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0.1 Uvod do kategérii

Tato cast je tu uvedend kvoli tomu, aby pracu mohol éitat aj ten, kto nepozné
tedriu kategdrii. Je to teda velmi struény tGvod do tedrie kategérii, ktory obsa-
huje pojmy, ktoré budeme pouzivat. Cast venovana kategériam Top a Haus je
vlastne akymsi prekladovym slovnikom medzi topologickymi a kategoridlnymi
pojmami.

0.1.1 Kategorie, podkategorie, funktory

Definicia 1. Kategdriou nazyvame usporiadani $tvoricu A = (Ob, hom, id,
o), kde

(i) OD je trieda, ktorej prvky sa nazyvaji objekty kategérie A (A-objekty).

(ii) Kazdej usporiadnej dvojici (A4, B) A-objektov je priradend préve jedna
mnozina, ktort ozna¢ime hom(A, B), ktorej prvky sa nazyvaju A-morfiz-
my z objektu A do objektu B.

(iii) Pre kazdy A-objekt A existuje A-morfizmus id4 € hom(A, A).

iv) Pre Iubovolné A-objekty A, B, C a Iubovolné A-morfizmy f € hom(A, B),

iv) Pre lubovolné A-objekty A, B, C a lubovolné A fi f €h A B
g € hom(B,C) existuje prave jeden A-morfizmus g o f € hom(A4,C),
pricom plati:

(a) Pre Iubovolné f € hom(A, B), g € hom(B,C), h € hom(C, D) plati:
ho(gof)=(hog)of.
(b) Pre lubovolné f € hom(A, B) plati:
foida=f=idgof.
(c) Pre lubovolné A-objekty A, B, C, D také, ze (A, B) # (C, D), plati
hom(A4, B) Nhom(C, D) = 0.

id4 sa nazyva identita na A a o skladanie morfizmov. Trieda vSetkych
A-morfizmov sa oznacuje Mor(A).

Priklad 1. Priklady kategérii: Kategdéria Set mnozin a zobrazeni medzi nimi.
Kategoria Top topologickych priestorov a spojitych zobrazeni medzi nimi. Ka-
tegdria Haus hausdorffovskych topologickych priestorov a spojitych zobrazeni
medzi nimi. Vo vSetkych uvedenych kategdriach je o obvyklé skladanie zobrazeni
a id je identické zobrazenie.

Morfizmy nemusia vzdy predstavovat zobrazenia, ako ukazuji nasledovné
dva priklady.

Priklad 2 (Monoid ako kategdéria). Pre kazdy monoid (pologrupu s jednot-
kou) (M, e,e) je C(M,e,e) = (Ob, hom, id, o) kategéria s jedinym objektom, ak
polozime Ob = {M}, hom(M, M) =M, idyy = e, yox =y e x.



Priklad 3 (Usporiadana trieda ako kategdria). Ak X je trieda a < je
usporiadanie na X (t.j. reflexivna, antisymetrickd a tranzitivna triedova relacia
na X). Potom mozeme definovat kategériu C tak, Zze polozime Ob(C) = X,

hom(z,y) = {é)x,y) ?rl;i =Y idx = (z,z) a (y,2) o (z,y) = (x, 2).

Morfizmy sa ¢asto zvyknu znézortiovat v diagramoch pomocou Sipok, napri-
klad nasledovny diagram znazornuje dva morfizmy f, g € hom(A, B).

Definicia 2. Pre Tubovolntu kategériu A = (Ob,hom, id, o) dudlna kategoria
ku A je kategdria A% = (Ob,hom® id, 0°P), kde hom®” (A, B) = hom(B, A) a
fo?g=gof.

Prechod od kategdrie A ku dudlnej kategdrii vlastne znamend obratenie
vsetkych sipok v diagramoch znazornujtcich morfizmy.

Kazdu vlastnost Saer(X) A°P-objektu X mozno sucasne vyslovit ako vlast-
nost S (X) (lebo X je stcasne aj A-objektom). S° sa nazyva dudlna vlastnost
k S. Podobne k Iubovolnému vyroku P tykajicemu sa nejakych morfizmov a
objektov kategdrie A moZno vyslovit dudlny vyrok P°P. Dudlny vyrok bude
platit v A°P prave vtedy, ked v A plati povodny vyrok. Pretoze (A°P)°P = A,
tak plati:

Veta 1 (Princip duality). Ak vyrok P plati pre lubovolni kategdriu A, tak aj
P°P plati pre lubovolni kategdriu A.

