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1 Categories, Functors and natural transformations

1.3 Categories and functors
Definition. (3.1) A category is a quadruple A = (O, hom, id, o) consisting of
1. a class O, whose members are called A-objects,

2. for each pair (A4,B) of A-objects a set hom(A, B), whose member are called A-
morphisms from A to B

3. for each A-object A, a morphism A ida, A, called the A-identity on A,

4. a composition law associating with each A-morphism A 4, B and each A-morphism

B -%5 C an A-morphism A EAZA C, called the composite of f and g,
subject to the following conditions

(a) composition is associative, i.e., ho (go f) = (hog)o f

(b) A-identities act as identities with respect to composition; i.e., for A-morphisms A 4,
B we have idg o f = f and foids = f.

(c) the sets hom(A, B) are pairwise disjoint.

Example. (3.3) Set, Vec, Grp, Top

Rel with objects all pairs (X, p), where X is a set and p is a relation on X. Morphisms
f: (X, p) — (Y,0) are relation-preserving maps, i.e., maps f: X — Y such that zpz’ implies
f(@)af(@).

Alg(Q) with objects all Q-algebras and morphisms all Q-morphisms between them. Q =
(ni)icr, n; € N, I is a set.

Met - all non-expansive maps (=contractions),
Met,, - all uniformly continuous maps,
Met.. - all continuous maps

Ban - linear contractions,
Ban,, - bounded linear maps (= continuous linear maps = uniformly continuous linear maps)

Mat with objects all natural numbers, and for which hom(m,n) is the set of all real m xn
matrices, composition is defined by Ao B = BA.

Every class X give rise to a category C'(X), with only identities as morphisms. = Discrete
category

Preordered class as category. = thin category (For each A, B hom(A, B) has at most one
member.)

Monoid as category.

Set x Set - pairs

The duality principle, isomorphisms, functors and examples



1.3.1 Properties of functors

Proposition. (3.21) All functors F: A — B preserve isomorphisms. (f is an isomorphism
= F'f is isomorphism.)

Functors need not reflect isomorphisms.
Composition of functors.

Definition. (3.24) A functor F': A — B is called an isomorphism provided that there is a
functor G: B — A such that Go F' =ida and F o G = idg.

Definition. (3.27) Let f: A — B be a functor.

F is called an embedding provided that F' is injective on morphisms.

F is called an faithful provided that all the hom-set restrictions F': homa (A, A") —
homp(FA, FA’) are injective.

F is called full provided that all hom-set restrictions are surjective.

Notice that a functor is:
1. an embedding if and only if it is faithful and injective on objects,
2. an isomorphism if and only if it is full, faithful and bijective on objects.
Proposition. (3.30) Let F: A — B and G: B — C be functors.
(1) If F and G are both isomorphism (resp. embeddings, faithful, or full), then so is Go F.
(2) If G o F is an embedding (resp. faithful), then so is F.
(8) If Go F is full, then so is G.

Proposition. (3.31) If F: A — B is a full, faithful functor, then for every B-morphism
f: FA — FA' there exists a unique A-morphism g: A — A’ with Fg = f.

Corollary. (3.32) Functors F: A — B that are full and faithful reflect isomorphisms; i.e.,
whenever g is an A-morphism such that Fg is a B-isomorphism, then g is an A-isomorphism.

Definition. (3.33) A functor F': A — B is called equivalence provided that it is full, faithful
and isomorphism-dense in the sense that for any B-object B there exists A € A such that
F(A) is isomorphic to B.

Categories A and B are called equivalent provided that there is an equivalence from A
to B.

1.3.2 Categories of categories

Definition. (3.44) A category A is said to be small provided that its class of objects, Ob(A),
is a set. Otherwise it is called large.

Definition. (3.47) The category Cat of small categories has as objects all small categories,
as morphisms from A to B all functors from A to B, as identities the identity functors, and
as composition the usual composition of functors.

Definition. (3.49) A quasicategory is a quadruple A = (O, hom, id, o) defined in the same
way except that the restrictions that O be a class and that each conglomerate hom(A, B) be
a set are removed.

Definition. (3.50) The quasicategory CAT of all categories.



1.3.3 Object-free definition of categories
skipped

1.4 Subcategories
Proposition. (4.5)

(1) A functor F: A — B is a (full) embedding if and only if there exists a (full) subcategory
C of B with inclusion functor E: C — B and an isomorphism G: A — C with F =
EoG.

(2) A functor F: A — B is faithful if and only if there exist embeddings E1: D — B and
FEy: A — C and an equivalence G: C — D such that the diagram

A——L-B
|
C ? D
commutes.

Definition. (4.6) A category A is said to be fully embeddable into B provided that there
exists a full embedding A — B, or, equivalently, provided that A is isomorphic to a full
subcategory of B.

Example. (4.7) Although it is far from easy to prove (see Pultr and Trnkovd), each category
of the form Alg(2) is fully embeddable into each of the following constructs: Sgr, Rel,
Alg(1,1) (i.e., the construct of unary algebras on two operations). Under an additional set-
theoretical hypothesis (the non-existence of measurable cardinals), every construct is fully
embeddable into Sgr (or Rel or Alg(1,1)).

Definition. (4.9) A full subcategory A of a category B is called

(i) isomorphism-closed provided that every B-object that is isomorphic to some A-object
is itself an A-object,

(ii) isomorphism-dense provided that every B-object is isomorphic to some A-object.
If A is a full subcategory of B, then the following conditions are equivalent:

(1) A is an isomorphism-dense subcategory of B,

(2) the inclusion functor A — B is isomorphism-dense,

(3) the inclusion functor A <— B is an equivalence.

Definition. (4.12) A skeleton of a category is a full, isomorphism-dense subcategory in which
no two distinct objects are isomorphic.

Proposition. (4.14)
(1) Every category has a skeleton.
(2) Any two skeletons of a category are isomorphic.

(8) Any skeleton of a category C is equivalent to C.

Corollary. (4.15) Two categories are equivalent if and only if they have isomorphic skeletons.



1.4.1 Reflective and coreflective subcategories
Definition. (4.16) Let A be a subcategory of B, and let B be a B-object.

(1) An A-reflection (or A-reflection arrow) for B is a morphism B — A from B to an

A-object A with the following universal property: for any morphism B A from B
into some A-object A’, there exists a unique A-morphism f’: A — A’ such that the

triangle
B _r o A
P
A/
cominmutes.

(2) A is called a reflective subcategory of B provided that each B-object has an A-reflection.

Proposition. (4.20) If A is a reflective subcategory of B, then the following conditions are
equivalent:

(1) A is a full subcategory of B.
(2) For each A-object A, A YA A s an A -reflection.
(3) For each A-object A, A-reflection arrows A ~2 A* are A-isomorphisms.

(4) For each A-object A, A-reflection arrows A ~2 A* are A-morphisms.

Existence of reflector.
Dual notions: coreflective subcategory, A-coreflection, corefiector.

1.5 Concrete categories and concrete functors

Definition. (5.1) Let X be a category. A concrete category over X is a pair (A, U), where
A is a category and U: A — X is a faithful functor. Sometimes U is called the forgetful (or
underlying) functor of the concrete category X and X is called the base category.

A concrete category over Set is called a construct.

1.5.1 Fibres in concrete categories

Definition. (5.4) Let (A,U) be a concrete category over X.

The fibre of an X-object X is the preordered class consisting of all A-objects A with
U(A) = X ordered by: A < B if and only if idx: UA — UB is an A-morphism.

A-objects A and B are said to be equivalent provided that A < B and B < A.

(A, U) is said to be amnestic provided that its fibres are partially ordered classes, i.e., no
two different A-objects are equivalent.

(A, U) is said to be fibre-small provided that each of its fibres is small, i.e., a preordered
set.

Definition. (5.7) A concrete category is called fibre-complete provided that its fibres are
(possibly large) complete lattices. (A partially ordered class (X, <) is called a large complete
lattice provided that every subclass of X has join and meet.)

A concrete category is called fibre-discrete provided that its fibres are ordered by equality.

Proposition. (5.8) A concrete category (A,U) over X is fibre-discrete if and only if U
reflects identities (i.e., if U(k) is an X-identity, then k must be an A-identity.)



1.5.2 Concrete functors

Definition. (5.9) If (A, U) and (B, V) are concrete categories over X, then a concrete functor
from (A,U) to (B,V) is a functor F: A — B with U = V o F'. We denote such a functor
F:(A,U)— (B,V).

Proposition. (5.10) Every concrete functor is faithful.
Every concrete functor is completely determined by its values on objects.
Objects that are identified by a full concrete functor are equivalent.
Every full concrete functor with amnestic domain is an embedding.

concrete isomorphism=concrete functor + isomorphism

Proposition. (5.14) The identity functor on a concrete category is a concrete isomorphism.
Any composite of concrete functors over X is a concrete functor over X.

Definition. (5.15) The quasicategory that has as objects all concrete categories over X and
as morphisms all concrete functors between them is denoted by CAT(X). In particular,
CONST = Cat(Set) is the quasicategory of all constructs.

Definition. (5.18) If F' and G are both concrete functors from (A,U) to (B, V), then F is
finer then G (or G is coarser than F'), denoted by F' < G, provided that F(A) < G(A) for
each A-object A.

1.5.3 Concrete subcategories

If (B, U) is a concrete category over X and A is a subcategory of B with inclusion E': A — B,
then A will often be regarded (via the functor Uo E) as a concrete category over X - concrete
subcategory. If X = Set - subconstruct.

Definition. (5.22) A concrete subcategory (A, U) of (B, V) is called concretely reflective in
(B, V) (or a reflective modification of (B,V)) provided that for each B-object there exists
an identity-carried A-reflection arrow.

Reflectors induced by identity-carried reflection arrows are called concrete reflectors.

Proposition. (5.24) Every concretely reflective subcategory of an amnestic concrete category
s a full subcategory.

Proposition. (5.26) For a concrete full subcategory (A,U) of a concrete category (B, V)
over X, with inclusion functor E: (A,U) — (B, V), the following are equivalent:

(1) (A,U) is concretely reflective in (B, V),

(2) there exists a concrete functor R: (B, V) — (A,U) that is a reflector with Ro E = ida
and idg < EoR,!

(8) there exists a concrete functor R: (B,V) — (A,U) with RoE < ida and idg < EoR.

1Observe that Ro E = ida just means that RA = A for each A-object A and that idg < Eo R just means
that B < RB for each B-object B.



1.5.4 Transportability

Definition. (5.28) A concrete category (A, U) is said to be (uniquely) transportable provided
that for every A-object A and every X-isomorphism U A %, X there exists a (unique) A-
object B with UB = X such that A * Bisan A-isomorphism.

Proposition. (5.29) A concrete category is uniquely transportable if and only if it is trans-
portable and amnestic.

Proposition. (5.51) If (A,U) is an isomorphism-closed full concrete subcategory of a trans-
portable concrete category (B, V) over X, then the following are equivalent:

(1) (A,U) is concretely reflective in (B,V),
(2) there exists a reflector R: B — A that is concrete from (B,V) to (A,U).

Proposition. (5.33) For every concrete category (A,U) over X, there exists an amnestic
concrete category (B, V) over X that is uniquely determined up to a concrete isomorphism
by each of the following properties:

(1) there exists an (injective) concrete equivalence E: (B, V) — (A,U),
(2) there exists a surjective concrete equivalence P: (A,U) — (B, V).
Moreover, if (A,U) is transportable, then so is (B, V).

Proposition. (5.56) For every concrete category (A,U) over X there exists a uniquely trans-
portable concrete category (B, V) over X and a concrete equivalence: E: (A, U) — (B,V)
that is uniquely determined up to concrete isomorphism.

1.5.5 Functors inducing concrete categories

Definition. (5.37) Let T: X — X be a functor. Alg(T) is the concrete category over X, the
objects of which (called T-algebras) are pairs (X, h) with X an X-object and h: T(X) — X an
X-morphism. Morphisms f: (X, h) — (X', h') (called T-homomorphisms) are X-morphisms
such that the diagram

commutes. The underlying functor to X is given by: |(X, h) EN (X' =X L x.
Proposition. (5.39) Fach concrete category of the form Alg(T) is fibre-discrete.

Definition. (5.40) Let T: X — Set be a functor. Spa(T) is the concrete category over
X, the objects of which (called T-spaces) are pairs (X, «) with a C T(X). Morphisms
(X, ) 4, (Y, 3) (called T-maps) are X-morphisms f: X — Y such that T'(f)[a] C 3. The
underlying functor to X is given by: |(X, «) EN Y,8)| =X L v. Concrete categories of the
form Spa(T) are called functor-structured categories.

Proposition. (5.42) Each concrete category of the form Spa(T) is fibre-complete.



1.6 Natural transformations

Definition. (6.1) Let F,G: A — B be functors. A natural transformation T from F to
G (denoted by 7: ' — G or F 5 @) is a function that assigns to each A-object A a B-
morphism 74: FA — GA in such a way that the following naturality condition hold: for each

A-morphism A ERYL , the square

FA—2>GA

Ffl lcf

FrA T GA’

commutes.

Definition. (6.3) If G,G': A — B are functors and G = G’ is a natural transformation,
then o

the natural transformation G’°? = G°P is defined by 79 = 74,

for each functor F': C — A, the natural transformation 7F: Go F — G’ o F' is defined by

(TF)c = Trc,
for each functor H: B — D, the natural transformation H7: H o G — H o G’ is defined by
(HT)A = H(TA).

1.6.1 Natural isomorphisms

Definition. (6.5) Let F,G: A — B be functors, let F = G be natural transformation, and
let M be a class of B-morphisms.

T is called an M -transformation provided every 74 belongs to M.

Iso-transformations are called natural isomorphisms.

F and G are called naturally isomorphic (denoted by F = G) provided that there exists a
natural isomorphism from F to G.

Proposition. (6.7) If A is a reflective subcategory of B, then any two reflectors for A are
naturally isomorphic.

Proposition. (6.8) A functor A £ B s an equivalence if and only if there exists a functor
B % A such that idy = Go F and F oG = idg.

Definition. (6.9) A functor F': A — Set is called representable (by an A-object A) provided
that F' is naturally isomorphic to the hom-functor hom(A, —): A — Set.

Proposition. (6.10) Objects that represent the same functor are isomorphic.

1.6.2 Functor categories
Definition. (6.13) composition of natural transformations (T oo)g =Ta 004
quasicategory [A, B] = functors from A to B and all natural transformations

Proposition. (6.18) For any functor F: A — Set, any A-objects A and any element a €
F(A), there exists a unique natural transformation 7: hom(A, —) — F with T4(ida) = a.



Corollary. (6.19) If F: A — Set is a functor, and A is A-object, then there exists a bijective
function
Y: [hom(A4, —), F] — F(A) defined by Y (o) = 04(ida),

where hom (A, —), F|] is the set of all natural transformations from hom(A, —) to F.

Theorem. (6.20) For any category A, the functor E: A — [A°P,Set], defined by
E(A L B) = hom(—, A) 2% hom(—, B),

where o¢(g) = f og, is full and faithful; i.e., is equivalent to a full embedding.

1.6.3 Concrete natural transformations and Galois correspondences

Definition. (6.23) If A and B are concrete categories over X and F,G: A — B are concrete
functors, then a natural transformations 7: F' — G is called concrete (or identity carried)
provided that |74| = id|4) for each A-object A.

