

CHAPTER 5: TOPOLOGICAL FUNCTORS

1 Factorization structures

Definition (5.1.1). Let \mathbf{C} be a category.

- (i) If E is a class of \mathbf{C} -morphisms which is closed under composition with isomorphisms and M is a conglomerate of sources in \mathbf{C} which is closed under composition with isomorphisms, then the pair (E, M) is called a *factorization structure* on \mathbf{C} provided that the following are satisfied:
 - (a) For each source $(X, (f_i)_{i \in I})$ there exists $e: X \rightarrow Y$ in E and $(Y, (m_i)_{i \in I})$ in M such that $f_i = m_i \circ e$ for each $i \in I$; briefly each source has (E, M) -factorization.
 - (b) For any two \mathbf{C} -morphisms f and e and any two sources $(Y, (m_i)_{i \in I})$ and $(Z, (f_i)_{i \in I})$ in \mathbf{C} such that $e \in E$ $(Y, (m_i)_{i \in I}) \in M$ and $f_i \circ e = m_i \circ f$ for each $i \in I$, there exists a unique \mathbf{C} -morphism $g: Z \rightarrow Y$ such that the diagram

$$\begin{array}{ccc} X & \xrightarrow{e} & Z \\ f \downarrow & \swarrow g & \downarrow f_i \\ Y & \xrightarrow{m_i} & X_i \end{array}$$

commutes for each $i \in I$; briefly: \mathbf{C} satisfies the (E, M) -diagonalization property.

- (ii) \mathbf{C} is called (E, M) -category provided that (E, M) is a factorization structure on \mathbf{C} .

Let \mathbf{C} be a topological category or $\mathbf{C} = \mathbf{Haus}$. E consists of all extremal epimorphisms and M consists of all mono-sources in \mathbf{C} . Then (E, M) is a factorization structure on \mathbf{C} .

Theorem (5.1.4). Let \mathbf{C} be a category and (E, M) a factorization structure on \mathbf{C} . Then the following are satisfied:

- (i) (E, M) -factorizations are uniquely determined (up to isomorphisms).
- (ii) $E \cap M$ is the class of all \mathbf{C} -isomorphisms.
- (iii) Every extremal source in \mathbf{C} belongs to M .
- (iv) If f, g and h are \mathbf{C} -morphisms such that $h = g \circ f$, then the following are satisfied:
 - (a) If $h \in E$ and f is a \mathbf{C} -epimorphism, then $g \in E$.
 - (b) $f \in E$ and $g \in E$ imply $h \in E$, i.e. E is closed under composition.
- (v) If $(X, (f_i)_{i \in I})$ is a source in \mathbf{C} and $(X, (g_j)_{j \in J}), (Z_j, (k_{j_i})_{i \in I_j})_{j \in J}$ is a factorization of $(X, (f_i)_{i \in I})$, then the following hold:
 - (a) $(X, (f_i)_{i \in I}) \in M$ implies $(X, (g_j)_{j \in J}) \in M$.
 - (b) $(X, (g_j)_{j \in J}) \in M$ and $(Z_j, (k_{j_i})_{i \in I_j}) \in M$ for each $j \in J$ imply $(X, (f_i)_{i \in I}) \in M$.

- (vi) If $(X, (f_i)_{i \in I})$ is a source in \mathbf{C} and there is some $J \subset I$ such that $(X, (f_j)_{j \in J}) \in M$, then $(X, (f_i)_{i \in I}) \in M$.
- (vii) E and M determine each other by the diagonalization property.

2 Definition and properties of topological functors

Definition (5.2.1). Let \mathbf{C} be a category supplied with a factorization structure (E, M) , let \mathbf{A} be any category and let $T: \mathbf{A} \rightarrow \mathbf{C}$ be a functor.