Definicia 3. Ak S < S°P, tak S sa nazyva samodudlna vlastnost.

Vdaka principu duality, ak dokdzeme nejaké tvrdenie, dokézali sme uz aj
duélne tvrdenie. (“Jednou ranou zabijeme dve muchy, avSak niekedy sa tie dve
muchy rovnaja.”)

Definicia 4. Kategéria A sa nazyva podkategoria kategdérie B, ak st splnené
nasledovné podmienky:

(i) Ob(A) C Ob(B),

(ii) pre kazdé A, B € Ob(A), homa (A, B) C homg (A4, B),
(iii) pre kazdy A-objekt A B-identita na A je A-identita na A.
(iv) skladanie v A je zGZenim skladania v B na A-morfizmy.

A sa nazyva pind podkategdria B, ak navySe plati pre kazdé A,B € A
homa (A4, B) = homg (A4, B).

7 definicie vyplyva, ze plna podkategéria je Gplne urcena triedou svojich
objektov.
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Definicia 5. Kategoria sa nazyva mald, ak jej trieda objektov je mnozina.

Definicia 6. Ak A a B su kategérie, tak funktor F' z A do B je zobrazenie,
ktoré priradi kazdému A-objektu A B-objekt F(A) a kazdému A-morfizmu
f+ A— A’ B-morfizmus F(f): F(A) — F(A’), pri¢om plati:

(i) F zachovava skladanie, t.j. F'(f og) = F(f) o F(g),
(i) F zachovava identitu, t.j. F(ida) = idp(a).

Pod skladanim funktorov rozumieme ich zloZenie ako zlozenie zobrazeni t.j.

G o F(4) = G(F(A)), Go F(f) = G(F()).

Definicia 7. Ak A je podkategoria kategdrie B, tak funktor F: A — B, taky,
ze E(A) = A pre lubovolny A-objekt A a E(f) = f pre lubovolny A-morfizmus
f sa nazyva funktor vloZenia.

Niektoré vysledky o reflektivnych podkategériach, ktorymi sa budeme zaobe-
rat, vyplyvaju z tvrdeni o adjungovanych funktoroch. My vSak tieto tvrdenia
dokéazeme bez pouzitia adjungovanych funktorov, preto tu ani neuvadzame de-
finicie pojmov suvisiacich s touto problematikou.

0.1.2 Speciilne morfizmy

Vo zvysku kapitoly budeme predpokladat, Ze pracujeme s nejakou kategériou A,
budeme preto skratene pisat morfizmus namiesto A-morfizmus, objekt namiesto
A-objekt a pod. Rovnakii dohodu budeme pouzivat vsade tam, kde v tvrdeni
budt vystupovat objekty a morfizmy len z jednej kategdrie a od danej kategdrie
nebudeme pozadovat nijaké Specidlne vlastnosti.

Definicia 8. Morfizmus f: A — B sa nazyva monomorfizmus, ak pre kazdé
dva morfizmy g, h: B — C z rovnosti f o g = f o h vyplyva rovnost h = g.
Dualny pojem: Morfizmus f: A — B sa nazyva epimorfizmus, ak pre kazdé
dva morfizmy g, h: B — C z rovnosti go f = ho f vyplyva rovnost h = g.
f je bimorfizmus , ak je monomorfizmus aj epimorfizmus.

Tvrdenie 1. Ak f: A — B, g: B — C si monomorfizmy (epimorfizmy, bi-
morfizmy), tak g o f je monomorfizmus (epimorfizmus, bimorfizmus).

Doékaz. a) gofoh=gofok= foh=fok=h=k
b) hogof=kogof=hog=kog=h=k
¢) Priamy dosledok a) a b). O

Tvrdenie 2. Nech f o g je monomorfizmus. Potom g je monomorfizmus.
Dudlne turdenie: Ak go f je epimorfizmus, tak g je epimorfizmus.

Dokaz. goh=gok = fogoh=fogok=h=k O



Definicia 9. Morfizmus f: A — B sa nazyva retrakcia, ak existuje morfizmus
g: B — A taky, ze fog=1idp.

Dudlny pojem: Morfizmus f: A — B sa nazyva koretrakcia, ak existuje
morfizmus g: B — A taky, ze go f =ida.

Morfizmus f: A — B je izomorfizmus, ak je retrakcia aj koretrakcia.

Bimorfizmus a izomorfizmus st priklady samodudalnych vlastnosti.

Tvrdenie 3. Ak f: A — B, g: B — C su retrakcie (koretrakcie, izomorfizmy),
tak g o f je retrakcia (koretrakcia, izomorfizmus).

