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Zabreikova lema

Referat som robil najmé podla prislusnej kapitoly z [M]. Pri dokaze Zaberikovej lemy som
sa drzal blogu [MSE].

1 Polonormy

1.1 Spojitost polonormy
Definicia 1.1.1. Nech X je vektorovy priestor nad R. Funkcia p: X — R je polonorma, ak
pre Iubovolné o € R, x,y € X plati:

o p(ax) = |alp(x)

o p(z+y) <p(x)+p(y)

Je to teda funkcia, ktorad je subaditivna a absolitne homogénna. Mozeme si vSimnuft, ze
z tychto podmienok vyplyva p(0) = 0 a tiez p(x) > 0 (pre lubovolné x € X).

Pretoze sa budeme zaoberat spojitostou polonoriem, nie je zlé si uvedomit, ze plati:

Tvrdenie 1.1.2. Nech p: X — R je polonorma na nejakom linedrnom normovanom pries-
tore X. Nasledujice podmienky siu ekvivalentné:
(i) Funkcia p je ohranicend na nejokej guli B(0,r) = {x € X;||z|| < r} so stredom v nule.
(ii) Existuje konstanta C takd, Ze p(x) < C||z|| pre lubovolné x € X.
(#ii) Polonorma p je spojitd v 0.
(iv) Polonorma p je spojitd na celom X.

Dékaz. Prepokladajme, ze mame p(x) < M pre z < r. Potom S$pecidlne plati
[zl =r/2 = plx) <M.
Ak polozime C' = 2M/R tak dostaneme
p(z) < Cllz]|
aspon pre ||z|| = r/2. Pomocou absolitnej homogenity rozsirime tito nerovnost na celé X.
Implikdcie (i) = (iii) ak (iii) = (i) si zrejmé
Vidime teda, Ze vSetky tri formulécie spojitosti v nule si skutocne ekvivalentné.

Na to, Ze zo spojitosti v nule vyplyva spojitost na celom X si stac¢i vSimnut, Ze mame

p(z+y) <px)+ply) = p(z +y) —p(x) < py)
p(z) < p(z+y) +p(~y) = p(x) —p(z +y) < p(-y)

¢o nam, spolu s rovnostou p(—y) = p(y), uz dava

Ip(z +y) — p(x)| < py).

{TVRSPOJ}



1.2 Zabreikova lema

V definicii polonormy mame (koneénil) subaditivnost. Zabreikova lema hovori, Ze ak ju na-

hradime spocitatelnou subaditivnostou, tak to zabezpeci spojitost polonormy.
{VTZABREIKO}
Veta 1.2.1 (Zabreikova lema). TODO subaditivna polonorma je spojitd

7 dokazu vidno, ze vlastne sta¢i vyzadovat uvedenii podmienku pre absolitne konver-
gentné rady.

2 Aplikacie Zabreikovej lemy

2.1 Banach-Steinhaus

Veta 2.1.1. Nech X je Banachov priestor a Y je linedrny normovany priestor. Nech ¥ je
nejaky systém linedrnych funkcii X — Y. Ak pre kazdé x € X plati

sup{||Tz|; T € T} < +o0

tak aj
sup{||T|;T € T} < +o0.

p(x) = sup{||Tz|;T € T}

W

(5)

(1): linearita a spojitost T}

(2): trojuholnikovd nerovnost a spojitost normy |||

(V oboch pripadoch by sme takéto nieco bez spojitosti vedeli povedat iba pre koneéné sumy.)
7 predchadzajtcej nerovnosti uz méame:

P (Z a:n) = sup HT(Z Tn)

texT

imn ¢ illT%H < ip(xn)
n=1 n=1 n=1

‘ < Zp(xn)

Z vety [[.2.1] potom dostaneme spojitost, ¢o podla tvrdenia [[.1.2] znamena, ze existuje C
také, ze
sup{||Tz|; T € T} < C|lz||.

Specialne pre ||z < 1 dostaneme sup{||Tz||;T € T} < C, éo znamené, Ze aj

sup{||T|;T € T} < C.

2.2 Veta o otvorenom zobrazeni

Veta 2.2.1. Nech X, Y su Banachove priestory a T: X — Y je spojity linedrny funkciondl,
ktory je navyse surjektivny. Potom T je otvorené zobrazenie.

p(y) = {infllz;z € X, Tz = y}

Vsimnime si, ze vyuzivame surjektivnost. (Inak by sme mohli mat infimum z prézdnej mno-
ziny, t.j. pre niektoré y € Y by bolo p(y) nedefinované, alebo by sme mali p(y) = —o0)



2.3 Veta o uzavretom grafe

Veta 2.3.1. Nech X, Y st Banachove priestory a T: X — Y je linedrne zobrazenie. Nech
navyse T md uzavrety graf, t.j. ak x, > x v X aT(x,) =y vY, tak plati y = T(x). Potom
T je spojité.

p(x) = |[Tz|

3 Kontrapriklady

V Ml Exercise 1.75] st uvedené priklady, ktoré ukazuji, ze ked vynechdme predpoklad
o uplnosti, tak uvedené vety uz neplatia.

