O′)
is semiregular and has the same open domains as the space (X,O).

1.7.2 Cantor-Bendixson theorem

perfect set= dense in itself and closed
scattered set= contains no non-empty dense in itself subset

Show that if each member of a family A of subset of a space X is dense in
itself, then the union

⋃
A is dense in itself. Note that if A ⊂ X is dense in

itself, then the closure A is dense in itself. Deduce from the above that every
topological space can be represented as the union of two disjoint sets, one of
which is perfect and the second one is scattered.

A point x of a topological space X is called a condensation point of a set
A ⊂ X if every neighborhood of x contains uncountably many points of A; the
set of all condensation points of A is denoted by A0.

Verify that A0 ⊂ Ad, A0 = A0 and (A ∪ B)0 = A0 ∪ B0. Show that for
every subset A of a second-countable space, the difference A \ A0 is countable
and (A0)0 = A0.

Deduce from the above that every second-countable space can be represented
as the union of two disjoint sets, of which one is perfect and the other countable
(this is the Cantor-Bendixson theorem). Cantor and I. Bendixson proved this
fact independently in 1883 for subsets of the real line.

2TODO
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1.7.3 Cardinal functions I

The smallest infinite cardinal number α such that every family of pairwise dis-
joint non-empty open subsets of X has cardinality ≤ α is called the Souslin
number or cellularity and denoted by c(X).

w(X) ≥ d(X) ≥ c(X)

The smallest infinite cardinal number α such that every subset of X consist-
ing exclusively of isolated points (i.e. satisfying the equality A = A \ Ad) has
cardinality ≤ α is denoted by hc(X).

w(X) ≥ hc(X) ≥ c(X)

The smallest infinite cardinal number α such that every closed subset con-
sisting exclusively of isolated points has cardinality ≤ α is called the extent of
the space X and denoted by e(X).

w(X) ≥ hc(X) ≥ e(X)

For sake of simplicity, in all problems about cardinal functions, the cardinal
functions defined in the main body of the book (weight, character and density,
as yet) will be re-defined to assume only infinite values: the new value of f(X)
is defined to be ℵ0 if the old value is finite, and to be equal to the old value if
this is an infinite cardinal number. (Sometimes topologists say that “there are
no finite cardinal numbers in general topology”).

If Y is a continuous image of X, then c(Y ) ≤ c(X) and hc(Y ) ≤ hc(X). If,
moreover, X is a T1-space, then also e(Y ) ≤ e(X).

The tightness of a point x in a topological space X is the smallest cardinal
number m ≥ ℵ0 with the property that if x ∈ C, then there exists a C0 ⊂ C
such that |C0| ≤ m and x ∈ C0; this cardinal number is denoted by τ(x,X).
The tightness of a topological space X is the supremum of all numbers τ(x,X)
for x ∈ X; this cardinal number is denoted by τ(X).

τ(x,X) ≤ χ(x,X) and τ(X) ≤ χ(X).
Tightness τ(X) is equal to the smallest cardinal number m ≥ ℵ0 with the

property that for any C ⊂ X which is not closed there exists a C0 ⊂ C such
that |C0| ≤ m and C0 \ C 6= ∅.

For every sequential space we have τ(X) = ℵ0.

2 Operations on topological spaces

2.1 Subspaces

Ã = A ∩M (Ã=in subspace M)

Proposition. (2.1.3) If the composition gf of mappings f : X → Y and g : Y →
Z is closed (open), then the restriction g|f [X] : f [X]→ Z is closed (open).

Proposition. (2.1.4) If f : X → Y is a closed (an open) mapping, then on any
subspace the L ⊂ Y the restriction fL : f−1(L)→ L is closed (open).

homeomorphic embedding
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Theorem. (2.1.6) Any subspace of a Ti-space is a Ti-space for i ≤ 3 1
2 . Normal-

ity is hereditary with respect to closed subsets. Perfect normality is a hereditary
property.

Two subsets A and B of a topological space X are called separated if A∩B =
∅ = A∩B. Two disjoint sets are separated if and only if neither of them contains
accumulation points of the other.

Theorem. (2.1.7) For every T1-space X the following conditions are equivalent:

(i) The space X is hereditarily normal.

(ii) Every open subspace of X is normal.

(iii) For every pair of separated sets A,B ⊂ X there exist open sets U, V ⊂ X
such that A ⊂ U , B ⊂ V and U ∩ V = ∅.

Hereditarily normal spaces are sometimes called T5-spaces, and members of
the narrower class of perfectly normal spaces are called T6-spaces.

Theorem (Tietze-Urysohn theorem). (2.1.8) Every continuous function from
a closed subspace M of a normal space X to I or R is continuously extendable
over X.

Theorem. (2.1.9) If a continuous mapping f of a dense subset A of a topo-
logical space X to a Hausdorff space Y is continuously extendable over X, then
the extension is uniquely determined by f .

Niemytzki plane is not normal.

Proposition. (2.1.11) If {Us}s∈S is an open cover of a space X and {fs}s∈S,
where fs : Us → Y is a family of compatible continuous mappings, the combina-
tion f = ∇fs is a continuous mapping of X to Y .

Corollary. (2.1.12) A mapping f of a topological space X to a topological space
Y is continuous if and only if every point x ∈ X has a neighborhood Ux such
that f |Ux is continuous.

Proposition. (2.1.13) The same as preceding proposition for locally finite closed
cover.

Theorem. (2.1.14) For every countable discrete family {Fi}∞i=1 of closed sub-
sets of a normal space X there exists a family {Ui}∞i=1 of open subsets of X such
that Fi ⊂ Ui for i = 1, 2, . . . and Ui ∩ Uj = ∅ for i 6= j.

Proposition. (2.1.15) Suppose we are given a topological space X, a cover
{As}s∈S of the space X and a family {fs}s∈S of compatible mappings, where
fs : As → Y such that the combination f = ∇

s∈S
fs : X → Y is continuous. If all

mappings fs are open (closed and the family fs[As] is locally finite), then the
combination f is open (closed).

2.1.D: Verify that a subspace M of a topological space X is a retract of X
if and only if every continuous mapping defined on M is extendable over X
of - equivalently – if and only if there exists a mapping r : X → M such that
r|M = idM .

2.1.E: Prove that normality is hereditary with respect to Fσ-sets.
2.1.I: Prove that the Sorgenfrey line is hereditarily separable.

12



2.2 Sums

Theorem. (2.2.7) Any sum of Ti-spaces is a Ti-space for i ≤ 6.

2.3 Cartesian products

Proposition. (2.3.1) The family of all sets
∏
s∈S

Ws, where Ws is an open subset

of Xs and Ws 6= Xs only for finitely many s ∈ S, is a base for the Cartesian
product

∏
s∈S

Xs.

Moreover, if for every s ∈ S a base Bs for Xs is fixed, then the subfamily
consisting of those

∏
s∈S

Ws in which Ws ∈ Bs whenever Ws 6= Xs, also is a base.

The base for
∏
s∈S

Xs described in the first part of the above proposition is

called the canonical base for the Cartesian product.

Proposition. (2.3.2) If {Xs}s∈S is a family of topological spaces and As is
for every s ∈ S a subspace of Xs, then the two topologies defined on the set
A =

∏
s∈S

As, viz, the topology of the Cartesian product of subspaces {As}s∈S

and the topology of a subspace of the Cartesian product
∏
s∈S

Xs, coincide.

Proposition. (2.3.3) For every family of sets {As} where As ⊂ Xs in the
Cartesian product

∏
Xs we have

∏
As =

∏
As.

Corollary. (2.3.4) The set
∏
As, where ∅ 6= As ⊂ Xs, is closed in

∏
Xs if and

only if every As is closed in Xs.

Corollary. (2.3.5) The set
∏
As , where ∅ 6= As ⊂ Xs, is dense in

∏
Xs if

and only if every As is dense in Xs.

Projections are open but they aren’t closed in general.

Theorem. (2.3.11) Any Cartesian product of Ti-spaces is a Ti-space for i ≤ 3 1
2 .

If the Cartesian product
∏
s∈S

Xs is a non-empty Ti-space, then all Xs’s are Ti-

spaces for i ≤ 6.

Example. (2.3.12) K ×K is not normal, K - the Sorgenfrey line.

Theorem. (2.3.13) If w(Xs) ≤ α ≥ ℵ0 for every s ∈ S and cardS ≤ α then
w(
∏
s∈S Xs) ≤ α.

Similarly, if χ(Xs) ≤ α ≥ ℵ0 for every s ∈ S and cardS ≤ α then
χ(
∏
s∈S Xs) ≤ α.

Corollary. (2.3.14) First-countability and second-countability are ℵ0-multiplicative
properties.

Theorem (Hewitt-Marczewski-Pondiczery). (2.3.15) If d(Xs) ≤ α ≥ ℵ0 for
every s ∈ S and cardS ≤ 2α, then d(

∏
Xs) ≤ α.

Corollary. (2.3.16) Separability is a c-multiplicative property.
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Theorem. (2.3.17) If d(Xs) ≤ α ≥ ℵ0 for every s ∈ S, then any family of
pairwise disjoint non-empty open subsets of the Cartesian product has cardinality
≤ α.

Corollary. (2.3.18) In the Cartesian product of separable spaces any family of
pairwise disjoint non-empty open sets is countable.

Suppose we are given a topological space X, a family {Ys}s∈S of topological
spaces and a family of mappings F = {fs}, where fs : X → Ys. We say that
the family F separates points if for every pair of distinct points x, y ∈ X there
exists a mapping fs ∈ F such that fs(x) 6= fs(y). If for every x ∈ X and every
closed set F ⊂ X such that x /∈ F there exists a mapping fs ∈ F such that
fs(x) /∈ fs(F ), then we say that the family F separates points and closed sets.
Let us note that if X is a T0-space, then every family F separating points and
closed sets separates points as well.

Lemma. (2.3.19) If the mapping f : X → Y is one-to-one and the one-element
family {f} separates points and closed sets, then f is a homeomorphic embed-
ding.

Theorem (The diagonal theorem). (2.3.20) If the family F = {fs}s∈S, where
fs : X → Ys, separates points, then the diagonal f = 4

s∈S
fs : X →

∏
s∈S

Ys is

a one-to-one mapping. If, moreover, the family F separates points and closed
sets, then f is a homeomorphic embedding.

In particular, if there exists an s ∈ S such that fs is a homeomorphic em-
bedding, then f is a homeomorphic embedding.

Corollary. (2.3.21) If Xs = X for every s ∈ S, then the diagonal i = 4idXs : X →∏
Xs is a homeomorphic embedding; hence the diagonal 4 of the Cartesian

product Xm is homeomorphic to X.

By the graph of mapping f of a space X to a space Y , we mean the subset
of Cartesian product X × Y defined by G(f) = {(x, y) ∈ X × Y : y = f(x)}.

Corollary. (2.3.22) For every continuous mapping f : X → Y the graph G(f)
is the image of X under the homeomorphic embedding idX4f : X → X × Y .
The restriction p|G(f) of the projection p : X × Y → X is a homeomorphism.
If Y is a Hausdorff space, then G(f) is a closed subset of X × Y .

We say that the space X is universal for all spaces having a topological
property P if X has the property P and every space that has the property P is
embeddable in X.

Theorem. (2.3.23) The Tychonoff cube Im is universal for all Tychonoff spaces
of weight m ≥ ℵ0.

The Cantor cube of weight m ≥ ℵ0 is the space Dm. The Cantor cube Dℵ0

is called Cantor set . Cantor cube is universal space for all zero-dimensional
spaces of weight m.

Theorem. (2.3.24) For every m ≥ ℵ0 and every x ∈ Dm, we have χ(x,Dm) =
m.

Corollary. (2.3.25) For every m ≥ ℵ0 and every x ∈ Im we have χ(x, Im) = m.
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The Alexandroff cube of weight α ≥ ℵ0 is the space Fα, where F is Sierpiński
space.

Theorem. (2.3.26) The Alexandroff cube Fα is universal for all T0-spaces of
weight α ≥ ℵ0.

Proposition. (2.3.27) If the Cartesian product f =
∏
fs, where fs : Xs → Ys

and Xs 6= ∅ for s ∈ S, is closed, then all mappings fs are closed.

The converse is not true in general.

Proposition. (2.3.29) The Cartesian product f =
∏
fs, where fs : Xs → Ys

and Xs 6= ∅ for s ∈ S, is open if and only if all mappings fs are open and there
exists a finite set S0 ⊂ S such that fs(Xs) = Ys for s ∈ S \ S0.

Proposition. (2.3.30) If mappings f1, f2, . . . , fk, where fi : Xi → Yi, are closed,
Y1 is a T1-space and Y2, Y3, . . . , Yk are T3-spaces, then the diagonal f = f14 . . .4fk
is closed.

Converse is not true in general. Proposition 2.3.30 cannot be generalized to
infinite diagonals.

Proposition. (2.3.32) If the diagonal f = 4fs is open, where fs : Xs → Ys,
then all mappings fs are open.

The converse is not true, even for finite systems.

Proposition. (2.3.34) A net xσ in the Cartesian product
∏
Xs converges to x

if and only if every ps(xσ) converges to ps(x).

Proposition. (2.3.35) If F is a filter in the Cartesian product
∏
Xs, then for

every s ∈ S the family Fs = {ps(F ) : F ∈ F} is a filter in Xs. The filter F
converges to x if and only if the filter Fs converges to ps(x) for every s ∈ S.

Example. (2.3.36) Normality is not a hereditary property.

Example. (2.3.B) Int(A×B) = IntA× IntB, Fr(A×B) = FrA× FrB
If As is an Fσ-set (Gδ-set) and |S| ≤ ℵ0, then

∏
As is and Fσ-set (Gδ-set).

Example. (2.3.C) X is Hausdorff if and only if the diagonal 4 of the Cartesian
product X ×X is closed in X ×X.

Example. (2.3.L) If a topological property P is hereditary with respect to
both closed subsets and open subsets and is countably multiplicative, then, in
the class of Hausdorff spaces, P is hereditary with respect to Gδ sets.

If a topological property P is hereditary with respect to both closed subsets
and open subsets and is multiplicative, then if the closed interval I has P , all
Tychonoff spaces have P .

2.4 Quotient spaces and quotient mappings

Proposition. (2.4.2) A mapping f of a quotient space X/E to a topological
space Y is continuous if and only if the composition f ◦ q is continuous.

Let f : X → Y be continuous. Let E(f) be equivalence relation on X deter-
mined by f . The mapping f : X → Y can be represented as the composition
fq, f is continuous.
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Proposition. (2.4.3) For a mapping f of a topological space X onto a topolog-
ical space Y the following conditions are equivalent:

(i) The mapping f is quotient.

(ii) The set f−1(U) is open in X if and only if U is open in Y .

(iii) The set f−1(F ) is closed in X if and only if F is closed in Y .

(iv) The mapping f : X/E(f)→ Y is homeomorphism.

Corollary. (2.4.4) The composition of two quotients mapping is a quotient
mapping.

Corollary. (2.4.5) If the composition gf of two mappings is quotient, then g
is a quotient mapping.

Corollary. (2.4.6) If for a continuous mapping f : X → Y there exists a set
A ⊂ X such that f(A) = Y and the restriction f |A is quotient, then f is a
quotient mapping.

Corollary. (2.4.7) Every one-to-one quotient mapping is a homeomorphism.

Corollary. (2.4.8) Closed mappings onto and open mappings onto are quotient
mappings.

Proposition. (2.4.9) For an equivalence relation E on a topological space X
the following conditions are equivalent:

(i) The natural mapping q : X → X/E is closed (open).

(ii) For every closed (open) set A ⊂ X the union of all equivalence classes
that meet A is closed (open) in X.

(iii) For every open (closed) set A ⊂ X the union of all equivalence classes
that are contained in A is open (closed) in X.

Corollary. (2.4.10) The quotient mapping f : X → Y is closed (open) if and
only if the set f−1f(A) ⊂ X is closed (open) for every closed (open) A ⊂ X.

We say that an equivalence relation E on a space X is closed (open) equiva-
lence relation if the natural mapping g : X → X/E is closed (open). Decompo-
sitions of topological space that correspond to closed (open) equivalence relation
are called upper (lower semicontinuous). In this context the word identification
is also often used, mainly with respect to upper semicontinuous decompositions:
we say that the quotient space X/E, where E is the equivalence relation corre-
sponding to the decomposition E , is obtained by identifying each element of E
to a point.

adjunction space = we are given two disjoint topological spaces X and Y
and a continuous mapping f : M → Y defined on a closed subset M of the space
X. Adjunction space = (X ⊕ Y )/E.

Theorem. (2.4.13) If M is a closed subspace of X and E is an upper semi-
continuous decomposition of M , then the decomposition of X into elements of
E and one-points set {x} with x ∈ X \M is upper semicontinuous.
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Proposition. (2.4.14) A quotient space of a quotient space of X is a quotient
space of X. More precisely . . .

Proposition. (2.4.15) If f : X → Y is a quotient mapping, then for any set
B ⊂ Y which is either closed or open, the restriction fB : f−1(B) → B is a
quotient mapping.

In other words, if E is an equivalence relation on a space X, then for any
A ⊂ X which is either open or closed and satisfies the condition q−1q(A) = A,
where q is the natural mapping, the mapping q|A : A/(E|A) → q[A] ⊂ X/E is
homeomorphism.

Proposition. (2.4.18) Suppose we are given a topological space X, a cover
{As}s∈S of the space X and a family {fs}s∈S of compatible mappings, where
fs : As → Y such that the combination f = 4fs : X → Y is continuous. If there
exists a set S0 ⊂ S such that the restriction fs|As : As → fs(As) are quotient
for s ∈ S0 and {fs(As)}s∈S0 is either an open cover of Y or a locally finite
closed cover of Y , then the combination f is a quotient mapping.

Now, suppose we are given a family {Xs}s∈S of topological spaces and for
every s ∈ S an equivalence relation Es on Xs. Letting {xs}E{ys} if and only
if xsEsys for every s ∈ S we define an equivalence relation E on the Carte-
sian product

∏
s∈S

Xs; this relation is called the Cartesian product of relations

{Es}s∈S.

Proposition. (2.4.19) If for every s ∈ S, Es is an open equivalence relation
on a space Xs and qs : Xs → Xs/Es is the natural mapping, then the mapping∏
s∈S

qs :
∏
s∈S

Xs/
∏
s∈S

Es →
∏
s∈S

(Xs/Es) is a homeomorphism.

Example. (2.4.20) Two quotient maps such their product is not quotient. X1 =
Y1 = R\{ 1

2 ,
1
3 , . . .} and f1 = idX1

. X2 = R, Y2 = R/N , f2 : X2 → Y2 is a natural
mapping. f = f1 × f2 is not a quotient mapping.

Example. (2.4.E) Sum ⊕fs is quotient if and only if all mappings fs are quo-
tient.

For every retraction f : X → X the restriction f |X : X → f(X) is a quotient
mapping.

2.4.F: f : X → Y if X onto Y is called hereditarily quotient if for every
B ⊂ Y the restriction fB : f−1(B)→ B is a quotient mapping.

A mapping f : X → Y of X onto Y is hereditarily quotient if and only if the
set f [f−1(B)] ⊂ Y is closed for every B ⊂ Y or –equivalently - if and only if for
every y ∈ Y and any open U ⊂ X that contains f−1(y), we have y ∈ Int f [U ].

Composition of two hereditarily quotient mappings is a hereditarily quo-
tient mapping. Sum of hereditarily quotient mappings is a hereditarily quotient
mapping. Proposition 2.4.18 holds also for hereditarily quotient mappings.