Dokaz. Majme h: B — A, k: C — B také, ze f o h =idg, g o k = idc. Potom
(gof)o(hok)=go(foh)ok=goidgok =gok =idc. Tym je ukdzana
prva cast tvrdenia. Druhd ¢ast je dudlne tvrdenie k prvej a tretia cast vyplyva
z prvych dvoch. O

Tvrdenie 4. Nech f: A — B, g: B — C si morfizmy. Ak go f je koretrakcia,
tak f je koretrakcia. Ak g o f je retrakcia, tak g je retrakcia.

Dokaz. gof je koretrakcia znamend, Ze existuje morfizmus h taky, ze ho(go f) =
(hog)o f=ida, teda aj f je koretrakcia. O

Tvrdenie 5. Kazda koretrakcia je monomorfizmus. KaZdd retrakcia je epimor-
fizmus.

Dokaz. Nech f: A — B je koretrakcia a g: B — A je lavy inverzny morfizmus
k f,tj.9: B— A, gof=idy. Ak foh= fok,tak h=idpsoh=go foh=
go fok =1idaok =k. Druhd éast tvrdenia vyplyva z duality. 0

Lema 1. Ak f: A — B, g,h: B — A su morfizmy také, Ze go f = ids a
foh=1idpg, tak g = h.

Dékaz.h:idAOh:(gof)oh:go(foh,):goidB:g O

Tvrdenie 6. Morfizmus f: A — B je izomorfizmus prdve vtedy, ked existuje
morfizmus g: B — A taky, Ze go f = ida, fog = idg. Takyto morfizmus je
urceny jednoznacne.

Dokaz. Implikacia je zrejma. Implikacia vyplyva z prechadzajtcej lemy.
O

Definicia 10. Ak f je izomorfizmus, tak morfizmus g: B — A taky, ze fog =
idp a go f =1ida sa nazyva inverzny morfizmus k f a oznacuje sa f~1.

Ako dosledok predchadzajticeho tvrdenia dostdvame:
Tvrdenie 7. Ak f je izomorfizmus, tak aj f~1 je izomorfizmus.

Definicia 11. Ak existuje izomorfizmus f: A — B, tak hovorime, Ze objekty
A a B st izomorfné, oznacujeme A = B.
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Z tvrdenia 3, tvrdenia 7 a z toho, ze kazda identita je izomorfizmus vyplyva,
ze relacia 2 je relacia ekvivalencie na triede objektov.

Definicia 12. Plnd podkategéria A kategérie B sa nazyva uzavretd na izo-
morfizmy, ak kazdy B-objekt, ktory je izomorfny s nejakym A-objektom, je
A-objekt.

Definicia 13. Nech f,g: A — B st morfizmy. Morfizmus e: £ — A sa nazyva
ekvalizator f a g, ak st splnené nasledovné podmienky:

() foe=goc,

(ii) pre Iubovolny morfizmus e': E' — A taky, ze foe’ = goe’ existuje jediny
morfizmus €: ' — E taky, %e diagram

El

I

E?A:Q;B

komutuje, t.j. taky, ze eo€e = ¢'.

Ekvalizator f a g oznacujeme e = Eq(f, g).
Duélny pojem: Morfizmus ¢: A — C' sa nazyva koekvalizdtor dvojice mor-
fizmov f a g, ak

(i) cof =coy,

(ii) pre kazdy morfizmus ¢’ taky, ze ¢’ o f = ¢ o g existuje jediny morfizmus ¢
taky, Ze coc = .

Morfizmus e: E — A sa nazyva reguldrny monomorfizmus, ak je ekvalizator
nejakej dvojice morfizmov. Morfizmus c: A — C sa nazyva requldrny epimorfiz-
mus, ak je koekvalizator nejakej dvojice morfizmov.

Tvrdenie 8. Reguldrny monomorfizmus je monomorfizmus. (Reguldrny epi-
morfizmus je epimorfizmus.)

Dokaz. Nech f = Eq(r,s). Nech fog= foh. Potomro(fog)=so(fog)a
podla definicie existuje jediny morfizmus h taky, ze fog = foh, tedag=h. O

Definicia 14. Monomorfizmus m sa nazyva extrémny monomorfizmus , ak
spliia nasledovnti podmienku: Ak m = f oe, kde e je epimorfizmus, tak e je
izomorfizmus.