Proposition. (6.24) If F,G: A — B are concrete functors, then the following are equivalent:
(1) F <G,
(2) there exists a (necessarily unique) concrete natural transformation 7: F — G.
Definition. (6.25) Let A and B be concrete categories over X.

(1) f G: A — B and F: B — A are concrete functors over X, then the pair (F,G) is
called a Galois correspondence (between A and B over X) provided that F'o G < ida
and idg < GoF.

(2) A concrete functor G: A — B over X is called a residual functor (or Galois adjoint)
provided that there is a concrete functor F: B — A such that (F,G) is a Galois
correspondence over X. Dual notion: residuated functor

(1) Galois isomorphism: If K: A — B is a concrete isomorphism, then (K~! K) is a
Galois correspondence, called a Galois isomorphism.

(2) Galois reflections and coreflections:

(a) If E: A — B is a concrete embedding and R: B — A is concrete reflector, then
(R, E) is a Galois correspondence, called a Galois reflection.

(b) If E: A — B is a concrete embedding and C': B — A is concrete coreflector, then
(E,C) is a Galois correspondence, called a Galois coreflection.

(3) Galois correspondences for constructs
(4) Galois connections
Proposition. (6.27)

(1) If (F,G) is a Galois correspondence between A and B and (F, @) is a Galois corre-
spondence between B and C, then (FoF,GoG) is a Galois correspondence between A
and C.

(2) If (F,Q) is a Galois correspondence between A and B over X, then (G°P, F°P) is a
Galois correspondence between BP and A°P over X°P.



Proposition. (6.28) Let G: A — B and F: B — A be concrete functors over X. Then the
following are equivalent:

(1) (F,G) is a Galois correspondence,

(2) an X-morphism |F(B)| N |A| is an A-morphism if and only if |B| N |G(A)| is a
B-morphism.

Proposition. (6.29) The functors in a Galois correspondence between amnestic concrete
categories determine each other uniquely; in particular, if (F,G) and (F',G) are such Galois
correspondences, then F = F”.

Proposition. (6.50) If (F, Q) is a Galois correspondence between amnestic concrete cate-
gories, then GoFoG =G and FoGo F = F.

Corollary. (6.31) If (F,G) is a Galois correspondence between amnestic concrete categories,
then (GoF)o(GoF)=GoF and (FoG)o(FoG)=Fod.

Corollary. (6.32) Let G: A — B and F: B — A be concrete functors between amnestic
concrete categories such that (F,G) is a Galois correspondence, and let A* be the full subcat-
egory of A with objects {F(B)|B € Ob(B)} and B* be the full subcategory of B with objects
{G(A)|A € Ob(A)}. Then

(1) A* is coreflective in A, and A € Ob(A*) if and only if A= (F o G)(A).
(2) B* is reflective in B, and B € Ob(B*) if and only if B = (G o F)(B).

(8) The restrictions of G and F to A* and B* are concrete isomorphisms G*: A* — B*
and F*: B* — A*, that are inverse to each other.

Proposition. (6.34) Let G: A — B and F: B — A be concrete functors between amnestic
concrete categories such that (F,G) is a Galois correspondence. Then the following are
equivalent:

(1) G is a full embedding,

(2) G is full,

(8) G is injective on objects,
(4) F is surjective on objects,
(5) FoG =1ida,

(6) up to Galois isomorphism, (F,G) is a Galois reflection; i.e. there exists a Galois
reflection (R, E) and a Galois isomorphism (K1, K) with (F,G) = (R, E)o (K1, K).

Theorem (Decomposition theorem for Galois correspondences). (6.35) Every Galois

correspondence (F, G) between amnestic concrete categories is a composite (F,G) = (R, Eg)o
(K~1, K)o (Ea,C) of

(1) a Galois coreflection, (Ea,C),
(2) a Galois isomorphism, (K~!, K) and
(3) a Galois reflection, (R, EB).



6A. Composition of Natural Transformations Let F,F': A — B and G,G': B — C
be functors and let F —— F’ and G -=> G’ be natural transformations. Show that:

(a) oF' o GT = G'7 o oF. [This natural transformation is called the star product of 7 and
o and is denoted by Go F Z% G o F']

(b) oF =0 xidp and GT = idg * T.
(C) idG @) ZdF = idGoF.

(d) If H,H': C — D are functors and H 5 H' is a natural transformation, then ¢ * (o
T)=(0%0)*T.

() fF": A — Band G’: B — C are functors and F’ L F" and & 2 G” are natural
transformations, then

(' oo)* (o) = (¢ x7") o (o %7).

(f) If H: C — D is a functor, then (Ho)F = H(cF).
(g) If H: C — D is a functor, then (H o G)r = H(GT).
(h) If K: D — A is a functor, then o(F o K) = (¢ F)K.

(i) G": B — Cand H: C — D are functors and G’ 7', G is a natural transformation,
then H(0' o 0)F = (Ho'F) o (HoF).

2 Objects and morphisms

2.7 Objects and morphisms in abstract categories

Definition. (7.1) An object A is said to be an initial object provided that for each object
B there is exactly one morphism from A to B.

Proposition. (7.3) Initial objects are essentially unique, i.e.
(1) if A and B are initial objects, then A and B are isomorphic,
(2) if A is an initial object, then so is every object that is isomorphic to A.

Definition. (7.4) An object A is called a terminal object provided that for each object B
there is exactly one morphism from B to A.

Terminal objects are essentially unique.

Definition. (7.7) An object A is called zero object provided that it is both an initial object
and terminal object.

f
Definition. (7.10) An object S is called a separator provided that whenever 4 —=% B
7

are distinct morphisms, there exists a morphism S ™. A such that

shalprshatp
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In Set the separators are precisely the nonempty sets. In Top (resp. Pos) the separators
are precisely the nonempty spaces (resp. nonempty posets). In Vec the separators are
precisely the nonzero vector spaces.

The group of integers Z under addition is separator for Grp and for Ab. The monoid of
natural numbers N is separator for Mon.

(X, 0) is a separator in Rel if and only if X # 0 = p.

Proposition. (7.12) An object S of a category A is a separator if and only if hom(S, —): A —|j
Set is a faithful functor.

Proposition. (7.22) Every functor preserves sections.
Proposition. (7.28) Every functor preserves retractions.
Proposition. (7.29) Every full, faithful functor reflects retractions.
Proposition. (7.37)

(1) Every representable functor preserves monomorphisms.

(2) Ewvery faithful functor reflect monomorphisms.

Corollary. (7.38) In any construct all morphisms with injective underlying functions are
monomorphisms. When the underlying functor is representable, the monomorphisms are
precisely the morphisms with injective underlying functions.

In Haus the epimorphisms are precisely the continuous functions with dense images. Also
in Bany,, and Ban (with either of the two natural forgetful functors) the epimorphisms are
precisely the morphisms with dense images. For Hausdorff topological groups it is not yet
known whether or not epimorphisms must have dense images.

Proposition. (7.44) Every faithful functor reflect epimorphisms.

Corollary. (7.45) In any construct all morphisms with surjective underlying functions are
epimorphisms.

Although faithful functors reflect epimorphisms and monomorphisms, they need not pre-
serve them (as the above examples show). In fact, even full embeddings may fail to do so.
For example the full embedding £: Haus < Top doesn’t preserve epimorphisms and so
the full embedding E°P doesn’t preserve monomorphisms. However, if such functors are also
isomorphism-dense, then they preserve monomorphisms and epimorphisms, as the following
shows:

Proposition. (7.47) Every equivalence functor preserves and reflect each of the following:
monomorphisms, epimorphisms, sections, retractions and isomorphisms.

Definition. (7.49)

(1) A morphism is called a bimorphism provided that it is simultaneously a monomorphism
and epimorphism.

(2) A category is called balanced provided that each of its bimorphisms is an isomorphism.

Set, Vec, Grp, Ab and HComp are balanced categories.
Rel, Pos, Top, Mon, Sgr, Rng, Cat, Ban and Ban}, are not balanced categories.
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Proposition. (7.54) If E 5 A is an equalizer of A # B, then the following are equiv-
alent: 4

(1) f=y

(2) e is an epimorphism,

(3) e is an isomorphism,

(4) ida is an equalizer of f and g.
Proposition. (7.59)

(1) Every section is a regqular monomorphism.

(2) Every regular monomorphism is a monomorphism.

Neither implication of the previous proposition can be reversed.

Definition. (7.61) A monomorphism m is called extremal provided that it satisfies the
following extremal condition: If m = f o e, where e is an epimorphism, then e must be an
isomorphism.

Proposition. (7.62) Let A L B and B -2 C be morphisms.

(1) If f is an extremal monomorphism and g is a regular monomorphism, then go f is a
an extremal monomorphism.

(2) If go f is an extremal monomorphism, then f is an extremal monomorphism.

(8) If g o f is a regular monomorphism and g is a regular monomorphism, then f is a
regular monomorphism.

Corollary. (7.63) Every regular monomorphism is extremal.
A composite of extremal monomorphisms may fail to be extremal.
Proposition. (7.67) For any category A, the following are equivalent:
(1) A is balanced,
(2) in A each monomorphism is extremal.

In most of the familiar categories the regular epimorphisms and the extremal epimor-
phisms coincide.

In general “between” regular epimorphism and extremal epimorphism there are several
other commonly used types of epimorphisms (strong, swell, strict).

Definition. (7.87) Let E be a class of epimorphisms of category A.

(1) A is called E-co-wellpowered provided that no A-object has a proper class of pairwise
non-isomorphic E-quotient objects.

(2) In case E is the class of all (regular, extremal) epimorphisms, then E-co-wellpowered
is called (regular, extremally) co-wellpowered.

Theorem. (7.88) Every construct is regular wellpowered and regular co-wellpowered.

12



2.8 Objects and morphisms in concrete categories
Forgetful functor will be denoted by | |.

Definition. (8.1, 8.3) An object A in a concrete category A over X is called discrete when-
ever, for each object B, every X-morphism |A| — |B| is an A-morphism.

An object A in a concrete category A over X is called indiscrete whenever, for each object
B, every X-morphism |B| — | 4| is an A-morphism.

Definition. (8.6) Let A be a concrete category over X.

(1) An A-morphism A L, Bis called initial provided that for any A-object C' and X-

morphism |C/| SN |A] is an A-morphism whenever |C| 4, |A| is an A-morphism.

(2) An initial morphism A . B that has a monomorphic underlying X-morphism |A| S,
|B| is called an embedding.

(3) IfA . Bisan embedding, then (f, B) is called an extension of A and (A4, f) is called
an initial subobject of B.

Proposition. (8.7) For any concrete category the following hold:
(1) Fach embedding is a monomorphism.
(2) Each section (and in particular each isomorphism) is an embedding.

(3) If the forgetful functor preserves regular monomorphisms, then each regular monomor-
phism is an embedding.

Proposition. (8.9)

(1) If A L. B and B % C are initial morphisms (resp. embeddings), then A ELINYoD
an initial morphism (resp. an embedding).

(2) If A 9°L & is an initial morphism (resp. an embedding), then f is initial (resp. an
embedding).

Definition. (8.10) Let A be a concrete category over X.

(1) An A-morphism A 7, B is called final provided that for any A-object C, an X-

morphism |B] =<, |C] is an A-morphism whenever |A] o, |C| is an A-morphism.

(2) A final morphism A L, B with epimorphic underlying X-morphism |A| R |B| is
called a quotient morphism.

(3) IfA S Bisa quotient morphism, then (f, B) is called a final quotient object of A.
Proposition. (8.12) For any concrete category the following hold:

(1) Fach quotient morphism is an epimorphism.

(2) Each retraction (and in particular each isomorphism) is a quotient morphism.

(3) If the forgetful functor preserves reqular epimorphisms, then each regular epimorphism
is a quotient morphism.
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Proposition. (8.13)
(1) IfA . Band B2~ C are final morphisms (resp. quotient morphisms), then A 87,
is final (resp. a quotient morphism,).
(2) If A 25 s a final morphism (resp. a quotient morphism), then g is final (resp. a
quotient morphism).

Proposition. (8.14) In a concrete category A over X the following conditions are equivalent
for each A-morphism f:

(1) f is an A-isomorphism.
(2) f is an initial morphism and X-isomorphism.

(8) f is a final morphism and X-isomorphism.

2.8.1 Structured arrows

Definition. (8.15) Let A be a concrete category over X.
(1) A structured arrow with domain X is a pair (f, A) consisting of an A-object A and
X-morphism X 2, |Al.
Such a structured arrow will be often denoted by X 4, |Al.

(2) A structured arrow (f, A) is said to be generating provided that for any pair of A-
morphisms 7, s: A — B the equality r o f = so f implies that r = s.

(3) A generating arrow (f, A) is called extremally generating (resp. concretely generating)
provided that each A-monomorphism (resp. A-embedding) m: A" — A, through which
f factors (i.e., f = mo g for some X-morphism g), is an A-isomorphism.

(4) In a construct, an object A is (extremally resp. concretely) generated by a subset
X of |A| provided that the inclusion map X < |A| is (extremally resp. concretely)
generating.

Proposition. (8.16) In a concrete category A over X the following hold for each structured
arrow f: X — |A|:

(1) If (f, A) is extremally generating, then (f, A) is concretely generating.
(2) If (f,A) is concretely generating, then (f, A) is generating.
(8) If X 7, |A| is an X-epimorphism, then (f, A) is generating.
(4) If X 7, |A] is an extremal epimorphism in X, and if | | preserves monomorphisms,
then (f, A) is extremally generating.
Definition. (8.19) Let A be a concrete category over X.

(1) Structured arrows (f, A) and (g, B) with the same domain are said to be isomorphic
provided that there exists an A-isomorphism k: A — B with ko f = g.

(2) A is said to be concretely co-wellpowered provided that for each X-object X any class
of pairwise non-isomorphic concretely generating arrows with domain X is a set.

Proposition. (8.21) Fach concretely co-wellpowered concrete category is extremally co-
wellpowered.
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2.8.2 Universal arrows and free objects

Definition. (8.22) In a concrete category A over X

(1) a universal arrow over an X-object X is a structured arrow X —— |A| with domain

X that has the following universal property: for each structured arrow f —— | B| with
domain X there exists a unique A-morphism f: A — B such that the triangle

X —— 4]
N
B
commutes.

(2) a free object over X-object X is an A-object A such that there exists a universal arrow
(u, A) over X.

In a construct, an object A is a free object
(1) over the empty set if and only if A is an initial object.
(2) over a singleton set if and only if A represents the forgetful functor (6.9).

In the construct Vec each object is a free object over any basis for it.
In the construct Top and Pos the free objects are precisely the discrete ones.

Proposition. (8.24) Fvery universal arrow is concretely generating.

Proposition. (8.25) For any X-object X, universal arrows over X are essentially unique;
i.e., any two universal arrows with domain X are isomorphic, and conversely, if u X, |A] is

. k . . . X . .
a universal arrow and A — A’ is an A-isomorphism, then k ou — |A’| is also universal.

Definition. (8.26) A concrete category over X is said to have free objects provided that for
each X-object X there exists a universal arrow over X.

Proposition. (8.28) If a concrete category A over X has free objects, then an A-morphism
is an A-monomorphism if and only if it is an X-monomorphism.

Proposition. (8.29) If a construct A has a free object over a singleton set, then the monomor-j
phisms in A are precisely those morphisms that are injective functions.