Any quotient mapping f : X → Y onto a Fréchet space Y in which every
sequence has at most one limit (in particular, onto a Fréchet T2-space) is hered-
itarily quotient.
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2.5 Limits of inverse systems

Suppose that to every σ in a set Σ directed by the relation ≤ corresponds a
topological space Xσ, and that for any % ≤ σ a continuous mapping πσ% : Xσ →
X% is defined; suppose further that π%τπ

σ
% = πστ for τ ≤ % ≤ σ and that πσσ =

idXσ . In this situation we say that the family S = {Xσ, π
σ
% ,Σ} is an inverse

system of the spaces Xσ; the mappings πσ% are called bonding mappings of the
inverse system S. If Σ = N with natural order, S is called inverse sequence.

Let S be an inverse system; an element {xσ} of the Cartesian product∏
σ∈ΣXσ is called at thread of S if πσ% (xσ) = x% for any % ≤ σ, and the subspace

of
∏
Xσ consisting of all threads of S is called limit of the inverse system and

is denoted by lim←−S.

Proposition. (2.5.1) Limit of an inverse system of Hausdorff spaces is a closed
subset of the Cartesian product.

Proposition. (2.5.2) The limit of an inverse system of Ti-spaces is a Ti-space
for i ≤ 3 1

2 .

Example. (2.5.3) Suppose we are given a family {Xs}s∈S of topological spaces
where |S| ≥ ℵ0. Observe that the family Σ of all finite subsets of S is directed
by inclusion. Letting Xσ =

∏
s∈σXs we obtain inverse system. (πσ% is the

restriction of elements of Xσ to the subset % of the set σ.) Limit of this system
is cartesian product

∏
s∈S Xs.

Let X = lim←−S. A mapping πσ = pσ|X : X → Xσ is called the projection of
the limit of S to Xσ.

Proposition. (2.5.5) The family of all sets π−1
σ (Uσ), where Uσ is an open

subset of Xσ and σ runs over a subset Σ′ cofinal in Σ, is a base for the limit of
the inverse system S.

Moreover, if for every σ ∈ Σ a base Bσ for Xσ is fixed, then the subfamily
consisting of those π−1

σ (Uσ) in which Uσ ∈ Bσ, also is a base.

Proposition. (2.5.6) For every subspace A of the limit X of an inverse system
S = {Xσ, π

σ
% ,Σ} the family SA = {Aσ, π̃σ% ,Σ}, where Aσ = πσ[A] and π̃σ% (x) =

πσ% (x) for x ∈ Aσ, is an inverse system and lim←−SA = A ⊂ X.

Corollary. (2.5.7) Any closed subspace A of the limit X of an inverse system
S = {Xσ, π

σ
% ,Σ} is the limit of the inverse system SA = {Aσ, π̃σ% ,Σ} of closed

subspaces Aσ of the spaces Xσ.

Theorem. (2.5.8) Let P be a topological property that is hereditary with respect
to closed subsets and finitely multiplicative. A topological space X is homeomor-
phic to the limit of an inverse system of T2-spaces with the property P if and only
if X is homeomorphic to a closed subspace of a Cartesian product of T2-spaces
with the property P.

Suppose we are given two inverse systems S = {Xσ, π
σ
% ,Σ} and S′ = {Yσ′ , πσ

′

%′ ,Σ
′};

a mapping of the system S to the system S′ is a family {ϕ, fσ′} consisting of a
nondecreasing function ϕ from Σ′ to Σ such that the set ϕ[Σ′] is cofinal in Σ,
and of continuous mappings fσ′ : Xϕ(σ′) → Yσ′ such that

πσ
′

%′ fσ′ = f%′π
ϕ(σ′)
ϕ(%′) ,
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i.e., such that the diagram

Xϕ(σ′)

f ′σ //

π
ϕ(σ′)
ϕ(%′)

��

Yσ′

πσ
′
%′

��
Xϕ(%′)

f%′
// Y ′%

is commutative for any σ′, %′ ∈ Σ′ satisfying %′ ≤ σ′.
Any mapping of an inverse system S to an inverse system S′ induces a

continuous mapping of lim←−S to lim←−S′. This mapping is called the limit mapping
induced by {ϕ, fσ′} and is denoted by lim←−{ϕ, fσ′}.

Lemma. (2.5.9) Let {ϕ, fσ′} be a mapping of an inverse system S to an inverse
system S′. If all mappings fσ′ are one-to-one, the limit mapping f = lim←−{ϕ, fσ′}
also is one-to-one. If, moreover, all mappings fσ′ are onto, f also is a mapping
onto.

Proposition. (2.5.10) Let {ϕ, fσ′} be a mapping of an inverse system S to an
inverse system S′. If all mappings fσ′ are homeomorphisms, the limit mapping
f = lim←−{ϕ, fσ′} also is a homeomorphism.

Corollary. (2.5.11) Let S = {Xσ, π
σ
% ,Σ} be an inverse system and Σ′ a subset

cofinal in Σ. The mapping consisting in restricting all threads from X = lim←−S
to Σ′ is a homeomorphism of X onto the space X ′ = lim←−S′, where S′ =

{X ′σ, π′σ
′

% ,Σ′}.

Corollary. (2.5.12) Let S = {Xσ, π
σ
% ,Σ} be an inverse system; if in the directed

set Σ there exists and element σ0 such that σ ≤ σ0 for every σ ∈ Σ, then the
limit of S is homeomorphic to the space Xσ0

.

Theorem. (2.5.13) For every mapping {ϕ, f ′σ} of an inverse system S = {Xσ, π
σ
% ,Σ}

to an inverse system S′ = {Yσ′ , πσ
′

%′ ,Σ
′} there exists a homeomorphic embedding

h : lim←−S →
∏

σ′∈Σ′
Zσ′ , where Zσ′ = Xϕ(σ′), such that lim←−{ϕ, fσ′} = (

∏
σ′∈Σ′

fσ′)h.

If all Xϕ(σ′) are Hausdorff spaces, then f [lim←−S] is a closed subset of
∏

σ′∈Σ′
Zσ′ .

Theorem. (2.5.14) For every inverse system S = {Xσ, π
σ
% ,Σ} and any σ0 ∈ Σ

there exist an inverse system S′ = {Yσ′ , πσ
′

%′ ,Σ
′}, where Yσ′ = Xσ0 for all σ′ ∈

Σ′, a homeomorphism h : lim←−S′ → Xσ0
, and a mapping {ϕ, fσ′} of S to S′,

where fσ′ are bonding mappings of S, such that πσ0
= h lim←−{ϕ, fσ′}.

2.6 Function spaces I

Y X = the set of all continuous mappings from X to Y
topology of uniform convergence

Proposition. (2.6.2) For every topological space X the set IX is closed in the
space RX with the topology of uniform convergence.

Now let X and Y be arbitrary topological spaces; for A ⊆ X and B ⊆ Y
define

M(A,B) = {f ∈ Y X ; f [A] ⊆ B}. (1)
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Denote by F the family of all finite subsets of X and let O be the topology

of Y . The family B of all sets
k⋂
i=1

M(Ai, Ui)), where Ai ∈ F and Ui ∈ O for

i = 1, 2, . . . , k, generates a topology on Y X ; this topology is called the topology
of pointwise convergence on Y X . The family B is a base for the space Y X with
the topology of pointwise convergence.

Proposition. (2.6.3) The topology of pointwise convergence on Y X coincides
with the topology of a subspace of the cartesian product

∏
x∈X Yx, where Yx = Y

for every x ∈ X.

Theorem. (2.6.4) If Y is a Ti-space, then the space Y X with the topology of
pointwise convergence also is a Ti-space for i ≤ 3 1

2 .

Proposition. (2.6.5) A net {fσ;σ ∈ Σ} in the space Y X with the topology of
pointwise convergence converges to f ∈ Y X if and only if the net {fσ(x), σ ∈ Σ}
converges to f(x) for every x ∈ X.

Proposition. (2.6.6) For every topological space X the topology of uniform
convergence on RX is finer than the topology of pointwise convergence.

Proposition. (2.6.9) For every family {Xs}s∈S of non-empty topological spaces

and a topological space Y , the combination ∇ :
∏
s∈S

(Y Xs)→ Y
(
⊕
s∈S

Xs)

is a home-

omorphism with respect to the topology of pointwise convergence on function
spaces.

Proposition. (2.6.10) For every topological space X and a family {Ys}s∈S of
topological spaces, the diagonal 4 :

∏
s∈S

(Y Xs )→ (
∏
s∈S

Ys)
X is a homeomorphism

with respect to the topology of pointwise convergence on function spaces.

Let us observe that any mappings g : Y → Z and h : T → X induce mapping
Φg of Y X to ZX and Ψh of Y X to Y T defined by letting

Φg(f) = gf for f ∈ Y X and Ψh(f) = fh for f ∈ Y X . (10)

Since

Φ−1
g (M(A,B)) = M(A, g−1(B)) and Ψ−1

h (M(A,B)) = M(h[A], B), (11)

both Φg and Ψh are continuous with respect to the topology of pointwise con-
vergence on function spaces.

The mappings Φg and Ψh are connected with the operation Σ of composition
of mappings; in fact from (10) it follows immediately that

Φg(f) = Σ(g, f) and Ψh(f) = Σ(f, h).

The mapping Ω of Y X × X to Y defined by Ω(f, x) = f(x) is called the
evaluation mapping of Y X . It is also connected with the operation Σ; namely,
Ω is the composition of mappings

Y X ×X
idYX×iX// Y X ×X{p} Σ // Y {p}

i−1
Y // Y, i.e. Ω = i−1

Y Σ(idYX × iX)

(12)
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One easily sees that the formula

{[Λ(f)](z)}(x) = f(z, x), (13)

where f is a mapping of Z × X to Y , defines a one-to-one correspondence Λ
between the set of all (not necessarily continuous) mapping of Z×X to Y and the
set of all mapping of Z to the set of all mapping of X to Y ; this correspondence
is called the exponential mapping.

We say that a topology on Y X is proper if for every space Z and any f ∈
Y (Z×X) the mapping Λ(f) belongs to (Y X)Z . Similarly, we say that a topology
on Y X is admissible if for every space Z and any g ∈ (Y X)Z the mapping Λ−1(g)
belongs to Y (Z×X). A topology on Y X that is both proper and admissible is
called an acceptable topology.

Proposition. (2.6.11) A topology on Y X is admissible if and only if the eval-
uation mapping of Y X is continuous, i.e., if Ω: Y X ×X → Y .

Proposition. (2.6.12) For every pair X, Y of topological spaces and any two
topologies O, O′ on the function space Y X we have:

(i) If the topology O is proper and O′ ⊂ O, the topology O′ is proper.

(ii) If the topology O is admissible and O ⊂ O′, then the topology O is admis-
sible.

(iii) If the topology O is proper and the topology O′ is admissible, then O ⊂ O′.

(iv) On Y X there exists at most one acceptable topology.

The topology of pointwise convergence is proper.
The topology of pointwise convergence is generally not admissible; indeed for

this topology the fact that g is in (Y X)Z means that for all z0 ∈ Z and x0 ∈ X
the mapping [g(z0)](x) and [g(z)](x0) are continuous, while the fact that Λ−1(g)
is in Y (Z×X) means that g is continuous with respect to both coordinates.

The topology of uniform convergence is admissible. On the other hand, the
topology of uniform convergence is generally not proper.

2.7 Problems

2.7.1 Cardinal functions II

f is cardinal function→ hf is supremum over all subspaces. Hereditary density,
hereditary Souslin number etc.

hw(X) = w(X), hχ(X) = χ(X), hτ(X) = τ(X), hc(X) = he(X)
hd(X) ≥ τ(X)
If A is a dense subspace of X, then c(A) = c(X), but not necessarily d(A) ≤

d(X).
R with the topology generated by the base (a, b) \ A, where |A| ≤ ℵ0, is a

Hausdorff space such that hd(X) > hc(X). The existence of such regular space
is connected with Souslin’s problem.

Souslin’s problem - the question whether there exists a linearly ordered space
X such that c(X) = ℵ0 and d(X) > ℵ0 (a Souslin space). If X is a Souslin
space then c(X ×X) > ℵ0.
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2.7.2 Spaces of closed subsets I

2.7.20(a) For any topological space X we denote by 2X the family of all non-
empty closed subsets ofX. The family B of all the sets of the form V(U1, . . . , Uk) =

{B ∈ 2X : B ⊂
k⋃
i=1

Ui and B ∩ Ui 6= ∅ for i = 1, 2, . . . , k}, where U1, . . . , Uk is

a sequence of open subsets of X generates a topology on 2X ; this topology is
called the Vietoris topology on 2X and the set 2X with the Vietoris topology is
called the exponential space of X.

3 Compact spaces

3.1 Compact spaces

Let us recall that a cover of a set X is a family {As}s∈S of subsets of X such
that

⋃
s∈S As = X, and that - if X is a topological space- {As}s∈S is an open

(a closed) cover of X if all sets As are open (closed). We say that a cover
B = {Bt}t∈T is a refinement of another cover A = {As}s∈S of the same set X
if for every t ∈ T there exists an s(t) ∈ S such that Bt ⊂ As(t); in this situation
we say also that B refines A. A cover A′ = {A′s}s∈S′ of X is a subcover of
another cover A = {As}s∈S of X if S′ ⊂ S and A′s = As for every s ∈ S′. In
particular, any subcover is a refinement.

A topological space X is called a compact space if X is a Hausdorff space
and every open cover of X has a finite subcover, i.e., if for every open cover
{Us}s∈S of the space X there exists a finite set {s1, s2, . . . , sk} ⊂ S such that
X = Us1 ∪ Us2 ∪ . . . ∪ Usk .

Theorem. (3.1.1) A Hausdorff space X is compact if and only if every family
of closed subsets of X which has the finite intersection property has non-empty
intersection.

Theorem. (3.1.2) Every closed subspace of a compact space is compact.

Theorem. (3.1.3) If a subspace A of a topological space X is compact, then for
every family {Us}s∈S of open subsets of X such that A ⊂

⋃
s∈S

Us there exists a

finite set {s1, . . . , sk} ⊂ S such that A ⊂
k⋃
i=1

Usi .

Corollary. (3.1.4) Let X be a Hausdorff space and {F1, . . . , Fk} a family of

closed subsets of X. The subspace F =
k⋃
i=1

Fi of X is compact if and only if all

subspaces Fi are compact.

Corollary. (3.1.5) Let U be an open subset of a topological space X. If a
family {Fs}s∈S of closed subsets of X contains at least one compact set - in
particular, if X is compact - and if

⋂
s∈S

Fs ⊂ U , then there exists a finite set

{s1, . . . , sk} ⊂ S such that
k⋂
i=1

Fsi ⊂ U .
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Theorem. (3.1.6) If A is a compact subspace of a regular space X, then for
every closed subset B ⊂ X \A there exist open sets U, V ⊂ X such that A ⊂ U ,
B ⊂ V and U ∩ V = ∅.

If, moreover, B is a compact subspace of X, then it suffices to assume that
X is a Hausdorff space.

Theorem. (3.1.7) If A is a compact subspace of a Tychonoff space X, then for
every closed set B ⊂ X \ A there exists a continuous function f : X → I such
that f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ B.

Theorem. (3.1.8) Every compact subspace of a Hausdorff space X is a closed
subset of X.

Theorem. (3.1.9) Every compact space is normal.

Theorem. (3.1.10) If there exists a continuous mapping f : X → Y of a com-
pact space X onto a Hausdorff space Y , then Y is a compact space.

In other words, a continuous image of a compact space is compact, provided
it is a Hausdorff space.

Corollary. (3.1.11) If f : X → Y is a continuous mapping of a compact space
X to a Hausdorff space Y , then f [A] = f [A] for every A ⊂ X.

Theorem. (3.1.12) Every continuous mapping of a compact space to a Haus-
dorff space is closed.

Theorem. (3.1.13) Every continuous one-to-one mapping of a compact space
onto a Hausdorff space is a homeomorphism.

Corollary. (3.1.14) Let O1 and O2 be two topologies defined on a set X and let
O1 be finer than O2. If the space (X,O1) is compact and (X,O2) is a Hausdorff
space, then O1 = O2.

In other words, among all Hausdorff topologies, compact topologies are min-
imal.

Lemma. (3.1.15) If A is a compact subspace of a space X and y a point of a
space Y , then for every open set W ⊂ X × Y containing A × {y} there exist
open sets U ⊂ X and V ⊂ Y such that A× {y} ⊂ U × V ⊂W .

Theorem (The Kuratowski theorem). (3.1.16) For a Hausdorff space X the
following conditions are equivalent:

(i) The space X is compact.

(ii) For every topological space Y the projection p : X × Y → Y is closed.

(iii) For every normal space Y the projection p : X × Y → Y is closed.

A family N = {Ms}s∈S of subsets of a topological space X is a network
for X if for every point x ∈ X and any neighborhood U if x there exists an
s ∈ S such that x ∈ Ms ⊂ U . Clearly, any base for X is a network for X: it
is a network of a special kind, one whose members all are open. The network
weight of a space X is defined as the smallest cardinal number of the form |N |,
where N is a network for X. Clearly, for every topological space X we have
nw(X) ≤ w(X), nw(X) ≤ |X| and d(X) ≤ nw(X). For every T0-space we have
|X| ≤ expnw(X).
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Lemma. (3.1.18) For every Hausdorff space X there exists a continuous one-
to-one mapping of X onto a Hausdorff space Y such that w(Y ) ≤ nw(X).

Theorem. (3.1.19) For every compact space X we have nw(X) = w(X).

Corollary. (3.1.20) If a compact space X has a cover {As}s∈S such that w(As) ≤
m ≥ ℵ0 for s ∈ S and |S| ≤ m, then w(X) ≤ m.

Theorem. (3.1.21) For every compact space X we have w(X) ≤ |X|.

Theorem. (3.1.22) If a compact space Y is a continuous image of a space X,
then w(Y ) ≤ w(X).

Theorem. (3.1.23) A Hausdorff space X is compact if and only if every net in
X has a cluster point.

The filter counterpart of the above theorem reads as follows:

Theorem. (3.1.24) A Hausdorff space X is compact if and only if every filter
in X has a cluster point.

Example. (3.1.26) X = C1 ∪ C2 - two concentric circle, the projection of C1

onto C2 from the point (0, 0) will be denoted by p. On the set X we shall
generate a topology by defining a neighbourhood system {B(z)}z∈X ; namely
let B(z) = {z} for z ∈ C2 and for z ∈ C1 let B(z) = {Uj(z)}∞j=1, where
Uj = Vj ∪ p[Vj \ {z}] and Vj is the arc of C1 with centre at z and of length 1/j.

The space X is called the Alexandroff double circle.
X is a compact space

Example. (3.1.27) W = ω1 + 1, base (y, x〉 and {0}. W is a compact space.
W0 = W \{ω1} - subspace. Every continuous function f : W0 → I is extendable
over W (every such a function is eventually constant). W0 is not perfectly nor-
mal. W is hereditarily normal but not perfectly normal. W0 is first countable.
W is not a sequential space and it has no countable base at ω1.

Example. (3.1.28) Cantor set Dℵ0 is homeomorphic to a subspace of the real

line. C = sets of all numbers of the form
∞∑
i=1

2xi
3i , where xi ∈ {0, 1} for i = 1, 2, . . .

We put f(x) = {xi}, f is a homeomorphism.

Theorem. (3.1.29) For every infinite compact space X we have |X| ≤ expχ(X).

Corollary. (3.1.30) Every first countable compact space has cardinality ≤ c.