Duélny pojem: Epimorfizmus e sa nazyva eztrémny epimorfizmus , ak spliia
nasledovni podmienku: Ak e = m o f, kde m je monomorfizmus, tak m je
izomorfizmus.

Tvrdenie 9. Ak go f je extrémny monomorfizmus, tak f je extrémny mono-
morfizmus.
Ak g o f je extrémny epimorfizmus, tak g je extrémny epimorfizmus.



Dokaz. 7 tvrdenia 2 vieme, Zze f je monomorfizmus. Nech f = hoe a e je
epimorfizmus. Potom go f =gohoe, ale go f je extrémny monomorfizmus, a
teda e je izomorfizmus.

Druhé ¢ast tvrdenia je duélna k prvej. O

Tvrdenie 10. Ak f: X — Y je morfizmus, tak kaZdd z uvedengch podmienok
implikuje nasledujicu:

(i) f je izomorfizmus

(i) f je koretrakcia
(iii) f je reguldrny monomorfizmus
(iv) f je extrémny monomorfizmus
(v) f je monomorfizmus.

(Dudlne tvrdenie: f je izomorfizmus = retrakcia = reguldrny epimorfizmus
= extrémy epimorfizmus = epimorfizmus.)

Doékaz. (1)=(ii) vyplyva priamo z definicie.

(ii)=(iii) Ak go f = ids ukdzeme, ze f = Eq(idg, fog). Plati (fog)o f =
folgof)=foida=f=idgof. Ak (fog)oh=h, tak h=fo(goh)a
takyto morfizmus existuje jediny, lebo f je monomorfizmus.

(iii)=-(iv) Nech f = Eq(r,s) a f = g o e, prifom e je epimorfizmus. Plati:
(rogloe=ro(goe)=rof=sof=so(goe) = (sog)oe, a teda aj
rog = sog (lebo e je epimorfizmus). Podla univerzilnej vlastnosti v definicii
ekvalizatora musi potom existovat jediny morfizmus e’ taky, e ¢ = foe’. Mame
potom foidg=f=goe= foe oea f je monomorfizmus, ¢iZe €’ o e = idy,
t.j. e je koretrakcia. Dalej idpoe =e=ecoidg =eo (e’ oe)=(eoe)oecacje
epimorfizmus, ¢ize idg = eo€’, t.j. e je koretrakcia. e je retrakcia aj koretrakcia,
teda e je izomorfizmus.

(iv)=-(v) Vyplyva priamo z definicie. O

Tvrdenie 11. Nech f: A — B je morfizmus. Nasledovné podmienky si potom
ekvivalentne:

(i) f je izomorfizmus

(i) f je epimorfizmus a koretrakcia
(iii) f je epimorfizmus a extrémny monomorfizmus
(iv) f je monomorfizmus a retrakcia

(v) f je monomorfizmus a extrémny epimorfizmus.

Dokaz. Vdaka dualite staéi dokazovaf len ekvivalenciu prvych troch podmienok.

(i) = (ii) vyplyva priamo z definicie a (ii) = (iii) z predchddzajtaceho tvr-
denia. (iii) = (i): f =idp o f a f je epimorfizmus a extrémny monomorfizmus
znamena, ze f je izomorfizmus. O
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Definicia 15. Usporiadana dvojica (M, m), kde m: M — A je monomorfizmus
sa nazyva podobjekt objektu A.

Usporiadana dvojica (M, m), kde m: M — A je extrémny monomorfizmus
sa nazyva extrémny podobjekt objektu A.

Usporiadana dvojica (k, K), kde k: A — K je epimorfizmus sa nazyva kvo-
cient objektu A.

Usporiadana dvojica (k, K), kde k: A — K je extrémny epimorfizmus sa
nazyva extrémny kvocient objektu A.

Definicia 16. Kategéria sa nazyva lokalne mald, ak pre kazdy jej objekt A
existuje mnoZina podobjektov (M;, m;), i € I také, Ze pre kazdy podobjekt
(M, m) objektu A existuje i € I a izomorfizmus f: M; — M taky, ze m; = mo f.

Kategéria sa nazyva extrémne lokdlne mald, ak pre kazdy jej objekt A exis-
tuje mnozina extrémnych podobjektov (M;,m;), i € I taka, Ze pre kazdy ex-
trémny podobjekt (M, m) objektu A existuje ¢ € I a izomorfizmus f: M; — M
taky, ze m; = mo f.

Kategdria sa nazyva kolokdlne mald, ak pre kazdy jej objekt A existuje mno-
zina kvocientov (k;, K;), i € I takd, ze pre kazdy kvocient (k, K) objektu A
existuje ¢ € I a izomorfizmus f: M; — M taky, ze k; = ko f.