2.8.3 Objects and morphisms with respect to a functor

Definition. (8.30) Let G: A — B be a functor, and let B be a B-object.

(1) A G-structured arrow with domain B is a pair (f, A) consisting of an A-object A and
a B-morphism f: B — GA.

(2) A G-structured arrow (f, A) with domain B is called

(a) generating provided that for any pair of A-morphisms A — = A, the equality
S
Gro f = Gso f implies that r = s.
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(b) extremally generating provided that it is generating and whenever A’ ™ A is an
A-monomorphism and (g, A’) is a G-structured arrow with f = G(m) o g then m
is A-isomorphism.

(¢) G-universal for B provided that for each G-structured arrow (f’, A’) with domain
B there exists a unique A-morphism A S, A" with f' = G(f) o f, i.e. such that
the triangle B I GA commutes.
N
GA’
Proposition. (8.32) If G: A — B is a functor, then the following are equivalent:
(1) G is faithful,
(2) each A-epimorphism, considered as a G-structured arrow, is generating,
(3) each A-identity, considered as a G-structured arrow, is generating.
Proposition. (8.33) Every G-universal arrow is extremally generating.

Definition. (8.34) G-structured arrows (f, A) and (f’, A’) with the same domain are said
to be isomorphic provided there exists an A-isomorphism k: A — A’ with G(k) o f = f’.

Proposition. (8.35) For any functor G: A — B and any B-object B, G-universal arrows
for B are essentially unique; i.e., any two G-universal arrows with domain B are isomorphic,

. u . . k . . .
and conversely, if B — GA is a G-universal arrow and A — A’ is an isomorphism, then

kou . .
B == GA’ is also G-universal.

Proposition. (8.36) Let G: A — B be a functor. If the triangle

X —=GA

N

GB

commutes, where (u, A) is a G-universal arrow and A S Bisan A -morphism, then the
following hold:

(1) (f, B) is generating if and only if f is an epimorphism.
(2) (f,B) is extremally generating if and only if f is an extremal epimorphism.

Definition. (8.37) A functor G: A — B is called (extremally) co-wellpowered provided
that for any B-object B, any class of pairwise non-isomorphic (extremally) generating G-
structured arrows with domain B is a set.

A faithful functor G: A — B is called concretely co-wellpowered provided that the con-
crete category (A, Q) is concretely co-wellpowered.

Proposition. (8.38) If a functor G: A — B is co-wellpowered, then so is A.
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2.8.4 Constructed arrows
All of the concepts relating to G-structured arrows have duals. In particular:

Definition. (8.40) Let G: A — B be a functor and let B be a B-object.

(1) A G-constructed arrow with codomain B is a pair (A, f) consisting of an A-object A
and B-morphism GA 1. B.

(2) A G-constructed arrow with codomain B is called G-co-universal for B provided that for
each G-constructed arrow (A’, f') with codomain B there exists a unique A-morphism

A L A with = foG(f).

2.9 Injective objects and essential embeddings
2.9.1 Injectivity in concrete categories

Definition. (9.1) In a concrete category an object C is called injective provided that for any

embedding A 1. B an any morphism A — C' there exists a morphism B e extending
f, i.e., such that the triangle

commutes.
Proposition. (9.4) Every terminal object is injective.
Proposition. (9.5) Every retract of an injective object is injective.

Definition. (9.6) In a concrete category an object C' is called an absolute retract provided
that any embedding with domain C' is a section.

Proposition. (9.7) Every injective object is an absolute retract.

Definition. (9.9) A concrete category has enough injectives provided that each of its object
is an initial subobject of an injective object.

Proposition. (9.10) If a concrete category A has enough injectives, then in A injective
objects are precisely the absolute retracts.

Definition. (9.12) In a concrete category an embedding A ", Bis called essential provided

that a morphism B . Cisan embedding, whenever A o™ ¢'is an embedding.
Proposition. (9.14)

(1) Ewvery isomorphism is essential.

(2) The composition of essential embeddings is essential.

(3) If f and g are embeddings with g o f essential, then g is essential.

(4) If f and go [ are essential embeddings, then g is an essential embedding.

Proposition. (9.15) Injective objects have no proper essential extensions.
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Definition. (9.16) An injective hull of A is an extension A - B of A such that B is
injective and m is essential.

Proposition. (9.19) Injective hulls are essentially unique, i.e.,

(1) if (m,B) and (m, B") are injective hulls of A, then there exists an isomorphism B *,
B’ with m' = kom,

(2) if (m, B) is an injective hull of A, and if B £, B isan isomorphism, then (kom, B’)
s an injective hull of A.

Proposition. (9.20) If an object A has an injective hull, then for any extension (m,B) of
A the following conditions are equivalent:

(1) (m,B) is an injective hull of A,

(2) (m,B) is a mazimal essential extension of A (B has no proper essential extension) of
A,

(8) (m, B) is a largest essential extension of A,

(4) (m, B) is a smallest injective extension of A.

(5) (m, B) is a minimal injective extension of A (i.e., (m, B) is an injective extension of
A and whenever m -+ B = A _m B "~ B withm' and m embeddings, and B’

an injective object, then m is an isomorphism.

2.9.2 M-injectives in abstract categories

Definition. (9.22) Let M be a class of morphisms in a category A.

(1) An object C is called M-injective provided that for every morphism A —~ B in M

and every morphism A 4, C there exists a morphism B — C' with f=gom.

(2) A morphism A % B in M is called M-essential provided that a morphism B tc
belongs to M whenever f om does.

Proposition. (9.25) If B is a reflective, isomorphism-closed, full subcategory of A and M
is the class of all B-reflection arrows, then

(1) the M-injective object of A are precisely the B-objects, and

(2) the M-injective hulls are precisely the B-reflections.

2.9.3 Projectivity

concept dual concept
embedding quotient morphism
injective object projective object
essential embedding essential quotient object
M-injective object M-projective object
M-essential morphism | M-coessential morphism
M-injective hull M-projective hull
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Proposition. (9.29) If (A,U) is a concrete category over X that has free objects, and E is
the class of all A-morphisms f for which U f is a retraction, then the following are equivalent:

(1) A is an E-projective object,
(2) A is a retract of a free object.

Corollary. (9.30) If in construct with free object every surjective morphisms is a quotient
morphism then the projective objects are precisely the retracts of the free objects.

Exercise 9A: Many results of this book can be expressed (in localized form) in the realm
of Zermelo-Fraenkel set theory (ZF). But if the axiom of choice for sets (AC) is no assumed,
several fail tu be true:

In Set every epimorphism is a retraction.
In Set every product of injective objects is injective

The injective objects in Ab are precisely the divisible abelian groups.

In Boo the two-element boolean algebra is injective.

)
)
)
(ST) The injective objects in Boo are precisely the complete Boolean algebras.
)
) The projective objects in HComp are the extremally disconnected Hausdorff spaces.
)

Show that in ZF the following implication hold:
(AC) & (ET) & (PT) & (BT) = (ST) = (UT)

(b) Show that in ZF the following holds: (ST) < [(GT) and (UT)]
(¢) Does (ST) imply (AC)? [Unsolved.]

3 Sources and sinks

3.10 Sources and sinks
3.10.1 Sources

Definition. (10.1) A source is a pair (A, (f;)icr) consisting of an object A and a family of
morphisms f;: A — A; with domain A, indexed by some class I. A is called the domain of
the source and the family (A;);er is called the codomain of the source.
Definition. (10.3) If S = (A LN A;)1 is a source and, for each i € I, §; = (A; 25 ij) s
a source then the source ;

(Si) oS = (A™5" Aij)ierjeu,

is called the composite of S and the family (S;);.

Notation S o f.
The composition of morphisms can be regarded as a special case of composition of sources.
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3.10.2 Mono-sources

Definition. (10.5) A source S = (A4, f;)r is called a mono-source provided that it can be

cancelled from the left, i.e., provided that for any pari B :T; A of morphisms the equation
S

Sor=38osimplies r = s.

Proposition. (10.7)
(1) Representable functors preserve mono-sources.
(2) Faithful functor reflect mono-sources.

Corollary. (10.8) In a construct (A,U) every point-separating source is a mono-source. The
converse holds whenever U is representable.

Proposition. (10.9) Let T = (S;) o S be a composite of sources.
(1) If S and all S; are mono-sources, then so is T .
(2) If T is a mono-source, then so is S.
Proposition. (10.10) Let (A, f;)r be a source.
(1) If (A, f;)s is a mono-source for some J C I, then so is (A, fi)1.
(2) If f; is a monomorphism for some j € I, then (A, f;)1 is a mono-source.

Definition. (10.11) A mono-source S is called eztremal provided that whenever S = Soe
for some epimorphism e, then e must be an isomorphism.

Proposition. (10.13)
(1) If a composite source (S;) oS is an extremal mono-source, then so is S.
(2) If So f is an extremal mono-source, then f is an extremal monomorphism.
Proposition. (10.15) Let (A, f;)1 be a source.
(1) If (A, f;)s is an extremal mono-source for some J C I, then so is (A, fi)1-

(2) If f; is an extremal monomorphism for some j € I, then (A, f;)1 is an extremal mono-
source.

Definition. (10.17) An object A is called an extremal coseparator provided that for any
object B the source (B,hom(B, A)) is an extremal mono-source.

3.10.3 Products
Definition. (10.19) A source P = (P 25 A;) is called a product provided that. . .
Proposition. (10.21) Every product is an extremal mono-source.
Proposition. (10.22) Products are essential unique.
Proposition. (10.25) Let Q = (P;) o P be a composite of sources.
(1) If P and all P; are products, then so is Q.
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(2) If Q is a product and all P; are mono-sources, then P is a product.

Proposition. (10.26) Consider
A—2L 1 A
PN
Aj
Then
(1) (A, fi)1 is a mono-source if and only if (f;) is a monomorphism.
(2) (4, fi)1 is an extremal mono-source if and only if (f;) is an extremal monomorphism.
(3) (A4, fi)1 is a product if and only if (f;) is a product; i.e., an isomorphism.

Proposition. (10.28) If (P 25 Ay); is a product and if ig € I is such that hom(A;,, A;) # 0
for each i € I, then p;, is a retraction.

Definition. (10.29)

(1) A category has products provided that for every set-indexed family (A;); of objects
there exists a product ([T 4; — Aj)r.

(2) A category has finite products provided that for every finite family (A;); of objects
there exists a product ([] 4; EN Aj)r.

Proposition. (10.80) A category has finite products if and only if it has terminal objects
and products of pairs of object.

Theorem. (10.32)

(1) A category that has products for all class-indexed families must be thin.

(2) A small category has products if and only if it is equivalent to a complete lattice.
Definition. (10.34) If (4; LR B;); is a family of morphisms... [] fi: [[4: — [] B:.

Proposition. (10.35) Let (f;); be a set-indexed family of morphisms with product [] f;. If
each f; has any of the following properties, then so does [] fi:

(1) isomorphism,

(2) section,

(3) retraction

(4) monomorphism

(5) regular monomorphism.
Proposition. (10.36) Product of equalizers = equalizer of products.
Definition. (10.37) A = Ith power of A.

Proposition. (10.38) In a category that has products, an object A is an (extremal) cosepa-
rator if and only if every object is an (extremal) subobject of some power Al of A.

Proposition. (10.40) For any class M of morphisms, every product of M-injective objects
is M -injective.
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3.10.4 Sources in concrete categories

Initial sources

Definition. (10.41) Let A be a concrete category over X. A source (A LN A;) in A is
called initial provided that an X-morphism f: |B| — |4| is an A-morphism whenever each
composite f; o f: |B| — |A;| is an A-morphism.

Proposition. (10.48) If (A i i) is an initial source in A, then A = max{B € Ob(A)||B| :I
|A| and all |B] iR |A;| are A-morphisms}.?

The above property often characterizes initial sources, e.g., in such constructs as Top
or Spa(T'). However, in the construct Top,, there are non-initial sources with the above

property.

Proposition. (10.45) Let T = (S;) o S be a composite of sources in a concrete category.
(1) If S and all S; are initial, then so is T .
(2) If T is initial, then so is S.

Proposition. (10.46) Let (A, f;); be a source in a concrete category. If (A, f;)s is initial
for some J C I, then so is (A, fi)r.

Definition. (10.47) A concrete functor F': A — B over X is said to preserve initial sources
provided that for every initial source S in A, the source F'S is initial in B.

Proposition. (10.49) If (F,G) is a Galois correspondence, then G preserves initial sources.

Corollary. (10.50) Embeddings of concretely reflective subcategories preserve initial sources.

Concrete products

Definition. (10.52) Let A be a concrete category over X. A source S in A is called a
concrete product in A if and only if S is a product in A and |S] is a product in X.

Proposition. (10.53) A source S in a concrete category A over X is a concrete product if
and only if it is initial in A and |S| is a product in X.

Definition. (10.54) A concrete category A has concrete products if and only if for every
set-indexed family (4;); of A-objects there exists a concrete product (P X5 A;); in A, i.e.,
if and only if A has products and the forgetful functor preserves them.

Proposition. (10.56) Let Q = (P;) o P be a composite of sources in a concrete category A.
(1) If P and all P; are concrete products, then so is Q.

(2) If Q is a concrete product and each |P;| is a mono-source, then P is a concrete product.

2Recall the order on the fibre of |A4]| [5.4(1)]
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3.10.5 G-initial sources

Definition. (10.57) Let G: A — B be a functor. A source S = (A LR A;)r in A is called
G-initial provided that for each source 7 = (B £ A;); in A with the same codomain as
S and each B-morphism GB . GA with GT = GS o h there exists a unique A-morphism
B - A with T =Soh and h = Gh.

B GB
N, =
h Gh=h

If (A, U) is a concrete category, then U-initial sources are precisely the initial sources in
(A, U).
If A is a category and G: A — 1, then G-initial sources are precisely the products in A.

Proposition. (10.59) For a functor G: A — B the following conditions are equivalent:
(1) G is faithful,
(2) for each A-object A the 2-source (A, (ida,ida)) is G-initial.

(8) whenever (A, fi)r is a source in A and (A4, f;); is G-initial for some J C I, then
(A, fi)1 is initial.

Proposition. (10.60) If G: A — B is a functor such that each mono-source in A is G-
initial, then the following hold:

(1) G is faithful,
(2) G reflects products,
(8) G reflects isomorphisms.

The property that all mono-sources be initial, is not unfamiliar. As we will see in §23, it
is typical for “algebraic” categories.

3.10.6 Sinks

concept dual concept
source sink
mono-source epi-sink
extremal mono-source | extremal epi-sink
initial source final sink
G-initial source G-final sink
product coproduct
projection 7; injection u;
(fi) fi]
power A! copower A
Ax B A+ B
[1fi; fxg [[f; f+g
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Definition. (10.69) A full concrete subcategory A of a concrete category B is said to be

finally dense in B provided that for every B-object B there is a final sink (A4; LN B);inB
with A; in A for alli € I.

Proposition. (10.71) If A is a finally dense full concrete subcategory of a concrete category
B, then every initial source in A is initial in B.

3.11 Limits and colimits

3.11.1 Limits

Definition. (11.1) A diagram in a category A is a functor D: I — A with codomain A.
The domain T is called the scheme of the diagram.
A diagram with a small (or finite) scheme is said to be small (or finite).

Definition. (11.3) Let D: I — A be a diagram.

(1) An A-source (A LR D;)icopq) is said to be natural for D provided that for each

A
[
i
D,

t pd 7

I-morphism i 4, 7, the triangle

comimutes.
(2) A limit of D is...