A topological space X is called a quasi-compact space if every open cover of
X has a finite subcover. The reader can easily verify that Theorems 3.1.1-3.1.3,
Corollaries 3.1.4-3.1.5, Theorem 3.1.10, 3.1.16, 3.1.23 and 3.1.24 of this section,
as well as Theorems 3.2.3, 3.2.4, and 3.2.10 of the next section, remain valid,
along with their proofs, when one replaces “compact” by “quasi-compact” and
“Hausdorff space” by “topological space”.

3.1.F: The pseudocharacter of a point x in a T1-space X is defined as the
smallest cardinal number of the form |U|, where U is a family of open subsets
of X such that

⋂
U = {x}; this cardinal number is denoted by ψ(x,X). The

pseudocharacter of a T1-space X is defined as the supremum of all numbers
ψ(x,X) for all x ∈ X; this cardinal number is denoted by ψ(X).
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For every T1-space X we have ψ(x,X) ≤ χ(x,X) and ψ(X) ≤ χ(X). If
X is a compact space then ψ(x,X) = χ(x,X) and ψ(X) = χ(X). For every
Hausdorff space X we have ψ(X) ≤ exp d(X). For every regular space X we
have |X| ≤ exp[d(X)ψ(X)].

3.2 Operations on compact spaces

Theorem. (3.2.1) Let A be a dense subspace of a topological space X and f a
continuous mapping of A to a compact space Y . The mapping f has a continuous
extension over X if and only if for every pair B1, B2 of disjoint closed subsets of
Y the inverse images f−1(B1) and f−1(B2) have disjoint closures in the space
X.

Theorem. (3.2.2) Every compact space of weight m ≥ ℵ0 is a continuous image
of a closed subspace of the Cantor cube Dm.

Theorem. (3.2.3) The sum
⊕
s∈S

Xs, where Xs 6= ∅ for s ∈ S, is compact if and

only if all spaces Xs are compact and the set S is finite.

Theorem (The Tychonoff theorem). (3.2.4) The Cartesian product
∏
s∈S

Xs,

where Xs 6= ∅ for s ∈ S, is compact if and only if all spaces Xs are compact.

Theorem. (3.2.5) The Tychonoff cube Im is universal for all compact spaces
of weight m ≥ ℵ0.

Theorem. (3.2.6) A space X is a Tychonoff space if and only if it is embeddable
in a compact space.

Theorem. (3.2.8) A subspace A of Euclidean n-space Rn is compact if and
only if the set A is closed and bounded.

Corollary. (3.2.9) Every continuous real-valued function defined on a compact
space is bounded and attains its bounds.

Theorem (The Wallace theorem). (3.2.10) If As is a compact subspace of a
topological space Xs for s ∈ S, then for every open subset W of the Cartesian
product

∏
s∈S

Xs which contains the set
∏
s∈S

As there exist open sets Us ⊂ Xs such

that Us 6= Xs for only finitely many s ∈ S and
∏
s∈S

As ⊂
∏
s∈S

Us ⊂W .

Theorem (The Alexandroff theorem). (3.2.11) For every closed equivalence
relation E on a compact space X there exists exactly one (up to a homeomor-
phism) Hausdorff space Y and a continuous mapping f : X → Y of X onto
Y such that E = E(f), viz. the quotient space X/E and the natural quotient
mapping q : X → X/E; moreover Y is a compact space.

Conversely, for every continuous mapping f : X → Y of a compact space X
onto a Hausdorff space Y the equivalence relation E(f) is closed.

Theorem. (3.2.13) The limit of an inverse system S = {Xσ, π
σ
% ,Σ} of non-

empty compact spaces is compact and non-empty.
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Theorem. (3.2.14) Let {ϕ, fσ′} be a mapping of an inverse system S = {Xσ, π
σ
% ,Σ}

of compact spaces to an inverse system S′ = {Yσ′ , πσ
′

%′ ,Σ
′} of T1-spaces. If all

mappings fσ′ are onto, the limit mapping f = lim←−{ϕ, fσ′} also is a mapping
onto.

Corollary. (3.2.15) If in an inverse system S = {Xσ, π
σ
% ,Σ} of compact spaces

all bonding mappings πσ% are onto, then the projections πσ : lim←−S → Xσ also
are mappings onto.

Corollary. (3.2.16) If S = {Xσ, π
σ
% ,Σ}, where Σ 6= ∅, is an inverse system of

T1-spaces, X is a compact space, and {fσ}σ∈Σ where fσ : X → Xσ, is a family
of mappings onto such that πσ% fσ = f% for any σ, % ∈ Σ satisfying % ≤ σ, then
the limit mapping lim←− fσ also is a mapping onto.

Corollary. (3.2.17) If S = {Xσ, π
σ
% ,Σ}, where Σ 6= ∅, is an inverse system of

compact spaces, X is a T1-space, and {fσ}σ∈Σ where fσ : Xσ → X, is a family
of mappings onto such that f%π

σ
% = f% for any σ, % ∈ Σ satisfying % ≤ σ, then

the limit mapping lim←− fσ also is a mapping onto.

Lemma (The Dini theorem). (3.2.18) Let X be a compact space and {fi} a
sequence of continuous real-valued functions defined on X and satisfying fi(x) ≤
fi+1(x) for all x ∈ X and i = 1, 2, . . . If there exists a function f ∈ RX such
that f(x) = lim fi(x) for every x ∈ X, then f = lim fi, i.e. the sequence {fi} is
uniformly convergent to f .

Lemma. (3.2.19) There exists a sequence {wi} of polynomials which is uni-
formly convergent to the function

√
t on the closed interval I.

Lemma. (3.2.20) Let P be a ring of continuous and bounded real-valued func-
tions defined on a topological space X. If the ring P contains all constant func-
tions and is closed with respect to uniform convergence, then for every f, g ∈ P
the functions max(f, g) and min(f, g) belong to P .

Theorem (The Stone-Weierstrass theorem). (3.2.21) If a ring P of continuous
real-valued functions defined on a compact space X contains all constant func-
tions, separates points and is closed with respect to uniform convergence (i.e., is
a closed subset of the space RX with the topology of uniform convergence), then
P coincides with the ring of all continuous real-valued functions on X.

3.3 Locally compact spaces and k-spaces

A topological space X is called a locally compact space if for every x ∈ X there
exists a neighbourhood U of the point x such that U is a compact subspace of
X.

Theorem. (3.3.1) Every locally compact space is a Tychonoff space.

Theorem. (3.3.2) For every compact subspace A of a locally compact space X
and every open set V ⊂ X that contains A there exists an open set U ⊂ X such
that A ⊂ U ⊂ U ⊂ V and U is compact.

Corollary. (3.3.3) For every compact subspace A of a locally compact space
X and every open set V that contains A there exists a continuous function
f : X → I such that f(x) = 0 for x ∈ A, f(x) = 1 for x ∈ X \ V and the set
f−1(〈0, a〉) is compact for every a < 1.
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Theorem. (3.3.4) The character of a point x in a locally compact space X is
equal to the smallest cardinal number of the form |U|, where U is a family of
open subsets of X such that

⋂
U = {x}.

Theorem. (3.3.5) For every locally compact space X we have nw(X) = w(X).

Corollary. (3.3.6) For every locally compact space X we have w(X) ≤ |X|.

Corollary. (3.3.7) If a locally compact space Y is a continuous image of a space
X, then w(Y ) ≤ w(X).

Theorem. (3.3.8) If X is a locally compact space, then every subspace of X
that can be represented in the form F ∩ V , where F is closed in X and V is
open in X, also is locally compact.

Theorem. (3.3.9) A locally compact subspace M of a Hausdorff space X is
an open subset of the closure M of the set M in the space X, i.e., it can be
represented in the form F ∩ V , where F is closed in X and V is open in X.

Corollary. (3.3.10) A subspace M of a locally compact space X is locally com-
pact if and only if it can be represented in the form F ∩ V , where F is closed in
X and V is open in X.

Corollary. (3.3.11) A topological space is locally compact if and only if it is
homeomorphic to an open subspace of a compact space.

Theorem. (3.3.12) The sum
⊕
s∈S

Xs is locally compact if and only if all spaces

Xs are locally compact.

Theorem. (3.3.13) The Cartesian product
∏
s∈S Xs, where Xs 6= ∅ for s ∈ S,

is locally compact if and only if all spaces Xs are locally compact and there exists
a finite set S0 ⊂ S such that Xs is a compact for s ∈ S \ S0.

Theorem. (3.3.15) If there exists an open mapping f : X → Y of a locally
compact space X onto a Hausdorff space Y , then Y is a locally compact space.

Theorem (The Whitehead theorem). (3.3.17) For every locally compact space
X and any quotient mapping g : Y → Z, the Cartesian product f = idX ×
g : X × Y → X × Z is a quotient mapping.

A topological space X is called a k-space if X is a Hausdorff space and if X
is an image of a locally compact space under a quotient mapping.

Theorem. (3.3.18) A Hausdorff space X is a k-space if and only if for each
A ⊂ X, the set A is closed in X provided that the intersection of A with any
compact subspace Z of the space X is closed in Z.

Corollary. (3.3.19) A Hausdorff space X is a k-space if and only if for each
A ⊂ X, the set A is open in X provided that the intersection of A with any
compact subspace Z of the space X is open in Z.

Theorem. (3.3.20) Every sequential Hausdorff space - and, in particular, every
first-countable Hausdorff space - is a k-space.
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Theorem. (3.3.21) A mapping f of a k-space X to a topological space Y is
continuous if and only if for every compact subspace Z ⊂ X the restriction
f |Z : Z → Y is continuous.

Theorem. (3.3.22) A continuous mapping f : X → Y of a topological space
X to a k-space Y is closed (open, quotient) if and only if for every compact
subspace Z ⊂ Y the restriction fZ : f−1(Z)→ Z is closed (open, quotient).

Theorem. (3.3.23) If there exists a quotient mapping f : X → Y of a k-space
X onto a Hausdorff space Y , then Y is a k-space.

Theorem. (3.3.25) The property of being a k-space is hereditary both with re-
spect to closed subsets and with respect to open subsets.

Theorem. (3.3.26) The sum
⊕
s∈S

Xs is a k-space if and only if all spaces Xs

are k-spaces.

Theorem. (3.3.27) The Cartesian product X×Y of a locally compact space X
and a k-space Y is a k-space.

Theorem. (3.3.28) If fi : Xi → Yi is a quotient mapping for i = 1, 2 and if X1

and Y1 × Y2 are k-spaces, then the Cartesian product f = f1 × f2 : X1 ×X2 →
Y1 × Y2 is a quotient mapping.

Example. (3.3.29) k-spaces are not finitely productive.

3.4 Function spaces II: The compact-open topology

The compact-open topology on Y X is the topology generated by the base con-

sisting of all sets
k⋂
i=1

M(Ci, Ui) where Ci is a compact subset of X and Ui is an

open subset of Y for i = 1, 2, . . . , k and where, for any A ⊂ X and Ui is an open
subset of Y for i = 1, 2, . . . , k.

Formulas (11) in section 2.6 imply that

Φg : Y X → ZX is continuous for every mapping g : Y → Z (14)

and

Ψh : Y X → Y T is continuous for every mapping h : T → X to a Hausdorff space X
(15)

where Φg(f) = gf for f ∈ Y X and Ψh(f) = fh for f ∈ Y X and the function
space have the compact-open topology.

Theorem. (3.4.1) For every pair X, Y if a topological spaces the compact-open
topology on Y X is proper.

Theorem. (3.4.2) For every pair X, Z of topological spaces and every locally
compact space Y the composition Σ: ZY ×Y X → ZX is continuous with respect
to the compact-open topology on function spaces.

Theorem. (3.4.3) If X is a locally compact then for every topological space Y
the compact-open topology on Y X is acceptable.
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It turns out that local compactness of X is crucial; indeed, one can prove
(see Exercise 3.4.A) that if for a completely regular space X there exists an
acceptable topology on the set RX then X is locally compact.

Proposition. (3.4.4) For every family {Xs}s∈S of non-empty topological spaces

and a topological space Y , the combination ∇ :
∏
s∈S

(Y Xs)→ Y
(
⊕
s∈s

Xs)
is a home-

omorphism with respect to the compact-open topology on function spaces.

Proposition. (3.4.5) For every topological space X and a family {Ys}s∈S of
topological spaces, the diagonal 4 :

∏
s∈S

(Y Xs )→ (
∏
s∈S

Ys)
X is a homeomorphism

with respect to the compact-open topology on function spaces.

Lemma. (3.4.6) For every pair X, Y of topological spaces and every subbase P
for the space Y , the sets M(C,U) where C is a compact subset of X and U ∈ P,
form a subbase for the space Y X with the compact-open topology.

Theorem. (3.4.7) For every pair X, Z of Hausdorff spaces and every topolog-
ical space Y , the exponential mapping Λ: Y (Z×X) → (Y X)Z is a homeomorphic
embedding with respect to the compact-open topology on function spaces.

Theorem. (3.4.8) For every topological space Y , a Hausdorff space Z and a
locally compact space X, the exponential mapping Λ: Y (Z×X) → (Y X)Z is a
homeomorphism with respect to the compact-open topology on function spaces.

Theorem. (3.4.9) If Z ×X is a k-space, then for every topological space Y the
exponential mapping Λ: Y (Z×X) → (Y X)Z is a homeomorphism with respect to
the compact-open topology on function spaces.

Corollary. (3.4.10) If X and Z are first-countable Hausdorff spaces, then for
every topological space Y the exponential mapping Λ: Y (Z×X) → (Y X)Z is a
homeomorphism with respect to the compact-open topology on function spaces.

Let Z(X) denote the family of all non-empty compact subsets of a Hausdorff
space X ordered by inclusion (≤=⊂). Z(X) is directed by ≤. For any C1, C2 ∈
Z(X) satisfying C2 ≤ C1, and for an arbitrary topological space Y , a continuous
mapping πC1

C2
: Y C1 → Y C2 , viz., πC1

C2
= Ψi, where i : C2 → C1 is the embedding;

clearly πC1

C2
(f) = f |C2 for any f ∈ Y C1 .

Theorem. (3.4.11) If X is a k-space, then for every topological space Y the
space Y X with the compact-open topology (with the topology of pointwise conver-
gence) is homeomorphic to the limit of the inverse system S(X) = {Y C , πC1

C2
,Z(X)}

of the space Y C with the compact-open topology (with the topology of pointwise
convergence).

Lemma. (3.4.12) For every pair X, Y of topological spaces, any subset A of X
and any closed subset B of Y , the set M(A,B) is closed in the space Y X with
the topology of pointwise convergence and, a fortiori, in the space Y X with the
compact-open topology.

Theorem. (3.4.13) If Y is a regular space, the space Y X with the compact-open
topology also is a regular space.
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Lemma. (3.4.14) Let X be a topological space and C a compact subspace of
X. Assigning to any f ∈ IX the number Ξ(f) = sup

x∈C
f(x) defines a function

Ξ: IX → I continuous with respect to the compact-open topology on IX .

Theorem. (3.4.15) If Y is a Tychonoff space, then the space Y X with the
compact-open topology also is a Tychonoff space.

Theorem. (3.4.16) If the weight of both X and Y is not larger then m ≥ ℵ0

and X is locally compact, then the weight of the space Y X with the compact-open
topology is not larger then m.

We say that a family F of mappings of X to Y is evenly continuous if for ev-
ery x ∈ X, every y ∈ Y and any neighbourhood V of y there exists a neighbour-
hood U of x and a neighbourhood W of y such that Ω [(F ∩M({x},W ))× U ] ⊂
V , i.e., such that the conditions f ∈ F and f(x) ∈ W imply the inclusion
f [U ] ⊂ V . It follows directly from the definition that if a family F of mappings
of X to Y is evenly continuous, then all members of F are continuous, i.e.,
F ⊂ Y X .

Lemma. (3.4.17) If Y is a regular space, then for every evenly continuous
family of mappings F ⊂ Y X the closure F of the set F in the Cartesian product∏
x∈X Yx, where Yx = Y for every x ∈ X, is an evenly continuous family of

mappings, and, in particular F ⊆ Y X .

Lemma. (3.4.18) If F ⊂ Y X is an evenly continuous family of mapping then
the restriction Ω|F ×X of the evaluation mapping is continuous with respect to
the topology of pointwise convergence on F .

Lemma. (3.4.19) Let Y be a regular space, X an arbitrary topological space
and Y X the space of all continuous mappings of X to Y with the topology of
pointwise convergence. If a set F ⊂ Y X is compact and the restriction Ω|F ×X
of the evaluation mapping is continuous, then F is an evenly continuous family
of mappings.

Theorem (The Ascoli theorem). (3.4.20) If X is a k-space and Y is a regular
space, then a closed subset F of the space Y X with the compact-open topology
is compact if and only if F is an evenly continuous family of mappings and the
set Ω(F × {x}) = {f(x) : f ∈ F} ⊂ Y has a compact closure for every x ∈ X.

The following theorem is a variant of the Ascoli theorem; the symbol F |Z
that appears in it denotes, for F ⊂ Y X and Z ⊂ X, the family of restrictions
{f |Z : f ∈ F} ⊂ Y X .

Theorem. (3.4.21) If X is a k-space and Y is a regular space, then a closed
subset F of the space Y X with the compact-open topology is compact if and only
if F |Z is an evenly continuous family of mappings for every compact subspace
Z ⊂ X and the set Ω(F × {x}) = {f(x) : f ∈ F} ⊂ Y has a compact closure
for every x ∈ X.

3.4.A: If X is a regular space and there exists an acceptable topology on
RX , then X is locally compact.

3.4.E: A Hausdorff space X is hemicompact if in the family of all compact
subspaces of X there exists a countable cofinal subfamily.
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(a) Prove that every first-countable hemicompact space is locally compact.

(b) Give an example of a countable hemicompact space which is not a k-space.

(c) Show that in the realm of second-countable spaces hemicompactness is
equivalent to local compactness.

(d) Prove that if the space RX with the compact-open topology is first-
countable and X is a Tychonoff space, then X is hemicompact.

3.4.G (a) Show that nw(Y X) ≤ w(X)w(Y ) with respect both to the compact-
open topology and to the topology of pointwise convergence on Y X . Deduce
that if X and Y are second-countable then Y X is hereditarily separable with
respect both to the compact-open topology and to the topology of pointwise
convergence.

3.5 Compactifications

Let X be a topological space.
A pair (Y, c), where Y is a compact space and c : X → Y is a homeomorphic

embedding of X in Y such that c[X] = Y , is called a compactification of the
space X.

Theorem. (3.5.1) X has compactification ⇔ X is Tychonoff.

Theorem. (3.5.2) Every Tychonoff space has a compactification Y such that
w(X) = w(Y ).

We shall say that compactifications c1X and c2X of a space X are equivalent
if there exists a homeomorphism f : c1X → c2X such that the diagram

c1X
f // c2X

X

c1

OO

c2

<<

is commutative, i.e., fc1(x) = c2(x) for every x ∈ X.

Theorem. (3.5.3) For every compactification Y of a space X we have |Y | ≤
exp exp d(X) and w(Y ) ≤ exp d(X).

Let c1X ≤ c2X if there exists a continuous mapping f : c1X → c2X such
that fc1 = c2.

Theorem. (3.5.4) Compactifications c1X and c2X of a space X are equivalent
if and only if c1X ≤ c2X and c2X ≤ c1X.

