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0.1 Úvod do kategórií

Táto časť je tu uvedená kvôli tomu, aby prácu mohol čítať aj ten, kto nepozná
teóriu kategórií. Je to teda veľmi stručný úvod do teórie kategórií, ktorý obsa-
huje pojmy, ktoré budeme používať. Časť venovaná kategóriám Top a Haus je
vlastne akýmsi prekladovým slovníkom medzi topologickými a kategoriálnymi
pojmami.

0.1.1 Kategórie, podkategórie, funktory

Definícia 1. Kategóriou nazývame usporiadanú štvoricu A = (Ob,hom, id,
◦), kde

(i) Ob je trieda, ktorej prvky sa nazývajú objekty kategórie A (A-objekty).

(ii) Každej usporiadnej dvojici (A,B) A-objektov je priradená práve jedna
množina, ktorú označíme hom(A,B), ktorej prvky sa nazývajú A-morfiz-
my z objektu A do objektu B.

(iii) Pre každý A-objekt A existuje A-morfizmus idA ∈ hom(A,A).

(iv) Pre ľubovoľné A-objekty A,B,C a ľubovoľné A-morfizmy f ∈ hom(A,B),
g ∈ hom(B,C) existuje práve jeden A-morfizmus g ◦ f ∈ hom(A,C),
pričom platí:

(a) Pre ľubovoľné f ∈ hom(A,B), g ∈ hom(B,C), h ∈ hom(C,D) platí:

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(b) Pre ľubovoľné f ∈ hom(A,B) platí:

f ◦ idA = f = idB ◦ f.

(c) Pre ľubovoľné A-objekty A, B, C, D také, že (A,B) 6= (C,D), platí
hom(A,B) ∩ hom(C,D) = ∅.

idA sa nazýva identita na A a ◦ skladanie morfizmov. Trieda všetkých
A-morfizmov sa označuje Mor(A).

Príklad 1. Príklady kategórií: Kategória Set množín a zobrazení medzi nimi.
Kategória Top topologických priestorov a spojitých zobrazení medzi nimi. Ka-
tegória Haus hausdorffovských topologických priestorov a spojitých zobrazení
medzi nimi. Vo všetkých uvedených kategóriách je ◦ obvyklé skladanie zobrazení
a id je identické zobrazenie.

Morfizmy nemusia vždy predstavovať zobrazenia, ako ukazujú nasledovné
dva príklady.

Príklad 2 (Monoid ako kategória). Pre každý monoid (pologrupu s jednot-
kou) (M, •, e) je C(M, •, e) = (Ob, hom, id, ◦) kategória s jediným objektom, ak
položíme Ob = {M}, hom(M,M) = M , idM = e, y ◦ x = y • x.
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Príklad 3 (Usporiadaná trieda ako kategória). Ak X je trieda a ≤ je
usporiadanie na X (t.j. reflexívna, antisymetrická a tranzitívna triedová relácia
na X). Potom môžeme definovať kategóriu C tak, že položíme Ob(C) = X,

hom(x, y) =

{
(x, y) ak x ≤ y
∅ inak,

idX = (x, x) a (y, z) ◦ (x, y) = (x, z).

Morfizmy sa často zvyknú znázorňovať v diagramoch pomocou šípok, naprí-
klad nasledovný diagram znázorňuje dva morfizmy f, g ∈ hom(A,B).

A
f //
g
// B

Definícia 2. Pre ľubovoľnú kategóriu A = (Ob, hom, id, ◦) duálna kategória
ku A je kategória Aop = (Ob,homop, id, ◦op), kde homop(A,B) = hom(B,A) a
f ◦op g = g ◦ f .

Prechod od kategórie A ku duálnej kategórii vlastne znamená obrátenie
všetkých šípok v diagramoch znázorňujúcich morfizmy.

Každú vlastnosť SAop(X) Aop-objektu X možno súčasne vysloviť ako vlast-
nosť SopA (X) (lebo X je súčasne aj A-objektom). Sop sa nazýva duálna vlastnosť
k S. Podobne k ľubovoľnému výroku P týkajúcemu sa nejakých morfizmov a
objektov kategórie A možno vysloviť duálny výrok P op. Duálny výrok bude
platiť v Aop práve vtedy, keď v A platí pôvodný výrok. Pretože (Aop)op = A,
tak platí:

Veta 1 (Princíp duality). Ak výrok P platí pre ľubovoľnú kategóriu A, tak aj
P op platí pre ľubovoľnú kategóriu A.

Definícia 3. Ak S ⇔ Sop, tak S sa nazýva samoduálna vlastnosť.

Vďaka princípu duality, ak dokážeme nejaké tvrdenie, dokázali sme už aj
duálne tvrdenie. (“Jednou ranou zabijeme dve muchy, avšak niekedy sa tie dve
muchy rovnajú.”)

Definícia 4. Kategória A sa nazýva podkategória kategórie B, ak sú splnené
nasledovné podmienky:

(i) Ob(A) ⊆ Ob(B),

(ii) pre každé A,B ∈ Ob(A), homA(A,B) ⊆ homB(A,B),

(iii) pre každý A-objekt A B-identita na A je A-identita na A.

(iv) skladanie v A je zúžením skladania v B na A-morfizmy.

A sa nazýva plná podkategória B, ak navyše platí pre každé A,B ∈ A
homA(A,B) = homB(A,B).

Z definície vyplýva, že plná podkategória je úplne určená triedou svojich
objektov.
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Definícia 5. Kategória sa nazýva malá, ak jej trieda objektov je množina.

Definícia 6. Ak A a B sú kategórie, tak funktor F z A do B je zobrazenie,
ktoré priradí každému A-objektu A B-objekt F (A) a každému A-morfizmu
f : A→ A′ B-morfizmus F (f) : F (A)→ F (A′), pričom platí:

(i) F zachováva skladanie, t.j. F (f ◦ g) = F (f) ◦ F (g),

(ii) F zachováva identitu, t.j. F (idA) = idF (A).

Pod skladaním funktorov rozumieme ich zloženie ako zloženie zobrazení t.j.
G ◦ F (A) = G(F (A)), G ◦ F (f) = G(F (f)).

Definícia 7. Ak A je podkategória kategórie B, tak funktor E : A→ B, taký,
že E(A) = A pre ľubovoľný A-objekt A a E(f) = f pre ľubovoľný A-morfizmus
f sa nazýva funktor vloženia.

Niektoré výsledky o reflektívnych podkategóriách, ktorými sa budeme zaobe-
rať, vyplývajú z tvrdení o adjungovaných funktoroch. My však tieto tvrdenia
dokážeme bez použitia adjungovaných funktorov, preto tu ani neuvádzame de-
finície pojmov súvisiacich s touto problematikou.

0.1.2 Špeciálne morfizmy

Vo zvyšku kapitoly budeme predpokladať, že pracujeme s nejakou kategóriou A,
budeme preto skrátene písať morfizmus namiesto A-morfizmus, objekt namiesto
A-objekt a pod. Rovnakú dohodu budeme používať všade tam, kde v tvrdení
budú vystupovať objekty a morfizmy len z jednej kategórie a od danej kategórie
nebudeme požadovať nijaké špeciálne vlastnosti.

Definícia 8. Morfizmus f : A → B sa nazýva monomorfizmus, ak pre každé
dva morfizmy g, h : B → C z rovnosti f ◦ g = f ◦ h vyplýva rovnosť h = g.

Duálny pojem: Morfizmus f : A→ B sa nazýva epimorfizmus, ak pre každé
dva morfizmy g, h : B → C z rovnosti g ◦ f = h ◦ f vyplýva rovnosť h = g.

f je bimorfizmus , ak je monomorfizmus aj epimorfizmus.

Tvrdenie 1. Ak f : A → B, g : B → C sú monomorfizmy (epimorfizmy, bi-
morfizmy), tak g ◦ f je monomorfizmus (epimorfizmus, bimorfizmus).

Dôkaz. a) g ◦ f ◦ h = g ◦ f ◦ k ⇒ f ◦ h = f ◦ k ⇒ h = k
b) h ◦ g ◦ f = k ◦ g ◦ f ⇒ h ◦ g = k ◦ g ⇒ h = k
c) Priamy dôsledok a) a b).

Tvrdenie 2. Nech f ◦ g je monomorfizmus. Potom g je monomorfizmus.
Duálne tvrdenie: Ak g ◦ f je epimorfizmus, tak g je epimorfizmus.

Dôkaz. g ◦ h = g ◦ k ⇒ f ◦ g ◦ h = f ◦ g ◦ k ⇒ h = k
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Definícia 9. Morfizmus f : A → B sa nazýva retrakcia, ak existuje morfizmus
g : B → A taký, že f ◦ g = idB .

Duálny pojem: Morfizmus f : A → B sa nazýva koretrakcia, ak existuje
morfizmus g : B → A taký, že g ◦ f = idA.

Morfizmus f : A→ B je izomorfizmus, ak je retrakcia aj koretrakcia.

Bimorfizmus a izomorfizmus sú príklady samoduálnych vlastností.

Tvrdenie 3. Ak f : A→ B, g : B → C sú retrakcie (koretrakcie, izomorfizmy),
tak g ◦ f je retrakcia (koretrakcia, izomorfizmus).

Dôkaz. Majme h : B → A, k : C → B také, že f ◦ h = idB , g ◦ k = idC . Potom
(g ◦ f) ◦ (h ◦ k) = g ◦ (f ◦ h) ◦ k = g ◦ idB ◦ k = g ◦ k = idC . Tým je ukázaná
prvá časť tvrdenia. Druhá časť je duálne tvrdenie k prvej a tretia časť vyplýva
z prvých dvoch.