Every limit is an extremal mono-source. Limits are essentially unique.

Equalizer=limit of diagram with scheme e ——= e . If in the above scheme, the two
arrows are replaced by an arbitrary set of arrows, then the limits of diagrams with such
schemes are called multiple equalizers.

3.11.2 Pullbacks

Definition. A square

is called a pullback square provided that it commutes and that for any commuting square of

the form
B
J/ 9
C

f
—_—

D:-<L’U>

E——
f



there exists a unique morphism P % P for which the diagram

7

Q
)
|
W

-
@l
-
@

comimutes.
Proposition. (11.10) Let
_— —_—

oe<—320
oe<—20

|

o<—-20

commute in A. Then

(1) if the squares are pullback squares, then so is the outer rectangle; i.e., pullbacks can be
composed by “pasting” them together,

(2) if the outer rectangle and right-hand square are pullback squares, then so is the left-hand
square.

3.11.3 Relationship of pullbacks to other limits
Proposition (Canonical Construction of Pullbacks). (11.11) Mam v sk.
Proposition. (11.13) If T is a terminal object, then the following are equivalent:

(1)
P
I)B\L
B
s a pullback square,
(2) (P,(pa,pB)) 15 a product of A and B

praA
—_—

N<—n

R

Proposition (Construction of Equalizers via Products and Pullbacks). (11.14)
Mam v sk

3.11.4 Pullbacks related to special morphisms
Lemma. (11.15) Suppose that the diagram

./
/N
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commutes.

(1) If the outer square is a pullback square then so is .

(2) If 18 a pullback square and h is a monomorphism, then the outer square is a pullback
square.

Proposition. (11.16) A S Bisa monomorphism if and only if

A A
4
A

HB

7

ida
_—

is a pullback square.

Definition. (11.17) A class M of morphisms in a category is called pullback stable (or closed
under the formation of pullbacks) provided that for each pullback square

p f
|
A

R

A~

_—
f

with f € M, it follows that f € M.

Proposition. (11.18) Monomorphisms, regular monomorphisms, and retractions are pull-
back stable.

3.11.5 Congruences
Definition. (11.20)
(1) If

p
E——

Q
oe<—0

is a pullback square, then the pair (p, q) is called a congruence relation of f.

R
f

(2) A pair (p,q) is called a congruence relation provided that there exists some morphism
f such that (p,q) is a congruence relation of f.

Lemma. (11.21) Let (p,q) be a congruence relation of A L. B. Then

(1) (p,q) is a congruence relation of A mel o for each monomorphism B — C,

(2) if f=goh and hop=hogq, then (p,q) is a congruence relation of h.

Proposition. (11.22) If (p,q) is a congruence relation and c is a coequalizer of p and ¢,
then (p,q) is a congruence relation of c.
If ¢ is a regular epimorphism and (p, q) is a congruence relation of ¢, then c is a coequalizer

of p and q.
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3.11.6 Intersections

Definition. (11.23) Let A be a family of subobjects (A4;,m;) of an object B, indexed by a
class I. A subobject (A,m) of B us called an intersection of A provided that the following
two conditions are satisfied:

(1) m factors through each m;, i.e., for each i there exists an f; with m = m; o f;,

(2) if a morphism C 7, B factors through each m;, then it factors through m.

Definition. (11.26) A class M of monomorphisms is said to be closed under the formation
of intersections provided that whenever (A,m) is an intersection of a family of subobjects
(A;,m;) and each m; belongs to M, then m belongs to M.

3.11.7 Colimits

Definition. (11.27) natural sink, colimit

Proposition. (11.29) Colimits are essentially unique and each colimit is an extremal epi-
sink.

Definition. (11.30) pushout

Definition. (11.32) A square, that is simultaneously a pullback square and pushout square
is called a pullation square.

Proposition. (11.33) Consider a commuting square

(1) If (*) is a pushout square, then c is a coequalizer of p and q.

(2) If (p,q) is a congruence relation of ¢, and ¢ is a reqular epimorphism, then (*) is a
pullation square.

11L: Multiple Pullbacks

A pair (f, mcS), consisting of a morphism A ., B and a source S = (A LN i)I, 18
called a multiple pullback of a sink (A; N B); provided that:
(i) f=gio f! for each i € I, and
(ii) for each pair (f’,S’), with A’ L. Ba morphism and &’ = (4’ EiN B)r a source for
which i € I, there exists a unique morphism A’ -5 A with f' = go fand f/ =go f;
for each i € I.

Interpret multiple pullbacks as limits. Interpret pullbacks as multiple pullbacks of 2-
sinks. Interpret intersections as multiple pullbacks. Show that each sink that consists of
isomorphisms alone has a multiple pullback.
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3.12 Completeness and cocompleteness
Definition. (12.1)

(1) have (finite) products provided that for each (finite) set-indexed family there exists a
product,

(2) have equalizers provided that for each parallel pair of morphisms there exists an equal-
izer,

(3) have pullbacks provided that for each 2-sink there exists a pullback,

(4) have (finite) intersections provided that for each object A, and every (finite) family of
subobjects of A, there exists an intersection.

Dual notions: have (finite) coproducts, have coequalizers, and have (finite) cointersections.
Definition. (12.2) A category A is said to be
(1) finitely complete if for each finite diagram in A there exists a limit,
(2) complete if for each small diagram in A there exists a limit,
(3) strongly complete if it is complete and has intersections.
Theorem. (12.3) For each category A the following conditions are equivalent:
(1) A is complete,
(2) A has products and equalizers,
(3) A has products and finite intersections.
Theorem. (12.4) For each category A the following conditions are equivalent:
(1) A is finitely complete,
(2) A has finite products and equalizers,
(8) A has finite products and finite intersections,
(4) A has pullbacks and terminal objects.

Theorem. (12.5) Each complete and wellpowered category is strongly complete.

3.12.1 Cocompleteness almost implies completeness
Theorem. (12.7) A small category is complete if and only if it is cocomplete.

Proposition (Canonical Construction of Limits via Large Colimits). (12.8) For
a small diagram D: 1 — A, let SP be the category whose objects are all natural sources
(A, f;) for D, whose morphisms (A, fi) 2= (A’, f!) are all those A-morphisms A —2» A’

with (A, f;) = (A, fI) o g and whose identity morphisms and composition law are as in A. If
D*: SP — A is the diagram given by:

D*((Avfz) i) (A/afz/)) =A i’ A/7

then for each A-object L the following conditions are equivalent:
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(1) D has limit L = (L A, Di)icon)s
(2) D* has a colimit K = (D*(S) ks, L)scob(sP)ys

(3) SP has a terminal object £ = (L — D;)icon) -

Proposition. (12.9) A cocomplete category A has a terminal object if and only if it has a
weak terminal object K ; i.e., for each A-object A, there exists at least one morphism from
Ato K.

Definition. (12.10) A full subcategory B of A with embedding E: B — A is called colimit-
dense in A provided that for every A-object A there exists a diagram D: I — B such that
the diagram F o D: I — A has a colimit with codomain A.

Theorem. (12.12) Every cocomplete category with a small colimit-dense subcategory is com-
plete.

Theorem. (12.13) Every co-wellpowered cocomplete category with a separator is wellpowered
and complete.
3.13 Functors and limits
Definition. (13.1)
(1) A functor F': A — B is said to preserve a limit £ = (L R D;) of adiagram D: I — A
provided that FL = (FL Il FD;) is a limit of a diagram FoD:1— B.

(2) F is said to preserve limits over scheme I provided that F preserves all limits of
diagram D: I — A with scheme I.

(3) F preserves equalizers if and only if F' preserves all limits over the scheme e —= o ;
F preserves products if and only if F' preserves all limits over small discrete schemes;
F preserves small limits if and only if F' preserves all limits over small schemes; F
preserves strong limits if and only if F preserves all limits over small schemes and
arbitrary intersection; etc.

Example. (13.2(4)) The full embedding Haus — Top and Pos — Rel preserve limits and
coproducts, but not coequalizers.

Proposition. (13.3) If F': A — B is a functor and A is finitely complete, then the following
conditions are equivalent:

(1) F preserves finite limits,
(2) F preserves finite products and equalizers,
(8) F preserves pullbacks and terminal objects.

Proposition. (13.4) For a complete category A, a functor F: A — B preserves small limits
if and only if it preserves products and equalizers.

Proposition. (13.5)
(1) If a functor preserves finite limits, then it preserves monomorphisms and regular monomor-j§

phism.
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(2) If a functor preserves (small) limits, then it preserves (small) mono-sources.
Proposition. (13.7) Hom-functors preserve limits.

Proposition. (13.8) If F' and G are naturally isomorphic functors, then F preserves limits
over a scheme I if and only if G does.

Corollary. (13.9) Representable functors preserve limits.

Proposition. (13.11) Embeddings of colimit-dense subcategories preserve limits.

3.13.1 Concrete limits
Definition. (13.12)

(1) Let (A,U) be a concrete category. A limit £ of a diagram D: I — A is called a concrete
limit of D in (A, U) provided that it is preserved by U.

(2) A concrete category (A,U) has (small) concrete limits, resp. concrete products, etc., if
and only if A has (small) limits, resp. products, etc., and U preserves them.

Proposition. (13.14) A concrete category has small concrete limits if and only if it has
concrete products and concrete equalizers.

Proposition. (13.15) If (A,U) is a concrete category and D: 1 — A is a diagram, then
L= (L R D;)icon) is a concrete limit in (A, U) if and only if U(L) is a limit of U o D

and L is an initial source in (A, U).
3.13.2 Lifting of limits
Definition. (13.17) A functor F': A — B is said to

(1) lft limits (uniquely) provided that for every diagram D: I — A and every limit £ of
F o D there exists a (unique) limit £’ of D with F(£') = L,

(2) create limits provided that for every diagram D: I — A and every limit £ of F o D

there exists a unique source S = (L LN D;) in A with F(S) = £, and that, moreover,
S is a limit of D.

Similarly, one has lifts small limits, lifts products, creates equalizers, creates finite limits, etc.

Theorem. (13.19) If a functor A . lifts limits and B is (strongly) complete, then A is
(strongly) complete and F' preserves small limits (and arbitrary intersections).

Proposition. (13.21) For functors F: A — B the following conditions are equivalent:
(1) F lifts limits uniquely,
(2) F lifts limits and is amnestic.

Definition. (13.22) A functor F': A — B is said to
(1) reflect limits provided that for each diagram D:I — A an A-source S = (A ELR
D;)icop) is a limit of D whenever F'(S) is a limit of F'o D,

(2) detect limits provided that a diagram D: I — A has a limit whenever F o D has one.
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Similarly one has reflect equalizers, detect products, etc.

Proposition. (13.24) A functor that reflect equalizers is faithful.

Proposition. (13.25) For any functor F: A — B the following conditions are equivalent:
(1) F creates limits,
(2) F lifts limits uniquely and reflects limits,

(8) F lifts limits, is faithful and amnestic, and reflects isomorphisms in the sense that
whenever that F f is a B-isomorphism, then f is an A-isomorphism.

Proposition. (13.27) A full reflective subcategory A of B is limit-closed (closed under the
formation of limits) in B if and only if A is isomorphism-closed in B.

Corollary. (13.28) If a category has certain limits, then so does each of its isomorphism-
closed full reflective subcategories.

Isomorphism-closed full reflective subcategories A of B usually fail to be colimit-closed.
However, the following proposition shows that the associated inclusion functor detect colimits.

Proposition. (13.30) Let A be a full subcategory of B with embedding E: A — B and let
D: 1 — A be a diagram. If C = (D; == C) is a colimit of E o D, and if C —— A is an
A -reflection arrow for C, then C' =roC is a colimit of D.

Example. (13.31(1)) HComp is a full reflective subcategory of Top. The construction of
coproducts in HComp given in Example 10.67(5) is a special case of the above result.

Corollary. (13.32) Embeddings of full reflective subcategories detect colimits.

Proposition. (13.84) If a functor F': A — B preserves limits, then the following conditions
are equivalent:

(1) F lift limits (uniquely),

(2) F detects limits and is (uniquely) transportable.

3.13.3 Creation and reflection of isomorphisms
Definition. (13.35) A functor G: A — B is said to

(1) create isomorphism provided that whenever h: X — GA is a G-structured B-isomorphism, Jj
there exists precisely one A-morphism h: B — A with G(h) = h, and, moreover, h is
an isomorphism,

(2) reflect isomorphism provided that an A-morphism f is an A-isomorphism whenever
Gf is a B-isomorphism.

Proposition. (13.36)
(1) If G creates (resp. reflects) limits, then G creates (resp. reflects) isomorphisms.

(2) G creates isomorphism if and only if G reflects isomorphism and is uniquely trans-
portable.

(8) If G creates isomorphisms, then G reflects identities.
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4 Factorization structures

4.14 Factorization structures for morphisms

Definition. (14.1) Let E and M be classes of morphisms in a category A.
(E, M) is called a factorization structure for morphisms in A and A is called (F,M)-
structured provided that

(1) each of E and M is closed under composition with isomorphism,

(2) A has (E, M)-factorizations (of morphisms); i.e., each morphism f in A has a factor-
ization f = moe, with e € E and m € M, and

(3) A has the unique (E, M)-diagonalization property; i.e., for each commutative square

A—>B ()
b
C—=>D
with e € E and m € M there exists a unique diagonal, i.e. a morphism d such that the
diagram
A——B
[/
C—>=>D
commutes.

Example. (14.2(5)) Top has a proper class (even an illegitimate conglomerate) of factor-
ization structures for morphisms. Each of

(Epi, RegMono)=(surjection, embedding),

(RegEpi, Mono)=(quotient, injection),

(dense, closed embedding), and

(front-dense, front-closed embedding),

is a factorization structure for morphisms in Top, but (Epi, Mono) is not.
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Proposition. (14.3) A is (E, M)-structured if and only if A°? is (M, E)-structured.

Proposition. (14.4) If A is (E, M)-structured, then (E,M)-factorizations are essentially
unique, i.e.,

(1) if A—>C; —> B are (E,M)-factorizations of A LB for i = 1,2, then there

exists a (unique) isomorphism h, such that the diagram

A—2s 0
e
€2 mi
Co “m. > B
commutes.
(2) If A JoB= A—~Cc-">B isan (E, M)-factorization and C 2, D s an
-1
e, p™t s B s also an (E, M)-factorization.

Lemma. (14.5) Let A be (E, M)-structured and e € E and m € M. If the diagram

isomorphism, then A S B= A

e
e ——>60

1/
id m
o —— 0
f
commutes, then e is an isomorphism and f € M.
Proposition. (14.6) If A is (E, M)-structured, then the following hold:
(1) ENM =1Iso(A),

(2) each of E and M is closed under composition,

(3) E and M determine each other via the diagonalization-property;® in particular, a mor-
phism M belongs to M if and only if for each commutative square of the form (*) (see
Definition 14.1) with e € E there exists a diagonal.

Proposition. (14.7) If E and M are classes of morphisms in A, then A is (E, M)-structured
if and only if the following conditions are satisfied:

(1) Iso(A) CENM,
(2) each of E and M is closed under composition,

(3) A has the (E,M)-factorization property, unique in the sense that for any pair of
(E, M)-factorizations my o e; = f = mg o ea of a morphism f there exists a unique

isomorphism h, such that the diagram
e1
— e
/ \L
my
— e
ma

]

commutes.

