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Zabreikova lema
Referát som robil najmä podľa príslušnej kapitoly z [M]. Pri dôkaze Zaberikovej lemy som
sa držal blogu [MSE].

1 Polonormy
1.1 Spojitosť polonormy
Definícia 1.1.1. Nech X je vektorový priestor nad R. Funkcia p : X → R je polonorma, ak
pre ľubovoľné α ∈ R, x, y ∈ X platí:
• p(αx) = |α|p(x)
• p(x+ y) ≤ p(x) + p(y)

Je to teda funkcia, ktorá je subaditívna a absolútne homogénna. Môžeme si všimnúť, že
z týchto podmienok vyplýva p(0) = 0 a tiež p(x) ≥ 0 (pre ľubovoľné x ∈ X).

Pretože sa budeme zaoberať spojitosťou polonoriem, nie je zlé si uvedomiť, že platí:
{TVRSPOJ}

Tvrdenie 1.1.2. Nech p : X → R je polonorma na nejakom lineárnom normovanom pries-
tore X. Nasledujúce podmienky sú ekvivalentné:

(i) Funkcia p je ohraničená na nejakej guli B(0, r) = {x ∈ X; ‖x‖ < r} so stredom v nule.
(ii) Existuje konštanta C taká, že p(x) ≤ C‖x‖ pre ľubovoľné x ∈ X.

(iii) Polonorma p je spojitá v 0.
(iv) Polonorma p je spojitá na celom X.

Dôkaz. Prepokladajme, že máme p(x) ≤M pre x < r. Potom špeciálne platí

‖x‖ = r/2 ⇒ p(x) ≤M.

Ak položíme C = 2M/R tak dostaneme

p(x) ≤ C‖x‖

aspoň pre ‖x‖ = r/2. Pomocou absolútnej homogenity rozšírime túto nerovnosť na celé X.
Implikácie (ii) ⇒ (iii) ak (iii) ⇒ (i) sú zrejmé
Vidíme teda, že všetky tri formulácie spojitosti v nule sú skutočne ekvivalentné.
Na to, že zo spojitosti v nule vyplýva spojitosť na celom X si stačí všimnúť, že máme

p(x+ y) ≤ p(x) + p(y) ⇒ p(x+ y)− p(x) ≤ p(y)
p(x) ≤ p(x+ y) + p(−y) ⇒ p(x)− p(x+ y) ≤ p(−y)

čo nám, spolu s rovnosťou p(−y) = p(y), už dáva

|p(x+ y)− p(x)| ≤ p(y).
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1.2 Zabreikova lema
V definícii polonormy máme (konečnú) subaditívnosť. Zabreikova lema hovorí, že ak ju na-
hradíme spočítateľnou subaditívnosťou, tak to zabezpečí spojitosť polonormy.

{VTZABREIKO}
Veta 1.2.1 (Zabreikova lema). TODO subaditívna polonorma je spojitá

Z dôkazu vidno, že vlastne stačí vyžadovať uvedenú podmienku pre absolútne konver-
gentné rady.

2 Aplikácie Zabreikovej lemy
2.1 Banach-Steinhaus
Veta 2.1.1. Nech X je Banachov priestor a Y je lineárny normovaný priestor. Nech T je
nejaký systém lineárnych funkcií X → Y . Ak pre každé x ∈ X platí

sup{‖Tx‖;T ∈ T} < +∞

tak aj
sup{‖T‖;T ∈ T} < +∞.

p(x) = sup{‖Tx‖;T ∈ T}

∥∥∥∥∥T
( ∞∑

n=1
xn

)∥∥∥∥∥ (1)=

∥∥∥∥∥
∞∑

n=1
Txn

∥∥∥∥∥ (2)
≤
∞∑

n=1
‖Txn‖ ≤

∞∑
n=1

p(xn)

(1): linearita a spojitosť T ;
(2): trojuholníková nerovnosť a spojitosť normy ‖·‖
(V oboch prípadoch by sme takéto niečo bez spojitosti vedeli povedať iba pre konečné sumy.)

Z predchádzajúcej nerovnosti už máme:

p
(∑

xn

)
= sup

t∈T

∥∥∥T (
∑

xn)
∥∥∥ ≤∑ p(xn)

Z vety 1.2.1 potom dostaneme spojitosť, čo podľa tvrdenia 1.1.2 znamená, že existuje C
také, že

sup{‖Tx‖;T ∈ T} ≤ C‖x‖.

Špeciálne pre ‖x‖ ≤ 1 dostaneme sup{‖Tx‖;T ∈ T} ≤ C, čo znamená, že aj

sup{‖T‖;T ∈ T} ≤ C.

2.2 Veta o otvorenom zobrazení
Veta 2.2.1. Nech X, Y sú Banachove priestory a T : X → Y je spojitý lineárny funkcionál,
ktorý je navyše surjektívny. Potom T je otvorené zobrazenie.

p(y) = {inf‖x‖;x ∈ X,Tx = y}

Všimnime si, že využívame surjektívnosť. (Inak by sme mohli mať infimum z prázdnej mno-
žiny, t.j. pre niektoré y ∈ Y by bolo p(y) nedefinované, alebo by sme mali p(y) = −∞)
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2.3 Veta o uzavretom grafe
Veta 2.3.1. Nech X, Y sú Banachove priestory a T : X → Y je lineárne zobrazenie. Nech
navyše T má uzavretý graf, t.j. ak xn → x v X a T (xn)→ y v Y , tak platí y = T (x). Potom
T je spojité.

p(x) = ‖Tx‖

3 Kontrapríklady
V [M, Exercise 1.75] sú uvedené príklady, ktoré ukazujú, že keď vynecháme predpoklad
o úplnosti, tak uvedené vety už neplatia.