Tvrdenie 4. Nech f : A→ B, g : B → C sú morfizmy. Ak g ◦f je koretrakcia,
tak f je koretrakcia. Ak g ◦ f je retrakcia, tak g je retrakcia.

Dôkaz. g◦f je koretrakcia znamená, že existuje morfizmus h taký, že h◦(g◦f) =
(h ◦ g) ◦ f = idA, teda aj f je koretrakcia.

Tvrdenie 5. Každá koretrakcia je monomorfizmus. Každá retrakcia je epimor-
fizmus.

Dôkaz. Nech f : A → B je koretrakcia a g : B → A je ľavý inverzný morfizmus
k f , t.j. g : B → A, g ◦ f = idA. Ak f ◦ h = f ◦ k, tak h = idA ◦ h = g ◦ f ◦ h =
g ◦ f ◦ k = idA ◦ k = k. Druhá časť tvrdenia vyplýva z duality.

Lema 1. Ak f : A → B, g, h : B → A sú morfizmy také, že g ◦ f = idA a
f ◦ h = idB, tak g = h.

Dôkaz. h = idA ◦ h = (g ◦ f) ◦ h = g ◦ (f ◦ h) = g ◦ idB = g

Tvrdenie 6. Morfizmus f : A → B je izomorfizmus práve vtedy, keď existuje
morfizmus g : B → A taký, že g ◦ f = idA, f ◦ g = idB. Takýto morfizmus je
určený jednoznačne.

Dôkaz. Implikácia ⇐ je zrejmá. Implikácia ⇒ vyplýva z prechádzajúcej lemy.

Definícia 10. Ak f je izomorfizmus, tak morfizmus g : B → A taký, že f ◦ g =
idB a g ◦ f = idA sa nazýva inverzný morfizmus k f a označuje sa f−1.

Ako dôsledok predchádzajúceho tvrdenia dostávame:

Tvrdenie 7. Ak f je izomorfizmus, tak aj f−1 je izomorfizmus.

Definícia 11. Ak existuje izomorfizmus f : A → B, tak hovoríme, že objekty
A a B sú izomorfné, označujeme A ∼= B.
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Z tvrdenia 3, tvrdenia 7 a z toho, že každá identita je izomorfizmus vyplýva,
že relácia ∼= je relácia ekvivalencie na triede objektov.

Definícia 12. Plná podkategória A kategórie B sa nazýva uzavretá na izo-
morfizmy, ak každý B-objekt, ktorý je izomorfný s nejakým A-objektom, je
A-objekt.

Definícia 13. Nech f, g : A→ B sú morfizmy. Morfizmus e : E → A sa nazýva
ekvalizátor f a g, ak sú splnené nasledovné podmienky:

(i) f ◦ e = g ◦ e,
(ii) pre ľubovoľný morfizmus e′ : E′ → A taký, že f ◦ e′ = g ◦ e′ existuje jediný

morfizmus e : E′ → E taký, že diagram

E′

e

��

e′

  AAAAAAA

E e
// A

f //
g
// B

komutuje, t.j. taký, že e ◦ e = e′.

Ekvalizátor f a g označujeme e = Eq(f, g).
Duálny pojem: Morfizmus c : A → C sa nazýva koekvalizátor dvojice mor-

fizmov f a g, ak

(i) c ◦ f = c ◦ g,

(ii) pre každý morfizmus c′ taký, že c′ ◦ f = c′ ◦ g existuje jediný morfizmus c
taký, že c ◦ c = c′.

Morfizmus e : E → A sa nazýva regulárny monomorfizmus, ak je ekvalizátor
nejakej dvojice morfizmov. Morfizmus c : A→ C sa nazýva regulárny epimorfiz-
mus, ak je koekvalizátor nejakej dvojice morfizmov.

Tvrdenie 8. Regulárny monomorfizmus je monomorfizmus. (Regulárny epi-
morfizmus je epimorfizmus.)

Dôkaz. Nech f = Eq(r, s). Nech f ◦ g = f ◦ h. Potom r ◦ (f ◦ g) = s ◦ (f ◦ g) a
podľa definície existuje jediný morfizmus h taký, že f ◦g = f ◦h, teda g = h.

Definícia 14. Monomorfizmus m sa nazýva extrémny monomorfizmus , ak
spĺňa nasledovnú podmienku: Ak m = f ◦ e, kde e je epimorfizmus, tak e je
izomorfizmus.

Duálny pojem: Epimorfizmus e sa nazýva extrémny epimorfizmus , ak spĺňa
nasledovnú podmienku: Ak e = m ◦ f , kde m je monomorfizmus, tak m je
izomorfizmus.

Tvrdenie 9. Ak g ◦ f je extrémny monomorfizmus, tak f je extrémny mono-
morfizmus.
Ak g ◦ f je extrémny epimorfizmus, tak g je extrémny epimorfizmus.
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Dôkaz. Z tvrdenia 2 vieme, že f je monomorfizmus. Nech f = h ◦ e a e je
epimorfizmus. Potom g ◦ f = g ◦ h ◦ e, ale g ◦ f je extrémny monomorfizmus, a
teda e je izomorfizmus.

Druhá časť tvrdenia je duálna k prvej.

Tvrdenie 10. Ak f : X → Y je morfizmus, tak každá z uvedených podmienok
implikuje nasledujúcu:

(i) f je izomorfizmus

(ii) f je koretrakcia

(iii) f je regulárny monomorfizmus

(iv) f je extrémny monomorfizmus

(v) f je monomorfizmus.

(Duálne tvrdenie: f je izomorfizmus ⇒ retrakcia ⇒ regulárny epimorfizmus
⇒ extrémy epimorfizmus ⇒ epimorfizmus.)

Dôkaz. (i)⇒(ii) vyplýva priamo z definície.
(ii)⇒(iii) Ak g ◦ f = idA ukážeme, že f = Eq(idB , f ◦ g). Platí (f ◦ g) ◦ f =

f ◦ (g ◦ f) = f ◦ idA = f = idB ◦ f . Ak (f ◦ g) ◦ h = h, tak h = f ◦ (g ◦ h) a
takýto morfizmus existuje jediný, lebo f je monomorfizmus.

(iii)⇒(iv) Nech f = Eq(r, s) a f = g ◦ e, pričom e je epimorfizmus. Platí:
(r ◦ g) ◦ e = r ◦ (g ◦ e) = r ◦ f = s ◦ f = s ◦ (g ◦ e) = (s ◦ g) ◦ e, a teda aj
r ◦ g = s ◦ g (lebo e je epimorfizmus). Podľa univerzálnej vlastnosti v definícii
ekvalizátora musí potom existovať jediný morfizmus e′ taký, že g = f ◦e′. Máme
potom f ◦ idA = f = g ◦ e = f ◦ e′ ◦ e a f je monomorfizmus, čiže e′ ◦ e = idA,
t.j. e je koretrakcia. Ďalej idE ◦ e = e = e ◦ idA = e ◦ (e′ ◦ e) = (e ◦ e′) ◦ e a e je
epimorfizmus, čiže idE = e◦e′, t.j. e je koretrakcia. e je retrakcia aj koretrakcia,
teda e je izomorfizmus.

(iv)⇒(v) Vyplýva priamo z definície.

Tvrdenie 11. Nech f : A→ B je morfizmus. Nasledovné podmienky sú potom
ekvivalentné:

(i) f je izomorfizmus

(ii) f je epimorfizmus a koretrakcia

(iii) f je epimorfizmus a extrémny monomorfizmus

(iv) f je monomorfizmus a retrakcia

(v) f je monomorfizmus a extrémny epimorfizmus.

Dôkaz. Vďaka dualite stačí dokazovať len ekvivalenciu prvých troch podmienok.
(i) ⇒ (ii) vyplýva priamo z definície a (ii) ⇒ (iii) z predchádzajúceho tvr-

denia. (iii) ⇒ (i): f = idB ◦ f a f je epimorfizmus a extrémny monomorfizmus
znamená, že f je izomorfizmus.
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Definícia 15. Usporiadaná dvojica (M,m), kde m : M → A je monomorfizmus
sa nazýva podobjekt objektu A.

Usporiadaná dvojica (M,m), kde m : M → A je extrémny monomorfizmus
sa nazýva extrémny podobjekt objektu A.

Usporiadaná dvojica (k,K), kde k : A→ K je epimorfizmus sa nazýva kvo-
cient objektu A.

Usporiadaná dvojica (k,K), kde k : A → K je extrémny epimorfizmus sa
nazýva extrémny kvocient objektu A.

Definícia 16. Kategória sa nazýva lokálne malá, ak pre každý jej objekt A
existuje množina podobjektov (Mi,mi), i ∈ I taká, že pre každý podobjekt
(M,m) objektu A existuje i ∈ I a izomorfizmus f : Mi →M taký, že mi = m◦f .

Kategória sa nazýva extrémne lokálne malá, ak pre každý jej objekt A exis-
tuje množina extrémnych podobjektov (Mi,mi), i ∈ I taká, že pre každý ex-
trémny podobjekt (M,m) objektu A existuje i ∈ I a izomorfizmus f : Mi →M
taký, že mi = m ◦ f .

Kategória sa nazýva kolokálne malá, ak pre každý jej objekt A existuje mno-
žina kvocientov (ki,Ki), i ∈ I taká, že pre každý kvocient (k,K) objektu A
existuje i ∈ I a izomorfizmus f : Mi →M taký, že ki = k ◦ f .