3Here the diagonal needn’t be required to be unique.
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Proposition. (14.9) Let A be (E, M)-structured and let fog e M.
(1) If f € M, then g € M.
(2) If f is a monomorphism, then g € M.
(8) If g is a retraction, then f € M.

4.14.1 Relationship to special morphisms

Proposition. (14.10) If A is (E, M)-structured, then the following hold:
(1) E C Epi(A) implies that ExtrMono(A) C M.

If, moreover, A has (Epi, Mono)-factorizations, then
(2) Epi(A) C E implies that M C Extr Mono(A).
(3) Epi(A) = E implies that M = Extr Mono(A).

Proposition. (14.11) If A is (E, M)-structured and has products of pairs, then the following
conditions are equivalent:

(1) E C Epi(A),

(2) ExtrMono(A) C M,

(3) Sect(A) C M.

(4) for each object A, the diagonal morphism A s = (ida,ida) belongs to M,
(5) fog€ M implies that g € M,

(6) foe€ M and e € E imply that e € Iso(A),

(7) M ={f e Mor(A)|f =goe and e € E imply that e € Iso(A)}.

Proposition. (14.12) If A is (E, Mono)-structured and has products of pairs, then E =
ExtrEpi(A).

Proposition. (14.14) If A has (RegEpi, Mono)-factorizations, then the following hold:
(1) A is (RegEpi, Mono)-structured,
(2) RegEpi(A)=ExtrEpi(A),
(3) the class of regular epimorphisms in A is closed under composition,

(4) if f og is a reqular epimorphism, then so is f.
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4.14.2 Relationship to limits

Proposition. (14.15) If A is (E,M)-structured, then M is closed under the formation of
products and pullbacks, and M N Mono(A) is closed under the formation of intersections.*

Lemma (Factorization Lemma). (14.16) Let A have intersections and equalizers, let
¢ LD be an A-morphism, and let M C Mono(A) satisfy the following conditions:

(a) intersection of families of M -subobjects of D belong to M,
(b) if f=1mogoh withm € M and g € RegMono(A), then mog e M.
Then there exists m € M and e € Epi(A), such that
(1) f=moc,
(2) if f =T og with m € M, then there exists a diagonal d that makes the diagram

@
o<—20

commute,
(3) ife=mog, where mom € M, then m € Iso(A).

Theorem. (14.17) If A has finite limits and intersections, then A is (ExtrEpi, Mono)-
structured.

Proposition. (14.18) If A has the (Epi, ExtrMono)-diagonalization property, then the class
of extremal monomorphisms in A is closed under composition and intersections.

Theorem. (14.19) If A has equalizers and intersections, then A is (Epi, ExtrMono)-structured.|j

Corollary. (14.20) In a category with equalizers and intersections the class of extremal
monomorphisms is the smallest class of morphisms that contains all reqular monomorphisms
and is closed under composition and intersections.

Corollary. (14.21) Every strongly complete category is (ExtrEpi, Mono)-structured and
(Epi, ExtrMono)-structured.

Proposition. (14.22) A category with pullbacks and coequalizers is (RegEpi, Mono )-structured)
if and only if reqular epimorphisms are closed under composition.

4.15 Factorization structures for sources

Definition. (15.1) Let E be a class of morphisms and let M be a conglomerate of sources
in a category A. (E,M) is called a factorization structure on A, and A is called an (E, M)-
category provided that

(1) each of E and M is closed under composition with isomorphisms,

(2) A has (E,M)-factorizations (of sources); i.e. each source S in A has a factorization
S =Moewithe e Fand M € M, and

4In fact, M is closed under the formation of multiple pullbacks (cf. Exercise 11L).
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(3) A has the unique (E, M)-diagonalization property; i.e. whenever A —» B and A NG
are A-morphism with e € E and S = (g;); and M = (m;); are sources in A with
M € M, such that Mo f = Soe, then there exists a unique diagonal, i.e. a morphism

B -% € such that for each i € I the diagram

A——B
1k
o

C D

mg

N

commutes.

Top has a proper class (even an illegitimate conglomerate) of factorization structures. In
particular, Top is an (Epi, ExtrMono-Source)-category, an (ExtrEpi, Mono-Source)-category,
and a (Bimorphism, Initial Mono-Source)-category.

Theorem. (15.4) If A is an (E,M)-category, then E C Epi(A).
Proposition. (15.5) If A is an (E, M)-category, then the following hold:
(1) (E,M)-factorizations are essentially unique,

(2) E C Epi(A) and ExtrMono — Source(A) C M,

(3) ENM = Iso(A),

(4) each of E and M is closed under composition,

(5) if fog€ E and g € Epi(A), then f € E,

(6) if fog€ E and f € Sect(A), then g € E,

(7) if (S§;)oS €M, then S € M,

(8) if a subsource of S belongs to M, then S belongs to M,

(9) E and M determine each other via the diagonalization-property; moreover,

(a) a source belongs to M if and only if every E-morphism through which it factors
is an isomorphism,

(b) if M consists of mono-sources only, then a morphism f belongs to E if and only
if f =mog withm €M implies than m € Iso(A).

4.15.1 Relationship to special morphisms and special limits

Proposition. (15.6) If A is a (RegEpi, M)-category, then M contains all mono-sources of

A.

Proposition. (15.7) For (E,M)-categories A, the following are equivalent:
(a) M C Mono-Source(A),

(b) A has coequalizers and RegEpi(A) C E.

Proposition. (15.8) For (E,M)-categories A the following hold:
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(1) if M = Mono-Source(A), then E = ExtrEpi(A),
(2) if M = Extr Mono-Source(A), then E = Epi(A),
(3) if E = Epi(A), then the following conditions are equivalent:

(a) M = ExtrMono-Source(A),
(b) A has coequalizers,

(4) if E = ExtrEpi(A), then the following conditions are equivalent:

(a) M = Mono-Source(A),
(b) A has coequalizers.

4.15.2 Existence of factorization structures

Theorem. (15.10) Every category that has (Epi, Mono-Source)-factorizations is an (Ex-
trEpi, Mono-Source)-category.

Definition. (15.12) A category is said to have regular factorizations provided that it is
(RegEpi, Mono-Source)-factorizable.

Proposition. (15.18) If a category has regular factorizations, then it is a (RegEpi, Mono-
Source)-category.

Theorem. (15.14) If E is a class of morphisms in A, then A is an (E,M)-category of some
M if and only if the following conditions are satisfied:

(1) Iso(A) C E C Epi(A),

(2) E is closed under composition,
(3) for every A -~ B in E and every morphism A L, C there eists a pushout square

A—=B

|
C?D

for whiche e E,

(4) for every source (A <~ A;)r that consists of E-morphisms, there exists a cointersection
A-SB=A" A 2B
for which e € E.

Corollary. (15.15) Let A be a category with pushouts and cointersections. Then a class E of
A -morphisms is a part of a factorization structure on A if and only if Iso(A) C E C Epi(A)
and E is closed under composition, pushouts, and cointersection.

Corollary. (15.16)
(1) A is an (Epi,M)-category for some M if and only if A has cointersections and has a

pushout for every 2-source of the form e L e with epimorphic e.
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(2) A is an (Epi, ExtrMono-Source)-category if and only if A has cointersections, pushouts

for every 2-source of the form e < e with epimorphic e, and has coequal-
1zers.

Corollary. (15.17) Every strongly cocomplete category is an (Epi, ExtrMono-Source)-category ]}

4.15.3 Extensions of factorization structures
Proposition. (15.19)

(1) If A has products, then every factorization structure (E,M) for morphisms can be
uniquely extended to a factorization structure (E,M) for small sources.

(2) Conwversely, if A has an initial object and each factorization structure (E, M) for mor-
phisms on A can be extended to a factorization structure (E, M) for small sources then
A has products.

Proposition. (15.20) If (E,M) is a factorization structure for small sources on A and A
is E-co-wellpowered, then the following conditions are equivalent:

(1) (E,M) can be uniquely extended to a factorization structure (E,N) on A,
(2) E C Epi(A),

(3) Sect(A) C M,

(4) for each object A the 2-source (ida,ida) belongs to M,

(5) whenever a subsource of a small source S belongs to M, then so does S.

Corollary. (15.21) In a co-wellpowered category A with products, every factorization struc-
ture (E, M) for morphisms with E C Epi(A) can be uniquely extended to a factorization
structure (E, M) for sources.

Proposition. (15.24) In an (E,M)-category every factorization structure (C,N) for mor-
phisms with C C E can be uniquely extended to a factorization structure (C,N) for sources.

4.15.4 Factorization structures and limits

Theorem. (15.25) Let A be a strongly complete, extremally co-wellpowered. Then the fol-
lowing hold:

(1) A is an (ExtrEpi, Mono-Source)-category.
(2) If A is co-wellpowered, then A is an (Epi, ExtrMono-Source)-category.

(8) Ifin A regular epimorphisms are closed under composition, then A is a (RegEpi, Mono-
Source)-category.
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4.16 FE-reflective subcategories

Definition. (16.1) Let B be a category and F be a class of B-morphisms. An isomorphism-
closed, full subcategory A of B is called E-reflective in B provided that each B-object has an
A-reflection arrow in E. In particular, we use the terms epireflective (resp. monoreflective,
bireflective) in case E is the class of all epimorphisms (resp. monomorphisms, bimorphisms)
in B. Likewise, regular epireflective, extremal epireflective.

HComp is reflective but not epireflective in Top, even though HComp is epireflective
in Haus an Haus is epireflective in Top.

Proposition. (16.3) Fvery monoreflective subcategory of B is bireflective in B.

Proposition. (16.4) Every coreflective isomorphism-closed full subcategory of B that con-
tains a B-separator is bicoreflective in B.

Definition. (16.7) Let M be a conglomerate of sources in a category B. A subcategory A of

B is said to be closed under the formation of M-sources provided that whenever (B LN A)r
is a source in M such that all A; belong to A, then B belongs to A.

Theorem. (16.8) If A is a full subcategory of an (E,M)-category B, then the following
conditions are equivalent:

(1) A is E-reflective in B.
(2) A is closed under the formation of M-sources in B.

In the case that B has products and is E-co-wellpowered, the above conditions are equivalent
to:

3) A is closed under the formation of products and M-subobjects® in B.
(3) p ]

Corollary. (16.9) A full subcategory of a co-wellpowered, strongly complete category B is
epireflective in B if and only if it is closed under the formation of products and extremal
subobjects in B.

4.16.1 Subcategories defined by equations and implications

Definition. (16.12)
(1) (Regular) epimorphisms are called (regular) implications.

(2) An object Q satisfies the implication A — B provided that @ is {e}-injective (i.e.,

provided that for each morphism A R @ there exists a morphism B R Q with
f=Too).

(3) A full subcategory A of B is called implicational provided that there exists a class C' of
implications in B such that A consists precisely of those B-objects that satisfy each im-
plication in C. Construct that are concretely isomorphic to implicational subconstructs
of Alg(2) for some Q) are called finitary quasivarieties.

In case C can be chosen to be a subclass of some class E of implications in B, A is called
E-implicational.

5An M-subobject is simply a singleton M-source. It need not be a monomorphism.
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16.13(2): Ti-spaces form an implicational subcategory of Top. If P is the Sierpinski
space and P’ is a singleton space, then a topological space is T3 if and only if it satisfies the
implication P — P’.

Theorem. (16.14) A full subcategory of an (E, M)-category B is E-implicational if and only
if it is E-reflective in B.

Definition. (16.16)

(1) Let E be a class of epimorphism in a category B. An implication in E with projec-
tive domain is called an E-equation. Regular epimorphic equations are called reqular
equations. A full subcategory A of B is called E-equational provided that there exists
a class C' of F-equations in B such that A consists precisely of those B-objects that
satisfy each E-equation in C.

(2) Let B be a construct. Regular implications with free domain are called equations. A
full subcategory A of B is called equational provided that it can be defined as above
by a class C' of equations in B.

(3) Construct that are concretely isomorphic to equational subconstructs of Alg(f2) for
some ) are called are called finitary varieties.

Theorem. (16.17) Let B be an (E, M)-category with enough E-projectives (9.9 dual). Then
the following condition are equivalent for any full subcategory A of B:

(1) A is E-equational in B.
(2) A is closed under the formation of M-sources and E-quotients in B

In the case that B has products and is E-co-wellpowered, the above conditions are equivalent
to:

(8) A is closed under the formation of products, M-subobjects, and E-quotients in B.

Theorem. (16.18) Let B be a fibre-small, transportable, complete construct, that has free
objects and for which the surjective morphisms are precisely the reqular epimorphisms. Then
for full subconstructs A of B the following conditions are equivalent:

(1) A is equational in B,
(2) A is regular-equational in B,

(3) A is reqular epireflective and closed under the formation of reqular quotients (= homo-
morphic images) in B,

(4) A is closed under the formation of products, subobjects, and homomorphic images in

B.
Corollary. (16.19) For full subcategories A of Alg(R2), the following hold:

(1) A is implicational in Alg(Q) if and only if A is closed under the formation of products
and subalgebras.

(2) A is equational in Alg(Q) if and only if A is closed under the formation of products,
subalgebras and homomorphic images.
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4.16.2 FE-reflective hulls
Proposition. (16.20) For (E,M)-categories B, the following hold:
(1) The intersection of any conglomerate of E-reflective subcategories of B is E-reflective
in B.

(2) For every full subcategory A of B there exists a smallest E-reflective subcategory of B
that contains A.

Definition. (16.21) If A is a full subcategory of an (E, M)-subcategory B, then the smallest
E-reflective subcategory of B that contains A is called the E-refiective hull of A in B.
Proposition. (16.22) If A is a full subcategory of an (E,M)-category B, then B-objects B
belongs to the E-reflective hull of A in B if and only if there exists a source (B LR A))r in
M with all A; in A.

Epireflective hulls in Top: Top, of S, Tych of [0,1]; in Haus: HComp of [0,1].

Proposition (Reflectors as Composites of Epireflectors). (16.24) If A is a full reflec-
tive subcategory of an (Epi, Mono-Source)-factorizable category B, and if C is the extremally
epireflective hull of A in B, then A is epireflective in C and C is epireflective in B.

(16D) Full reflective subcategory of Top is co-wellpowered if and only if its epireflective
hull in Top is co-wellpowered.

4.17 Factorization structures for functors

Definition. (17.1) Let G: A — X be a functor. A G-structured source S is a pair (X, (fi, Ai)icr)ll
that consists of an X-objects X and a family of G-structured arrows X LR GA; with domain
X, indexed by some class I.

X is called the domain of S and the family (A4;);c; is called the codomain of S.

Definition. (17.3) Let G: A — X be a functor, let F be a class of G-structured arrows, and
let M be a conglomerate of A-sources. (E,M) is called a factorization structure for G, and
G is called an (E, M)-functor provided that

(1) E and M are closed under composition with isomorphisms.