Theorem. (3.5.5) Compactifications c1X and c2X of a space X are equivalent
if and only if for every pair A, B of closed subsets of X we have

c1[A] ∩ c1[B] = ∅ if and only if c2[A] ∩ c2[B] = ∅. (16)

Lemma. (3.5.6) Let A be a dense subspace of a Hausdorff space X and let
f : X → Y be a mapping of X to an arbitrary space Y . If f |A : A→ f [A] ⊂ Y
is a homeomorphism, then f [X \A] ∩ f [A] = ∅.
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Theorem. (3.5.7) If c1X and c2X are compactifications of a space X and a
mapping f : c1X → c2X satisfies the condition fc1 = c2, then

f(c1(X)) = c2(X) and f(c1X \ c1(X)) = c2X \ c2(X).

Theorem. (3.5.8) For every Tychonoff space X the following conditions are
equivalent:

(i) The space X is locally compact.

(ii) For every compactification cX of the space X the remainder cX \ c[X] is
closed in cX.

(iii) There exists a compactification cX of the space X such that the remainder
cX \ c[X] is closed in cX.

The next theorem states an important property of the family C(X) of all
compactifications of X.

Theorem. (3.5.9) Every non-empty subfamily C0 ⊂ C has a least upper bound
with respect to the order ≤ in C(X).

Corollary. (3.5.10) For every Tychonoff space X there exists a largest element
with respect to the order ≤ in C(X).

The largest element in C(X) is called the Čech-Stone compactification

Theorem (The Alexandroff compactification theorem). (3.5.11) Every non-
compact locally compact space X has a compactification ωX with one-point re-
mainder. This compactification is the smallest element in C(X) with respect to
the order ≤, its weight is equal to the weight of the space X.

Theorem. (3.5.12) If in the family C(X) of all compactifications of a non-
compact Tychonoff space X there exists an element cX which is the smallest
with respect to the order ≤, then X is locally compact and cX is equivalent to
the Alexandroff compactification ωX of X.

Theorem. (3.5.13) If a compact space Y is a continuous image of the remain-
der cX \ c[X] of a compactification cX of a locally compact space X, then the
space X has a compactification c′X ≤ cX with the remainder homeomorphic to
Y .

3.5.E Maximal compactification of a Tychonoff space X can be obtained by
taking the closure in

∏
f∈F

If of the image of the space X under the mapping

4
f∈F

f , where F is the family of all continuous functions from X to I and If = I

for f ∈ F .

3.6 The Čech-Stone compactification and the Wallman
extension

Let us recall that the largest element in the family C(X) of all compactifications
of a Tychonoff space X is called the Čech-Stone compactification of X and is
denoted by βX.
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Theorem. (3.6.1) Every continuous mapping f : X → Z of a Tychonoff space
X to a compact space Z is extendable to a mapping F : βX → Z.

If every continuous mapping of a Tychonoff space X to a compact space is
continuously extendable over a compactification αX of X, then αX is equivalent
to the Čech-Stone compactification of X.

Corollary. (3.6.2) Every pair of completely separated subsets of a Tychonoff
space X has disjoint closures in βX.

If a compactification αX of X has the property that every pair of completely
separated subsets of the space X has disjoint closures in αX, then αX is equiv-
alent to the Čech-Stone compactification of X.

Corollary. (3.6.3) Every continuous f : X → I (X is Tychonoff) is extendable
to continuous F : βX → I.

If every continuous function from a Tychonoff space X to the closed inter-
val I is continuously extendable over a compactification αX of X, then αX is
equivalent to the Čech-Stone compactification of X.

Corollary. (3.6.4) Every pair of disjoint closed subsets of a normal space X
has disjoint closures in βX.

If a compactification αX of a Tychonoff space X has the property that every
pair of disjoint closed subsets of the space X has disjoint closures in αX, then
αX is equivalent to the Čech-Stone compactification of X.

Corollary. (3.6.5) For every clopen subset A of a Tychonoff space X the closure
A of A in βX is clopen.

Corollary. (3.6.6) For every compactification αY of a Tychonoff space Y and
every continuous mapping f : X → Y of a Tychonoff space X to the space Y
there exists an extension F : βX → αY over βX and αY .

Corollary. (3.6.7) If a subspace M of a Tychonoff space X has the property
that every continuous function f : M → I is continuously extendable over X,
then the closure M of M in βX is a compactification of M equivalent to βM .
If, moreover, M is dense in X, then βX = βM .

Corollary. (3.6.8) For every closed subspace M of a normal space X the closure
M of M in βX is a compactification of M equivalent to βM .

Corollary. (3.6.9) For every Tychonoff space X and a space T such that X ⊂
T ⊂ βX we have βT = βX.

Theorem. (3.6.11) For every m ≥ ℵ0 the Čech-Stone compactification of the
space D(m) has cardinality 22m

and weight 2m.

Corollary. (3.6.12) The space βN has cardinality 2c and weight c.

Theorem. (3.6.13) For every point x ∈ βD(m) and each neighbourhood V of
x there exists an open-and-closed subset U of βD(m) such that x ∈ U ⊂ V .

Theorem. (3.6.14) Every infinite closed set F ⊂ βN contains a subset home-
omorphic to βN ; in particular F has cardinality 2c and weight c.

Corollary. (3.6.15) The space βN does not contain any subspace homeomor-
phic to A(ℵ0), i.e., in βN there are no non-trivial convergent sequences.
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Corollary. (3.6.16) No non-discrete subspace of βN is a sequential space.

Corollary. (3.6.17) No space N ∪ {x} ⊂ βN , where x ∈ βN \ N , is first-
countable.

Let X be a T1-space and let D(X) denote the family of all closed subsets of
X. The family of all ultrafilters in D(X) will be denoted by F (X).

Properties of ultrafilters in F (X):

(1) ∅ /∈ F .

(2) If A,B ∈ F , then A ∩B in F .

(3) If B ∈ D(X) and B ∩A 6= ∅ for every A ∈ F , then B ∈ F .

(4) If A ∈ F and A ⊂ B ∈ D(X), then B ∈ F .

(5) If A,B ∈ D(X) and A ∪B ∈ F , then either A ∈ F or B ∈ F .

(6) If F 6= F ′, then there exist A ∈ F and A′ ∈ F ′ such that A ∩A′ = ∅.

Ultrafilters that have an empty intersection are called free ultrafilters; they
form a subfamily F0(X) of the family F (X).

Let wX = X ∪ F0(X); for every open set U ⊂ X define

U∗ = U ∪ {F ∈ F0(X) : A ⊂ U for some A ∈ F} ⊂ wX.

B = the family of all sets U∗ where U is an open subset of X. The set wX
with the topology generated by the base B is called the Wallman extension of
the space X.

Theorem. (3.6.21) For every T1-space X the Wallman extension wX is a
quasi-compact T1-space that contains X as a dense subspace and has the prop-
erty that every continuous mapping f : X → Z of X to a compact space Z is
extendable to a mapping F : wX → Z.

Theorem. (3.6.22) The Wallman extension wX of a T1-spaces X is a Haus-
dorff space if and only if X is a normal space.

Corollary. (3.6.23) For every normal space X the Wallman extension wX is
a compactification of the space X equivalent to the Čech-Stone compactification
of X.

3.7 Perfect mappings

A continuous mapping f : X → Y is perfect if X is a Hausdorff space, f is a
closed mapping and all fibers f−1(y) are compact subsets of X. A one-to-one
mapping f : X → Y defined on a Hausdorff space X is perfect if and only if it
is a closed mapping, i.e., if f is a homeomorphic embedding and the set f [X] is
closed in Y .

Topological properties of Hausdorff spaces which are both invariants and
inverse invariants of prefect mappings are called perfect properties; a class of all
Hausdorff spaces that have a fixed perfect property is called a perfect class of
spaces.

3.7.D: Let f : X → Y be a hereditarily quotient mapping with compact
fibers defined on a Hausdorff space X. Then w(Y ) ≤ w(X) and if X is locally
compact and Y is a Hausdorff space, then Y also is locally compact.
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3.8 Lindelöf spaces

We say that a topological space X is a Lindelöf space, or has the Lindelöf
property, if X is regular and every open cover of X has a countable refinement.

Theorem. (3.8.1) Every regular second-countable space is Lindelöf space.

Theorem. (3.8.2) Every Lindelöf space is normal.

Theorem. (3.8.3) A regular space X has the Lindelöf property if and only if
every family of closed subsets of X which has the countable intersection property
has non-empty intersection.

Theorem. (3.8.4) Every closed subspace of a Lindelöf space is a Lindelöf space.

Theorem. (3.8.5) If a subspace A of a topological space X has the Lindelöf
property, then for every family {Us}s∈S of open subsets of X such that A ⊂⋃
s∈S

Us there exists a countable set {s1, s2, . . .} ⊂ S such that A ⊂
∞⋃
i=1

Usi .

Theorem. (3.8.6) If there exists a continuous mapping f : X → Y of a Lindelöf
space X onto a regular space Y , then Y is a Lindelöf space.

Every regular space which can be represented as a countable union of sub-
spaces each of which has the Lindelöf property itself has Lindelöf property. In
particular, every regular space which can be represented as a countable union
of compact subspaces (Hausdorff spaces with this property are called σ-compact
spaces) has the Lindelöf and is therefore normal. Lindelöf spaces are hereditary
with respect to Fσ-sets.

Theorem. (3.8.7) The sum
∐
s∈S

Xs, where Xs 6= ∅ for s ∈ S, has the Lindelöf

property if and only if all spaces Xs have the Lindelöf property and the set S is
countable.

Theorem. (3.8.8) If f : X → Y is a closed mapping defined on a regular space
X and all fibers f−1(y) have the Lindelöf property, then for every subspace
Z ⊂ Y that has the Lindelöf property the inverse image f−1(Z) also has the
Lindelöf property.

Theorem. (3.8.9) The class of Lindelöf spaces is perfect.

Corollary. (3.8.10) The Cartesian product X ×Y of a Lindelöf X and a com-
pact space Y is a Lindelöf space.

Theorem. (3.8.11) Every open cover of a Lindelöf space has a locally finite
open refinement.

The smallest cardinal number m such that every open cover of a space X
has an open refinement of cardinality ≤ m is called the Lindelöf number of the
space X and is denoted by l(X).

Theorem. (3.8.12) For every topological space X we have l(X) ≤ nw(X).

Example. (3.8.13) Niemytzki plane = separable, not Lindelöf
A(m) for m > ℵ0 = Lindelöf space, not separable
Since every countable regular space has the Lindelöf property, it follows from

3.3.24 that there exist Lindelöf spaces which are not k-spaces.
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Example. (3.8.14, 15) Sorgenfrey line K is a Lindelöf space. K ×K is not.

3.8.C: Observe that every hemicompact space is σ-compact but not neces-
sarily vice versa. For a locally compact space X the following conditions are
equivalent:

(1) The space X has the Lindelöf property.

(2) The space X is hemicompact.

(3) The space X is σ-compact.

(4) There exists a sequence A1, A2, . . . of compact subspaces of the space X

such that Ai ⊂ IntAi+1 and X =
∞⋃
i=1

Ai.

(5) The space X is compact or χ(Ω, ωX) ≤ ℵ0.

3.8.A Observe that X is hereditary Lindelöf space if and only if all open
subspaces of X have the Lindelöf property.

Show that a Lindelöf space X is a hereditarily Lindelöf space if and only if
X is perfectly normal.

3.8.D: Prove that if X and Y are second-countable spaces and Y is regular,
then the space Y X is hereditarily Lindelöf with respect to both compact-open
topology and the topology of pointwise convergence.

3.9 Čech-complete spaces

Theorem. (3.9.1) For every Tychonoff space X the following conditions are
equivalent:

(i) For every compactification cX of the space X the remainder cX \ c(X) is
an Fσ-set in cX.

(ii) The remainder βX \ β(X) is an Fσ-set in βX.

(iii) There exists a compactification cX of the space X such that the remainder
cX \ c(X) is an Fσ-set in cX.

A topological space X is Čech complete if X is a Tychonoff space and satisfies
condition (i), and hence all the conditions, in Theorem 3.9.1.

We shall say that the diameter of a subset A of a topological space X is
less than a cover A = {As}s∈S of the space X, and we shall write δ(A) < A,
provided that there exists an s ∈ S such that A ⊂ As.
Theorem. (3.9.2) A Tychonoff space X is Čech-complete if and only if there
exists a countable family (Ai)∞i=1 of open covers of the space X with the property
that any family F of closed subsets of X, which has the finite intersection prop-
erty and contains sets of diameter less than Ai for i = 1, 2, . . ., has non-empty
intersection.

Theorem (The Baire category theorem). (3.8.3) In a Čech-complete space X

the union A =
∞⋃
i=1

Ai of a sequence A1, A2, . . . of nowhere dense sets is a co-

dense set, i.e., the complement X \A is dense in X.

Theorem. (3.9.6) Čech-completeness is hereditary with respect to closed subsets
and with respect to Gδ-subsets.
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3.10 Countably compact, pseudocompact and sequentially
compact spaces

A topological space X is called a countably compact space if X is Hausdorff
space and every countable open cover of X has a finite subcover.

Theorem. (3.10.1) A topological space is compact if and only if it is a countably
compact space with the Lindelöf property.

Theorem. (3.10.2) For every Hausdorff space X the following conditions are
equivalent:

(i) The space X is countably compact.

(ii) Every countable family of closed subsets of X which has the finite inter-
section property has non-empty intersection.

(iii) For every decreasing sequence F1 ⊃ F2 ⊃ . . . of non-empty closed subsets

of X the intersection
∞⋂
i=1

Fi is non-empty.

Theorem. (3.10.3) For every Hausdorff space X the following conditions are
equivalent:

(i) The space X is countably compact.

(ii) Every locally finite family of non-empty subsets of X is finite.

(iii) Every locally finite family of one-point subsets of X is finite.

(iv) Every infinite subset of X has an accumulation point.

(v) Every countably infinite subset of X has an accumulation point.

Theorem. (3.10.4) Every closed subspace of a countably compact space is count-
ably compact.

Theorem. (3.10.5) If there exists a continuous mapping f : X → Y onto Haus-
dorff space Y , then Y is a countably compact space.

Theorem. (3.10.6) Every continuous real-valued function defined on a count-
ably compact space is bounded and attains its bounds.

Theorem. (3.10.7) If X is a countably compact space and Y is a sequential
space, in particular, a first-countable space, then the projection p : X × Y → Y
is closed.

Theorem. (3.10.8) The sum
∐
s∈S

Xs, where Xs 6= ∅ for s ∈ S, is countably

compact if and only if all spaces Xs are countably compact and the set S is
finite.

Theorem. (3.10.9) If f : X → Y is a closed mapping defined on a Hausdorff
space X and all fibers f−1(y) are countably compact, then for every countable
compact subspace Z ⊂ Y the inverse image f−1(Z) is countably compact.

Theorem. (3.10.10) The class of countably compact spaces is perfect.
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Theorem. (3.10.13) The Cartesian product X×Y of a countably compact space
X and a countably compact k-space Y is countably compact.

Corollary. (3.10.14) The Cartesian product X × Y of a countably compact
space X and a compact space Y is countably compact.

Corollary. (3.10.15) The Cartesian product X × Y of a countably compact
space X and a countably compact sequential space Y is countably compact.

A topological space X is called pseudocompact if X is a Tychonoff space
and every real-valued continuous function defined on X is bounded. One can
readily check that the last condition is equivalent to the condition that every
continuous real-valued function on X attains its bounds.

Theorem. (3.10.20) Every countably compact Tychonoff space is pseudocom-
pact.

Theorem. (3.10.21) Every pseudocompact normal space is countably compact.

Theorem. (3.10.22) For every Tychonoff space X the following conditions are
equivalent:

(i) The space X is pseudocompact.

(ii) Every locally finite family of non-empty open subsets of Xis finite.

(iii) Every locally finite open cover of X consisting of non-empty sets is finite.

(iv) Every locally finite cover of X has a finite subcover.

Theorem. (3.10.23) For every Tychonoff space the following conditions are
equivalent:

(i) The space X is pseudocompact.

(ii) For every decreasing sequence W1 ⊃ W2 ⊃ . . . of non-empty subsets of X

the intersection
∞⋂
i=1

Wi if non-empty.

(iii) For every countable family {Vi}∞i=1 of open subsets of X which has finite

intersection property the intersection
∞⋂
i=1

Vi is non-empty.

Theorem. (3.10.24) If there exists a continuous mapping f : X → Y of a
pseudocompact space X onto a Tychonoff space Y , then Y is a pseudocompact
space.

Theorem. (3.10.25) The sum
∐
s∈S

Xs, where Xs 6= ∅ for s ∈ S is pseudocompact

if and only if all spaces Xs are pseudocompact and the set S is finite.

Theorem. (3.10.26) The cartesian product X × Y of a pseudocompact space
X and a pseudocompact k-space Y is pseudocompact.

Corollary. (3.10.27) The cartesian product X × Y of a pseudocompact space
X and compact space Y is pseudocompact.
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Corollary. (3.10.28) The cartesian product X × Y of a pseudocompact space
X and a pseudocompact sequential Y is pseudocompact.

A topological space X is called sequentially compact if X is a Hausdorff
space and every sequence of points of X has a convergent subsequence.

Theorem. (3.10.30) Every sequentially compact space is countably compact.

The reverse implication does not hold; there exist even compact spaces which
are not sequentially compact – by virtue of Corollary 3.6.15, the Čech-Stone
compactification βN is such a space.

Theorem. (3.10.31) Sequential compactness and countable compactness are
equivalent in the class of sequential spaces and, in particular, in the class of
first-countable spaces.

Theorem. (3.10.32) If there exists a continuous mapping f : X → Y of a
sequentially compact space X onto a Hausdorff space Y , then Y is a sequentially
compact space.

Theorem. (3.10.33) Every closed subspace of a sequentially compact space is
sequentially compact.

Theorem. (3.10.34) Sum of sequentially compact spaces is sequentially compact
if and only if it is finite sum and every space is sequentially compact.

Theorem. (3.10.35) The Cartesian product of countably many sequentially
compact spaces is sequentially compact.

Theorem. (3.10.36) The Cartesian product X×Y of a countably compact space
X and a sequentially compact space Y is countably compact.

Theorem. (3.10.37) The Cartesian product X × Y of a pseudocompact space
X and a sequentially compact space Y is countably compact.

ssp cl.ssp op.ssp fin.sum sum fin.prod c.prod prod cont.im
pseudocompact - - - + - - - - +3 1

2

countably compact - + - + - - - - +2

sequentially compact - + - + - + + - +2

compact
metrizable

//

&&

compact //

$$

pseudocompact

T4

xx
sequentially

compact
//countably
compact

T
3 1
2

88

3.10.C: two arrows space: X = C0 ∪ C1, where C0 = (0, 1〉 and C1 =
〈0, 1)× {1}. The subspaces C0,1 are homeomorphic to Sorgenfrey line.

The space X is hereditarily separable, hereditarily Lindelöf, perfectly nor-
mal, compact.

X2 is not hereditarily normal.
Sorgenfrey line is not Čech-complete.
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3.11 Realcompact spaces

A topological space X is called a realcompact space if X is a Tychonoff space
and there is no Tychonoff space X̃ which satisfies the following two conditions:

(BC1) There exists a homeomorphic embedding r : X → X̃ such that r(X) 6=
r(X) = X̃.

(BC2) For every continuous real-valued function f : X̃ → R there exists a con-
tinuous function f̃ : X̃ → R such that f̃ r = f .

Theorem. (3.11.1) A topological space is compact if and only if it is a pseudo-
compact realcompact space.

Theorem. (3.11.3) A topological space is realcompact if and only if it is home-
omorphic to a closed subspace of a Cartesian product of copies of real line.