Budeme pracovat s priestorom V' vSetkych postupnost{ s koneénym nosi¢om. (T.j. takych,
Ze iba konecne vela ¢lenov je nenulovych.)

Oznac¢me X tento priestor s ¢; normou a Y tento priestor s ¢, normou, t.j.

lzllx = Nzl =l
[z]ly = l|#]lcc = sup|a]

Ani v jednom pripade nie je tento priestor uplny.
a) Ak definujeme

Th: X =R

T (z) = may,

tak mame || T, || = m.
Sucasne pre kazdé x € X je iba konec¢ne vela hodnét x,, nenulovych. Ak pre k > ng
mame xj = 0, tak dostaneme

sup{||Tm (x)||; m € N} < ny.

Teda tieto funkciondly st ohrani¢ené bodovo, nie vSak rovnomerne. Teda bez predpokladu
o uplnosti uz neplati Banach-Steinhausova veta.

b) Zoberme T: X — Y, ktoré je definované ako identita (t.j. T'(z) = x). Toto zobrazenie
je spojité, lebo ||z]|c < ||z|l1. O¢ividne je aj surjektivne.

Na to, aby sme videli ze T nie je otvorené si stac¢i v&imntt, ze T—! nie je spojité. Skutoéne,
pre ziadnu konstantu neplati ||z||; < C||z]o0- (Opét sa staci pozerat na postupnosti kde na
zaciatok ddme dostatoény pocet jednotiek a zvysok doplnim nulami.)

c¢) Zoberme T: Y — X, ktoré je definované ako identita (t.j. T(y) = y). Toto zobrazenie
nie je spojité, ma vsak uzavrety graph.

T nie je spojité. Vsetky prvky tvaruy = (1,1,...,1,0,0,...) mdme ||y||y = 1 ale pridanim
dostatocného poétu jednotiek mozeme dosiahnut Tubovolne velkd normu ||7y||x .

T md uzavrety graf. Vlastne chceme ukézat, ze ak (™) — z v f1-norme a (™) — y v loo-
norme, tak x = y. Na to si sta¢i uvedomit, Ze s konvergencie v £1- resp. v {o-norme vyplyva
bodové konvergencia.

Mozeme si vSimnut, Ze rovnaky argument prejde aj ak X nahradime priestorom ¢;. Takze
mame kontrapriklad ukazujici, ze veta o uzavretom grafe neplati ak vynechame tplnost
defini¢ného oboru (aj ak by sme mali tiplnost kooboru).

d) Ak zoberieme p(z) = ||z||1, tak dostaneme spocitatelne subaditivnu polonormu na Y,
ktord nie je spojita.

Mozeme to skontrolovat aj tak, Ze sa pozrieme na ddkaz vety o uzavretom grafe a uve-
domime si, Ze na overenie spocitatelnej subaditivty nam stacila iplnost cielového priestoru.




(Pre takto zvolené T je to presne polonorma pouzitd v tomto dokaze. Uplnost definiéného
oboru sme potrebovali az ked sme cheeli aplikovat Zabreikovu lemu.)

Mbzeme to overif aj priamo: Nech plati " 2®*) = 2 v Y a ako s ozna¢me n-ty ¢iastocny
stcet. (T.j. s konverguje k v suprémovej norme.) TODO

Banach-Steinhausova veta X = cgg so suprémovou normou:
Definujme T,,: X — R ako T,(z) =21 + -+ + 2p.

Potom pre kazdé x méme |T,,(z)| < |z1 + -+ + 25|, teda sup|T,(z)| < +oo.
neN
Sucasne ||T,| = n, teda sup = +oo.
neN

Veta o uzavretom grafe TODO vedel by som néjst aj kontrapriklad, kde vynecham
uplnost iba pri jednom priestore?

Veta o otvorenom zobrazeni TODO vedel by som najst aj kontrapriklad, kde vynecham
uplnost iba pri jednom priestore?

Zabreikova lema TODO co sa stane bez tplnosti
TODO ¢o sa stane, ak by p bola iba sublinearna?

4 Gliding hump

Este sme odbodili k tomu, ze Banach-Steinhausova veta sa da dokazovat aj cez gliding hump
argument.

Sokal Velmi jednoducho je dékaz takéhoto typu urobeny v [3].
TODO

Megginson Dékaz uvedeny v [Ml Exercise 1.75] by mal byt v podstate povodny Hahnov
dokaz.
TODO

Pietsch Trochu inak je tento ddkaz sformulovany v [Pl 2.3.3].

TODO
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