(2) G has (E,M)-factorizations, i.e., for each G-structured source (X LN GA;); there
exists X —» GA in E and M = (A ™% A;); € M such that

X L Gga; = x = gA %™ @A, for each i € I

(3) G has the unique (E, M)-diagonalization property, i.e., whenever X . GAand X %

GB are G-stuctured arrows with (e, B) € E and M = (A =% A;); and S = (B TR
A;)r are A-sources with M € M, such that (Gm;) o f = (Gf;) oe for each i € I, then
there exists a unique diagonal, i.e. an A-morphism B %, A with f = Gdoe and
S = M od, which will be expressed (imprecisely) by saying that the following diagram
commutes:

X —=GB

[T

GA— = GA;
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Theorem. (17.6) If G is an (E,M)-functor, then each member of E is generating.
Theorem. (17.7) If G: A — B is an (E, M)-functor, then the following hold:

(1) (E,M)-factorizations are essentially unique,

(2) M determines E via the unique diagonalization property,

(3) if A is an (E,M)-category, (e, A) € E and A . BeE, then ((Gé)oe,B) € E.

Proposition. (17.9) If G is an (E, Mono-Source)-functor, then E consists precisely of those
structured arrows that are extremally generating.

Proposition. (17.10) If a functor G has (Generating, Mono-Source)-factorizations, then G
is an (Extremally Generating, Mono-Source)-functor.

4.17.1 Factorization structures and limits

Theorem. (17.11) Let A be a strongly complete category and let A Y. X bea functor that
preserves strong limits.

(1) If G is extremally co-wellpowered or if A has a coseparator, then G is an (ExtrGen,
Mono-Source)-functor.

(2) If G is faithful and concretely co-wellpowered, then G is a (ConGen, Initial Mono-
Source)-functor

Proposition. (17.12) If G-structure 2-sources have (Generating, — )-factorizations, then G
preserves mono-sources.

Proposition. (17.13) If G: A — B s a functor such that G-structured 2-sources have
(Generating, Mono-Source)-factorizations, then the following conditions are equivalent:

(1) G reflects isomorphism,

(2) each mono-source is G-initial,

(8) G is faithful and reflects extremal epimorphisms,
(4) G reflects limits,

(5) G reflects equalizers.

Observe that in the diagram below, all arrows indicate implications that hold without
any assumptions, whereas those labeled 1, 2, 3 and 4 are equivalences under the hypothesis
of the preceding Proposition.
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monomorphisms
are initial

1

reflect limits

2

’ reflects equalizers ‘ _—

3 |

. faithful and
’ reflects isomorphisms ‘ <— [reflects extremal
epimorphisms

Proposition. (17.15) A functor G: A — X is faithful if and only if for each A-object A the
G-structured source (GA NLEY PLN GA) is (Generating, Initial Source)-factorizable.

Corollary. (17.16) If G-structured 2-sources are (Generating, Initial Source)-factorizable,
then G is faithful.

5 Adjoints and monads

5.18 Adjoint functors

Perhaps the most successful concept of category theory is that of adjoint functor. Adjoint
functors occur frequently in many branches of mathematics and the “adjoint functor theo-
rems” have a surprising range of applications

Definition. (18.1) A functor G: A — B is said to be adjoint for every B-object B there
exists a G-universal arrow with domain B.
Dual notion: co-adjoint

Examples: reflective, coreflective; The forgetful functor U of a concrete category (A, U)
over X is adjoint if and only if for each X-object X there exists a free object over X. The
forgetful functors of the constructs Rel, Top and Alg(X) are both adjoint and co-adjoint
(cf. 8.23 and 8.41). The forgetful functors of the constructs CLat and CBoo are neither
adjoint nor co-adjoint.

Proposition. (18.3) For a functor G: A — B the following conditions are equivalent:
(1) G is adjoint,
(2) G has (Generating®,— )-factorizations,
(8) G is an (E,M)-functor for some E and M,
(4) G is a (Universal”, Source)-functor.

6 “Generating” in this context denotes the class of all generating G-structured arrows
7“Universal” in this context denotes the class of all universal G-structured arrows
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Proposition. (18.4) If A is (Epi, M)-category, then for any functor G: A — B the follow-
ing are equivalent:

(1) G is adjoint,
(2) G is a (Generating,M )-functor.

5.18.1 Properties of adjoint functors

Proposition. (18.5) Composition of adjoint functors is adjoint.

Proposition. (18.6) Adjoint functors preserve mono-sources.

Corollary. (18.7) Embeddings of reflective subcategories preserve and reflect mono-sources.
Proposition. (18.9) Adjoint functors preserve limits.

Corollary. (18.10) If (A,U) is a concrete category over X that has free objects, then the
following hold:

(1) all limits in (A,U) are concrete,
(2) U preserves and reflects mono-sources,

(3) if (A,U) is fibre-small and transportable, then wellpoweredness of X implies wellpow-
eredness of A.

Proposition. (18.11) If G: A — B is an adjoint functor and A is co-wellpowered, or
extremally co-wellpowered, then so is G.

5.18.2 Adjoint functor theorems

Theorem (Adjoint functor theorem). (18.12) A functor G: A — B, whose domain A
is complete, is adjoint if and only if G satisfies the following conditions:

(1) G preserves small limits,

(2) for each B-object B there exists a G-solution set, i.e., a set-indexed G-structured source
(B R GA;)1 through which each G-structured arrow factors (in the sense that given
any B 7, GA, there exists a j € I and A; 25 A such that

B *fj> GAj
G
N
GA
commutes.)

Theorem. (18.14) If A is strongly complete and (extremally) co-wellpowered, then the fol-
lowing conditions are equivalent for any functor G: A — B:

(1) G is adjoint,

(2) G preserves small limits and is (extremally) co-wellpowered.
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Corollary. (18.15) Fibre-small, concretely co-wellpowered constructs that are concretely
complete have free objects.

Theorem (Special adjoint functor theorem). (18.17) If A is a strongly complete cat-
egory with a coseparator, then for any functor G: A — B, the following conditions are
equivalent:

(1) G is adjoint,
(2) G preserves strong limits.

Set, Vec, Pos, Top, and HComp, are complete, wellpowered, and have coseparators,
so that the above theorem applies to them. Since many familiar categories have separators
but fail to have coseparators, the dual of the Special Adjoint Functor Theorem is applicable
even more often than the theorem itself.

Theorem (Concrete adjoint functor theorem). (18.19) Let G: (A,U) — (B,V) be a
concrete functor. If (A,U) is complete, wellpowered, co-wellpowered, and has free objects,
then G is adjoint if and only if G preserves small limits.

18A: Functors that are simultaneously adjoint and co-adjoint

Let A -% B. Show that

If G is an equivalence then G is adjoint and co-adjoint.

If G is adjoint and co-adjoint and A = B = Set, then G is an equivalence.

If G is adjoint and co-adjoint and A and B are monoids, considered as categories, then G is
an equivalence.

If A =1 and G maps the single object of A to a zero object in B, then G is adjoint and
co-adjoint.

The forgetful functor Top — Set is adjoint and co-adjoint.

If A is small and C is the category that is complete and cocomplete, then the functor
G,id . .. .
[B, C] i [A, C] is adjoint and co-adjoint.
18E: Show that the covariant power-set functor P: Set — Set is neither adjoint nor
co-adjoint, but that the contravariant power-set functor Q: Set°? — Set

5.19 Adjoint situations

Theorem. (19.1) Let G: A — B be an adjoint functor, and for each B-object B let ng: B —
G(Ag) be a G-universal arrow. Then there erists a unique functor F: B — A such that
F(B) = Ap for each B-object B, and idg n=(p) G o F' is a natural transformation.

Moreover there exists a unique natural transformation F o G — ida that satisfies the
following conditions:

G . i
(1) ¢ —%cr¢—%~c=c ¢,
2 F—Lpor—fp_pt . p.

Definition. (19.3) An adjoint situation (n,¢): F 4G: A — B consists of functors G: A —
B and F: B — A and natural transformations idg —— GF (called the unit) and FG —— ida
(called the co-unit) that satisfy the following conditions:

1) ¢ "% gra-%~c_g®-q,
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ra B 7
2 F—2rer—Lp_pfop.

Theorem (Duality theorem for adjoint situations). (19.6) If (n,e): F 41G: A — B
is an adjoint situation, then (£°P,n°P: G°P 4 F°P: B°? — A°P) is an adjoint situation.

Proposition. (19.7) If (n,e): F 4 G: A — B is an adjoint situation, then the following
hold:

(1) G is an adjoint functor,

(2) for each B-object B, B 2% GFB is a G-universal arrow,
(8) F is a co-adjoint functor,

(4) for each A-object A, FGA =% A is a F-co-universal arrow.

Proposition. (19.9) Adjoint situation associated with a given adjoint functor G: A — B
are essentially unique, i.e., for each adjoint situation (n,€): F 4 G: A — B, the following
hold:

(1) if (7,2): F 4 G: A — B is an adjoint situation, then there exists a natural isomorphism
with F — F for whichj=Gron and & =ec o7 'G,

(2) if F: B — A s a functor and F = F is a natural isomorphism, then (G on,e o
771G): F4G: A — B is an adjoint situation.

Definition. (19.10) Let G: A — B and F: B — A be functors. Then F is called a co-
adjoint for G and G is called an adjoint for F (in symbols F 4 G) provided there exist
natural transformations 7 and € such that (n,e): FF 4 G: A — B is an adjoint situation.

The reader should be aware that the following alternative terminology is also used:
G is right adjoint = G has a left adjoint = G is adjoint
F is left adjoint = F has a right adjoint = F' is co-adjoint

Proposition. (19.13) Adjoint situations can be composed, specifically, if (n,e): F 4G: A —
B and (7,€): F 4 G: B — C are adjoint situations then so is

(GnF o7,e 0 FEG): FoF4GoG: A — C.
Theorem. (19.14) If (n,e): F 4G: A — B is an adjoint situation, then the following hold:
(1) The following are equivalent:

(a) G is faithful,
(b) G reflects epimorphisms,

(c¢) € is an Epi-transformation.
(2) The following are equivalent:
(a) G is faithful and reflect isomorphism,

(b) G reflects extremal epimorphisms,

(¢) € is an (Extremal Epi)-transformation.
(8) G is full if and only if € is a Section-transformation.
(4) G is full and faithful if and only if € is a natural isomorphism.

(5) If G reflects reqular epimorphism, then each mono-source is G-initial.

46



5.20 Monads
5.20.1 Monads and algebras

Definition. (20.1) A monad is a triple T = (T, n, 1) consisting of a functor 7: X — X and
natural transformations
n:idx - T and p:ToT —T

such that the diagrams

T T T
ToTol —>ToT and T—>ToT<—T
d id

b WA

T2 4” T T

Example. (20.2) In Set the word-monad T = (T, n, i) is defined as follows: TX = |J X"
neN
(“word” over X), nx(x) = (z) (one-letter word), ux: T(TX) — TX is given by concatena-

tion. (XT,UT) is concretely isomorphic to the construct Mon of all monoids.
In Set the power-set monad T = (P,n, ) is defined as follows: P is the power-set functor,
ne(z) = {2}, ux(2) = J(2). (XT,UT) is concretely isomorphic to the construct JCPos.

Proposition. (20.3) Fach adjoint situation (n,e): F 4 G: A — X gives rise to the associ-
ated monad (T,n, u) on X, defined by

T=GoF:X—-X and p=GeF:ToT —T.

Definition. (20.4) Let T = (7,7, ) be a monad on X. The full concrete subcategory of
Alg(T) consisting of all algebras TX —~» X that satisfy

(1) zonyxy =idx, and
(2) xoTer=zopux: T(TX)— X

is denoted by (XT,UT) an is called the Eilenberg-Moore category of the monad T, or the
category of T-algebras.

Proposition. (20.7) Every monad T = (T,n, 1) on X gives rise to an associated adjoint
situation (n,¢): FT AUT: XT — X, where

(1) XT and UT are defined as in Definition 20.4,

(2) FT: X — X7 is defined by FT(X <, Y)=(TX, ux) 4, (TY, py), in particular,
(TX,pux) is a free object over X in (XT,UT).

(3) FTUT = idxr is defined by £(X,2) = T-
Moreover, the monad associated with the above adjoint situation (20.3) is T itself.
5.20.2 Monadic categories and functors

Definition. (20.8)

(1) A concrete category over X is called monadic provided that it is concretely isomorphic
to (XT,UT) for some monad T on X.
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(2) A functor U: A — X is called monadic provided that U is faithful and (A,U) is
monadic.

Lemma. (20.11) The Eilenberg-Moore category of a monad T = (T, n, 1) is closed under the
formation of mono-sources in Alg(T).

Proposition. (20.12) For monadic functor U: A — X the following hold:
(1) U is faithful,
(2) (A,U) is fibre-small,
(8) U is adjoint, i.e., (A,U) has free objects,
(4) (A,U) is uniquely transportable, hence amnestic,
(5) U creates isomorphisms, hence reflects them,
(6) U reflects epimorphisms and extremal epimorphisms,
(7) U preserves and reflects mono-sources,
(8) in (A,U) mono-sources are initial
(9) U detect wellpoweredness, i.e., if X is wellpowered, then so is A,

(10) U creates limits.

»
Definition. (20.14) A fork A —= B —= ( is called a congruence fork provided that
q
(p, q) is a congruence relation of ¢ and ¢ is a coequalizer of p and q.
p
A fork A== B —"= ( is called a split fork and c is called a split coequalizer of (p,q)
q

provided that there exist morphisms s and ¢ such that the diagram

\ /
/ \

A colimit K of a diagram D: I — A is called an absolute colimit provided that for each
functor G: A — B the sink GK is a colimit of G o D.

In particular, ¢ is called an absolute coequalizer of p and ¢ in A provided that for each
functor G: A — B, Gc is a coequalizer of Gp and Ggq in B.

A functor G: A — B is said to create absolute colimits provided that for each diagram
D: 1 — A and each absolute colimit K of GoD there exists a unique sink C = (D; C)ob)
such that GC = K and, moreover, C is (not necessarily absolute) colimit of D.

Proposition. (20.16) Each monadic functor U creates absolute colimits.

Theorem (Characterization theorem for monadic functors). (20.17) For any functor
U: A — X the following conditions are equivalent:
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(1) U is monadic,
(2) U is adjoint and creates absolute coequalizers,
(8) U is adjoint and creates split coequalizers.
Proposition. (20.18) Each construct of the form Alg(§2) is monadic.

Proposition. (20.19) Let (A,U) be a monadic category over X. Then each concrete full
reflective subcategory of A that is closed under the formation of regular quotients is also
monadic over X.

Proposition. (20.20) Each finitary variety is a monadic construct.

5.20.3 F-monads and F-monadic categories and functors

Definition. (20.21) A monad T = (T,n, ) on X is called an E-monad provided that X is
an (F,M) category for some M and T[E] C E.

RegEpi-monads in categories with regular factorizations are called regular monads.

A concrete category (A, U) over X (or a faithful functor U: A — X)) is called E-monadic
provided that (A, U) is concretely isomorphic to (XT,uT) for some E monad T on X. If
E =RegEpi, then E-monadic is called regularly monadic.

Proposition. (20.22) Every monad on Set is regular.

Definition. (20.23) A functor U: A — X lifts (E, M)-factorizations uniquely provided that
for any source S in A and any (E, M)-factorization US = M o e in X there exists a unique
factorization S = M o é with UM = M and Ué = e.

Proposition. (20.24) If X is an (E,M)-category and U: A — X is E-monadic, then U
lifts (E, M)-factorizations uniquely.

Proposition. (20.25) Let A be a full subcategory of an (E,M)-category B. Then the inclu-
sion functor U: A — B is E-monadic if and only if the following conditions are satisfied:

(1) A is reflective in B,

(2) if A—=>B—"> A" is an (E,M)-factorization of an A-morphism A ™5 A’, then
B belongs to A.