Theorem. (3.11.4) Every closed subspace of a realcompact space is realcompact.

Theorem. (3.11.5) The Cartesian product
∏
s∈S

Xs, where Xs 6= ∅ for s ∈ S, is

realcompact if and only if all spaces Xs are realcompact.

Corollary. (3.11.6) The limit of an inverse system of realcompact spaces is
realcompact.

Corollary. (3.11.7) Let X be a topological space and {As}s∈S a family of sub-
spaces of X; if all As’s are realcompact, then the intersection

⋂
s∈S

As also is

realcompact.

Corollary. (3.11.8) If f : X → Y is a continuous mapping of a realcompact
space X to a Hausdorff space Y , then for every realcompact subspace B of Y
the inverse image f−1(B) ⊂ X is realcompact.

Lemma. (3.11.9) Let X be a topological space and A a subspace of X. If every
function g : A→ R such that g(x) ≥ 1 for all x ∈ A is extendable over X, then
any function f : A→ R is extendable over X.

Theorem. (3.11.10) A Tychonoff space X is realcompact if and only if for
every point x0 ∈ βX \X there exists a function h : βX → I such that h(x0) = 0
and h(x) > 0 for any x ∈ X.

D0(X) = family of all functionally closed subsets of a Tychonoff space X.

Theorem. (3.11.11) A Tychonoff space X is realcompact if and only if every
ultrafilter in D0(X) which has the countable intersection property has non-empty
intersection.

Theorem. (3.11.12) Every Lindelöf space is realcompact.

Example. (3.11.13) Let A be a family of sets closed with respect ti countable
unions; by a countably additive two-valued measure defined on A we understand
any function µ from A to {0, 1} satisfying the condition

µ(

∞⋃
i=1

Ai) =

∞∑
i=1

µ(Ai)
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whenever Ai ∈ A and Ai ∩ Aj = ∅ for i 6= j. A cardinal number m is called
non-measurable provided that the only countably additive two-valued measure
defined on the family of all subsets of a set X of cardinality m which vanishes
on all one-point sets is the trivial measure, identically equal to zero.
ℵ0 is non-measurable.
If m ∈ N (class of all non-measurable cardinals), then every cardinal number

less than m, the sum of any family {ms}s∈S of cardinal numbers from N such
that |S| ≤ m and the cardinal number 2m also belong to N . One can also prove
that the smallest cardinal number that cannot be obtained from ℵ0 by means
of the three operations mentioned above (called the first strongly inaccessible
aleph) also belongs to N .

The assumption that all cardinal numbers are non-measurable is consistent
with the axioms of set theory; on the other hand, it is not known whether the
assumption of the existence of measurable cardinals is also consistent with the
axioms of set theory.

D(m) is realcompact if and only if m is a non-measurable cardinal.

3.12 Problems

3.12.1 Further characterization of compactness: complete accumu-
lation points and the Alexander subbase theorem

3.12.1: A point x in a topological space X is called complete accumulation point
of a set A ⊂ X if |A ∩ U | = |A| for every neighborhood U of x.

For a Hausdorff space X the following conditions are equivalent:

(i) The space X is compact.

(ii) Every infinite subset of X has a complete accumulation point.

(iii) For every decreasing transfinite sequence F0 ⊇ F1 ⊇ . . . ⊇ Fξ ⊇ . . ., ξ < α,
of non-empty closed subsets of X the intersection

⋂
ξ<α

Fξ is non-empty.

3.12.2: Alexander subbase theorem Let X be a Hausdorff space and P a
subbase for X; show that the space X is compact if and only if every covering
of X by members of P has a finite subcovering.

3.12.2 Cardinal functions III

If there exists a quotient mapping f : X → Y , then τ(X) ≥ τ(Y ).
If f : X → Y is a closed mapping of a regular space X to a topological space

Y and if for x ∈ X the inequalities τ(f(x), Y ) ≤ m and τ(x, f−1f(x)) ≤ m hold,
then τ(x,X) ≤ m. Note that if f is a perfect mapping, then the assumption of
regularity can be omitted.

Show that if X is a locally compact space, then for every Hausdorff space
Y we have τ(X × Y ) ≤ max(τ(X), τ(Y )). Prove that if a family {Xs}s∈S of
topological spaces has the property τ(

∏
s∈S0

Xs) ≤ m for every finite S0 ⊂ S and

if |S| ≤ m we have τ(
∏
s∈S

Xs) ≤ m.

Show that for every family {Xs}s∈S of Hausdorff spaces such that τ(Xs) ≤ m
and h(Xs) ≤ m for s ∈ S and |S| ∈ m we have τ(

∏
s∈S

Xs) ≤ m.
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3.12.10: For every Hausdorff spaceX we have |X| ≤ exp[l(X)χ(X)]. (Arhangel-
skii)

X Hausdorff ⇒ |X| ≤ exp[c(X)χ(X)]
X is T1 ⇒ |X| ≤ exp[hc(X)ψ(X)]

3.12.3 Rings of continuous functions and compactifications

For a Tychonoff space X the symbol C(X) (the symbol C∗(X)) denotes the
ring of all continuous real-valued (all bounded continuous real-valued) functions
defined on X.

Every ideal is contained in a maximal ideal.
Tychonoff space X is compact if and only if for every maximal ideal ∆ in

the ring C(X), or - equivalently - for every maximal ideal ∆ in the ring C∗(X)
there exists a point x ∈ X such that the conditions f ∈ ∆ and f(x) = 0 are
equivalent.

In the set M of all maximal ideals in the ring C(X) (in the ring C∗(X))
generate a topology by the base consisting of all sets of the form Uf = {∆; f /∈
∆} and show that M is a compact space. Prove that M is the Čech-Stone
compactification of X.

Compact spaces X and Y are homeomorphic if and only if the rings C(X)
and C(Y ) are isomorphic.

Verify that if ∆ is a maximal ideal in C(X), then F(∆) = {f−1(0) : f ∈ ∆}
is an ultrafilter in the family D0(X) of all functionally closed subsets of X and
that ∆(F) is a maximal ideal in C(X). ⇒ one-to-one correspondence

4 Metric and metrizable spaces

4.1 Metric and metrizable spaces

A metric space is a pair (X, %) consisting of a set X and a function % defined on
the set X ×X, assuming non-negative real values, and satisfying the following
conditions:

(M1) %(x, y) = 0 if and only if x = y.

(M2) %(x, y) = %(y, x) for all x, y ∈ X.

(M3) %(x, y) + %(y, z) ≥ %(x, z) for all x, y, z ∈ X.

metrizable space, metrics,
Two metrics %1 and %2 are called equivalent if they induce the same topology

on X.

Proposition. (4.1.1) A point x belongs to the closure A of a set A ⊂ X with
respect to the topology induced by a metric % if and only if there exists a sequence
of the points of A that converges to x.

Theorem. (4.1.2) Two metrics %1 and %2 on X are equivalent if and only if
they induce the same convergence.

Theorem. (4.1.3) For every metric space (X, %) there exists a metric %1 on the
set X which is equivalent to % and bounded by 1.
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Example. (4.1.5) Let S be a set of cardinality m ≥ ℵ0 and let Is = I ×{s} for
every s ∈ S. By letting

(x, s1)E(y, s2) if and only if x = 0 = y or x = y and s1 = s2

we define an equivalence relation E on the set
⋃
s∈S

Is. The formula

%([(x, s1)], [(y, s2)]) =

{
|x− y|, if s1 = s2

x+ y, if s1 6= s2

defines a metric on the set of equivalence classes of E. This space will be called
the hedgehog space of spininess m and will be denoted by J(m).

Example. (4.1.7) H= the set of all infinite sequences {xi} of real numbers
satisfying

∑
x2
i <∞. %(x, y) =

√∑
(xi − yi)2 – Hilbert space.

Proposition. (4.1.8) A mapping f of a space X with the topology induced by
a metric % to a space Y with the topology induced by a metric σ s continuous
if and only if for every x ∈ X and any ε > 0 there exists a δ > 0 such that
σ(f(x), f(x′)) < ε whenever %(x, x′) < δ.

uniformly continuous mapping: for every ε > 0 there exists δ > 0 such that
for all x, x′ ∈ X we have σ(f(x), f(x′)) < ε whenever %(x, x′) < δ.

isometry %(x, y) = σ(f(x), f(y))

Proposition. (4.1.9) For a pair of points x, y and a set A in a metric space
(X, %) we have

|%(x,A)− %(y,A)| ≤ %(x, y).

Theorem. (4.1.10) For a fixed set A ⊂ X, assigning to every point x ∈ X the
distance %(x,A) defines a continuous function on X.

Corollary. (4.1.11) For every set A we have

A = {x : %(x,A) = 0}.

Corollary. (4.1.12) Every closed subset of a metrizable space is functional
closed and, in particular, is a Gδ-set.

Corollary. (4.1.13) Every metrizable space is perfectly normal.

Corollary. (4.1.14) In a metric space (X, %) for every compact set A ⊂ X and
any open set U containing A there exists an r > 0 such that B(A, r) ⊂ U .

Theorem. (4.1.15) For every cardinal number m and any metrizable space X
the following conditions are equivalent:

(i) The space X has a base of cardinality ≤ m.

(ii) The space X has a network of cardinality ≤ m.

(iii) Every open cover of the space X has a subcover ≤ m.

(iv) Every closed discrete subspace of X has cardinality ≤ m.
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(v) Every discrete subspace of the space X has cardinality ≤ m.

(vi) Every family of pairwise disjoint non-empty open subsets of the space X
has cardinality ≤ m.

(vii) The space X has a dense subset of cardinality ≤ m.

Corollary. (4.1.16) For every metrizable space X the following conditions are
equivalent:

(i) The space X is second-countable.

(ii) The space X has the Lindelöf property.

(iii) The space X is separable.

(iv) Every family of pairwise disjoint non-empty open subsets of the space X
is countable.

Theorem. (4.1.17) For every metrizable space the following conditions are
equivalent:

(i) The space X is compact.

(ii) The space X is countably compact.

(iii) The space X is sequentially compact.

Theorem. (4.1.18) Every compact metrizable space is separable.

Hilbert space, described in example 4.1.7 is – as shown by Anderson in [1966]
– homeomorphic to ℵ0 copies of the real line; this is a difficult and deep result.

4.2 Operations on metrizable spaces

Theorem. (4.2.1) The sum
⊕
s∈S

Xs is metrizable if and only if all spaces Xs

are metrizable.

%(x, y) =

∞∑
i=1

1

2i
%i(xi, yi) (6)

Theorem. (4.2.2) Let X1, X2, . . . be a sequence of metrizable spaces and let %i
be a metric on the space X bounded by 1 for i = 1, 2, . . . The topology induced

on the set X =
∞∏
i=1

Xi by the metric % defined in (6) coincides with the topology

of the Cartesian product of the spaces {Xi}∞i=1.

Corollary. (4.2.3) The Hilbert space Iℵ0 is metrizable.

Corollary. (4.2.4) The Cartesian product
∏
s∈S

Xs, where Xs 6= ∅ for s ∈ S, is

metrizable if and only if all spaces Xs are metrizable and there exists a countable
set S0 ⊂ S such that Xs is a one-point space for s ∈ S \ S0.

Corollary. (4.2.5) The limit of an inverse sequence of metrizable spaces is
metrizable.
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Corollary. (4.2.6) Metric is continuous X ×X → R

Corollary. (4.2.7) A sequence {x1
i }, {x2

i }, . . . in the Cartesian product
∞∏
i=1

Xi

of metrizable spaces converges to x = {xi} ∈
∞∏
i=1

Xi if and only if the sequence

x1
i , x

2
i , . . ., converges to xi for i = 1, 2, . . ..

Theorem. (4.2.8) A compact space is metrizable if and only if it is a second-
countable space.

Theorem. (4.2.9) A second-countable space is metrizable if and only if it is a
regular space.

Theorem. (4.2.10) The Hilbert cube Iℵ0 is universal for all compact metrizable
spaces and for all separable metrizable spaces.

One can readily verify that the formula

%({xi}, {yi}) =

{
1
k , if xk 6= yk and xi = yi for i < k,

0, if xi = yi, for all i,
(6)

defines a metric on the set
∞∏
i=1

Xi, |Xi| = m. B(m)=Baire space of weight m

Theorem. (4.2.13) If E is a closed equivalence relation on a separable metriz-
able space X and the equivalence classes of E are compact, then the quotient
space X/E is metrizable.

On the set of all bounded continuous mappings of X to Y one can define a
metric %̂ by letting

%̂(f, g) = sup
x∈X

%(f(x), g(x)) (7)

Example. (4.2.14) Metrics on R: %1(x, y) = min(1, |x − y|) and %2(x, y) =
%(h(x), h(y)), where h : R→ S1 \ {0, 1} ⊂ R2 is a homeomorphism and % is the
natural metric on R2. Clearly, the two metrics %1 and %2 are equivalent but %̂1

and %̂2 are not equivalent.

Theorem. (4.2.15) For every topological space X and any metric space (Y, %),
where % is bounded, the topology on Y X induced by %̂ is admissible.

Corollary. (4.2.16) For every topological space X and any metric space (Y, %),
where % is bounded, the topology on Y X induced by %̂ is finer that the compact-
open topology.

Theorem. (4.2.17) For every compact space X, a metrizable space Y and any
metric % on the space Y , the topology on Y X induced by %̂ coincides with the
compact-open topology and is independent of the choice of the metric %.

Corollary. (4.2.18) For every compact metrizable space X and any separable
metric space (Y, %), the space (Y X , %̂) is separable.

Theorem. (4.2.19) Let X be a topological space, (Y, %) a metric space and
{fi} a sequence of continuous mappings from X to Y . If the sequence {fi} is
uniformly convergent to a mapping f , then f is a continuous mapping from X
to Y . If all fi’s are bounded, then f is also bounded.
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Theorem. (4.2.20) For every topological space X the function space RX with
the topology of uniform convergence is metrizable.

More exactly, the topology of uniform convergence on RX is induced by the
metric %̂, where % is the metric on the real line defined by letting %(x, y) =
min(1, |x− y|).

4.2.D (c) Sequential spaces can be characterized as the images of metrizable
spaces under quotient mappings and Fréchet spaces can be characterized as the
images of metrizable spaces under hereditarily quotient mappings.

4.2.G Let X be a Tychonoff space, Y a metrizable space that contains a
subspace homeomorphic to R and let % be a bounded metric on the space Y .
Show that if the metric %̂ induces the compact-open topology on Y X , then X
is a compact space.

4.2.H Prove that if X is a hemicompact space, then for every metrizable
space Y the space Y X with the compact-open topology is metrizable.

4.3 Totally bounded and complete metric spaces

Let (X, %) be a metric space and A a subset of X; we say that A is ε-dense in
(X, %) if for every x ∈ X there exists an x′ ∈ A such that %(x, x′) < ε.

A metric space (X, %) is totally bounded if for every ε > 0 there exists a finite
set A ⊂ X which is ε-dense in (X, %); a metric % on a set X is totally bounded
if the space (X, %) is totally bounded.

Theorem. (4.3.2) If (X, %) is a totally bounded space, then for every subset
M ⊂ X the space (M,%) is totally bounded.

If (X, %) is an arbitrary metric space and for a subset M ⊂ X the space
(M,%) is totally bounded, then the space (M,%) also is totally bounded.

Theorem. (4.3.3) Let {(Xi, %i)}∞i=1 be a family of non-empty metric spaces
such that the metric space %i is bounded by 1 for i = 1, 2, . . . The Cartesian

product
∞∏
i=1

Xi with the metric % defined by formula (6) is totally bounded if and

only if all spaces (Xi, %i) are totally bounded.

Corollary. (4.3.4) The Hilbert cube Iℵ0 with the metric % defined by letting

%(x, y) =

∞∑
i=1

1

2i
|xi − yi|, where x = {xi} and y = {yi},

is a totally bounded space.

Theorem. (4.3.5) A metrizable space is metrizable by a totally bounded metric
if and only if it is a separable space.

Corollary. (4.3.6) A topological space is metrizable by a totally bounded metric
if and only if it is a regular second-countable space.

A topological space X is completely metrizable if there exists a complete
metric on the space X.

Theorem (The Cantor Theorem). (4.3.8) A metric space (X, %) is complete
if and only if for every decreasing sequence F1 ⊃ F2 ⊃ . . . of non-empty closed

subsets of X, such that lim δ(Fi) = 0, the intersection
∞⋂
i=1

Fi is non-empty.
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Corollary. (4.3.9) If (X, %) is an arbitrary metric space and M is a subset of
X such that the space (M,%) is complete, then M is closed in X.

Theorem. (4.3.10) A metric space (X, %) is complete if and only if every family
of closed subsets of X which has the finite intersection property and which for
every ε > 0 contains a set of diameter less than ε has non-empty intersection.

Theorem. (4.3.11) If (X, %) is a complete space, then for a subset M ⊂ X the
space (M,%) is complete if and only if M is closed in X.

Theorem. (4.3.12) Let {(Xi, %i)} be a family of non-empty metric spaces such

that the metric %i is bounded by 1 for i = 1, 2, . . . The Cartesian product
∞∏
i=1

Xi

with the metric defined by formula (6) is complete if and only if all spaces
(Xi, %i) are complete.

Theorem. (4.3.13) For every topological space X and any complete metric
space (Y, %) the space of all bounded continuous mapping for X to Y with the
metric %̂ defined by formula (7) is complete.

Theorem. (4.3.14) Every metric space is isometric to a subspace of a complete
metric space.

Corollary. (4.3.15) Every metrizable space is embeddable in a completely metriz-
able space.

Let X be a topological space, (Y, %) a metric space and f : A → Y a con-
tinuous mapping defined on a dense subset A of the space X; we say that the
oscillation of the mapping f at a point x ∈ X is equal to zero if for every ε > 0
there exists a neighbourhood U of the point x such that δ(f [A∩U ]) < ε. The set
of all points at which the oscillation of f is equal to zero is a Gδ-set containing
A.

Lemma. (4.3.16) If X is a topological space, (Y, %) a complete metric space and
f : A → Y a continuous mapping defined on a dense subset A of the space X,
then the mapping f is extendable to a continuous mapping F : B → Y defined
on the set B consisting of all points of X at which the oscillation of f is equal
to zero.

Theorem. (4.3.17) If (X, %) is a metric space and (Y, σ) is a complete metric
space, then every mapping f : A → Y from a dense subset A of the space X to
the space Y which is uniformly continuous with respect to % and σ is extendable
to a mapping F : X → Y uniformly continuous with respect to % and σ.

Corollary. (4.3.18) If (X, %) and (Y, σ) are complete metric spaces then every
isometry of (A, %A) onto (B, %B), where A and B are dense subsets of X and
Y respectively, is extendable to an isometry of (X, %) onto (Y, σ).

Theorem. (4.3.19) For every metric space (X, %) there exists exactly one (up
to an isometry) complete metric space (X̃, %̃) such that X̃ contains a dense
subspace isometric to (X, %). Moreover, we have w(X̃) = w(X), and if (X, %)
is a totally bounded space, then (X̃, %̃) also is totally bounded. ( completion of
the metric space (X, %))
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The space (X̃, %̃) satisfying the conditions in Theorem 4.3.19 is called the
completion of metric space (X, %).

Theorem. (4.3.20) If Y is a completely metrizable space, then every continuous
mapping f : A→ Y from a dense subset A of a topological space X to the space
Y is extendable to a continuous mapping F : B → Y defined on a Gδ-set B ⊂ X
containing the set A.