Kategória sa nazýva extrémne kolokálne malá, ak pre každý jej objekt A
existuje množina extrémnych kvocientov (ki,Ki), i ∈ I taká, že pre každý ex-
trémny kvocient (k,K) objektu A existuje i ∈ I a izomorfizmus f : Mi → M
taký, že ki = k ◦ f .

Definícia 17. Morfizmus f : A → B sa nazýva konštantný, ak pre každé dva
morfizmy g, h : C → A platí k ◦ g = k ◦ h. f je kokonštantný, ak pre každé dva
morfizmy g, h : B → C platí g ◦ h = g ◦ k.

Morfizmus, ktorý je konštantný aj kokonštantný sa nazýva nulový morfizmus
.

0.1.3 Špeciálne objekty

Definícia 18. Objekt I sa nazýva iniciálny objekt, ak pre každý objekt A
existuje práve jeden morfizmus f : I → A.

Duálny pojem: Objekt T sa nazýva terminálny objekt, ak pre každý objekt
A existuje práve jeden morfizmus f : A→ T .

Objekt, ktorý je iniciálny aj terminálny, sa nazýva nulový objekt.

Definícia 19. Objekt S sa nazýva separátor (generátor), ak pre každé dva
rôzne morfizmy f, g : A→ B existuje morfizmus h : S → A taký, že f ◦h 6= g ◦h.

Objekt C sa nazýva koseparátor, ak pre každé dva rôzne morfizmy f, g : A→
B existuje morfizmus h : B → C taký, že h ◦ f 6= h ◦ g.

0.1.4 Limity a kolimity

Definícia 20. Zdroj je dvojica (A, (fi)i∈I), kde A je objekt a fi : A → Ai sú
morfizmy.

Ústie je dvojica ((fi)i∈I , A), kde A je objekt a fi : A→ Ai sú morfizmy.
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Ak S = (A, (fi)i∈I je zdroj a f : B → A je morfizmus, tak označíme zdroj
(B, (fi ◦ f)i∈I) = S ◦ f . Podobne pre ústia používame značenie f ◦ S = ((f ◦
fi)i∈I , B), ak S = ((fi)i∈I , A) je ústie a f : A→ B je morfizmus.

Definícia 21. Zdroj S = (A, (fi)i∈I) sa nazýva monozdroj, ak pre každú dvojicu
morfizmov r, s : B → A z rovnosti S ◦ r = S ◦ s vyplýva rovnosť r = s.

Ústie S = ((fi)i∈I , A) sa nazýva epiústie, ak pre každú dvojicu morfizmov
r, s : A→ B z rovnosti r ◦ S = s ◦ S vyplýva rovnosť r = s.

Monozdroj sa nazýva extrémny monozdroj , ak platí: Ak S = S ◦e pre nejaký
epimorfizmus e, tak e je izomorfizmus.

Epiústie sa nazýva extrémne epiústie, ak platí: Ak S = m ◦ S pre nejaký
monomorfizmus m, tak m je izomorfizmus.

Definícia 22. Diagram v kategórii A je funktor D : I→ A. I sa nazýva schéma
diagramu. Diagram s malou (konečnou) schémou sa nazýva malý (konečný)
diagram.

Pre diagramy zvykneme písať Di namiesto D(i).

Definícia 23. Nech D : I→ A je diagram.
A-zdroj (A, (fi)i∈Ob(I)) (fi : A→ Di) sa nazýva prirodzený zdroj pre D, ak

pre každý I-morfizmus d : i→ j komutuje diagram:

A
fi

������� fj

��:::::

Di
Dd

// Dj

Prirodzený A-zdroj (L, (li)i∈Ob(I)) sa nazýva limita D, ak má univerzálnu
vlastnosť, že pre každý prirodzený zdroj (A, (fi)i∈Ob((I)) pre D existuje jediný
morfizmus f : A→ L taký, že fi = li ◦ f pre všetky i ∈ Ob(I).

A
f //

fi ��::::: L

li�������

Di

A-ústie ((fi)i∈Ob(I), A) sa nazýva prirodzené ústie pre D, ak pre každý
I-morfizmus d : i→ j komutuje diagram:

Di
Dd //

fi ��99999 Dj

fj�������

A

Prirodzené ústie ((ci)i∈Ob(I), C) pre D sa nazýva kolimita D, ak pre každé
prirodzené ústie ((fi)i∈Ob(I), A) pre D existuje jediný morfizmus f : C → A



0.1. ÚVOD DO KATEGÓRIÍ 9

taký, že fi = f ◦ ci pre každé i ∈ Ob(I).

A C
foo

Di

fi

\\::::: ci

BB�����

Tvrdenie 12. Každá limita je extrémny monozdroj. Každá kolimita je extrémne
epiústie.

Dôkaz. Nech S ◦ r = S ◦ s. S ◦ r je tiež ústie, podľa definície limity teda existuje
jediný morfizmus s taký, že S ◦ r = S ◦ s, teda r = s.

Nech L = S ◦ e a e je epimorfizmus. Podľa definície limity existuje h také, že
pre každé i ∈ Ob(I) li ◦ h = si. Potom li ◦ h ◦ e = si ◦ e = li = li ◦ idL. V prvej
časti dôkazu sme už ukázali, že limita je monozdroj, z čoho vyplýva h◦ e = idL.
Keďže e je epimorfizmus a koretrakcia, podľa tvrdenia 11 je izomorfizmus.

Druhá časť tvrdenia je duálna k prvej.

Tvrdenie 13 (Jednoznačnosť limity). Ak L = (li)i∈Ob(I), li : L → Di je
limita diagramu D : I→ A, tak

(i) pre každú limitu K = (ki)i∈Ob(I), ki : K → Di, diagramu D existuje izo-
morfizmus h : K → L taký, že K = L ◦ h,

(ii) pre každý izomorfizmus h : A→ L je zdroj L ◦ h limita diagramu D.

Dôkaz. (i) Z definície limity vieme, že existuje jediný morfizmus h taký, že
K = L ◦ h. Keďže K je tiež limita, súčasne existuje jediný morfizmus h′ taký, že
L = K◦h′. Keďže K◦h′◦h = L◦h = K = K◦idK a K je podľa predchádzajúceho
tvrdenia monozdroj, tak h′ ◦ h = idK . Analogicky sa ukáže aj h ◦ h′ = idL, čo
znamená, že h je izomorfizmus.

K
h //

hi ��;;;;; L
h′

oo

li�������

Di

(ii) Pretože L je prirodzený zdroj, aj L ◦ h je prirodzený zdroj vzhľadom
na D. Označme jeho morfizmy l′i = h ◦ li : L′ → D Ak K je prirodzený zdroj
vzhľadom na D, tak existuje jediný morfizmus k : K → L taký, že K = L ◦ k.
Potom h−1 ◦k : K → L′ je morfizmus taký, že K = L′ ◦ (h−1 ◦k). Jednoznačnosť
vyplýva z toho, že L′ = h ◦ L je monozdroj. Ak totiž r ◦ h ◦ L = s ◦ h ◦ L,
tak r ◦ h = s ◦ h, a pretože každý izomorfizmus je monomorfizmus, potom aj
r = s.

Súčin a kosúčin

Definícia 24. Ústie P = (pi : P → Ai)i∈I sa nazýva súčin ak pre každé ústie
S = (fi : A→ Ai)i∈I existuje jediný morfizmus f : A→ P taký, že S = P ◦ f .
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Príklad 4. V Set je súčinom ľubovoľného systému množín ich kartézsky súčin,
projekcie sú projekcie na zložky pj :

∏
i∈I

Ai → Aj .

Súčin môžeme interpretovať ako limitu funktora z diskrétnej kategórie (t.j.
schéma diagramu je kategória, ktorá okrem identít neobsahuje žiadne iné mor-
fizmy).

Z tvrdenia o jednoznačnosti limity potom vyplýva, že súčin je jednoznačne
(až na izomorfizmus) určený objektami Ai.

Súčin systému objektov (Ai)i∈I označujeme
∏
i∈I

Ai, morfizmy pj :
∏
i∈I

Ai →
Aj sa nazývajú projekcie. Pre súčin konečného systému používame tiež značenie
A1 × · · · ×Ak, resp. A×B.

Ak (
∏
Ai, pi :

∏
Ai → Ai)i∈I je súčin a (A, fi : A → Ai)i∈I je ústie, tak

podľa definície súčinu existuje jediný morfizmus f : A→∏
Ai taký, že fj = pj◦f

pre všetky j ∈ I. Tento morfizmus značíme 〈fi〉.

A
〈fi〉 //

fj !!CCCCCCCC
∏
Ai

pj

��
Aj

V prípade, že množina I je konečná, používame tiež značenie 〈fi〉 = 〈f1, . . . , fn〉.
Tvrdenie 14. Ak (pi : P → Ai)i∈I je súčin a i0 ∈ I je také, že pre všetky i ∈ I
platí hom(Ai0 , Ai) 6= ∅, tak pi0 je retrakcia.

Dôkaz. Pre každé i ∈ I vyberme fi ∈ hom(Ai0 , Ai), pričom fi0 = idAi0 . Potom
〈fi〉 : Ai0 → P je morfizmus s vlastnosťou pi0 ◦ 〈fi〉 = fi0 = idAi0 .

Definícia 25. Hovoríme, že kategória má súčiny, ak pre každý systém objektov
(Ai)i∈I (I je množina) existuje súčin (

∏
Ai, pj :

∏
Ai → Aj)j∈I .