Corollary. (20.26) If A is an E-reflective subcategory of an (E,M)-category B, then the
inclusion functor A — B is E-monadic.

Proposition. (20.28) If (A,U) is an E-monadic category over an (E,M)-category X, then
the following hold:

(1) Every A-morphism F with Uf € E is final in (A,U).
(2) A is an (U7[E],U~[M])-category.

Corollary. (20.29) If (A,U) is E-monadic over an E-co-wellpowered category, then A is
U~ [E]-co-wellpowered.

Proposition. (20.30) If (A,U) is regularly monadic, the A has regular factorizations and
U preserves and reflects regular and extremal epimorphisms.
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Corollary. (20.31) Regularly monadic functor detect extremal co-wellpoweredness.

Theorem (Characterization theorem for regularly monadic functors). (20.32) A
functor U: A — X is reqularly monadic if and only if the following conditions hold:

(1) U is monadic,
(2) X has regular factorizations,
(8) U preserves reqular epimorphisms.

Proposition. (20.33) Regularly monadic functors detect colimits.

5.20.4 Monadic constructs

Proposition. (20.3/) Monadic constructs are complete, cocomplete, wellpowered, extremally
co-wellpowered, and have regular factorizations.

Theorem (Characterization theorem for monadic constructs). (20.35) For con-
structs (A, U) the following conditions are equivalent:

(1) U is monadic,

(2) U is regularly monadic,

(8) U is adjoint and creates finite limits and coequalizers of congruence relations,

(4) U is extremally co-wellpowered and creates limits and coequalizers of congruence rela-
tions.

5.20.5 The comparison functor

Proposition. (20.37) If (n,e): F 4U: A — X is an adjoint situation and (XT,U7T) is the
associated category of algebras, the there exists a unique functor K: A — X7 such that the
diagram

commutes.
Definition. (20.38)

(1) For each adjoint situation (n,e): F 4 U: A — X, the unique functor K: A — X7T of
the above proposition is called its comparison functor.

(2) For each adjoint functor U: A — X (resp. each concrete category (A, U) that has free
objects) the comparison functor of an associated adjoint situation is called comparison
functor for U (resp. for (A,U).)

Proposition. (20.40) An adjoint functor is monadic if and only if the associated comparison
functor is a concrete isomorphism.

Theorem. (20.42) Let K: (A, U) — (XT,UT) be a comparison functor. If A has coequal-
izers, then K is adjoint.
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Theorem. (20.43) Let (n,e): F 4U: A — X be an adjoint situation with associated com-
parison functor K: A — XT. Then:

(1) K is faithful if and only if U is faithful,

(2) K is full and faithful if and only if € is a RegEpi-transformation
Corollary. (20.44) The comparison functor K: (A,U) — (XT,UT) of a uniquely trans-
portable concrete category, for which U reflects reqular epimorphisms, is an isomorphism-
closed full embedding.
5.20.6 Deficiencies of monadic functors
5.20.7 Varietors and free monads

Definition. (20.53) A functor T: X — X is called a varietor provided that the concrete
category Alg(T) has free objects.

Definition. (20.55)

(1) Given monads T = (T,n,u) and TV = (T",7/, ') over X, a natural transformation
7: T — T’ is called a monad morphism (denoted by 7: T — T’) provided that ' = Ton
and Tou=p orT" oTT.

(2) A free monad generated by a functor T: X — X is a monad T# = (T# n#, u#)
together with a natural transformation A: T — T7# that has the following universal
property: for every monad TV = (77,7, ') and every natural transformation 7: T'— T’
there exists a unique monad morphism 7#: T# — T’ with 7 = 7% o \.

Theorem. (20.56) If T: X — X is a varietor, then Alg(T) is monadic over X and the
associated monad is a free monad generated by T .

Corollary. (20.57) If T: X — X is a varietor, then the category Alg(T) is concretely
isomorphic to xXT* for a free monad T# .

Theorem. (20.59) If X is a strongly complete category, then every functor T: X — X that
generates a free monad is a varietor.

6 Topological and algebraic categories

6.21 Topological categories
6.21.1 Topological functors
Definition. (21.1) A functor G: A — B is called topological provided that every G-structured]]
source (B LN GA;)r has unique G-initial lift (A N Air.
Examples: Top, Unif,
Theorem. (21.3) Topological functors are faithful.

Proposition. (21.5) If G: A — B is a functor such that every G-structured source has
G-initial lift, then the following conditions are equivalent:

(1) G is topological,
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(2) (A, Q) is uniquely transportable,
(3) (A,QG) is amnestic.

Proposition. (21.6) If G: A — B and F: B — C are topological, then so is FoG: A — C.

6.21.2 Topological categories

Definition. (21.7) A concrete category (A, U) is called topological, provided that U is topo-
logical.

Examples: Top, Unif

All functor-structured categories Spa(7T') and all functor-costructured categories (Spa(T))°P}}
are topological.

TopGrp is topological if it is considered as a concrete category over Grp, but not over
Set or Top.

Top; is not topological.

Theorem (Topological duality theorem). (21.9) If (A,U) is topological over X, then
(A°P U°P) is topological over X°P (i.e., the existence of unique U-initial lifts of U-structured
sources implies the existence of unique U-final lifts of U-structured sinks).

Proposition. (21.11) Topological categories are fibre-complete. The smallest (resp. largest)
member of each fibre is discrete (resp. indiscrete).

Proposition. (21.12) If (A,U) is topological over X, then

(1) U is an adjoint functor; its co-adjoint F: X — A (the discrete functor) is a full
embedding satisfying U o F = idx.

(2) U is a co-adjoint functor; its adjoint G: X — A (the indiscrete functor) is a full
embedding satisfying U o G = idx.

Proposition. (21.13) If (A,U) is topological over X, then the following hold:
(1) U preserves and reflects mono-sources and epi-sinks.

(2) An A-morphism is an extremal (resp. regular) monomorphism if and only if it is initial
and extremal (resp. regular) X-monomorphism.

(8) An A-morphism is an extremal (resp. regular) epimorphism if and only if it is initial
and extremal (resp. regular) X-epimorphism.

In particular, in topological constructs, the following hold:
(4) embedding = extremal monomorphisms = regular monomorphisms.
(5) quotient morphisms = extremal epimorphisms = regular epimorphisms.

Proposition. (21.14) If (A, U) is topological over an (E,M)-category X, then the following
holds:

(1) A is (E,M;pit)-category, where M, consists of all initial sources in M.

(2) A is an (Efin, M)-category, where Ey;y, consists of all final E-morphisms.
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Proposition. (21.15) If (A,U) is topological over X, then U uniquely lifts both limits (via
initiality) and colimits (via finality), and it preserves both limits and colimits.

Theorem. (21.16) If (A,U) is topological over X, then the following hold:
(1) A is (co)complete if and only if X is (co)complete.
(2) A is (co-)wellpowered if and only if (A,U) is fibre-small and X is (co-)wellpowered.
(3) A is extremally (co-)wellpowered if and only if X is extremally (co-)wellpowered.
(4) A is (Epi,Mono-Source)-factorizable if and only if X is (Epi, Mono-Source)-factorizable.|]
(5) A has regular factorizations if and only if X has regular factorizations.
(6) A has a (co)separator if and only if X has a (co)separator.
Corollary. (21.17) Each topological construct
(1) is complete and cocomplete,
(2) is wellpowered (resp. co-wellpowered) if and only if it is fibre-small,
(8) is an (Epi, Extremal Mono-Source)-category,
(4) has regular factorizations,
(5) has separators and coseparators.

Theorem (Internal topological characterization theorem). (21.18) A concrete cate-
gory (A, U) over X is topological if and only if it satisfies the following conditions:

(1) U lifts limits uniquely,
(2) (A,U) has indiscrete structures, i.e., every X-object has an indiscrete lift.

Theorem (External topological characterization theorem). (21.21) Let CAT(X) be
the quasicategory of all concrete categories and concrete functors over a fixved category X.
If M is the conglomerate of all full functors in CAT(X), then for each concrete category
(A,U) over X the following are equivalent:

(1) (A,U) is topological over X.
(2) (A,U) is an M-injective object in CAT(X).

6.21.3 Initiality-preserving concrete functors

preservation of initial sources - see Definition 10.47

Proposition. (21.23) Initiality-preserving concrete functors preserve indiscrete objects.

Theorem (Galois correspondence theorem). (21.24) For concrete functors (A,U) <,

(B, V) with topological domain (A,U) the following conditions are equivalent:

(1) G preserves initial sources,

(2) G is adjoint and has a concrete co-adjoint (B, V) £, (A, ),
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(3) there exists a (unique) (B, V) £, (A,U) such that (F,G) is a Galois correspondence.

Definition. (21.26) Let U: A — X and V: B — Y be functors. An adjoint situation
(1,€): F4G: A — Bis said to lift an adjoint situation (n,e): FAG: X — U along U and
V provided that the following conditions are satisfied:

(1) the diagrams

A—>B and B—=A

U lv vl \LU
commute,
(2) Vi =nV,
(3) Ues =¢U.

Theorem (Taut lift theorem). (21.28) Let (A,U) be a topological category over the base
category X and (B,V) be a concrete category over the base category Y. If G:A — B is
a functor and G: X — Y is an adjoint functor with V o G = GoU, then the following
conditions are equivalent:

(1) G sends U-initial sources into V -initial sources,
(2) every adjoint situation (n,€): F 4 G: X — Y can be lifted along U and V' to an adjoint
situation (7,€): F41G: A — B.
6.21.4 Topological subcategories

Definition. (21.29) A full concrete subcategory (A, U) of a concrete category (B, V) is called
initially closed in (B, V') provided that every V-initial source whose codomain is a family of
A-objects has its domain in A.

Dual notion: finally closed subcategory.

Proposition. (21.30) An initially closed subcategory of a topological category is topological.

Proposition. (21.81) For any full concrete subcategory (A, U) of a concrete category (B, V)
the following conditions are equivalent:

(1) (A,U) is initially closed in (B,V),
(2) (A,U) is concretely reflective in (B, V).

Definition. (21.32) A full concrete subcategory (A,U) of a concrete category (B,V) is
called finally dense in (B, V') provided that for every B-object B there exists a V-final sink
(A; LN B); with each A; in A.

Dual notion: initially dense subcategory
Proposition. (21.53) If (A,U) is a finally dense full concrete subcategory of (B,V), then
the associated inclusion functor (A,U) £, (B, V) preserves initial sources.

Proposition. (21.34) If a topological category (A,U) is a finally dense full concrete subcat-
egory of (B, V), then (A,U) is concretely reflective in (B, V).
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Theorem. (21.35) For a full concrete subcategory (A,U) of a topological category (B,V)
the following conditions are equivalent:

(1) (A,U) is topological,

(2) there exists a concretely reflective subcategory (C,W) of (B,V) such that (A,U) is
concretely coreflective in (C, W),

(8) there exists a concretely coreflective subcategory (C, W) of (B,V) such that (A,U) is
concretely reflective in (C, W),

(4) there exists a concrete functor (B, V) £, (A, U) that leaves each A-object fized.

6.21.5 Fibre-small topological categories

Proposition. (21.36) For fibre-small concrete categories (A,U), the following conditions
are equivalent:

(1) (A,U) is topological,
(2) every small structured source (X LN UA;)r has a unique initial lift,

(3) every small structures sink (UA; LN X)1 has a unique final lift.

Proposition. (21.37) A fibre-small concrete category (A, U) over a category X with products
18 topological if and only if it satisfies the following conditions:

(1) (A,U) has concrete products,

(2) (A,U) has initial subobjects, i.e., every structured X-monomorphisms X —— UA has
a unique initial lift,

(3) (A,U) has indiscrete objects.
Proposition. (21.38) In a fibre-small topological category, a source (A ELR Ay is initial if
and only if there exists a subset J of I such that (A LN Aj) g is initial.

Proposition. (21.39) Let (A,U) be a full concrete subcategory of a fibre-small topological
category (B, V) over a category X with products. Then (A,U) is concretely reflective in
(B, V) if and only if it is closed under the formation of

(a) products,
(b) initial subobjects, and

(c) indiscrete objects.

6.21.6 M-topological and monotopological categories

Definition. (21.40) A concrete category (A,U) over an (E,M)-category X is said to be
M -topological provided that every structured source in M has a unique initial lift. If M =
Mono — Sources, the term monotopological is used.

Theorem (M-topological characterization theorem). (21.42) A concrete category (A, U}
over an (E,M)-category X is M-topological if and only if (A,U) is an E-reflective concrete
subcategory of some topological category over X.
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Theorem. (21.44) Let (A,U) be a fibre-small concrete category over an E-co-wellpowered
(E,M)-category with products. Then (A,U) is M-topological if and only if it satisfies the
following conditions:

(1) (A,U) has concrete products,

(2) (A,U) has M-initial subobjects, i.e. every structured M-morphism X — UA has a
unique initial lift.

6.22 Topological structure theorems
6.22.1 Topological axioms

Definition. (21.1) Let (A, U) be a concrete category over X.

(1) Each identity-carried morphism P - P’ is called a topological aziom in (A,U). An
A-object A us said to satisfy the axiom p provided that A is {p}-injective; that is, each
A-morphism f: P — A is also an A-morphism P’ A

(2) A full subcategory B of A is said to be definable by topological azioms in (A, U) provided

that it is E-implicational in A, where E is a class of topological axioms in (A, U); i.e.,
the objects in B are precisely those A-objects that satisfy each of the axioms in FE.

Theorem (Topological structure theorem). (22.3) For concrete categories (A,U), the
following conditions are equivalent:

(1) (A,U) is fibre-small and topological,

(2) (A,U) is concretely isomorphic to an initially closed full subcategory of a functor-
structured category,

(3) (A,U) is concretely isomorphic to an isomorphism-closed concretely reflective subcate-
gory of some functor-structured category,

(4) (A,U) is concretely isomorphic to a subcategory of a functor-structured category of
Spa(T) that is definable by topological azioms in Spa(T).

Corollary. (22.4) For a construct (A,U) the following conditions are equivalent:
(1) (A,U) is fibre-small and topological,

(2) (A,U) can be concretely embedded in a functor-structured construct as a full subcon-
struct that is closed under the formation of:
(a) products,
(b) initial subobjects, and

(¢) indiscrete objects.
Definition. (22.6) Let (A,U) be a concrete category over X.

(1) Each identity-carried morphism P’ -2+ P is called a topological co-aziom in (A,U).®
An A-object A is said to satisfy the co-axiom p provided that A is {p}-projective; that
is, each A-morphism f: A — P is also an A-morphism f: A — P’.

8Observe that f is a topological co-axiom if and only if it is a topological axiom. However, the concept
“A satisfies the topological co-axiom f” is dual to the concept “A satisfies the topological axiom f.”
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(2) A full subcategory B of A is said to be definable by topological co-azioms in A if there
exists a class of topological co-axioms in A such that an A-object A satisfies each of
these co-axioms if and only if A € Ob(B).

Theorem. (22.8) For a concrete category (A, U) the following are equivalent:
(1) (A,U) is fibre-small and topological,

(2) (A,U) is concretely isomorphic to a finally closed full subcategory of some functor-
costructured category,

(8) (A,U) is concretely isomorphic to a full concretely coreflective subcategory of some
functor-costructured category.