Budeme pracovať s priestorom V všetkých postupností s konečným nosičom. (T.j. takých,
že iba konečne veľa členov je nenulových.)

Označme X tento priestor s `1 normou a Y tento priestor s `∞ normou, t.j.

‖x‖X = ‖x‖1 =
∑
|xk|

‖x‖Y = ‖x‖∞ = sup|xk|

Ani v jednom prípade nie je tento priestor úplný.
a) Ak definujeme

Tm : X → R
Tm(x) = mxm

tak máme ‖Tm‖ = m.
Súčasne pre každé x ∈ X je iba konečne veľa hodnôt xm nenulových. Ak pre k > n0

máme xk = 0, tak dostaneme

sup{‖Tm(x)‖;m ∈ N} ≤ n0.

Teda tieto funkcionály sú ohraničené bodovo, nie však rovnomerne. Teda bez predpokladu
o úplnosti už neplatí Banach-Steinhausova veta.

b) Zoberme T : X → Y , ktoré je definované ako identita (t.j. T (x) = x). Toto zobrazenie
je spojité, lebo ‖x‖∞ ≤ ‖x‖1. Očividne je aj surjektívne.

Na to, aby sme videli že T nie je otvorené si stačí všimnúť, že T−1 nie je spojité. Skutočne,
pre žiadnu konštantu neplatí ‖x‖1 ≤ C‖x‖∞. (Opäť sa stačí pozerať na postupnosti kde na
začiatok dáme dostatočný počet jednotiek a zvyšok doplním nulami.)

c) Zoberme T : Y → X, ktoré je definované ako identita (t.j. T (y) = y). Toto zobrazenie
nie je spojité, má však uzavretý graph.

T nie je spojité. Všetky prvky tvaru y = (1, 1, . . . , 1, 0, 0, . . .) máme ‖y‖Y = 1 ale pridaním
dostatočného počtu jednotiek môžeme dosiahnuť ľubovoľne veľkú normu ‖Ty‖X .

T má uzavretý graf. Vlastne chceme ukázať, že ak x(n) → x v `1-norme a x(n) → y v `∞-
norme, tak x = y. Na to si stačí uvedomiť, že s konvergencie v `1- resp. v `∞-norme vyplýva
bodová konvergencia.

Môžeme si všimnúť, že rovnaký argument prejde aj ak X nahradíme priestorom `1. Takže
máme kontrapríklad ukazujúci, že veta o uzavretom grafe neplatí ak vynecháme úplnosť
definičného oboru (aj ak by sme mali úplnosť kooboru).

d) Ak zoberieme p(x) = ‖x‖1, tak dostaneme spočítateľne subaditívnu polonormu na Y ,
ktorá nie je spojitá.

Môžeme to skontrolovať aj tak, že sa pozrieme na dôkaz vety o uzavretom grafe a uve-
domíme si, že na overenie spočítateľnej subaditivty nám stačila úplnosť cieľového priestoru.
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(Pre takto zvolené T je to presne polonorma použitá v tomto dôkaze. Úplnosť definičného
oboru sme potrebovali až keď sme chceli aplikovať Zabreikovu lemu.)

Môžeme to overiť aj priamo: Nech platí
∑
x(k) = x v Y a ako s(n) označme n-tý čiastočný

súčet. (T.j. s(n) konverguje k x v suprémovej norme.) TODO

Banach-Steinhausova veta X = c00 so suprémovou normou:
Definujme Tn : X → R ako Tn(x) = x1 + · · ·+ xn.
Potom pre každé x máme |Tn(x)| ≤ |x1 + · · ·+ xn|, teda sup

n∈N
|Tn(x)| < +∞.

Súčasne ‖Tn‖ = n, teda sup
n∈N

= +∞.

Veta o uzavretom grafe TODO vedel by som nájsť aj kontrapríklad, kde vynechám
úplnosť iba pri jednom priestore?

Veta o otvorenom zobrazení TODO vedel by som nájsť aj kontrapríklad, kde vynechám
úplnosť iba pri jednom priestore?

Zabreikova lema TODO čo sa stane bez úplnosti
TODO čo sa stane, ak by p bola iba sublineárna?

4 Gliding hump
Ešte sme odbočili k tomu, že Banach-Steinhausova veta sa dá dokazovať aj cez gliding hump
argument.

Sokal Veľmi jednoducho je dôkaz takéhoto typu urobený v [S].
TODO

Megginson Dôkaz uvedený v [M, Exercise 1.75] by mal byť v podstate pôvodný Hahnov
dôkaz.

TODO

Pietsch Trochu inak je tento dôkaz sformulovaný v [P, 2.3.3].
TODO
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