Definícia 26. Ak fi : Ai → Bi sú morfizmy a (
∏
Ai, πj :

∏
Ai → Aj)j∈I ,

(
∏
Bi, pj :

∏
Bi → Bj)j∈I , sú súčiny, tak podľa definície súčinu existuje jediný

morfizmus f taký, že diagram

∏
Ai

f=
Q
fi//

πj

��

∏
Bi

pj

��
Aj

fj

// Bj

komutuje pre každé j ∈ I. Potom f označujeme
∏
i∈I

fi a nazývame súčinom

systému morfizmov (fi)i∈I . Ak I je konečná, používame tiež označenie f1 ×
. . .× f2.

Lema 2.
∏
i∈I

gi ◦
∏
i∈I

fi =
∏
i∈I

(gi ◦ fi)
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Dôkaz. Nech fi : Ai → Bi, gi : Bi → Ci, projekcie označme pAi , pBi , pCi . Potom
platí pCj ◦

∏
(gi ◦ fi) = gj ◦ fj ◦ pAj = gj ◦ pBj ◦

∏
fi = pCj ◦

∏
gi ◦

∏
fi. Priamo

z definície súčinu (alebo z toho, že súčin je limita, a teda monozdroj) už potom
vyplýva, že

∏
(gi ◦ fi) =

∏
gi ◦

∏
fi.

∏
Ai

Q
fi //

pAj

��

∏
Bi

Q
gi //

pBj

��

∏
Ci

pCj

��
Aj

fj

// Bj gj
// C

Dôsledok 1.
∏
idAi = idQAi .

Dôkaz. pj ◦
∏
idAi = idAj ◦ pj = pj = pj ◦ idQAj pre všetky j ∈ I. Keďže

produkt je monozdroj, tak z toho dostaneme
∏
idAi = idQAi .

Tvrdenie 15. (i) Ak fi je retrakcia pre každé i ∈ I, tak
∏
fi je retrakcia.

(Súčin retrakcií je retrakcia).

(ii) Ak fi je koretrakcia pre každé i ∈ I, tak
∏
fi je koretrakcia. (Súčin koret-

rakcií je koretrakcia).

(iii) Ak fi je izomorfizmus pre každé i ∈ I, tak
∏
fi je izomorfizmus. (Súčin

izomorfizmov je izomorfizmus).

(iv) Ak fi je monomorfizmus pre každé i ∈ I, tak
∏
fi je monomorfizmus.

(Súčin monomorfizmov je monomorfizmus).

Dôkaz. (i): Ak fj ◦gj = idAj , tak podľa predchádzajúcej lemy a dôsledku
∏
fj ◦∏

gj = idQAj . (ii) sa ukáže úplne analogicky ako (i) a (iii) vyplýva z (i) a (ii).
(iv): Označme m =

∏
mi. Nech f, g : C →∏

Ai sú také, že m ◦ f = m ◦ g.

C
f //
g
//
∏
Ai
m=

Q
mi//

pj

��

∏
Bi

qj

��
Aj

� �

mj
// Bj

Potom mj ◦ pj ◦ f = qj ◦ m = f = qj ◦ m ◦ g = mj ◦ pj ◦ g. Pretože m je
monomorfizmus, tak potom pj ◦ f = pj ◦ g. Vďaka tomu, že súčin je monozdroj,
vyplýva z toho f = g.

Lema 3. Nech A má súčiny. Nech I je množina a ei : Ei → Ai je A-ekvalizátor
fi, gi : Ai → Bi pre každé i ∈ I. Potom

∏
ei :

∏
Ai →

∏
Bi je ekvalizátor∏

fi,
∏
gi :

∏
Ai →

∏
Bi.
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Dôkaz.
∏
Ei

Q
ei //

πj

��

∏
Ai

Q
fi //Q
gi

//

pj

��

∏
Bi

qj

��
Ej

ej // Aj
fj //
gj

// Bj

Súčin je limita, a teda monozdroj. Preto z qj ◦
∏
fi ◦

∏
ei = fj ◦ ej = qj ◦ ej =

qj ◦
∏
gi ◦

∏
ei pre všetky j ∈ I dostaneme, že

∏
fi ◦

∏
ei =

∏
gi ◦

∏
ei.

Nech h : E → ∏
Ai je morfizmus taký, že

∏
fi ◦ h =

∏
gi ◦ h. Potom fj ◦

pj ◦ h = gj ◦ pj ◦ h pre všetky j ∈ I. Preto pre každé j ∈ I existuje morfizmus
hj taký, že pj ◦ h = ej ◦ hj (využili sme, že (Ej , ej) je ekvalizátor.) Potom pre
〈fi〉 : E →

∏
Ei platí pj ◦

∏
ei ◦ 〈hi〉 = ej ◦ πj ◦ 〈hj〉 = ej ◦ hj = pj ◦ h, teda∏

ei ◦ 〈hi〉 = h. Jednoznačnosť takéhoto morfizmu vyplýva z toho, že
∏
ei je

monomorfizmus (predchádzajúce tvrdenie).

∏
Ei

Q
ei //

πj

��

∏
Ai

Q
fi //Q
gi

//

pj

��

∏
Bi

qj

��

E

〈hi〉bbEEEEE

hj

||yyyyy

h <<yyyyy

Ej
ej // Aj

fj //
gj

// Bj

Z tejto lemy ľahko vyplýva, že:

Tvrdenie 16. V kategórii, ktorá má súčiny platí, že ak fi je regulárny mo-
nomorfizmus pre každé i ∈ I, tak

∏
fi je regulárny monomorfizmus. (Súčin

regulárnych monomorfizmov je regulárny monomorfizmus).

Duálny pojem k súčinu je kosúčin.

Definícia 27. Zdroj P = (pi : Ai → P )i∈I sa nazýva kosúčin ak pre každé ústie
S = (fi : Ai → A)i∈I existuje jediný morfizmus f : P → A taký, že S = f ◦ P.

Pre kosúčin platia duálne tvrdenia ako pre súčin. Prehľad označení používa-
ných pre kosúčin je v tabuľke

súčin kosúčin

(
∏
Ai, pj) (ij ,

∐
Ai)

projekcia pj injekcia ij

A×B A tB
〈fi〉 [fi]

f × g f t g
∏
fi

∐
fi
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Pushout a pullback

Definícia 28. Diagram

C
f //

g

��

A

g

��
B

f

// P

sa nazýva pushout, ak komutuje a pre každý komutujúci diagram tvaru

C
f //

g

��

A

ĝ

��
B

f̂

// P̂

existuje jediný morfizmus k : P → P̂ taký, že komutuje diagram

C
f //

g

��

A

g

�� ĝ

��

B
f //

f̂

++

P

k

��????????

P̂

Duálny pojem k pushoutu je pullback:

Definícia 29. Diagram

P
f //

g

��

B

g

��
A

f
// C

sa nazýva pullback, ak komutuje a pre každý komutujúci diagram tvaru

P̂
f̂ //

ĝ

��

B

g

��
A

f
// C
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existuje jediný morfizmus k : P̂ → P taký, že komutuje diagram

P̂

k ��???????? f̂

""
ĝ

��

P
f

//

g

��

B

g

��
A

f
// C

Pushout je kolimita diagramu

• //

��

•

•

Pullback je limita duálneho diagramu.
Niektoré tvrdenia budeme formulovať pre pushout a niektoré pre pullback,

vždy samozrejme platí aj duálne tvrdenie.

Tvrdenie 17 (Kanonická konštrukcia pushoutu). Nech f :C→A, g :C→
B sú morfizmy, AtB je kosúčin s injekciami qA : A→ AtB, qB : B → AtB.
Nech c : A tB → P je c = Coeq(qA ◦ f, qB ◦ f). Potom

C
f //

g

��

A

c◦qA
��

B c◦qB
// P

je pushout.

Dôkaz.

C

g

��

f // A

h1

��

qAzzuuuuu

A tB
h

$$IIIII

B

qB ::uuuuu
h2

// H

Nech h1 : A→ H, h2 : B → H a h2 ◦ g = h1 ◦ f a h = [h1, h2] : A tB → H.
Pre h platí h ◦ qA ◦ f = h1 ◦ f = h2 ◦ g = h ◦ qb ◦ g a z definície koekvalizátora
máme, že existuje morfizmus k : P → H taký, že h = k ◦ c. Jednoznačnosť
existencie takéhoto morfizmu vyplýva z toho, že c ◦ qA, c ◦ qB ako zloženie
epiústí je epiústie.
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Tvrdenie 18 (Konštrukcia ekvalizátorov pomocou súčinov a pullbac-
kov). Ak f, g : A→ B sú morfizmy, (A×B, πA, πB) je súčin A a B, a

P
p1 //

p2

��

A

idA×f
��

A
idA×g
// A×B

je pullback, tak p1 = p2 je ekvalizátor f a g.

Dôkaz. Pretože (idA × f) ◦ p1 = (idA × g) ◦ p2, máme

p1 = πA ◦ (idA × f) ◦ p1 = πA ◦ (idA × g) ◦ p2 = p2.

Nech k : K → A je morfizmus taký, že f ◦ k = g ◦ k. Potom

πB ◦ (idA × f) ◦ k = πB ◦ (idA × g) ◦ k a

πA ◦ (idA × f) ◦ k = πA ◦ (idA × g) ◦ k.
Pretože súčin je monozdroj, dostaneme (idA × f) ◦ k = (idB × f) ◦ k, a pretože
uvedený diagram je pullback, existuje jediné h : K → P také, že k = p1 ◦ h.