(4) (A,U) is concretely isomorphic to a subcategory of some fuctor-costructured category
Spa(T)°P that is definable by topological axioms in Spa(T)°P.
6.22.2 M-topological structure theorems

Theorem (M-topological structure theorem). (22.9) For concrete categories (A,U)
over an E-co-wellpowered (E, M)-category the following conditions are equivalent:

(1) (A,U) is fibre-small and M -topological,

(2) (A,U) is concretely isomorphic to an M -initially closed full subcategory of a functor-
structured category,

(8) (A,U) is concretely isomorphic to an isomorphism-closed E-reflective subcategory of a
functor-structured category.

(4) (A,U) is concretely isomorphic to an E-implicational subcategory of a functor-structuredj
category.

Corollary. (22.10) For constructs (A,U) the following conditions are equivalent:
(1) (A,U) is fibre-small and monotopological,

(2) (A,U) is concretely isomorphic to a full subcategory of a functor-structured conctruct
that is closed under the formation of products and initial subobjects,

(3) (A,U) is concretely isomorphic to an implicational subconstruct of a functor-structured
constructs.

7 Cartesian closedness and partial morphisms

7.27 Cartesian closed categories

Definition. (27.1) A category A is called cartesian closed provided that it has finite products
and for each A-object A the functor (A x —): A — A is co-adjoint.

The essential uniqueness of products and of co-universal arrows allows us to introduce the
following standard notation for cartesian closed categories: “The” adjoint functor for (A x —)
is denoted on objects by B — B4, and “the” associated co-universal arrows are denoted by

ev: Ax BA — B.

57



Thus, a category with finite products is cartesian closed if and only if for each pair (4, B)
of objects there exists an object B4 and a morphism ev: A x B4 — B with the following
universal property: for each morphism f: A x C — B there exists a unique morphism
f: C — B such that

AxC

. l !
T,dAXf
A x BA - — B

commutes. We shall call the objects B4 power objects,, the morphism ev: A x BA — B
evaluation morphism and the morphism f , associated with f, the exponential morphism for
I

Set, Rel, Pos, Alg(1), Cat are cartesian closed.

A poset A considered as a category is cartesian closed if and only if A has finite meets
and for each pair (a,b) of elements the set {x € A : a Az < b} has a largest member. In
particular, a complete lattice is cartesian closed if and only if it satisfies the distributive law:
a A\ b; =\ (aAb;); ie. if and only if it is a frame.

Top is not cartesian closed (since Q x —: Top — Top does not preserve quotients, and
hence does not preserve coequalizers). However, Top has cartesian closed supercategories
(Conv, PsTop) as well as cartesian closed subcategories (kTop of all (compact Hausdorff)-
generated topological spaces.).

Theorem (Characterization theorem for cartesian closed categories). (27.4) Let A
be a cocomplete and co-wellpowered category that has a separator. Then A is cartesian closed
if and only if it has finite products, and for each A object A the functor (A x —) preserves
colimits.

Definition. (27.5) Let A be a cartesian closed category. For each object C
(1) “the” covariant exponential functor for C, denoted by (—)¢: A — A, is “the” adjoint
functor for (C' x —) and is defined (for an A-morphism A N B) by:
()¢ L By =a¢ L% g,

where f¢ is the unique A-morphism that makes the diagram

Cx A® —— A

idx f° l lf

CxB®—_—B

commute;

(2) “the” contravariant exponential functor for C, denoted by C(=): A°P — A is defined
by

oL py=ct < oA,

where C/ is the unique A-morphism that makes the diagram

fxid
AxcBlZS gy oB

idXCfl/ \Lev

AXCAT>C
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commute.

Observe that the exponential functors are not determined uniquely, but that any two
covariant (resp. contravariant) functors are naturally isomorphic.

Proposition. (27.7) In a cartesian closed category A, every contravariant exponential func-
tor C7) is an adjoint functor and has its own dual (C())°P as a co-adjoint.

Proposition. (27.8) In a cartesian closed category the following hold:
(1) First Exponential Law: AB*¢ = (AB)C,
(2) Second Exponential Law: ([ A;)? =[] AB,
(3) Third Exponential Law: AUB: =] AB:,
(4) Distributive Law: A X [[ B; 2 [[(A x B;),

(5) Finite products of epimorphisms are epimorphisms.

7.27.1 Cartesian closed subcategories

Proposition. (27.9) Let A be an isomorphism-closed full subcategory of a cartesian closed
category B.

(1) If A is reflective in B and the A-reflector preserves finite products, then A is closed
under the formation of finite products and powers in B, and hence is cartesian closed.

(2) If A is coreflective in B and is closed under the formation of finite products in B, then
A is cartesian closed.
7.27.2 Cartesian closed concrete categories

Definition. (27.11) A concrete category (A, U) over X is called concretely cartesian closed
provided that the following hold:

(1) A and X are cartesian closed,

(2) U preserves finite products, power objects, and evaluation; in particular, whenever
A x BA 2% B is an evaluation in A, then

UAx B* 2 B)=UAxUB 2> UB
is an evaluation in X.

Proposition. (27.14) If (A,U) is topological category over X and if A is cartesian closed,
then so is X.

Theorem (Characterization theorem for concretely cartesian closed topological
categories). (27.15) For a topological category (A,U) over a cartesian closed category X
the following are equivalent:

(1) (A,U) is concretely cartesian closed,

(2) A is cartesian closed and every A-morphism with a discrete codomain has a discrete
domain.

(3) for each A-object A the functor (A x —) preserves final sinks.
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7.27.3 Cartesian closed constructs

Proposition. (27.16) Every concretely cartesian closed amnestic construct with discrete
terminal object is, up to concrete isomorphism, a full subconstruct of Set.

Definition. (27.17) A construct (A,U) is said to have function spaces provided that the
following holds:

(1) (A,U) has finite concrete products,

(2) A is cartesian closed and the evaluation morphisms A x B4 <% B can be chosen in such
a way that U(B“) = homa (4, B) and ev is the restriction of the canonical evaluation
map in Set

Proposition. (27.18) Let (A,U) be a construct with finite concrete products. If A is carte-
sian closed, then the following conditions are equivalent:

(1) (A,U) has functions spaces,
(2) terminal A-objects are discrete
(3) each constant function® between A-objects is an A-morphism.

Definition. (27.20) A construct is called well-fibred provided that it is fibre-small and for
each set with at most one element, the corresponding fibre has exactly one element.

Theorem. (27.22) For well-fibred topological constructs the following conditions are equiva-
lent:

(1) A is cartesian closed,

(2) (A,U) has function spaces,

(3) for each A-object A the functor (A x —) preserves final epi-sinks,

(4) for each A-object A the functor (A x —) preserves colimits,

(5) for each A-object the functor (A x —) preserves (a) coproducts and (b) quotients.

Proposition. (27.24) For cartesian closed, well-fibred topological constructs, the following
hold:

(1) products with discrete factors A are coproducts:

AxB=Hp= 1] B,
z€|A|

(2) power objects with discrete exponents A are powers:

BA ~ plAl = H B.
z€|A|

9A function is called constant provided that it factors through a one-element set.
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27C: Coreflective Hulls and Cartesian Closedness. Let (A,U) be a cartesian closed
topological construct and let B be a full subcategory of A that is closed under the formation
of finite products. The bicoreflective hull of B in A is cartesian closed.

27E: Composition as a Morphism. In cartesian closed constructs describe explicitly the
unique morphism comp: B4 x CB — C4 that makes the diagram

VX1 CB

Ax (BAx BV gy 0B

ida Xcompl/ lev

AxCA e C
commute.
27F: (Concretely) Cartesian Closed Topological Categories as Injective Objects
Let X be a cartesian closed category and let CAT,(X) be the quasicategory whose objects are
the amnestic concrete categories over X with finite concrete products, and whose morphisms
are the concrete functors over X that preserve finite products.

(a) Show that the injective objects in CATp(X) (with respect to full embeddings) are
precisely the concretely cartesian closed topological categories over X.

Let CONSTy, be the quasicategory whose objects are the amnestic well-fibred constructs
with finite products, and whose morphisms are the concrete functors that preserve finite
products.

(b) Show that the injective objects in CONSTy (with respect to full embeddings) are
precisely the well-fibred topological constructs that have function spaces.
27G: (Concretely) Cartesian Closed Topological Hulls.

Let X be a cartesian closed category. A morphism (A, U) =, (B,V) in CAT,(X) is
called a concretely cartesian closed topological hull (shortly: a CCCT hull) of (A, U) provided
that the following are satisfied:

(1) E is a full embedding,

(2) EJA] is finally dense in (B, V),

(3) {EAEA|A, A € ObA} is initially dense in (B, V),

(4) (B, V) is a concretely cartesian closed topological category.

(a) Show that the mJectlve hulls in Catp(X) are precisely the CCCT hulls.

A morphism (A,U) — (B, V) in CONSTY}, is called a cartesian closed topological hull
(shortly: a CCT hull) of (A,U) provided that the above conditions (1), (2), (3) and the
following condition (4*) holds:

4* (B,V) is a cartesian closed topological category.

(b) The injective hulls in CONTS,, are precisely the CCT hulls.

(c¢) The concrete embedding PrTop — PsTop is a CCT hull of PrTop.
27H: Well-Fibred Functor-Structured Constructs. Show that a functor-structured
construct Spa(7’) is well-fibred only if 7" is the constant functor, defined by 7'(X 7, Y)=

(RN (0, i.e., only if Spa(T) is concretely isomorphic to the construct Set.
27I: Cartesian Closed Functor-Structured Categories.

(a) Prove that if Spa(T) is cartesian closed, then it is concretely cartesian closed.

61



(b) Prove that Spa(T) is (concretely) cartesian closed whenever X is cartesian closed and

T weakly preserves pullbacks, i.e., for each 2-sink e S et the factorizing
morphism of the T-image of the pullback of (f,g) through the pullback of (T'f,Tg) is
a retraction.

(¢) Verify that the Set-functor ™ and P weakly preserve pullbacks.

7.28 Partial morphisms, quasitopoi, and topological universes
7.28.1 Representations of partial morphisms

Definition. (28.1) Let M be a class of morphisms in A.

(1) A 2-source (A<"— J.B ) with m € M is called an M -partial morphism from
Ainto B. (Extremal) Mono-partial morphisms are called (extremal) partial morphism.

(2) An M-morphism B B, B* is said to represent M-partial morphisms into B provided
that the following two conditions are satisfied:

(a) for every morphism e L, B* there exists a pullback

and every such m belongs to M,

(b) for every M-partial morphism ( & <“— o S ) there exists a unique morphism

° f—> B* such that
[e] [ ]
fi lf*

B —— B*

mp

m
_

is a pullback.

(c) A is said to have representable M -partial morphisms provided that for each A-

object B there exists some B % B* that represents M-partial morphisms into
B.

Proposition. (28.3) If A has representable M -partial morphisms, then the following hold:
(1) Iso(A) C M C RegMono(A).
(2) Pullbacks along M-morphisms exist and belong to M.

Proposition. (28.5) If A has finite products and representable M -partial morphisms, where
M is a family that contains all sections, then the following hold:

(1) A is finitely complete.
(2) M = RegMono(A)
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Corollary. (28.6) If A has finite products and representable (extremal) partial morphisms,
then the following hold:

(1) A is finitely complete.
(2) (Extr)Mono(A) = RegMono(A).

(8) In A regular monomorphisms are closed under composition.

7.28.2 Quasitopoi

Definition. (28.7) Let M be a class of morphisms in a category A. Then A is called M -topos
provided that it:

(1) has representable M-partial morphisms,

(2) is cartesian closed, and

(3) is finitely complete.
Mono-topoi are called topoi, and ExtrMono-topoi are called quasitopos.
Proposition. (28.8) Topoi are precisely the balanced quasitopoi.

Proposition. (28.10) Each quasitopos is (Epi, RegMono)-structured.

7.28.3 Concrete quasitopoi

Proposition. (28.12) Let (A,U) be a topological category over X, let M be a class of mor-
phisms in X, and let M;,;: be the class of all initial A-morphisms M with Um € M. If A
has representable M;y;:-partial morphisms, then X has representable M -partial morphisms
and U preserves these representations.

Definition. (28.13)

(1) Let B 2, Abea morphisms and let S = (4; LN ) be a sink. If for each ¢ € I the
diagram

BiL>Ai

fzi fi
B

m A

is a pullback, then the sink (B; < B); is called a pullback of S along m.

(2) Let M be a class of morphisms and let C be a conglomerate of sinks in a category
A. C is called stable along pullback along M provided that every pullback of a sink
in C along a M-morphism is a member of C. In particular, C is called pullback-stable
provided that C is stable under pullbacks along Mor(A). In the case that M is a class
of monomorphisms, C is called reducible provided that it is stable under pullbacks along
M. When M is the class of all extremal monomorphisms, we say that C is extremally
reducible.

Theorem. (28.15) If X has representable M -partial morphisms, then for each topological
category (A, U) over X the following conditions are equivalent:
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(1) A has representable M;pi-partial morphisms,
(2) final sinks in (A,U) are M;p;-reducible.

Definition. (28.16) A concrete category is called universally topological provided that it is
topological and final sinks are pullback-stable.

Theorem. (28.18) For topological categories (A,U) over a quasitopos X the following con-
ditions are equivalent:

(1) (A,U) is universally topological,

(2) (A,U) is a concrete quasitopos, i.e., A is a quasitopos and U preserves power objects
and representations of extremal partial morphisms.

7.28.4 Topological universes

Theorem. (28.19) For well-fibred topological constructs, the following conditions are equiv-
alent:

(1) extremal partial morphisms are representable,

(2) final sinks are extremally reducible,

(3) final epi-sinks are extremally reducible,

(4) coproducts and quotients are extremally reducible.

Definition. (28.21) A well-fibred topological construct (A,U) for which A is a quasitopos
is called a topological universe.

Theorem. (28.22) For a well-fibred topological construct (A, U) the following conditions are
equivalent:

(1) (A,U) is a topological universe,
(2) (A,U) has function-spaces and representable extremal partial morphisms,
(3) in (A,U) final epi-sinks are pullback-stable.

TODO conretely complete = 7
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concrete, 5
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create absolute colimits, 48
create isomorphism, 31
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faithful, 2
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lift limits, 30
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G-structured arrow

extremally generating, 16
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Galois correspondence, 8
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have free objects, 15
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intersection, 27
isomorphism, 2
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M -transformation, 7
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regular, 49
monad morphism, 51
mono-source, 20
extremal, 20
monomorphism
extremal, 12
morphism, 1
final, 13
initial, 13
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multiple equalizers, 24
multiple pullback, 27
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natural transformation, 7
concrete, 8

object, 1
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indiscrete, 13
initial, 10
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terminal, 10
zero, 10

partial morphism, 62
power object, 58
power-set monad, 47
product, 20
pullation square, 27
pullback, 24

of source, 63
pullback stable, 26
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quasitopoi, 63

reflection, 4
reflection arrow, 4
reflector, 4
concrete, 5
regular co-wellpowered, 12
representable M-partial morphisms, 62
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source, 19
G-initial, 23
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initial, 22
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implicational, 39
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isomorphism-dense, 3
reflective, 4
subconstruct, 5
subobject
initial, 13

T-algebras, 6

T-spaces, 6

topoi, 63

topological axiom, 56
topological co-axiom, 56
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universal arrow, 15
varietor, 51

weak terminal object, 29
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