- (i) A source $(A, (f_i : A \rightarrow A_i)_{i \in I})$ in \mathbf{A} is called *T-initial* provided that for each source $(B, (g_i : B \rightarrow A_i)_{i \in I})$ in \mathbf{A} and each \mathbf{C} -morphism $f: T(A) \rightarrow T(B)$ such that $T(f_i) \circ f = T(g_i)$ for each $i \in I$, there exists a unique \mathbf{A} -morphism $\bar{f}: B \rightarrow A$ with $T(\bar{f}) = f$ and $f_i \circ \bar{f} = g_i$ for each $i \in I$.
- (ii) A source $(A, (f_i : A \rightarrow A_i)_{i \in I})$ in \mathbf{A} *T-lifts* a source $(X, (g_i : X \rightarrow T(A_i))_{i \in I})$ in \mathbf{C} provided that there exists an isomorphism $h: X \rightarrow T(A)$ in \mathbf{C} with $T(f_i) \circ h = g_i$ for each $i \in I$.
- (iii) T is called *(E, M) -topological* provided that for each family $(A_i)_{i \in I}$ of \mathbf{A} -objects and each source $(X, (m_i : X \rightarrow T(A_i))_{i \in I})$ in M , there exists a *T-initial* source $(A, (f_i : A \rightarrow A_i)_{i \in I})$ in \mathbf{A} which *T-lifts* $(X, (m_i)_{i \in I})$.
- (iv) T is called *absolutely topological* provided that T is topological for any factorization structure (E, M) on \mathbf{C} .

Theorem (5.2.4). Let \mathbf{C} be a category supplied with a factorization structure (E, M) and let $T: \mathbf{A} \rightarrow \mathbf{C}$ be an (E, M) -topological functor. Then T is faithful.

Theorem (5.2.5). Let \mathbf{C} be an (E, M) -category and $T: \mathbf{A} \rightarrow \mathbf{C}$ an (E, M) -topological functor. If E_T denotes the class of all morphisms f in \mathbf{A} with $T(f) \in E$ and M_T denotes the conglomerate of all *T-initial* sources $(A, (f_i)_{i \in I})$ in \mathbf{A} with $(T(A), (T(f_i))_{i \in I}) \in M$, then \mathbf{A} is an (E_T, M_T) -category.

Theorem (5.2.8). Let $T: \mathbf{A} \rightarrow \mathbf{C}$ be an (E, M) -topological functor, let $D: \mathbf{I} \rightarrow \mathbf{A}$ be a diagram and let $(L, (l_i : L \rightarrow D(i))_{i \in |\mathbf{I}|})$ be a source in \mathbf{A} . Then the following are equivalent:

- (i) $(L, (l_i)_{i \in |\mathbf{I}|})$ is a limit of D .
- (ii) $(L, (l_i)_{i \in |\mathbf{I}|})$ is *T-initial* and $(T(L), (T(l_i))_{i \in |\mathbf{I}|})$ is a limit of $T \circ D$.

Corollary (5.2.9). If $T: \mathbf{A} \rightarrow \mathbf{C}$ is an (E, M) -topological functor and \mathbf{C} is complete, then \mathbf{A} is complete.

Proposition (5.2.10). Let $T: \mathbf{A} \rightarrow \mathbf{C}$ be an (E, M) -topological functor. Then for each family $(A_i)_{i \in I}$ of \mathbf{A} -objects and each sink $((f_i : T(A_i) \rightarrow X)_{i \in I}, X)$ in \mathbf{C} , there exists a sink $((t_i : A_i \rightarrow A)_{i \in I}, A)$ in \mathbf{A} and a morphism $e: X \rightarrow T(A)$ in E such that $T(t_i) = e \circ f_i$ for each $i \in I$ and such that the following condition is satisfied:

(F) For each sink $((g_i : A_i \rightarrow B)_{i \in I}, B)$ in \mathbf{A} and each morphism $g: X \rightarrow T(B)$ with $T(g_i) = g \circ f_i$ for each $i \in I$, there exists a morphism $k: A \rightarrow B$ with $T(k) \circ e = g$.

Theorem (5.2.11). *Let $T: \mathbf{A} \rightarrow \mathbf{C}$ be an (E, M) -topological functor and let $D: \mathbf{I} \rightarrow \mathbf{A}$ be a diagram such that $T \circ D$ has a colimit. Then D has a colimit.*

Corollary (5.2.12). *Let $T: \mathbf{A} \rightarrow \mathbf{C}$ be an (E, M) -topological functor. If \mathbf{C} is cocomplete, then \mathbf{A} is cocomplete.*

3 Initially structured categories

A functor $F: \mathbf{A} \rightarrow \mathbf{B}$ is called *amnestic* provided that any \mathbf{A} -isomorphism f is an \mathbf{A} -identity iff $F(f)$ is a \mathbf{B} -identity.