Definícia 30. Trieda morfizmov M sa nazýva uzavretá na tvorbu pullbackov,
ak pre každý pullback

P
f //

g

��

B

g

��
A

f
// C

,

ak f ∈M, tak aj f ∈M.

Tvrdenie 19. Monomorfizmy, regulárne monomorfizmy a retrakcie sú uzavreté
na tvorbu pullbackov.

Dôkaz. Nech f je monomorfizmus a predchádzajúci diagram je pullback.
(i) Nech h, k : Q → P sú morfizmy také, že f ◦ h = f ◦ k, tak g ◦ h = g ◦ k.

Pretože pullback je monozdroj, vyplýva z toho už h = k.
(ii) Nech f je ekvalizátor p a q. Potom (p ◦ g) ◦ f = (q ◦ g) ◦ f . Chceme

ukázať, že f je ekvalizátor p ◦ g a q ◦ g. Nech t : Q → B je morfizmus taký, že
(p◦g)◦t = (q◦g)◦t. Potom podľa definície ekvalizátora existuje nejaké u : Q→ A
také, že f ◦u = g ◦ t. Potom podľa definície pullbacku existuje nejaké h : Q→ P
také, že t = f ◦ h. Jednoznačnosť h vyplýva z toho, že f je monomorfizmus.

(iii) Ak f je retrakcia, tak existuje nejaké s : C → A také, že f ◦ s = idC .
Potom f ◦ (s◦g) = g ◦ idB a podľa definície pullbacku existuje nejaké h : B → P
také, že idB = f ◦ h.
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Prieniky a koprieniky

Definícia 31. Nech (Ai,mi)i∈I je systém podobjektov objektu A. Potom uspo-
riadaná dvojica (M,m), kde m : M → A je morfizmus, sa nazýva prienikom
systému (Ai,mi)i ∈ I, ak

(i) pre každé i ∈ I existuje di : M → Ai tak, že mi ◦ di = m,

(ii) pre ľubovoľnú usporiadanú dvojicu (K, k), kde k : K → A je morfizmus
taký, že pre každé i ∈ I existuje morfizmus ki : K → Ai a mi ◦ ki = k,
existuje práve jeden morfizmus h : K →M taký, že m ◦ h = k.

Označujeme (M,m) =
⋂
i∈I

(Ai,mi).

Ai
mi // A

M

di

\\9999999 m

CC�������

K

ki

RR

!h

OO�
�
�

k

MM

Prienik možno interpretovať ako limitu diagramu Ai
mi−−−−→ A.

•

''OOOOOOOOOOOOOO •

  AAAAAAAA . . . •

~~}}}}}}}}
•

wwoooooooooooooo I

•

Tvrdenie 20. Ak (A1,m1), (A2,m2) sú podobjekty B, tak prienik je diagonálny
morfizmus pullbacku A1

m1−−−−→ B
m2←−−−− A2.

Dôkaz. Vyplýva priamo z definície.

Veta 2. Ak (M,m) =
⋂
i∈I

(Ai,mi), mi : Ai → A, tak (M,m) je podobjekt A.

Ak (Ai,mi) sú regulárne podobjekty a kategória A má súčiny, tak aj (M,m)
je regulárny podobjekt A.

Dôkaz. Keďže prienik sme interpretovali ako limitu, tak (M, (di)i∈I ,m) je mo-
nozdroj. m ◦ r = m ◦ s ⇒ mi ◦ di ◦ r = mi ◦ di ◦ s ⇒ di ◦ r = di ◦ s. Keď platí
m◦ r = m◦ s, di ◦ r = di ◦ s tak aj r = s (vďaka tomu, že prienik je monozdroj).

Nech mi = Eq(fi, gi), fi, gi : A → Ci.
∏
Ci nech je súčin a pi :

∏
Ci → Ci

projekcie. Označme f = 〈fi〉 : A →
∏
Ci, g = 〈gi〉 : A →

∏
Ci. Tvrdíme, že

m = Eq(f, g).
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Ai
mi

##GGGGG
∏
Ci

pi

��
A

f

99ttttt

g 99ttttt

fi %%KKKKKK gi

%%KKKKKK

M

di

OO

m

;;vvvvv
Ci

pi ◦f ◦m = pi ◦mi ◦di = fi ◦mi ◦di = gi ◦mi ◦di = pi ◦g ◦mi ◦di = pi ◦g ◦m
⇒ f ◦m = g ◦m (lebo súčin je extrémny monozdroj).

Nech t : C → A je morfizmus taký, že f ◦ t = g ◦ t. Potom pi ◦ f ◦ t = pi ◦ g ◦ t
t.j. fi ◦ t = gi ◦ t pre všetky i. Pretože mi je ekvalizátor fi a gi, tak pre každé
i ∈ I existuje jediný morfizmus ci : C → Ai taký, že mi ◦ ci = t. Podľa definície
prieniku potom existuje jediný morfizmus h : C → D taký, že m ◦ h = t.

Duálny pojem k prieniku sa nazýva koprienik.

Ďalšie limity Ekvalizátor dvojice morfizmov môžeme interpretovať ako li-
mitu diagramu so schémou • //// • .

Terminálny objekt možno chápať ako limitu prázdneho diagramu.

Definícia 32. Usmernená kolimita (nazývaná tiež induktívna limita) je koli-
mita diagramu, ktorého schéma je nahor usmernená množina interpretovaná ako
kategória (príklad 3).

0.1.5 Úplnosť a koúplnosť

Definícia 33. Hovoríme, že kategória A

(i) má súčiny , ak pre každý systém (indexovaný množinou) A-objektov exis-
tuje súčin v A.

(ii) má konečné súčiny , ak pre každý konečný systém A-objektov existuje
súčin v A.

(iii) má ekvalizátory , ak pre každú dvojicu morfizmov s rovnakým oborom a
kooborom existuje ekvalizátor v A.

(iv) má pullbacky , ak pre každú dvojicu morfizmov s rovnakým kooborom exis-
tuje pullback v A.

(v) má prieniky , ak pre každý A-objekt A a každý systém jeho podobjektov
existuje prienik.

(vi) má konečné prieniky , ak pre každý A-objekt A a každý konečný systém
jeho podobjektov existuje prienik.

Duálne pojmy: Kat A má (konečné) kosúčiny , koekvalizátory , pushouty, (ko-
nečné) prieniky.
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Definícia 34. Kategória A sa nazýva úplná, ak pre každý malý diagram (t.j.
taký, ktorého schéma je malá kategória) existuje v A limita.

Dôkaz ďalšej vety je súčasne dôkazom, že ľubovoľnú limitu možno zostrojiť
pomocou súčinov a ekvalizátorov (a duálne ľubovoľnú kolimitu pomocou kosú-
činov a koekvalizátorov).

Veta 3. Pre kategóriu A sú nasledovné podmienky ekvivalentné:

(i) A je úplná,

(ii) A má súčiny a ekvalizátory,

(iii) A má súčiny a konečné prieniky.

Dôkaz. (i) ⇒ (iii) vyplýva z toho, že súčiny a prieniky sú limity malých dia-
gramov.

(iii)⇒ (ii) vyplýva z tvrdenia 18 a tvrdenia 20.
(ii) ⇒ (i) Nech kategória A má súčiny a ekvalizátory, a nech D : I → A je

malý diagram. Pre každý I-morfizmus t : i → j položme d(t) = i a c(t) = j.
Nech

∏
i∈Ob(I)

Di a
∏

t∈Mor(A)
Dc(t) sú súčiny s projekciami πj :

∏
i∈Ob(I)

Di → Dj ,

π̂ :
∏

t∈Mor(I)
Dc(t → Dc(s). Pre každé t ∈ Mor(I) máme teda dvojicu morfizmov

πc(t), Dt◦πd(t) :
∏

i∈Ob(I)
→ Dc(t), môžeme teda definovať dvojicu morfizmov f =

〈Dt◦πd(t)〉, g = 〈πc(t)〉, f, g :
∏

i∈Ob(I)
Di →

∏
t∈Mor(I)

Dc(t). Nech e : E → ∏
i∈Ob(I)

Di

je ekvalizátor tejto dvojice a pre každé i ∈ Ob(I) ei = πi ◦ e. Tvrdíme, že
(E, ei)i∈Ob(I) je limita diagramu D v A.

Najprv overme, že je to prirodzený zdroj preD. Nech s : i→ j je I-morfizmus.
Potom ej = πj ◦e = πc(s)◦e = π̂s◦〈πc(t)〉◦e = π̂s◦〈Dt◦πd(t)〉◦e = Ds◦πd(s)◦e =
Ds ◦ πi ◦ e = Ds ◦ ei.

E
e //

ei
""EEEEEEEEEEE

∏
i∈Ob(I)

Di

πi

��

〈Dt◦πd(t)〉
//

〈πc(t)〉 //
∏

t∈Mor(I)
Dc(t)

π̂s

��
Di

Ds

// Dc(s)

Nech (K, ki) je prirodzený zdroj vzhľadom na D a nech k = 〈ki〉 : K →∏
i∈Ob(I)

Di. Keďže je to prirodzený zdroj, pre každé s ∈ Mor(I) platí kc(s) =

Ds ◦kd(s). Potom π̂s ◦〈πc(t)〉◦k = πc(s) ◦k = kc(s) = Ds ◦kd(s) = Ds ◦πd(s) ◦k =
π̂(s) ◦ 〈Dt ◦ πd(t)〉 ◦ k.
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E
e //

∏
i∈Ob(I)

Di

πi

��

〈Dt◦πd(t)〉
//

〈πc(t)〉 //
∏

t∈Mor(I)
Dc(t)

π̂s

��
K

k′

OO

k

<<yyyyyyyyy

ki

// Di
Ds

// Dc(s)

To znamená, že 〈πc(t)〉 ◦ k = 〈Dt ◦ πd(t)〉 ◦ k, a pretože (E, e) je ekvalizátor,
existuje jediné k′ : K → E také, že k = e◦k′. Potom ei ◦k′ = k a jednoznačnosť
k′ zabezpečí to, že ei je zloženie dvoch (extrémnych) monozdrojov, teda je to
monozdroj.