Theorem (The Lavrentieff theorem). (4.3.21) Let X and Y be completely
metrizable spaces and let A ⊂ X and C ⊂ Y be arbitrary subspaces. Every
homeomorphism f : A → C is extendable to a homeomorphism F : B → D,
where A ⊂ B ⊂ X, C ⊂ D ⊂ Y and B and D are Gδ sets in X and Y
respectively.

Lemma. (4.3.22) Every Gδ-set in a metrizable space X is homeomorphic to a
closed subspace of the Cartesian product X ×Rℵ0 .

Theorem. (4.3.23) Complete metrizability is hereditary with respect to Gδ-sets.

Theorem. (4.3.24) If a subspace M of a metrizable space X is completely
metrizable, then M is a Gδ set in X.

Corollary. (4.3.25) A separable metrizable space is completely metrizable if and
only if it is embeddable in Rℵ0 as a closed subspace.

Theorem. (4.3.26) A topological space is completely metrizable if and only if
it is a Čech-complete metrizable space.

Theorem. (4.3.27) Every metric on a compact space is totally bounded.

Theorem. (4.3.28) Every metric on a compact space is complete.

Theorem. (4.3.29) A metrizable space X is compact if and only if on the space
X there exists a metric % which is both totally bounded and complete.

Corollary. (4.3.30) The completion of a metric space (X, %) is compact if and
only if (X, %) is a totally bounded space.

Theorem (The Lebesgue covering theorem). (4.3.31) For every open cover A of
a compact metric space X there exists an ε > 0 such that the cover {B(x, ε)}x∈X
is a refinement of A.

Theorem. (4.3.32) Every continuous mapping f : X → Y of a compact metriz-
able space X to a metrizable space Y is uniformly continuous with respect to any
metrics % and σ on the spaces X and Y respectively.

4.3.F If X is a locally compact Lindelöf space, then for every completely
metrizable space Y the space Y X with the compact-open topology is completely
metrizable. Give an example of a hemicompact space X such that the space IX

with the compact-open topology is not completely metrizable.
4.3.G The space P of all irrational numbers (with the topology of a subspace

of real line) is homeomorphic to the Baire space B(ℵ0) = Nℵ0 .
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4.4 Metrization theorems I

Theorem (The Stone theorem). (4.4.1) Every open cover of a metrizable space
has an open refinement which is both locally finite and σ-discrete.

Theorem. (4.4.3) Every metrizable space has a σ-discrete base.

Corollary. (4.4.4) Every metrizable space has a σ-locally finite base.

Lemma. (4.4.5) Every regular space which has a σ-locally finite base is normal.

Lemma. (4.4.6) Let X be a T0-space and {%i}∞i=1 a countable family of pseu-
dometrics on the set X which all are bounded by 1 and satisfy the following two
conditions:

(i) %i : X ×X → R is a continuous function for i = 1, 2, . . .

(ii) For every x ∈ X and every non-empty closes set A ⊂ X such that x /∈ A
there exists an i such that %i(x,A) = infa∈A %i(x, a) > 0.

Then the space X is metrizable and the function % defined by letting

%(x, y) =

∞∑
i=1

1

2i
%i(x, y)

is a metric on the space X.

Theorem (The Nagata-Smirnov metrization theorem). (4.4.7) A topological
space is metrizable if and only if it is regular and has σ-locally finite base.

Theorem (The Bing metrization theorem). (4.4.8) A topological space is metriz-
able if and only if it is regular and has σ-discrete base.

Theorem. (4.4.9) The Cartesian product [J(m)]ℵ0 of ℵ0 copies of the hedgehog
J(m) is universal for all metrizable spaces of weight m ≥ ℵ0.

Lemma. (4.4.12) If every open cover of a topological space X has a locally
finite closed refinement, then every open cover of X has also a locally finite
open refinement.

Lemma. (4.4.13) If there exists a perfect mapping f : X → Y of a metrizable
space X onto Y , then every open cover of the space Y has an open locally finite
refinement.

Theorem. (4.4.15) Metrizability is an invariant of perfect mappings.

Theorem (Vǎınštěıns lemma). (4.4.16) If f : X → Y is a closed mapping of a
metrizable space X onto a space Y , then for every y ∈ Y such that χ(y, Y ) ≤ ℵ0

the set Fr f−1(y) is compact.

Theorem (The Hanai-Morita-Stone theorem). (4.4.17) For every closed map-
ping f : X → Y of a metrizable space X onto a space Y the following conditions
are equivalent:

(i) The space Y is metrizable.

(ii) The space Y is first-countable.
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(iii) For every y ∈ Y the set Fr f−1(y) is compact.

Theorem. (4.4.18) Metrizability is an invariant of closed-and-open mappings.

Theorem. (4.4.19) If a topological space X has a locally finite closed cover
consisting of metrizable subspaces, then X is itself metrizable.

5 Paracompact spaces

5.1 Paracompact spaces

A topological space X is called a paracompact space if X is a Hausdorff space
and every open cover of X has a locally finite open refinement.

Let us observe that, in contrast to the definition of compactness, in the
definition of paracompactness the term “refinement” cannot be replaced by the
term “subcover”. Every discrete space is paracompact.

Theorem. (5.1.1) Every compact space is paracompact.

Theorem. (5.1.2) Every Lindelöf space is paracompact.

Theorem. (5.1.3) Every metrizable space is paracompact.

Lemma. (5.1.4) Let X be a paracompact space and A, B a pair of closed subsets
of X. If for every x ∈ B there exists open sets Ux, Vx such that A ⊂ Ux, x ∈ Vx
and Ux ∩ Vx = ∅, then there also exist open sets U , V such that A ⊂ U , B ⊂ V
and U ∩ V = ∅.

Theorem. (5.1.5) Every paracompact space is normal.

A family {fs}s∈S of continuous functions from a space X to the closed unit
interval I is called a partition of unity on the space X if

∑
s∈S fs(x) = 1 for

every x ∈ X. (For a fixed x0 ∈ X only countable many functions fs do not
vanish at x0.)

We say that a partition of unity {fs} on a space X is locally finite if the
cover {f−1

s ((0, 1〉)}s∈S of the space X is locally finite.
A partition of unity {fs}s∈S is subordinated to a cover A of X if the cover

{f−1
s (〈0, 1〉)}s∈S of the space X is a refinement of A.

Lemma. (5.1.6) If every open cover of a regular space X has a locally finite
refinement (consisting of arbitrary sets), then for every open cover {Us}s∈S of
the space X there exists a closed locally finite cover {Fs}s∈S of X such that
Fs ⊂ Us for every s ∈ S.

Lemma. (5.1.8) If for an open cover U of a space X there exists a partition of
unity {fs}s∈S subordinated to it, then U has an open locally finite refinement.

Theorem. (5.1.9) For every T1-space X the following conditions are equivalent:

(i) The space X is paracompact.

(ii) Every open cover of the space X has a locally finite partition of unity
subordinated to it.
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(iii) Every open cover of the space X has a partition of unity subordinated to
it.

Lemma. (5.1.10) Every open σ-locally finite cover V of a topological space X
has a locally finite refinement (consisting of arbitrary sets).

Theorem. (5.1.11) For every regular space X the following condition are equiv-
alent:

(i) The space X is paracompact.

(ii) Every open cover of the space X has an open σ-locally finite refinement.

(iii) Every open cover of the space X has a locally finite refinement (consisting
of arbitrary sets).

(iv) Every open cover of the space X has a closed locally finite refinement.

Let A = {As}s∈S be a cover of a set X; the star of a set M ⊂ X with respect
to A is the set St(M,A) =

⋃
{As : M ∩ As 6= ∅}. The star of a one-point set

{x} with respect to a cover A is called the star of the point x with respect to A
and denoted by St(x,A). We say that a cover B = {Bt}t∈T of a set X is a star
refinement of another cover A = {As}s∈S of the same set X if for every t ∈ T
there exists an s(t) ∈ S such that St(Bt,B) ⊂ As(t). If for every x ∈ X there
exists an s(x) ∈ S such that St(x,B) ⊂ As(x), then we say that B is a barycentric
refinement of A. Clearly, every star refinement is a barycentric refinement and
every barycentric refinement is a refinement.

Theorem. (5.1.12) For every T1-space X the following conditions are equiva-
lent:

(i) The space X is paracompact.

(ii) Every open cover of the space X has an open barycentric refinement.

(iii) Every open cover of the space X has an open star refinement.

(iv) The space X is regular and every open cover of X has an open σ-discrete
refinement.

Lemma. (5.1.13) If an open cover U of a topological space X has a closed
locally finite refinement, then U has also an open barycentric refinement.

Lemma. (5.1.15) If a cover A = {As}s∈S of a set X is a barycentric refinement
of a cover B = {Bt} of X, and B is a barycentric refinement of a cover C = {Cz}
of the same set, then A is a star refinement of C.

Lemma. (5.1.16) If every open cover of a topological space X has an open star
refinement, then every open cover of X has also an open σ-discrete refinement.

A topological space X is called collectionwise normal if X is a T1-space and
for every discrete family {Fs}s∈S of closed subsets of X there exists a discrete
family {Vs}s∈S of open subsets of X such that Fs ⊂ Vs for every s ∈ S. Clearly,
every collectionwise normal space is normal.
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Theorem. (5.1.17) A T1-space X is collectionwise normal if and only if for ev-
ery discrete family {Fs}s∈S of closed subsets of X there exists a family {Us}s∈S
of open subsets of X such that Fs ⊂ Us for every s ∈ S and Us ∩ Us′ = ∅
whenever s 6= s′.

Theorem. (5.1.18) Every paracompact space is collectionwise normal.

Theorem. (5.1.20) Every countably compact paracompact spaces is compact.

Example. (5.1.21) The space W0 of all countable ordinal numbers is not para-
compact. SinceW0 is countably compact and normal, it is collectionwise normal.

Examples 5.1.22,23 skipped.

Lemma. (5.1.24) Every locally finite family of non-empty subsets of a Lindelöf
space is countable.

Theorem. (5.1.25) If a paracompact space X contains a dense subspace A
which has the Lindelöf property, then X is a Lindelöf space.

Corollary. (5.1.26) Every separable paracompact space is a Lindelöf space.

Theorem. (5.1.27) Every locally compact paracompact space X can be repre-
sented as the union of a family of disjoint closed-and-open subspaces of X each
of which has the Lindelöf property.

Theorem. (5.1.28) Paracompactness is hereditary with respect to Fσ-sets.

Corollary. (5.1.29) Every closed subspace of a paracompact space is paracom-
pact.

Theorem. (5.1.30) The sum
⊕
s∈S

Xs is paracompact if and only if all spaces Xs

are paracompact.

Example. (5.1.31) Sorgenfrey line K is a paracompact space. Since the Carte-
sian product K ×K is not normal, the Cartesian product of two paracompact
spaces is not necessarily paracompact.

Example 5.1.32 skipped

Theorem (The Michael theorem). (5.1.33) Paracompactness is an invariant
of closed mappings.

Theorem. (5.1.34) If a topological space X has a locally finite closed cover
consisting of paracompact subspaces, then X is itself paracompact.

Theorem. (5.1.35) Paracompactness is an inverse invariant of perfect map-
pings.

Theorem. (5.1.36) The cartesian product X × Y of a paracompact space X
and a compact space Y is paracompact.

Theorem. (5.1.37) The class of paracompact spaces is perfect.

Theorem (The Tamano theorem). (5.1.38) For every Tychonoff space X the
following conditions are equivalent:
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(i) The space X is paracompact.

(ii) For every compactification cX of the space X the Cartesian product X×cX
is normal.

(iii) The Cartesian product X × βX is normal.

(iv) There exists a compactification cX of the space X such that the Cartesian
product X × cX is normal.

Theorem. (5.1.39) A topological space X is paracompact if and only if for
every compact space Y the Cartesian product X × Y is normal.

Example 5.1.40 skipped.

5.2 Countably paracompact spaces

5.3 Weakly and strongly paracompact spaces

A topological space X is called weakly paracompact3 if X is a Hausdorff space
and every open cover of X has a point-finite open refinement. Every paracom-
pact space is weakly paracompact, but not vice-versa.

5.4 Metrization theorems II

A sequenceW1,W2, . . . of covers of a topological space X is called a development
for the space X if all covers Wi are open, and for every point x ∈ X and any
neighbourhood U of x there exists a natural number i such that St(x,Wi) ⊂ U .
One easily observes that a sequence W1,W2, . . . of open covers of a topological
space X is a development for X if and only if for every x ∈ X any family
{Wi}∞i=1 such that x ∈Wi ∈ Wi for i = 1, 2, . . . is a base for X at the point x.

Theorem (Bing’s metrization criterion). (5.4.1) A topological space is metriz-
able if and only if it is collectionwise normal and has a development.

A sequence W1,W2, . . . of covers of a topological space X is called a strong
development for the space X if all coversWi are open and for every point x ∈ X
and any neighbourhood U of x there exist a neighbourhood V of the point x and
a natural number i such that St(V,Wi) ⊂ U . Clearly, every strong development
is a development.

Theorem (The Moore metrization theorem). (5.4.2) A topological space is
metrizable if and only if it is a T0-space and has a strong development.

We say that a base B for a topological space X is point-regular if for every
point x ∈ X and any neighbourhood U of x the set of all members of B that
contain x and meet X \ U is finite. One easily observes that a base B for a
space X is point-regular if and only if for every x ∈ X any family consisting of
ℵ0 members of B which all contain x is a base for X at the point x.4

We say that a base B for a topological space X is regular if for every point
x ∈ X and any neighbourhood U of x there exists a neighbourhood V ⊂ U of

3The terms metacompact and pointwise paracompact are also used.
4The reader should be warned that point-regular bases are also called uniform bases.
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the point x such that the set of all members of B that meet both V and X \ U
is finite. Clearly, every regular base is point-regular.

To simplify the statement of the next lemmas, for a family A of sets we shall
denote by Am the subfamily of A consisting of all maximal elements, and for a
topological space X we shall denote by J (X) the family of all open one-point
subsets of X.

Lemma. (5.4.3) If B is a point-regular (regular) base for a space X, then the
family Bm ⊂ B is a point-finite (locally finite) cover of X.

Lemma. (5.4.4) If B is a base for a T1-space, then for every point-finite cover
B′ ⊂ B the family B′′ = (B \ B′) ∪ J (X) is a base for X. Moreover, if the base
B is point-regular (regular), then the base B′′ also is point-regular (regular).

Theorem (The Arhangelskii metrization theorem). (5.4.6) A topological space
is metrizable if and only if it is a T1-space and has a regular base.

Lemma. (5.4.7) For every Hausdorff space X the following conditions are
equivalent:

(i) The space X has a point-regular base.

(ii) The space X is weakly paracompact and has a development.

(iii) The space X has a development consisting of point-finite covers.

Theorem (Alexandroff’s metrization criterion). (5.4.8) A topological space is
metrizable if and only if it is collectionwise normal and has a point-regular base.

Theorem (The Alexandroff-Urysohn metrization theorem). (5.4.9) A topolog-
ical space is metrizable if and only if it is a T0-space and has a development
W1,W2, . . . such that for every natural number i and any two sets W1,W2 ∈
Wi+1 with non-empty intersection there exists a set W ∈ Wi such that W1 ∪
W2 ⊂W .

Corollary. (5.4.10) A topological space is metrizable if and only if it is a T0-
space and has a development W1,W2, . . . such that Wi+1 is a star refinement of
Wi for i = 1, 2, . . .

6 Connected spaces

6.1 Connected spaces

We say that a topological space X is connected if X cannot be represented in
the form X1 ⊕X2, where X1 and X2 are non-empty subspaces of X.

Theorem. (6.1.1) For every topological space X the following conditions are
equivalent:

(i) The space X is connected.

(ii) The empty set and the whole space are the only closed-and-open subsets of
the space X.
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(iii) If X = X1 ∪X2 and the sets X1 and X2 are separated, then one of them
is empty.

(iv) Every continuous mapping f : X → D of the space X to the two-point
discrete space D = {0, 1} is constant, i.e., either f [X] ⊂ {0} or f [X] ⊂
{1}.

Corollary. (6.1.2) A space X is connected if and only if it cannot be represented
as the union X1 ∪X2 of two closed (open), non-empty and disjoint subsets.

Corollary. (6.1.3) Every connected Tychonoff space containing at least two
points has cardinality not less than c.

Theorem. (6.1.4) Connectedness is an invariant of continuous mappings.

Theorem. (6.1.7) A subspace C of a topological space X is connected if and
only if for every pair X1, X2 of separated subsets of X such that C = X1 ∪X2

we have either X1 = ∅ or X2 = ∅.

Corollary. (6.1.8) If a subspace C of a topological space X is connected then
for every pair X1, X2 of separated subsets of X such that C ⊂ X1 ∪X2 we have
either C ⊂ X1 or C ⊂ X2.

Theorem. (6.1.9) Let {Cs}s∈S be a family of connected subspaces of a topo-
logical space X. If there exists an s0 ∈ S such that the set Cs0 is not separated
from any of the sets Cs, then the union

⋃
s∈S

Cs is connected.

Corollary. (6.1.10) If the family {Cs}s∈S of connected subspaces of a topolog-
ical space has non-empty intersection, then the union

⋃
s∈S

Cs is connected.

Corollary. (6.1.11) If a subspace C of X is connected, then every subspace A
of X which satisfies C ⊂ A ⊂ C also is connected.

Corollary. (6.1.12) If a topological space X contains a connected dense sub-
space, then X is itself connected.

Corollary. (6.1.13) If any two points of a topological space X can be joined by
a connected subspace of X, then the space X is connected.

Theorem. (6.1.14) The Čech-Stone compactification βX of a Tychonoff space
X is connected if and only if the space X is connected.

Theorem. (6.1.15) The Cartesian product
∏
s∈S

Xs, where Xs 6= ∅ for s ∈ S, is

connected if and only if all spaces Xs are connected.

Corollary. (6.1.16) Euclidean n-space Rn, the Tychonoff cube Im and the
Alexandroff cube Fm are all connected.

A topological space X is called a continuum if X is both connected and
compact.

Theorem. (6.1.18) The limit of an inverse system S = {Xσ, π
σ
% ,Σ} of continua

is a continuum.
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Corollary. (6.1.19) If a family {Xs}s∈S of continua is closed with respect to
finite intersections, then the intersection

⋂
s∈S

Xs is a continuum.

Corollary. (6.1.20) The intersection
⋂
s∈S

Xs of a decreasing sequence X1 ⊃

X2 ⊃ . . . of continua is a continuum.

The component of a point x in a topological space X is the union of all
connected subspaces of X which contain the point x. Components of the space
X constitute a decomposition of the space X into pairwise disjoint, connected,
closed subsets.

Theorem. (6.1.21) The component of a point x = {xs} in the Cartesian prod-
uct

∏
s∈S

Xs coincides with the Cartesian product
∏
s∈S

Cs, where Cs is the compo-

nent of the point xs in the space Xs.

The quasi-component of a point x is the intersection of all closed-and-open
subsets of X which contain the point x. Quasi-components are closed subsets
of X, they constitute a decomposition of X.

Theorem. (6.1.22) The component C of a point x in a topological space X is
contained in the quasi-component Q of the point x.

Theorem. (6.1.23) In a compact space X the component of a point x ∈ X
coincides with the quasi-component of the point x.

Lemma. (6.1.25) If A is a closed subspace of a continuum X such that ∅ 6=
A 6= X, then for every component C of the space A we have C ∩ FrA 6= ∅.

Lemma. (6.1.26) If a continuum X is covered by pairwise disjoint closed sets
X1, X2, . . . of which at least two are non-empty, then for every i there exists a
continuum C ⊂ X such that C ∩ Xi = ∅ and at least two sets in the sequence
C ∩X1, C ∩X2, . . . are non-empty.