A functor $F: \mathbf{A} \rightarrow \mathbf{B}$ is called *transportable* provided that for each \mathbf{A} -object A , each \mathbf{B} -object B and each isomorphism $q: B \rightarrow F(A)$, there exists a unique \mathbf{A} -object C and isomorphism $\bar{q}: C \rightarrow A$ with $F(\bar{q}) = q$.

An object X in a category \mathbf{C} is called *terminal* provided that for every object Y in \mathbf{C} , the set of morphisms $[Y, X]_{\mathbf{C}}$ is a singleton.

Definition (5.3.1). A pair (\mathbf{A}, T) is called an *initially structured* category provided that \mathbf{A} is a category and $T: \mathbf{A} \rightarrow \mathbf{Set}$ is a functor which is amnestic and transportable such that the following hold:

- (i) T is (epi, mono-source)-topological.
- (ii) T has small fibres, i.e. for each $X \in \mathbf{Set}$ $\{A \in |\mathbf{A}| : T(A) = X\}$ is a set.
- (iii) There is precisely one object P in \mathbf{A} (up to isomorphism) such that $T(P)$ is a terminal separator in \mathbf{Set} , i.e. $T(P)$ is a singleton.

Remark (5.3.3). Obviously the condition (i) can be replaced by:

Every source $(X, (f_i: X \rightarrow T(A_i))_{i \in I})$ in \mathbf{Set} has an (epi, mono-source) factorization

$$\begin{array}{ccc} X & \xrightarrow{f_i} & T(A_i) \\ & \searrow e & \nearrow T(g_i) \\ & T(B) & \end{array}$$

Theorem (5.3.4). *Let (\mathbf{A}, T) be an initially structured category. Then the following are satisfied:*

- (i) T is faithful.
- (ii) A source $(A, (f_i: A \rightarrow D_i)_{i \in I})$ in \mathbf{A} is a limit of a diagram $D: \mathbf{I} \rightarrow \mathbf{A}$ with $|\mathbf{I}| = I$ if and only if this source is T -initial and $(T(A), (T(f_i): T(A) \rightarrow T(D_i))_{i \in I})$ is limit of $T \circ D$.
- (iii) For any sink $((f_i: D_i \rightarrow A)_{i \in I, A})$ in \mathbf{A} and an epimorphism $e: X \rightarrow T(A)$ with $e \circ f_i = T(a_i)$ for each $i \in I$ such that the following condition (F) is satisfied: For each sink $((b_i: D_i \rightarrow B)_{i \in I}, B)$ in \mathbf{A} and each morphism $d: X \rightarrow T(B)$ there exists a (unique) morphism $c: A \rightarrow B$ such that $T(c) \circ e = d$.

(iv) \mathbf{A} is complete and cocomplete.

Proposition (5.3.5). Let (\mathbf{A}, T) be an initially structured category. Any sink $((f_i: A_i \rightarrow C)_{i \in I}, C)$ in \mathbf{A} has

(i) a factorization

$$\begin{array}{ccc} A_i & \xrightarrow{f_i} & C \\ a_i \searrow & \nearrow c & \\ & A & \end{array}$$

such that $T(c)$ is an isomorphism and $((a_i: A_i \rightarrow A)_{i \in I}, A)$ is T -final (i.e. for any sink $((b_i: A_i \rightarrow B)_{i \in I}, B)$ and any morphism $f: T(A) \rightarrow T(B)$ with $f \circ T(a_i) = T(b_i)$ for each $i \in I$, there exists a unique morphism $\bar{f}: A \rightarrow B$ with $T(\bar{f}) = f$ and $\bar{f} \circ a_i = b_i$ for each $i \in I$), and

(ii) a factorization $f_i = c \circ a_i$ where c is a monomorphism and $((a_i: A_i \rightarrow A)_{i \in I}, A)$ is a T -final epi-sink.