0.1.6 Faktorizácie

Definícia 35. Nech E (M) je trieda epimorfizmov (monomorfizmov) uzavretá
na skladanie s izomorfizmami v kategórii A. Hovoríme, že A je (E,M)-fakto-
rizovateľná, ak pre každý A-morfizmus f existujú e ∈ E a n ∈ M také, že
f = m ◦ e.

A sa nazýva jednoznačne (E,M)-faktorizovateľná kategória, ak navyše poža-
dujeme, že (E,M)-faktorizácia je jednoznačná až na izomorfizmus v tom zmysle,
že ak f = m ◦ e = m′ ◦ e′, e, e′ ∈ E, m,m′ ∈ M , sú rôzne (E,M)-faktorizácie,
tak existuje izomorfizmus taký, že diagram

• e //

e′

��

•
m

��

j

���
�

�
�

•
m′
// •

komutuje.
A je (E,M)-kategória, ak je jednoznačne (E,M)-faktorizovateľná a navyše

E a M sú uzavreté vzhľadom na skladanie.
Ak špeciálne zvolíme za E triedu všetkých epimorfizmov a za M triedu

všetkých extrémnych monomorfizmov v A, tak dostaneme pojmy (epi,extrémne
mono)-faktorizovateľná kategória, jednoznačne (epi,extrémne mono)-faktorizo-
vateľná kategória a (epi,extrémne mono)-kategória.

Duálne pojmy k týmto pojmom dostaneme, ak položíme za E triedu všetkých
extrémnych epimorfizmov a za M triedu všetkých monomorfizmov: (extrémne
epi, mono)-faktorizovateľná kategória, jednoznačne (extrémne epi,mono)-fakto-
rizovateľná kategória, (extrémne epi, mono)-kategória.

Definícia 36. Ak E(M) je trieda epimorfizmov (monomorfizmov) uzavretá na
skladanie s izomorfizmami, tak hovoríme, že B je E-kvocient (M -podobjekt)
objektu A, ak existuje morfizmus e : A → B (m : B → A) také, že e ∈ E
(m ∈M).

Tvrdenie 21. Ak C je (E,M)-faktorizovateľná kategória, tak sú ekvivalentné
tieto podmienky:
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(i) C je (E,M)-kategória

(ii) Pre každý komutatívny diagram v C

• e //

g

��

•
h

��•
m
// •

taký, že e ∈ E a m ∈M , existuje C-morfizmus k taký, že diagram

• e //

g

��

•
h

��

k

���
�

�
�

•
m
// •

komutuje. ((E,M)-diagonálna vlastnosť)

Dôkaz. ⇒ Nech g = m′ ◦ e′ a h = m′′ ◦ e′′ sú (E,M)-faktorizácie morfizmov
g a h a nech f = h ◦ e = m ◦ g. Potom f = m′′ ◦ (e′′ ◦ e) a f = (m ◦m′) ◦ e′ sú
dve (E,M)-faktorizácie f . Potom existuje izomorfizmus j taký, že diagram

• e //

e′

��@@@@@@@

g

��

•

h

��

e′′

���������

•
m′

���������
•joo_ _ _

m′′

��@@@@@@@

•
m

// •

komutuje. Potom k = m′ ◦ j ◦ e′′ je hľadaný diagonálny morfizmus.
⇐

(i) Ak f = m ◦ e = m ◦ e′ sú (E,M)-faktorizácie morfizmu f , tak existujú
morfizmy k a k′ také, že diagramy

• e //

e′

��

•
m

��

k

���
�

�
�

• e′ //

e

��

•
m′

��

k′

���
�

�
�

•
m′
// • •

m′
// •

komutujú. Pretože e je epimorfizmus z id ◦ e = e = (k′ ◦ k) ◦ e vyplýva, že
id = k′ ◦ k a pretože e′ je epimorfizmus z id ◦ e′ = e′ = (k ◦ k′) ◦ e′ vyplýva,
že id = k′ ◦ k. Teda k je izomorfizmus. Tým sme ukázali, že C je jednoznačne
(E,M)-faktorizovateľná.

(ii) Ak m1,m2 ∈M sú také, že sa dajú skladať, overme či aj m2 ◦m1 ∈M .
Nech m2 ◦ m1 = m ◦ e je (E,M)-faktorizácia ich zloženia. Potom musí podľa
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(ii) existovať morfizmus k taký, že diagram

• e //

m1

��

•
m

��

k

���
�

�
�

•
m2

// •

komutuje. Tiež existuje k′ také, že diagram

• e //

id

��

•
k

��

k′

���
�

�
�

•
m1

// •

komutuje. Pretože k′ ◦ e = id, e je koretrakcia. e je súčasne epimorfizmus, teda
e je izomorfizmus. m ∈M , preto aj m2 ◦m1 = m ◦ e ∈M .

(iii) Uvažujme opäť (E,M)-faktorizáciu e2 ◦ e1 = m ◦ e. Podľa predpokladu
existuje k také, že komutuje diagram

• e1 //

e

��

•
e2

��

k

���
�

�
�

•
m
// •

.

Potom tiež existuje k′ také, že komutuje diagram

• e2 //

k

��

•
id

��

k′

���
�

�
�

•
m
// •

.

Teda m ◦ k′ = id, čo znamená, že k′ je retrakcia. k′ je retrakcia aj monomor-
fizmus, musí to teda byť izomorfizmus. Keďže E je uzavretá na skladanie s
izomorfizmami, tak e2 ◦ e1 = m ◦ e ∈ E.

Lema 4. Nech A je (E,M)-kategória, e, f , m sú A-morfizmy, e ∈ E, m ∈M ,
m = f ◦ e. Potom e je izomorfizmus.

Dôkaz. Podľa (E,M)-diagonálnej podmienky existuje morfizmis g taký, že dia-
gram

• e //

id

��

•
f

��

g

���
�

�
�

•
m
// •

komutuje. Keďže g ◦ e = id, tak e je koretrakcia. e je súčasne epimorfizmus,
preto e je izomorfizmus.
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Tvrdenie 22. Ak C je (E,M)-kategória a mi ∈ I, tak umi ∈M .

Dôkaz. Označme m = umi. Nech m = m′ ◦ e je (E,M)-faktorizácia m, pričom
e : u Xi → Z, m′ : Z → uYi Podľa (E,M)-diagonálnej vlastnosti existuje pre
každé i ∈ I morfizmus hi taký, že hi ◦ e = pi a mi ◦ hi = qi ◦m′. Podľa definície
súčinu potom existuje h : Z → uXi také, že h ◦ pi = hi.

uXi
m //

pi

��

e

!!CCCCCCCC uYi

qi

��

h

aaCCCCCCCC m′

==||||||||

hi}}{{{{{{{{

Xi mi
// Yi

Pretože pi ◦ iduXi = pi − hi ◦ e = pi ◦ h ◦ e, máme h ◦ e = iduXi . e je teda epi-
morfizmus a retrakcia, čiže izomorfizmus. m′ ∈M a M je uzavretá na skladanie
s izomorfizmami, teda m ∈M .

0.1.7 Kategórie Top a Haus

Špeciálne morfizmy

Tvrdenie 23. V kategóriách Top a Haus sú monomorfizmy práve prosté
spojité zobrazenia. V Top sú epimorfizmy práve surjektívne spojité zobraze-
nia. V Haus sú epimorfizmy práve husté spojité zobrazenia. (Spojité zobrazenie
f : X → Y je husté, ak f [X] = Y .)

Dôkaz. Najprv ukážeme, že f je Top (Haus)-monomorfizmus ⇔ f je prosté.
Nech f : X → Y je Top-monomorfizmus a f(a) = f(b). Zoberme zobrazenia
g a h z jednoprvkového topologického priestoru {0} do X, pričom g(0) = a a
f(0) = b. Keďže f ◦ g = f ◦ h, tak z definície monomorfizmu musí byť aj a = b.
Naopak, nech f : X → Y je prosté. Ak f ◦ g = f ◦ h tak pre každé x ∈ X
f(g(x)) = f(h(x)) a z injektívnosti f potom vyplýva g(x) = h(x), teda g = h.

Ďalej ukážme, že Top-epimorfizmy sú práve surjektívne spojité zobrazenia.
Nech by f : X → Y , ktoré nie je surjektívne, bol Top-epimorfizmus. Zoberme
dvojprvkový indiskrétny priestor I = {0, 1}. Zvolíme 2 zobrazenia g, h : Y → I
tak, že g ≡ 0 a h|f(X) ≡ 0, h|Y−f(X) ≡ 1. Tieto zobrazenia sú spojité, lebo
každé zobrazenie do indiskrétneho priestoru je spojité. Navyše platí g◦f = h◦f
a g 6= h (Y \ f(X) 6= ∅, lebo f nie je surjektívne), čo je spor s predpokladom, že
f je epimorfizmus. Opačná implikácia vyplýva z lemy 6.