Theorem (The Sierpiński theorem). (6.1.27) If a continuum X has a countable
cover {Xi}∞i=1 by pairwise disjoint closed subsets, then at most one of the sets
Xi is non-empty.

We say that a continuous mapping f : X → Y is monotone if all fibers f−1(y)
are connected.

Theorem. (6.1.28) If f : X → Y is a monotone quotient mapping, then for
every connected subset C of the space Y which is either closed or open, the
inverse image f−1(C) is connected.

Theorem. (6.1.29) If f : X → Y is a monotone mapping which is either closed
or open, then for every connected subset C of the space Y the inverse image
f−1(C) is connected.

6.2 Various kinds of disconnectedness

A topological space X is called hereditarily disconnected if X does not contain
any connected subset of cardinality larger than one. Hence, a space X is heredi-
tarily disconnected if and only if the component of any point x ∈ X is the point
x alone.
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A topological space X is called zero-dimensional if X is a non-empty T1-
space and has a base consisting of open-and-closed sets. Clearly, every zero-
dimensional space is a Tychonoff space.

Theorem. (6.2.1) Every zero-dimensional space is hereditarily disconnected.

A cover of a topological space consisting of functionally open (closed) sets
will be called in the sequel a functionally open (closed) cover.

A topological space X is called strongly zero-dimensional if X is a non-empty
Tychonoff space and every finite functionally open cover {Ui}ki=1 of the space
X has a finite open refinement {Vi}mi=1 such that Vi ∩ Vj = ∅ whenever i 6= j.
Clearly, the refinement {Vi}mi=1 consists of open-and-closed sets and thus is a
functionally open cover of X.

Lemma. (6.2.2) For every pair A, B of completely separated subsets of a
strongly zero-dimensional space X there exists an open-and-closed set U ⊂ X
such that A ⊂ U ⊂ X \B.

Lemma. (6.2.3) If for every pair A, B of completely separated subsets of a
topological (normal) space X there exists an open-and-closed set U ⊂ X such
that A ⊂ U ⊂ X \ B, then every finite functionally open (open) cover {Ui}ki=1

of the space X has a finite open refinement {Vi}ki=1 such that Vi ⊂ Ui for
i = 1, 2, . . . , k and Vi ∩ Vj = ∅ whenever i 6= j.

Theorem. (6.2.4) A non-empty Tychonoff space X is strongly zero-dimensional
if and only if for every pair A, B of completely separated subsets of the space X
there exists an open-and-closed set U ⊂ X such that A ⊂ U ⊂ X \B.

Theorem. (6.2.5) A non-empty normal space X is strongly zero-dimensional if
and only if every open cover {Ui}ki=1 of the space X has a finite open refinement
{Vi}mi=1 such that Vi ∩ Vj = ∅ whenever i 6= j.

Theorem. (6.2.6) Every strongly zero-dimensional space is zero-dimensional.

Theorem. (6.2.7) Every zero-dimensional Lindelöf space is strongly zero-dimensional.

Corollary. (6.2.8) Every non-empty regular space X such that |X| ≤ ℵ0 is
strongly zero-dimensional.

Theorem. (6.2.9) Hereditary disconnectedness, zero-dimensionality and strong
zero-dimensionality are equivalent in the realm of non-empty locally compact
paracompact spaces.

Corollary. (6.2.10) Hereditary disconnectedness, zero-dimensionality and strong
zero-dimensionality are equivalent in the realm of non-empty compact spaces.

Theorem. (6.2.11) Hereditary disconnectedness is a hereditary property and
zero-dimensionality is hereditary with respect to non-empty sets.

If X is a strongly zero-dimensional space and M is a non-empty subspace of
X with the property that every continuous function f : M → I is continuously
extendable over X, then the space M also is strongly zero-dimensional.

In particular, in normal spaces strong zero-dimensionality is hereditary with
respect to non-empty closed sets.
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Theorem. (6.2.12) The Čech-Stone compactification βX of a Tychonoff space
X is strongly zero-dimensional if and only if the space X is strongly zero-
dimensional.

Theorem. (6.2.13) The sum
⊕
s∈S

Xs, where S 6= ∅ and Xs 6= ∅ for s ∈ S,

is hereditarily disconnected (zero-dimensional, strongly zero-dimensional) if and
only if all spaces Xs are hereditarily disconnected (zero-dimensional, strongly
zero-dimensional).

Theorem. (6.2.14) The Cartesian product
∏
s∈S

Xs, where S 6= ∅ and Xs 6= ∅ for

s ∈ S, is hereditarily disconnected (zero-dimensional) if and only if all spaces
Xs are hereditarily disconnected (zero-dimensional).

Corollary. (6.2.15) The limit of an inverse system of hereditarily disconnected
(zero-dimensional) spaces is hereditarily disconnected (zero-dimensional or empty).

Theorem. (6.2.16) The Cantor cube Dm is universal for all zero-dimensional
spaces.

Corollary. (6.2.17) Every zero-dimensional space X of weight m has a zero-
dimensional compactification of weight m.

A continuous mapping f : X → Y is light (zero-dimensional) if all fibers
f−1(y) are hereditarily disconnected (zero-dimensional or empty).

Lemma. (6.2.21) For every perfect mapping f : X → Y the equivalence relation
E on the space X, determined by the decomposition of all fibers f−1(y) into
components, is closed.

Theorem. (6.2.22) Every perfect mapping f : X → Y can be represented as
the composition f = hg, where g : X → Z is a monotone perfect mapping and
h : Z → Y is a zero-dimensional perfect mapping.

Theorem. (6.2.23) If a continuous mapping f : X → Y is represented for
i = 1 and 2 as the composition higi, where gi : X → Zi is a monotone quotient
mapping and hi : Zi → Y is a light mapping, then there exists a homeomorphism
h : Z1 → Z2 such that the following diagram is commutative.

Z1

h1

  
h

��

X

g1
>>

g2   

Y

Z1

h2

>>

Theorem. (6.2.24) For every compact space X, the decomposition of X into
components, or – equivalently – into quasi-components, determines a closed
equivalence relation E on the space X; the quotient space X/E is compact and
zero-dimensional.

A topological space X is called extremally disconnected if for every open set
U ⊂ X the closure U is open in X.
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Theorem. (6.2.25) Every non-empty extremally disconnected Tychonoff space
is strongly zero-dimensional.

Theorem. (6.2.26) A topological space X is extremally disconnected if and only
if for every pair U , V of disjoint open subsets of X we have U ∩ V = ∅.

Theorem. (6.2.27) The Čech-Stone compactification βX of a Tychonoff space
X is extremally disconnected if and only if the space X is extremally discon-
nected.

Corollary. (6.2.28) For every m ≥ ℵ0 the Čech-Stone compactification βD(m)
of the discrete space D(m) is extremally disconnected.

Corollary. (6.2.29) The space βN is extremally disconnected.

Theorem. (6.2.30) The sum
⊕
s∈S

Xs is extremally disconnected if and only if

all spaces Xs are extremally disconnected.

Hereditarily disconnected spaces were introduced by Hausdorff. The spaces
of this class are sometimes called totally disconnected; however, at present the
term totally disconnected is usually applied to a space X such that the quasi-
component of any point x ∈ X consists of the point x alone (this class of
spaces was introduced by Sierpiński). Every zero-dimensional space is totally
disconnected and every totally disconnected space is hereditarily disconnected.

6.2.A Every Gδ-set which is both dense and co-dense in a separable zero-
dimensional completely metrizable space is homeomorphic to the space of irra-
tional numbers.

Every separable zero-dimensional completely metrizable space which does
not contain any non-empty compact space is homeomorphic to the space of
irrational numbers.

Every dense in itself zero-dimensional compact metrizable space is homeo-
morphic to the Cantor set.

Every dense in itself countable metrizable space is homeomorphic to the
space of irrational numbers.

7 Dimension of topological spaces

7.1 Definitions and basic properties of dimensions ind, Ind,
and dim

7.2 Further properties of the dimension dim

7.3 Dimension of metrizable spaces

8 Uniform spaces and proximity spaces

8.1 Uniformities and uniform space

−A = {(x, y) : (y, x) ∈ A}, A + B = {(x, z) : there exists a y ∈ X such that
(x, y) ∈ A and (y, z) ∈ B}.

1A = A, nA = (n− 1)A+A
mA+ nA = nA+mA = (m+ n)A
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The diagonal of the Cartesian product X×X is the set ∆ = {(x, x) : x ∈ X}.
Every set V ⊂ X × X that contains ∆ and satisfies the condition V = −V is
called an entourage of diagonal; the family of all entourages of the diagonal
∆ ⊂ X × X will be denoted by DX . If for a pair x, y of points of X and a
V ∈ DX we have (x, y) ∈ V , we say that the distance between x and y is less
than V and we write |x−y| < V ; otherwise we write |x−y| ≥ V . If for any pair
of points of a set A ⊂ X and a V ∈ DX we have |x− y| < V , i.e., if A×A ⊂ V ,
we say that the diameter of A is less then V and we write δ(A) < V . One
readily checks that for any x, y, z ∈ X and any V, V1, V2 ∈ DX the following
conditions hold:

(1) |x− x| < V .

(2) |x− y| < V if and only if |y − x| < V .

(3) If |x− y| < V1 and |y − z| < V2, then |x− z| < V1 + V2.

Let x0 be a point of X and let V ∈ DX ; the set B(x0, V ) = {x ∈ X :
|x0−x| < V } is called the ball with center x0 and radius V or simply the V -ball
about x0. It follows immediately from (3) that the diameter of a V -ball is less
than 2V . For a set A ⊂ X and V ∈ DX , by the V -ball about A we mean the set
B(A, V ) =

⋃
x∈A

B(x, V ).

A uniformity on a set X is a subfamily U of DX which satisfies the following
conditions:

(U1) If V ∈ U and V ⊂W ∈ DX , then W ∈ U .

(U2) If V1, V2 ∈ U , then V1 ∩ V2 ∈ U .

(U3) For every V ∈ U there exists a W ∈ U such that 2W ⊂ V .

(U4)
⋂
U = ∆.

A family B ⊂ U is called a base for the uniformity U if for every V ∈ U there
exists a W ∈ B such that W ⊂ V . The smallest cardinal number of the form |B|
where B is a base for U , is called the weight of the uniformity U and is denoted
by w(U).

Any base B for a uniformity on a set X has the following properties:

(BU1) For any V1, V2 ∈ B there exists a V ∈ B such that V ⊂ V1 ∩ V2.

(BU2) For every V ∈ B there exists a W ∈ B such that 2W ⊂ V .

(BU3)
⋂
B = ∆.

Observe that every entourage of the diagonal V ∈ DX yields a cover C(V ) =
{B(x, V )}x∈X of the set X. Let U be a uniformity on a set X; any cover of the
set X which has a refinement of the form C(V ), where V ∈ U , is called uniform
with respect to U . The collection C of all covers of a set X which are uniform
with respect to a uniformity U on the set X has the following properties:

(UC1) If A ∈ C and A is a refinement of a cover B of the set X, then B ∈ C.

(UC2) For any A1,A2 ∈ C there exists an A ∈ C which is a refinement of both
A1 and A2.
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(UC3) For every A ∈ C there exist a B ∈ C which is a star refinement of A.

(UC4) For every pair x, y of distinct points of X there exists an A ∈ C such that
no member of A contains both x and y.

A uniform space is a pair (X,U) consisting of a set X and a uniformity U
on the set X. The weight of a uniform space (X,U) is defined as the weight of
the uniformity U .

Theorem. (8.1.1) For every uniformity U on a set X the family

O = {G ⊂ X : for every x ∈ G there exists a V ∈ U such that B(x, V ) ⊂ G}

is a topology on the set X and the topological space (X,O) is a T1-space.

The topology O is called the topology induced by the uniformity U .
If X is a topological space and a uniformity U on the set X induces the

original topology of X, then we say that U is uniformity on the space X.

Proposition. (8.1.2) The interior of a set A ⊂ X with respect to the topology
induced by a uniformity U on the set X coincides with the set

B = {x ∈ X : there exists a V ∈ U such that B(x, V ) ⊂ A}.

Corollary. (8.1.3) If the topology of a space X is induced by a uniformity U ,
then for every x ∈ X and any V ∈ U the set IntB(x, V ) is a neighborhood of
x.

Corollary. (8.1.4) If the topology of a space X is induced by a uniformity U ,
then for every x ∈ X and any A ⊂ X we have

x ∈ A if and only if A ∩B(x, V ) 6= ∅ for every V ∈ U .

Corollary. (8.1.5) If the topology of a space X is induced by a uniformity U ,
then for every A ⊂ X and any V ∈ U we have

δ(A) < 3V whenever δ(A) < V.

Example. (8.1.6) U = DX =discrete uniformity, discrete uniform space. The
one-element family B = {δ} is a base for U , so that w(U) = 1.

It follows from the above example that the weight of a topological space
(X,O), where the topology O is induced by a uniformity U , can be larger than
the weight of U . On the other hand, one readily verifies that the character of
(X,O) is less than or equal to the weight of U .

Distinct uniformities may induce the same topology - example 8.1.7.
Let U be a uniformity on a set X; the Tychonoff topology on the Cartesian

product X ×X, where X has the topology induced by U , is called the topology
induced by the uniformity U on the set X ×X.

Consider a uniform space (X,U) and a pseudometric % on the set X; we say
that the pseudometric % is uniform with respect to U if for every ε > 0 there
exists a V ∈ U such that %(x, y) < ε whenever |x− y| < V .

Proposition. (8.1.9) If a pseudometric % on a set X is uniform with respect
to a uniformity U on X, then % is a continuous function from the set X × X
with the topology induced by the uniformity U to the real line.
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Theorem. (8.1.10) For every sequence V0, V1, . . . of members of a uniformity
U on a set X, where

V0 = X ×X and 3Vi+1 ⊂ Vi for 1, 2, . . . , (4)

there exists a pseudometric % on the set X such that for every i ≥ 1

Vi ⊂ {(x, y) : %(x, y) ≤ 1/2i} ⊂ Vi−1.

Corollary. (8.1.11) For every uniformity U on a set X and any V ∈ U there
exists a pseudometric % on the set X which is uniform with respect to U and
satisfies a condition

{(x, y) : %(x, y) < 1} ⊂ V.

Corollary. (8.1.12) For every uniformity U on a set X the family of all mem-
bers of U which are open with respect to the topology induced by U on X ×X,
as well as the family of all members of U which are closed with respect to that
topology, are both bases for U .

Corollary. (8.1.13) For every uniformity U on a set X, the set X with the
topology induced by U is a Tychonoff space.

Let (X,U) be a uniform space; we shall show that the family P if all pseu-
dometrics on the set X which are uniform with respect to U has the following
properties:

(UP1) If %1, %2 ∈ P then max(%1, %2) ∈ P .

(UP2) For every pair x, y of distinct points of X there exists a % ∈ P such that
%(x, y) > 0.

Proposition. (8.1.14) Suppose we are given a set X and a family B ⊂ DX of
entourages of the diagonal which has properties (BU1)-(BU3). The family U
consisting of all members of DX which contain a member of B is a uniformity
on the set X. The family B is a base for U .

If, moreover, X is a topological space and the family B consists of open sub-
sets of the Cartesian product X ×X, and if for every x ∈ X and any neighbor-
hood G of x there exists a V ∈ B such that B(x, V ) ⊂ G, then U is a uniformity
on the space X.

The uniformity U is called the uniformity generated by the base B.

Proposition. (8.1.16) Suppose we are given a set X and a collection C of
covers of X which has properties (UC1)–(UC4). The family B ⊂ DX of all
entourages of the diagonal which are of the form

⋃
{H × H : H ∈ A}, where

A ∈ C, is a base for a uniformity U on the set X. The collection C is the
collection of all covers of X which are uniform with respect to U .

If, moreover, X is a topological space and the collection C consists of open
covers of X, and if for every x ∈ X and any neighborhood G of x there exists
an A ∈ C such that St(x,A) ⊂ G, then U is a uniformity on the space X.

The uniformity U is called the uniformity generated by the collection C of
uniform covers.

62



Example. (8.1.17) A topological group is a group G which is in the same time
a T1-space such that the following two conditions are satisfied:

(TG1) The formula f(x, y) = xy defines a continuous mapping f : G×G→ G.

(TG2) The formula f(x) = x−1 defines a continuous mapping f : G→ G.

Let G be a group an d let A, B be subsets of G; we define A−1 = {x−1 :
x ∈ A} and AB = {xy : x ∈ A and y ∈ B}. Similarly xA and Ax. If A is an
open subset of a topological group G, then the set A−1 is also open. Similarly,
the set AB is open if at least one of the sets A and B is open. In particular, for
every open set H ⊂ G the sets xH and Hx are open.

Now let G be a topological group and let B = B(e) be a base for G at the
point e. Every member H of B determines three covers of G:

Cl = {xH}x∈G, Cr = {Hx}x∈G, and H = {xHy}x,y∈G.

Denote by Cl, Cr and C respectively the collection of all covers of G which
have a refinement of the form Cl(H), Cr(H), or C(H), where H ∈ B. They have
properties (UC1)–(UC4) and thus generate a uniformity on the set G. Moreover
it turns out that the topology induced by each of those uniformities coincides
with the original topology of G.

Every topological group is a Tychonoff space.

Proposition. (8.1.18) Suppose we are given a set X and a family P of pseu-
dometrics on the set X which has properties (UP1)-(UP2). The family B ⊂ DX
of all entourages of the diagonal which are of the form {(x, y) : %(x, y) < 1/2i},
where % ∈ P and i = 1, 2, . . ., is a base for a uniformity U on the set X. Every
pseudometric % ∈ P is uniform with respect to U .

If, moreover, X is a topological space and all pseudometrics of the family P
are continuous functions from X × X to the real line, and if for every x ∈ X
and every non-empty closed set A ⊂ X such that x /∈ A there exists a % ∈ P
such that inf

a∈A
%(x, a) > 0, then U is a uniformity on the space X.

The uniformity U is called the uniformity generated by the family P of
uniform pseudometrics.

Example. (8.1.19) Family of pseudometrics on C(X) and C∗(X): For every
finite sequence f1, . . . , fk of elements of C(X) (resp. C∗(X)) the formula

%f1,...,fk = max{|f1(x)− f1(y)|, . . . , |fk(x)− fk(y)|}

defines a pseudometric on the set X. The families of all such pseudometrics
have properties (UP1)–(UP2). The induced topology coincides with the original
topology.

Theorem. (8.1.20) The topology of a space X can be induced by a uniformity
on the set X if and only if X is a Tychonoff space.

Let X be a set and let % be a metric on the set X. Since the family {%} has
properties (UP1)–(UP2), it generates a uniformity U on the set X. Moreover, by
virtue of Corollaries 4.2.6.and 4.1.11, the topologies induced on X by the metric
% and by the uniformity U coincide. The uniformity U is called the uniformity
induced by the metric %. The uniform space (X,U) is metrizable.

63



Theorem. (8.1.21) A uniformity U on a set X is induced by a metric on the
set X if and only if w(U) ≤ ℵ0.

A mapping f : X → Y is called uniformly continuous with respect to the
uniformities U and V if for every V ∈ V there exist a U ∈ U such that for
all x, x′ ∈ X we have |f(x) − f(x′)| < V whenever |x − x′| < U . It follows
immediately from the definition that f is a continuous mapping of the space X
with the topology induced by U to the space Y with the topology induced by
V.