Proposition (5.3.6). Let (\mathbf{A}, T) be an initially structured category. Then the following are satisfied:

- (i) The object P in \mathbf{A} given by IS_3 (definition of initially structured category, (iii)) is terminal and a separator in \mathbf{A} .
- (ii) If X and Y are \mathbf{A} -objects and $g: T(X) \rightarrow T(Y)$ is a constant morphism, then there exists a unique \mathbf{A} -morphism $f: X \rightarrow Y$ with $T(f) = g$.

Definition (5.3.7). Let (\mathbf{A}, T) be an initially structured category. An \mathbf{A} -morphism $f: A \rightarrow B$ is called a

- (i) T -embedding provided that $(A, f: A \rightarrow B)$ is a T -initial mono-source.
- (ii) T -quotient map provided that $(A, f: A \rightarrow B)$ is a T -final epi-sink.

Proposition (5.3.8). Let (\mathbf{A}, T) be an initially structured category. Then the following are satisfied:

- (i) f is an \mathbf{A} -monomorphism if and only if $T(f)$ is a monomorphism in \mathbf{Set} .
- (ii) f is an \mathbf{A} -epimorphism whenever $T(f)$ is an epimorphism in \mathbf{Set} .
- (iii) Every extremal monomorphism in \mathbf{A} is a T -embedding.

Proposition (5.3.10). Let (\mathbf{A}, T) be an initially structured category. Then the following are satisfied:

- (i) If $((f_i: A_i \rightarrow A)_{i \in I}, A)$ is a T -final epi-sink in \mathbf{A} , then $((T(f_i): T(A_i) \rightarrow T(A))_{i \in I}, T(A))$ is an epi-sink in \mathbf{Set} .
- (ii) A sink in \mathbf{A} is an extremal epi-sink if and only if it is a T -final epi-sink.

Proposition (5.3.11). *For every \mathbf{A} -morphism $f: A \rightarrow B$ in an initially structured category (\mathbf{A}, T) the following are equivalent:*

- (i) f is a T -quotient map.
- (ii) f is a regular epimorphism.
- (iii) f is an extremal epimorphism.

Proposition (5.3.13). *Every initially structured category (\mathbf{A}, T) is well-powered.*

Proposition (5.3.15). *Let (\mathbf{A}, T) be an initially structured category. Then \mathbf{A} is a category with a factorization structure (E, M) where E consists of all extremal epimorphisms and M of all mono-sources.*

Theorem (5.3.16). *Every E -reflective (full and isomorphism-closed) subcategory of an initially structured category (\mathbf{A}, T) is initially structured provided that E consists of all \mathbf{A} -morphisms f for which $T(f)$ is an epimorphism in \mathbf{Set} .*

Remark (5.3.17). Every extremal epireflective (resp. epireflective) full and isomorphism-closed subcategory of an initially structure (resp. topological) category is initially structured.

Proposition (5.3.18). *For each T -final epi-sink $(f_i: A_i \rightarrow A)_{i \in I}$ in an initially structured category, there is a set $J \subset I$ such that $(f_j: A_j \rightarrow A)_{j \in J}$ is likewise a T -final epi-sink.*

Proposition (5.3.19). *Let (\mathbf{A}, T) and (\mathbf{A}', T') be initially structured categories and let $F: \mathbf{A} \rightarrow \mathbf{A}'$ be a functor preserving colimits. If $(f_i: A_i \rightarrow A)$ is a T -final epi-sink in \mathbf{A} , then $(T(f_i): T(A_i) \rightarrow T(A))$ is a T' -final epi-sink in \mathbf{A}' .*

Theorem (5.3.20). *Let (\mathbf{A}, T) be an initially structured category. \mathbf{A} is cartesian closed if and only if $A \times -$ preserves T -final epi-sinks for each $A \in |\mathbf{A}|$.*

Theorem (5.3.22). *Every extremal epireflective (full and isomorphism-closed) subcategory \mathbf{B} of an initially structured cartesian closed category (\mathbf{A}, T) is cartesian closed.*

Theorem (5.3.24). *For a concrete category \mathbf{C} (in the sense of 1.1.1) the following are equivalent:*

- (i) \mathbf{C} is initially structured.
- (ii) \mathbf{C} is an epireflective (full and isomorphism-closed) subcategory of a topological category.
- (iii) \mathbf{C} is an extremal epireflective (full and isomorphism-closed) subcategory of a topological category.