Haus-epimorfizmy sú práve husté spojité zobrazenia. Jeden smer vyplýva z
nasledujúcej lemy a jej dôsledku. Opačný smer vyplýva z lemy 6.

Lema 5. Pre každé dve spojité zobrazenia f, g : X → Y , kde Y je hausdorffov-
ský, je množina {x ∈ X|f(x) = g(x)} uzavretá.
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Dôkaz. Ukážeme, že A = {x ∈ X|f(x) 6= g(x)} je otvorená. Ak f(x) 6= g(x),
tak existujú otvorené množiny U a V také, že f(x) ∈ U , g(x) ∈ V a U ∩ V = ∅.
Potom f−1(U) ∩ g−1(V ) je otvorené okolie x, ktoré leží pod A.

Dôsledok 2. Ak f, g : X → Y sú spojité, Y je hausdorffovský a f |A = g|A pre
nejakú množinu A hustú v X, tak f = g.

Lema 6. Ku každému (T2−)priestoru Y a každému (uzavretému) podpriesto-
ru U ⊆ Y existujú (T2-)priestor Q a spojité zobrazenia r, s : Y → Q také, že
U = {y ∈ Y |r(y) = s(y)}.
Dôkaz. Q dostaneme tak, že v Y t Y stotožníme U v oboch kópiách priestoru
Y . Teda Q bude faktorový priestor Y tY podľa relácie ekvivalencie definovanej
x ∼ y ⇔ x = y∨u−1

1 (x) = u−1
2 (y) ∈ U ∨u−1

1 (y) = u−1
2 (x) ∈ U , kde u1, u2 : Y →

Y tY sú vloženia. Ak Y je T2 a Q je uzavretá, tak dostaneme opäť T2-priestor.
(Dva body toho istého sčítanca, ktoré sa v ňom dajú oddeliť pomocou U a V ,
oddelíme vo faktorovom topologickom priestore otvorenými množinami ui(U) a
ui(V ). Ak sú z rôznych sčítancov (t.j. ani jeden nemôže byť z U), tak ich oddelia
2 kópie množiny Y \ U .) Ak označíme h : Y t Y → Q, h = [u1, u2] tak za r a s
spĺňajúce vlastnosti z tvrdenia lemy možno zvoliť r = h ◦ u1 a s = h ◦ u2.

Tvrdenie 24. f je Top (Haus)-izomorfizmus práve vtedy, keď f je homeomor-
fizmus.

Definícia 37. Podpriestor A topologického priestoru Y sa nazýva retrakt topo-
logického priestoru Y , ak existuje spojité zobrazenie r : Y → A, ktoré ponecháva
na mieste každý bod A (t.j. r ◦ i = idA; kde i je vloženie). Takéto zobrazenie r
sa nazýva topologická retrakcia.

Tvrdenie 25. f je Top-koretrakcia práve vtedy, keď f je topologické vloženie a
f [X] je retrakt, čiže koretrakcie v Top sú (až na homeomorfizmus) práve vlože-
nia retraktov. f je retrakcia v Top práve vtedy, keď existuje topologická retrakcia
r a homeomorfizmus h, že f = h ◦ r, t.j. retrakcie sú (až na homeomorfizmus)
topologické retrakcie.
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Dôkaz. Nech f : A → X, g : X → A, g ◦ f = idA. Potom f : A → f [A] je
bijektívne a pre U ⊆ A je f [U ] = g−1(U) otvorená, tzn. f je homeomorfizmus
medzi A a podpriestorom X, teda f je vloženie. Pritom komutuje diagram

A
f // f [A]
f−1
oo

� � i //
X

f◦g
oo

Označme r = f ◦g. Potom r◦i = f ◦(g◦i) = f ◦f−1 = idf [A]. Teda f je vloženie
a f[A] je retrakt. Tiež g je (až na homeomorfizmus) retrakcia, lebo f : A→ f [A]
je homeomorfizmus.

Keďže Haus je plná podkategória Top, tak retrakcie a koretrakcie v Haus
sú tie isté ako v Top.

Tvrdenie 26. Nech X,Y ∈ Top (X,Y ∈ Haus) a f, g : X → Y sú spojité.
Potom ekvalizátor f a g v Top (Haus) je podpriestor Z = {x ∈ X : f(x) =
g(x)} priestoru X spolu s vložením i : Z ↪→ X.

Dôkaz. Platnosť f ◦ i = g ◦ i je zrejmá. Nech f ◦ h = g ◦ h pre nejaké spojité
zobrazenie f : Z → X. Potom musí platiť h[X] ⊆ Z. Ak teda vezmeme h : Z ′ →
X, h(x) = h(x), tak platí i◦h = h. Jednoznačnosť takéhoto morfizmu zabezpečí
fakt, že i je monomorfizmus.

Z
� � i // X

f //
g
// Y

Z ′

h

OO�
�
� h

>>}}}}}}}}

Tvrdenie 27. Nech X,Y ∈ Top (X,Y ∈ Haus) a f, g : X → Y sú spojité.
Označme R reláciu ekvivalencie na Y určenú tým, že f(x)Rg(x) pre všetky
x ∈ X. Nech Y/R je faktorový priestor a p : Y → Y/R prirodzená projekcia.
Potom (p, Y/R) je koekvalizátor dvojice f , g.

Dôkaz. Pre každé x ∈ X platí f(x)Rg(x), z čoho vyplýva p(f(x)) = p(g(x)),
teda p ◦ f = p ◦ g.

Nech h : Y → Y ′ je spojité zobrazenie také, že h ◦ f = h ◦ g. Definujme
potom h : Y/R → Y ′ predpisom h(p(y)) = h(y). Aby sme ukázali, že tento
predpis dobre definuje zobrazenie treba overiť, či platí y1Ry2 ⇒ h(y1) = h(y2).
Označme R′ = {(y1, y2) : h(y1) = h(y2)}. Zrejme R′ je relácia ekvivalencie a
pre každé x ∈ X platí f(x)R′g(x). Keďže R je najmenšia relácia ekvivalencie
s týmito vlastnosťami, tak R ⊆ R′, čo je vlastne implikácia, ktorú sme chceli
dokázať. Spojitosť h vyplýva z toho, že h ◦ p = h je spojité a p je faktorové
zobrazenie.

Ukázali sme teda, že existuje spojité zobrazenie také, že h ◦ p = h. Jedno-
značnosť takéhoto zobrazenia vyplýva z toho, že p je surjektívne, a teda je to
epimorfizmus.
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Tvrdenie 28. Nech f : A → B je Top (Haus)-morfizmus. Potom sú nasle-
dovné podmienky ekvivalentné:

(i) f je vloženie (uzavreté vloženie),

(ii) f je regulárny monomorfizmus,

(iii) f je extrémny monomorfizmus.

(Pod uzavretým vložením sa rozumie, že f [A] je uzavretý podpriestor B, čo je
ekvivalentné s tým, že vloženie f je uzavreté zobrazenie.)

Dôkaz. (i) ⇒ (ii) Ak v leme 6 položíme U = f [X], tak pre r, s, ktorých exis-
tenciu táto lema zaručuje platí f = Eq(r, s).

(ii) ⇒ (iii) Tvrdenie 10.
(iii) ⇒ (i) Nech U = f [X] (resp. U = f [X]) a h : U → Y je vloženie (resp.

uzavreté vloženie). Potom existuje práve jedno spojité zobrazenie g : X → U
také, že h ◦ g = f a g je surjektívne (husté), je to teda epimorfizmus. Potom g
musí byť izomorfizmus (lebo f je extrémny monomorfizmus). Potom aj f = h◦g
je vloženie (uzavreté vloženie).

Tvrdenie 29. Nech f : A → B je Top (Haus)-morfizmus. Potom sú nasle-
dovné podmienky ekvivalentné:

(i) f je faktorové zobrazenie,

(ii) f je regulárny epimorfizmus,

(iii) f je extrémny epimorfizmus.

Dôkaz. (i) ⇒ (ii) Nech X ×X je súčin s projekciami pi a k = Eq(f ◦ p1, f ◦ p2).
Tvrdíme, že potom f = Coeq(p1◦k, p2◦k). Podľa tvrdenia 26 a vety 13 hovoriacej
o jednoznačnosti limít, môžeme predpokladať, že k : K ↪→ X × X je vloženie,
pričom K = {(x, y) ∈ X × X : f(x) = f(y)}. Overme, či (f, Y ) má vlastnosti
koekvalizátora.

Rovnosť f ◦ p1 ◦ k = f ◦ p2 ◦ k je zrejmá. Nech platí g ◦ p1 ◦ k = g ◦ p2 ◦ k
pre nejaký morfizmus g : X → Z. Potom zrejme platí implikácia f(x) = f(y)⇒
g(x) = g(y). Z toho vyplýva, že môžeme nájsť g : Y → Z tak, aby g ◦ f = g.

Z

K
� � k // X ×X

p1 //
p2

// X
f
//

g
>>~~~~~~~~
Y

g

OO�
�
�

(ii) ⇒ (iii) Tvrdenie 10.
(iii)⇒ (i) Na Z = f [X] definujeme topológiu, ktorá je faktorová vzhľadom na

zobrazenie g : X → Z, ktoré je zúžením f . Nech h : Z → Y je zobrazenie také, že
h|Z = idZ . Potom f = h◦g a h je monomorfizmus. Potom h je izomorfizmus, lebo
f je extrémny a keďže g je faktorové zobrazenie, aj f je faktorové zobrazenie.