Proposition. (8.1.22) Let (X,U) and (Y,V) be uniform spaces and f a map-
ping of X to Y . The following conditions are equivalent:

(i) The mapping f is uniformly continuous with respect to U and V.

(ii) There exist bases B and C for U and V respectively, such that for every
V ∈ C there exists a U ∈ B satisfying U ⊂ (f × f)−1(V ).

(iii) For every cover A of the set Y which is uniform with respect to V the
cover {f−1(A) : A ∈ A} of the set X is uniform with respect to U .

(iv) For every pseudometric % on the set Y which is uniform with respect to V
the pseudometric σ on the set X defined by letting σ(x, y) = %(f(x), f(y))
is uniform with respect to U .

A one-to-one mapping f of a set X onto a set Y is a uniform isomorphism
with respect to the uniformities U and V on the sets X and Y respectively, if f
is uniformly continuous with respect to U and V and the inverse mapping f−1

is uniformly continuous with respect to V and U . A uniform isomorphism is a
homeomorphism of the induced topological spaces.

We say that two uniform spaces (X,U) and (Y,V) are uniformly isomorphic
if there exists a uniform isomorphism of (X,U) onto (Y,V).

8.2 Operations on uniform spaces

Suppose we are given a uniform space (X,U) and a set M ⊂ X. Let UM =
{(M×M)∩V : V ∈ U} ⊂ DM . The uniform space (M,UM ) is called a subspace
of the uniform space (X,U).

embedding of the subspace
Let {(Xs,Us)}s∈S be a family of uniform spaces. The family B of all en-

tourages of the diagonal ∆ ⊂ (
∏
s∈S

Xs)× (
∏
s∈S

Xs) which are of the form

{({xs}, {ys}) : |xsi − ysi | < Vsi for i = 1, 2, . . . , k},

where s1, s2, . . . , sk ∈ S and Vsi ∈ Usi for i = 1, 2, . . . , k. The family B generates
a uniformity on the set

∏
s∈S

Xs; this uniformity is called the Cartesian product

of the uniformities {Us}s∈S and is denoted by
∏
s∈S
Us.

Cartesian product of uniform spaces
The reader can easily verify that the topology induced on

∏
Xs by the

uniformity
∏
Us coincides with the Tychonoff topology of the Cartesian product∏

Xs, where Xs has the topology induced by
∏
Us.
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Proposition. (8.2.1) Let (X,U) be a uniform space, {(Ys, Vs)}s∈S a family of
uniform spaces and f a mapping of the set X to the Cartesian product

∏
s∈S

Ys.

The mapping f is uniformly continuous with respect to U and
∏
s∈S
Vs if and only

if the composition psf is uniformly continuous with respect to U and Vs for
every s ∈ S.

Theorem. (8.2.2) Every uniform space is uniformly isomorphic to a subspace
of the Cartesian product of a family of metrizable uniform spaces.

Remark. (8.2.4) Every uniform space of weight m is uniformly isomorphic to a
subspace of the Cartesian product of m metrizable uniform spaces. Let us also
observe that there is no universal space (X,U) for all uniform spaces of weight
≤ m.

In the remaining part of this section we shall discuss function spaces.
Let X be a topological space and let (Y,U) be a uniform space. We shall

denote by Y X the set of all continuous mappings of the space X to the space Y ,
where Y is equipped with the topology induced by U . For every V ∈ U denote
by V̂ the entourage of the diagonal ∆ ⊂ Y X × Y X defined by the formula

V̂ = {(f, g) : |f(x)− g(x)| < V for every x ∈ X}.

From readily established formulas

Û ∩ V̂ = Û ∩ V and Û + V̂ ⊂ Û + V

it follows that the family {V̂ : V ∈ U} has properties (BU1)–(BU3); the unifor-
mity on the set Y X generated by this family will be called uniformity of uniform
convergence induced by U and will be denoted by Û .

If the uniformity U is induced by a bounded metric % on Y , then w(Û) ≤ ℵ0,
so that - by Theorem 8.1.21 - the uniformity Û is induced by a metric on
Y X . One readily verifies that the metric %̂ defined by formula (7) in Section
4.2 induces the uniformity Û . Hence it follows from Example 4.2.14 that two
uniformities U1 and U2 on Y which induce the same topology, the topologies
on Y X induced by Û1 and Û2 can be different. It turns out, however, that for
a compact space X - as in the case of metric space - the topology on Y X is
independent of the choice of a particular uniformity U on the space Y , because
the topology induced by Û coincides with the compact-open topology on Y X .
This fact is a corollary to Theorem 8.2.6 proved below; to formulate the theorem
we have to introduce another uniformity on Y X .

For a Hausdorff space X and a uniform space (Y,U) we shall denote by
Û |Z(X) the uniformity on Y X generated by the base consisting of all finite
intersections of the sets of the form

V̂ |Z = {(f, g) : |f(x)− g(x)| < V for every x ∈ Z}, (3)

where V ∈ U , Z ∈ Z(X) and Z(X) is the family of all compact subsets of X
(the reader can easily check that the family of all finite intersection of the sets
in (3) has the properties (BU1)–(BU3). The uniformity Û |Z(X) will be called
the uniformity of uniform convergence on compacta induced by U .
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Lemma. (8.2.5) If the topology of a space X is induced by a uniformity U , then
for every compact set Z ⊂ X and any open set G containing Z there exists a
V ∈ U such that B(Z, V ) ⊂ G.

Theorem. (8.2.6) For every Hausdorff space X and any uniform space (Y,U)
the topology on Y X induced by the uniformity Û |Z(X) of uniform convergence
on compacta coincides with the compact-open topology no Y X , where Y has the
topology induced by U .

Corollary. (8.2.7) For every compact space X and any uniform space (Y,U)
the topology on Y X induced by the uniformity Û of the uniform convergence co-
incides with the compact-open topology on Y X , and depends only on the topology
induced on Y by the uniformity U .

We say that a family F of mapping of a topological space X to a Tychonoff
space Y is equicontinuous with respect to a uniformity U on the space Y if for
every x ∈ X and V ∈ U there exists a neighborhood G of the point x such that
|f(x)− f(x′)| < V whenever f ∈ F and x′ ∈ G.

Lemma. (8.2.8) Let X be a topological space, Y a Tychonoff space and U a
uniformity on the space Y . If a family F ⊂ Y X of mappings of X to Y is
equicontinuous with respect to U , then the family F is evenly continuous.

Lemma. (8.2.9) Let X be a topological space, Y a Tychonoff space and U a
uniformity on the space Y . If a family F ⊂ Y X of mappings of X to Y is evenly
continuous and for every x ∈ X the set {f(x) : f ∈ F} has a compact closure,
then the family F is equicontinuous with respect to U .

Theorem (The Ascoli theorem). (8.2.10) Let X be a k-space, Y a Tychonoff
space and U a uniformity on the space Y . A closed subset F of the space Y X

with the compact-open topology is compact if and only if F is equicontinuous
with respect to U and the set {f(x) : f ∈ F} ⊂ Y has a compact closure for
every x ∈ X.

Theorem. (8.2.11) Let X be a k-space, Y a Tychonoff space and U a uniformity
on the space Y . A closed subset F of the space Y X with the compact-open
topology is compact if and only if for every compact subspace Z ⊂ X the family
F |Z is equicontinuous with respect to U and the set {f(x) : f ∈ F} ⊂ Y has a
compact closure for every x ∈ X.

8.3 Totally bounded and complete uniform spaces. Com-
pactness in uniform spaces

Let (X,U) be a uniform space, V a member of the uniformity U and A a subset
of X; we say that A is V -dense in (X,U) if for every x ∈ X there exists an
x′ ∈ A such that |x− x′| < V .

A uniform space (X,U) is totally bounded if for every V ∈ U there exists a
finite set A ⊂ X which is V -dense in (X,U); a uniformity U on a set X is totally
bounded if the space (X,U) is totally bounded.

One readily verifies that if there exists a uniformly continuous mapping f
of a totally bounded uniform space (X,U) to a uniform space (Y,V) such that
f [X] = Y , then the space (X,V) also is totally bounded.
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Proposition. (8.3.1) If the uniformity U on a set X is induced by a metric %,
then the uniform space (X,U) is totally bounded if and only if the metric space
(X, %) is totally bounded.

Theorem. (8.3.2) If (X,U) is a totally bounded uniform space, then for every
subset M ⊂ X the space (M,UM ) is totally bounded.

If (X,U) is an arbitrary uniform space and for a subset M ⊂ X the space
(M,UM ) is totally bounded, then the space (M,UM ) also is totally bounded.

Theorem. (8.3.3) Let {(Xs,Us)}s∈S be a family of non-empty uniform spaces.

The Cartesian product

(∏
s∈S

Xs,
∏
s∈S
Us
)

is totally bounded if and only if all

space (Xs,Us) are totally bounded.

Let (X,U) be a uniform space and F a family of subsets of X; we say that
F contains arbitrarily small sets if for every V ∈ U there exists an F ∈ F such
that δ(F ) < V .

A uniform space (X,U) is complete if every family F of subsets of X, closed
with respect to the topology induced by U , which has the finite intersection
property and which contains arbitrarily small sets has non-empty intersection;
a uniformity U on a set X is complete if the space (X,U) is complete.

Proposition. (8.3.5) If the uniformity U on a set X is induced by a metric %,
then the uniform space (X,U) is complete if and only if the metric space (X, %)
is complete.

Theorem. (8.3.6) If (X,U) is a complete uniform space, then for a subset
M ⊂ X the uniform space (M,UM ) is complete if and only if M is closed in
Xwith respect to the topology induced by U .

Lemma. (8.3.7) For every metrizable uniform space (X,U) there exists a com-
plete metrizable uniform space (Y,V) such M ⊂ Y the space (X,U) is uniformly
isomorphic to the space (M,VM ).

Theorem. (8.3.8) Every complete uniform space is uniformly isomorphic to
a closed subspace of the Cartesian product of a family of complete metrizable
uniform spaces.

Theorem. (8.3.9) Let {(Xs,Us)}s∈S be a family of non-empty uniform spaces.
The Cartesian product (

∏
s∈S

Xs,
∏
s∈S
Us) is complete if and only if all spaces

(Xs,Us) are complete.

Theorem. (8.3.10) If (X,U) is a uniform space and (Y,V) a complete uniform
space, then every uniformly continuous mapping f : (A,UA) → (Y,V), where A
is a subset of X dense with respect to the topology induced by U , is extendable
to a uniformly continuous mapping F : (X,U)→ (Y,V).

Corollary. (8.3.11) If (X,U) and (Y,V) are complete uniform spaces then every
uniform isomorphism of (A,UA) onto (B,VB) where A and B are dense subset
of X and Y respectively, is extendable to a uniform isomorphism of (X,U) onto
(Y,V).
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Theorem. (8.3.12) For every uniform space (X,U) there exists exactly one (up
to a uniform isomorphism) complete uniform space (X̃, Ũ) such that for a dense
subset A of X̃ the space (X,U) is uniformly isomorphic to (A, ŨA). Moreover,
we have w(Ũ) = w(U) and if (X,U) is a totally bounded space, then (X̃, Ũ) also
is totally bounded.

The space (X̃, Ũ) is called the completion of the uniform space (X,U).

Theorem. (8.3.13) For every compact space X there exists exactly one unifor-
mity U on the set X that induces the original topology of X. All entourages of
the diagonal ∆ ⊂ X ×X which are open in the Cartesian product X ×X form
a base for the uniformity U .

Theorem. (8.3.14) Every uniformity on a countably compact space is totally
bounded.

Theorem. (8.3.15) Every uniformity on a compact space is complete.

A uniform space (X,U) is called compact if the set X with the topology
induced by U is a compact space.

Theorem. (8.3.16) A uniform space (X,U) is compact if and only if it is both
totally bounded and complete.

Corollary. (8.3.17) The completion of a uniform space (X,U) is compact if
and only if (X,U) is a totally bounded space.

Let (X,U) be a uniform space and {xσ, σ ∈ Σ} a net in X; we say that
{xσ, σ ∈ Σ} is a Cauchy net in (X,U) if for every V ∈ U there exists a σ0 ∈ Σ
such that |xσ − xσ0

| < V whenever σ ≥ σ0. Similarly, a filter F in the family
of all subset of X is a Cauchy filter in (X,U) if for every V ∈ U there exists an
F ∈ F such that δ(F ) < V . The reader can easily verify that Cauchy nets and
Cauchy filters correspond to one another under the one-to-one correspondence
between nets and filters established in Section 1.6.

Theorem. (8.3.20) A uniform space (X,U) is complete if and only if every
Cauchy net in (X,U) is convergent to a point of X.

Theorem. (8.3.21) A uniform space (X,U) is complete if and only if every
Cauchy filter in (X,U) is convergent to a point of X.

8.4 Proximities and proximity spaces

Let X be a set and δ a relation on the family of all subsets of X. We shall write
AδB instead of not AδB. δ is called a proximity on the set X if δ satisfies the
following conditions:

(P1) AδB if and only if BδA.

(P2) Aδ(B ∪ C) if and only if either AδB or AδC.

(P3) {x}δ{y} if and only if x = y.

(P4) ∅δX.

(P5) If AδB, then there exists C,D ⊂ X such that AδC, BδD and C ∪D = X.
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A proximity space is a pair (X, δ) consisting of a set X and a proximity δ on
the set X. Two subsets A and B are close with respect to δ if AδB, otherwise
they are remote with respect to δ.

Conditions (P1)-(P5) imply the following properties of proximities

If AδB and B ⊂ C, then AδC. (1)

If A ∩B 6= ∅, then AδB. (2)

∅δA for every A ⊂ X. (3)

Every proximity δ on a set X induces a topology O on X. More exactly the
formula

A = {x ∈ X : {x}δA} (4)

defines a closure operator on the set X.

Lemma. (8.4.1) For every proximity δ on a set X and any sets A,B ⊂ X

if BδA, then BδA. (5)

Theorem. (8.4.2) For every proximity δ on a set X formula (4) defines a
closure operator which satisfies conditions (CO1)-(CO4). The space X with the
topology O generated by that closure operator is a T1-space.

The topology O is called the topology induced by the proximity δ.

Example. (8.4.3) discrete proximity : AδB if and only if A ∩B 6= ∅.

Example. (8.4.4) X - a Tychonoff space. AδB if and only if the sets A and B
are not completely separated.

A mapping f of a set X to a set Y is called proximally continuous with
respect to the proximities δ and δ′ if for any sets A,B ⊂ X close with respect
to δ, the images f [A], f [B] ⊂ Y are close with respect to δ′.

A one-to-one mapping f of a set X onto a set Y is a proximal isomorphism
with respect to proximities δ and δ′ on the sets X and Y respectively, if f is
proximally continuous with respect to δ and δ′ and the inverse mapping f−1 is
proximally continuous with respect to δ′ and δ.

Theorem. (8.4.5) Let U be a uniformity on a set X. Letting for A,B ⊂ X

AδB if and only if V ∩ (A×B) 6= ∅ for every V ∈ U

we define a proximity on the set X. The topology induced by δ coincides with
the topology induced by U .

Example. (8.4.6) AδB if and only if %(A,B) = 0 is proximity induced by the
metric %.

Let δ be a proximity on a set X; we say that a set A is strongly contained in
a set B with respect to δ, and we write A b B, if Aδ(X \B). Let us note that
using the relation of strong inclusion we can rewrite (P5) in the following form:

If AδB, then there exist A1, B1 ⊂ X such that A b A1, B b B1

and A1 ∩B1 = ∅. (P5’)

The relation b has the following properties (in (SI5) and (SI7) the topology
induced by δ is being considered):
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(SI1) If A b B, then X \B b X \A.

(SI2) If A b B then A ⊂ B.

(SI3) If A1 ⊂ A b B ⊂ B1, then A1 b B1.

(SI4) If A1 b B1 and A2 b B2, then A1 ∪A2 b B1 ∪B2.

(SI5) If A b B, then there exists an open set C such that A b C ⊂ C ⊂b B.

(SI6) ∅ b ∅.

(SI7) For every x ∈ X and any neighborhood A of x we have {x} b A.

Let δ be a proximity on a set X. A finite cover {Ai}ki=1 of the set X is called
δ-uniform if there exists a cover {Bi}ki=1 of the set X such that

Bi b Ai for i = 1, 2, . . . , k. (10)

Lemma. (8.4.7) Let δ be a proximity on a set X. For A,B ⊂ X we have AδB
if and only if every δ-uniform cover {Ai}ki=1 of the set X contains a set Aj such
that A ∩Aj 6= ∅ 6= B ∩Aj.

Theorem. (8.4.8) For every proximity δ on a set X the collection C of all
covers of X which have a δ-uniform refinement has properties (UC1)-(UC4).
The uniformity U on the set X generated by the collection C is totally bounded
and induces the proximity δ. The topology induced by U coincides with the
topology induced by δ.

The uniformity U is called the uniformity induced by the proximity δ.

Theorem. (8.4.9) The topology of a space X can be induced by a proximity on
the set X if and only if X is a Tychonoff space.

Theorem. (8.4.10) For every compact space X there exists exactly one prox-
imity δ on the set X that induces the original topology of X, viz., the proximity
δ defined by letting

AδB if and only if A ∩B 6= ∅. (17)

Lemma. (8.4.11) Let X be a Tychonoff space and let cX be a compactification
of X. Letting for A,B ⊂ X

Aδ(c)Bif and only if c(A) ∩ c(B) 6= ∅,

where the closures are taken in cX, we define a proximity δ(c) on the space X.
For compactifications c1X and c2X of the space X we have δ(c1) = δ(c2) if

and only if the compactifications c1X and c2X are equivalent.

Lemma. (8.4.12) For every proximity δ on a Tychonoff space X there exists a
compactification cX of the space X such that δ = δ(c).

Theorem (The Smirnov theorem). (8.4.13) By assigning to any compactifica-
tion cX of a Tychonoff space X the proximity δ(c) on the space X we establish a
one-to-one correspondence between all compactifications of X and all proximities
on the space X.

Example. (8.4.14) The proximity defined in Example 8.4.4 on a Tychonoff
space X corresponds to Čech-Stone compactification of the space X.
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refinement, 21
regular base, 53
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retract, 8
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scattered set, 10
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separated, 11
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Sierpiński theorem, 55
Smirnov theorem, 69
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totally disconnected, 58
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uniformity on a space, 60
uniformly continuous, 42

uniformly continuous map, 63
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upper semicontinuous decomposition,

15
Urysohn’s lemma, 6

V -ball, 59
V -dense, 65
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Vedenissoff theorem, 7
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Wallace theorem, 24
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weakly paracompact, 52
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weight for uniformity, 59
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spaces and Fréchet spaces . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7.1 Urysohn spaces and semiregular spaces I . . . . . . . . . . 10
1.7.2 Cantor-Bendixson theorem . . . . . . . . . . . . . . . . . 10
1.7.3 Cardinal functions I . . . . . . . . . . . . . . . . . . . . . 11

2 Operations on topological spaces 11
2.1 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Cartesian products . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Quotient spaces and quotient mappings . . . . . . . . . . . . . . 15
2.5 Limits of inverse systems . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Function spaces I . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7.1 Cardinal functions II . . . . . . . . . . . . . . . . . . . . . 21
2.7.2 Spaces of closed subsets I . . . . . . . . . . . . . . . . . . 22

3 Compact spaces 22
3.1 Compact spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Operations on compact spaces . . . . . . . . . . . . . . . . . . . . 25
3.3 Locally compact spaces and k-spaces . . . . . . . . . . . . . . . . 26
3.4 Function spaces II: The compact-open topology . . . . . . . . . . 28
3.5 Compactifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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