Tvrdenie 30. f je konštantný morfizmus v Top (Haus) práve vtedy, keď f je
konštantné zobrazenie.
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Špeciálne morfizmy

Tvrdenie 31. Každý neprázdny priestor v Top (Haus) je generátor.

Dôkaz. Nech X 6= ∅ a f, g : Y → Z sú nejaké morfizmy také, že f 6= g. Potom
existuje y ∈ Y také, že f(y) 6= g(y). Pre konštantné zobrazenie h : X → Y ,
h(x) ≡ y potom platí f ◦ h 6= g ◦ h, a konštantné zobrazenie je samozrejme
spojité.

Limity a kolimity

Tvrdenie 32. Súčin v kategórii Top (Haus) je topologický súčin topologických
priestorov. Kosúčin v kategórii Top (Haus) je topologický súčet topologických
priestorov.

Keďže kategórie Top a Haus majú, ako sme videli, súčiny, ekvalizátory,
kosúčiny a koekvalizátory, tak na základe vety 3 platí:

Tvrdenie 33. Kategórie Top a Haus sú úplné a koúplné.

V topológii sa definuje adjungovaný priestor takto:

Definícia 38. Nech X, Y sú topologické priestory, M ⊂ X je topologický
podpriestor a f : M → Y je spojité. X ∪f Y = (X t Y )/E, kde E je najmenšia
ekvivalencia na X ∪ Y taká, že xEf(x) pre všetky x ∈M .

Poznamenajme, že napríklad v [ENG] sa navyše požaduje, aby M bol uzav-
retý podpriestor X, my to vyžadovať nebudeme.

Keď porovnáme uvedenú definíciu s kanonickou konštrukciou pushoutu (trv-
denie 17), vidíme, že ide o tú istú konštrukciu, s tým rozdielom, že pri pushoute
nežiadame, aby m : M → X bolo vloženie, teda pushout je všeobecnejší. Platí
teda tvrdenie:

Tvrdenie 34. Nasledujúci diagram je pushout:

M
f //

� _

m

��

Y

k

��
X

j // X ∪f Y

Ak Y je jednobodový, tak X ∪f Y ∼= X/M .
Nech iX : X ↪→ X t Y , iY : Y ↪→ X t Y sú vloženia a q : X ⊕ Y → X ∪f Y

je prirodzená projekcia. Ich zloženia

j = qiX : X → X ∪f Y a k = qiY : Y → X ∪f Y

sú spojité a množina C ⊂ X∪fY je otvorená (uzavretá) práve vtedy, keď j−1(C)
a k−1(C) sú otvorené (uzavreté) v X resp. v Y .
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[C je otvorená (uzavretá) v X ∪f Y ⇔ q−1(C) v X ⊕ Y ⇔ i−1
X q−1(C) v X a

i−1
Y q−1(C) v Y ]

Ľahko sa overí, že:

j−1k(B) = f−1(B) a k−1k(B) = B pre B ⊂ Y, (1)

j−1j(A) = A ∪ f−1f(A ∩M) a k−1j(A) = f(A ∩M) pre A ⊂ X. (2)

[j−1k(B) = prvky z X, ktoré sú ekvivalentné s prvkami z B = f−1(B)
k−1k(B) = prvky z Y , ktoré sú ekvivalentné s prvkami z B = B
j−1j(A) = prvky z X, ktoré sú ekvivalentné s prvkami z A = A ∪ f−1f(A)
k−1j(A) = prvky z Y , ktoré sú ekvivalentné s prvkami z A = f(A ∩M)]

Na základe týchto vzťahov môžeme ukázať, že platí:

Tvrdenie 35. Nech X, Y sú topologické priestory, A ⊂ X, f : A → Y je
faktorové zobrazenie. (Nepredpokladám uzavretosť A.) Potom k : Y ↪→ X ∪f Y
je vloženie a j : X → X ∪f Y je faktorové zobrazenie. Ak navyše M ⊆ Y je
otvorený (uzavretý) podpriestor, tak k(Y ) je otvorený (uzavretý) podpriestor.

Dôkaz. Nech U ⊂ Y je otvorená. Treba zistiť, či k(U) je otvorená v Y . Využitím
(1) a (2) dostaneme, že k−1(k[U ]) = U je otvorená v Y a j−1k(U) = f−1(U) je
otvorená v X, čiže k(U) je otvorená. Tým sme overili, že k je vloženie.

Overme tiež, či j je faktorové. Ak j−1(U) je otvorená v X, tak f−1k−1(U) =
j−1(U) ∩A je otvorená v A, čiže aj k−1(U) je otvorená (f je faktorové). Keďže
j−1(U) aj k−1(U) sú otvorené, U musí byť otvorená.

Ak platí, že M je otvorená (uzavretá) v Y , tak j−1(k(Y )) = f−1(Y ) = M
aj k−1(k(Y )) = Y sú otvorené (uzavreté), teda aj k(Y ) je uzavretá. otvorené
(uzavreté)

Definícia 39. Nech A je usmernená množina a {Rα;α ∈ A} je systém navzájom
topologických priestorov. Nech pre každú dvojicu α, β ∈ A takú, že α < β je
dané spojité zobrazenie ϕαβ : Rα → Rβ a platí ϕαγ = ϕαβ ◦ ϕβγ pre α < β < γ.
Potom systém {Rα, ϕαβ ;α, β ∈ A,α < β} nazývame usmernený (induktívny)
systém topologických priestorov.

Nech R =
⊔
α∈A

Rα, definujme na R ekvivalenciu tak, že pα ∈ Rα a pβ ∈ Rβ
sú ekvivalentné práve vtedy, keď ϕαγ (pα) = ϕβγ (pβ) pre nejaké γ ∈ A. Potom
faktorový priestor R∗ priestoru R vzhľadom na túto ekvivalenciu sa nazýva
priama (induktívna, usmernená) limita systému {Rα, ϕαβ}. a označuje sa R∗ =
lim−→{Rα, ϕ

α
β ;α, β ∈ A,α < β}.

Napríklad ak A = N a ϕnn+1 sú vloženia, tak R∗ je priestor obsahujúci všetky
Rn ako svoje podpriestory, každý z nich je induktívne vložený v nasledujúcom.

Vlastnosti kategórií Top a Haus

Lema 7. Ak X je hausdorffovský priestor a A ⊆ X, tak platí cardA ≤ 22cardA
.
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Dôkaz. Pre každé x ∈ A definujme systém množín A(x) = {U ⊆ A : x ∈
U a U je otvorená v A}. Z oddeliteľnosti ľubovoľných dvoch bodov otvorenými
množinami vyplýva, že pre x 6= y A(x) 6= A(y). Pretože kardinalita všetkých
systémov podmnožina A nemôže prevýšiť 22cardA

, máme cardA ≤ 22cardA
.

Tvrdenie 36. Kategórie Top a Haus sú lokálne malé, kolokálne malé, ex-
trémne lokálne malé, extrémne kolokálne malé.

Dôkaz. Reprezentatívnu množinu podobjektov a extrémnych podobjektov X
možno vybrať z topologických priestorov na podmnožinách X. Podobne pre
kvocienty a extrémne kvocienty v Top, lebo kardinalita obrazu v surjektív-
nom zobrazení nepresiahne kardinalitu oboru zobrazenia. V Haus platí nerov-
nosť cardA ≤ 22cardA

, a teda epimorfizmy a extrémne epimorfizmy môžeme
reprezentovať pomocou zobrazení do množiny P(P(X)), ktorá má kardinalitu
22cardX

.

Lema 8. V Top (Haus) sa každý morfizmus f dá napísať v tvare f = m◦b◦e,
kde m je monomorfizmus, b je bimorfizmus a e je epimorfizmus.

Dôkaz. Nech f : X → Y je spojité. Nech B je podpriestor Y na množine
f [X] (f [X]). Nech A je topologický priestor na množine f [X] (f [X]), ktorý
je faktorový vzhľadom na zobrazenie f (resp..jeho príslušné zúženie). Potom
b = id : A → B je spojité (lebo A má najhrubšiu topológiu, pri ktorej je f
spojité, teda B má jemnejšiu topológiu ako A). Potom f = m ◦ b ◦ e je hľadaná
faktorizácia.

Tvrdenie 37. Top (Haus) je (epi, extrémne mono)-faktorizovateľná kategória
a (extrémne epi, mono)-faktorizovateľná kategória.

Dôkaz. Uzavretosť vystupujúcich tried epimorfizmov a monomorfizmov je zrej-
má z toho, ako sú tieto typy morfizmov charakterizované v kategóriach Top a
Haus. Ak f = m ◦ b ◦ e je faktorizácia morfizmu f : X → Y z predchádzajúcej
lemy, tak f = (m ◦ b) ◦ e je (extrémne epi,mono)-faktorizácia a f = m ◦ (b ◦ e)
je (epi, extrémne mono)-faktorizácia f . Aby sme ukázali jednoznačnosť v oboch
týchto faktorizáciach, stačí ukázať jednoznačnosť v rozklade z predchádzajúcej
lemy. Nech teda f = m1 ◦ b1 ◦ e1 = m2 ◦ b2 ◦ e2 sú takéto faktorizácie f cez A1

a B1 resp. cez A2 a B2. m1 a m2 sú homeomorfizmy medzi svojím oborom a
f [X] (f [X]), to znamená, že B1 a B2 sú navzájom homeomorfné podpriestory
Y . b1 a b2 môžeme (homeomorfne) nahradiť identitou, a potom dostaneme ho-
meomorfizmus medzi faktorovými priestormi A1 a A2, lebo budú homeomorfné
s faktorovým priestorom daným tým istým faktorovým zobrazením.