Kategéria sa nazyva extrémne kolokdlne mald, ak pre kazdy jej objekt A
existuje mnoZina extrémnych kvocientov (k;, K;), ¢ € I takd, Ze pre kazdy ex-
trémny kvocient (k, K) objektu A existuje ¢ € I a izomorfizmus f: M; — M
taky, ze k; = ko f.

Definicia 17. Morfizmus f: A — B sa nazyva konstantny, ak pre kazdé dva
morfizmy g,h: C — A plati ko g = ko h. f je kokonstantny, ak pre kazdé dva
morfizmy g,h: B — C plati goh=gok.

Morfizmus, ktory je konstantny aj kokonstantny sa nazyva nulovy morfizmus

0.1.3 Speciilne objekty

Definicia 18. Objekt [ sa nazyva inicidlny objekt, ak pre kazdy objekt A
existuje prave jeden morfizmus f: I — A.

Duaélny pojem: Objekt T' sa nazyva terminalny objekt, ak pre kazdy objekt
A existuje prave jeden morfizmus f: A — T.

Objekt, ktory je inicidlny aj terminalny, sa nazyva nulovy objekt.
Definicia 19. Objekt S sa nazyva separdtor (generdtor), ak pre kazdé dva
rozne morfizmy f,g: A — B existuje morfizmus h: S — A taky, ze foh # goh.

Objekt C sa nazyva kosepardtor, ak pre kazdé dva rézne morfizmy f,g: A —
B existuje morfizmus h: B — C taky, ze ho f # hog.

0.1.4 Limity a kolimity

Definicia 20. Zdroj je dvojica (A4, (fi)icr), kde A je objekt a f;: A — A; st
morfizmy.
Ustie je dvojica ((f;)icr, A), kde A je objekt a f;: A — A; st morfizmy.



Ak § = (A, (fi)ier je zdroj a f: B — A je morfizmus, tak oznacime zdroj
(B, (fio )Zej> S o f. Podobne pre ustia pouzivame znacenie f oS = ((f o
fi)ier, B), ak S = ((fi)ier, A) je Gstie a f: A — B je morfizmus.

Definicia 21. Zdroj S = (A, (f:)ier) sa nazyva monozdroj, ak pre kazda dvojicu
morfizmov r,s: B — A z rovnosti S or = S o s vyplyva rovnost r = s.

Ustie S = ((f;)icr, A) sa nazyva epitstie, ak pre kazda dvojicu morfizmov
r,s: A — Bz rovnosti roS = s 0 S vyplyva rovnost r = s.

Monozdroj sa nazyva extrémny monozdroj, ak plati: Ak S = Soe pre nejaky
epimorfizmus e, tak e je izomorfizmus.

Epitistie sa nazjva extrémne epitstie, ak plati: Ak S = m o S pre nejaky
monomorfizmus m, tak m je izomorfizmus.

Definicia 22. Diagram v kategérii A je funktor D: I — A. I sa nazyva schéma
diagramu. Diagram s malou (konefnou) schémou sa nazyva maly (konecny)
diagram.

Pre diagramy zvykneme pisat D; namiesto D(i).

Definicia 23. Nech D: I — A je diagram.
A-zdroj (A, (fi)icob)) (fi: A — D;) sa nazyva prirodzeny zdroj pre D, ak
pre kazdy I-morfizmus d: ¢ — j komutuje diagram:

A
f/ \{f
Di _— D]
Dd

Prirodzeny A-zdroj (L, (I;)icob(r)) sa nazyva limita D, ak mé4 univerzalnu
vlastnost, ze pre kazdy prirodzeny zdroj (A, (fi)icob((r)) pre D existuje jediny
morfizmus f: A — L taky, ze f; = l; o f pre vSetky i € Ob(I).

A—1 o7
N

A-tstie ((fi)icob), 4) sa nazyva prirodzené dstie pre D, ak pre kazdy
I-morfizmus d: i — j komutuje diagram:

D, — P4 D;
fx /fj
A

Prirodzené tstie ((c;);con), C) pre D sa nazyva kolimita D, ak pre kazdé
prirodzené tstie ((f;)icon(),A) pre D existuje jediny morfizmus f: C — A
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taky, Ze f; = f oc; pre kazdé i € Ob(I).
A f

NS
D;

Tvrdenie 12. KaZda limita je extréemny monozdroj. KaZdd kolimita je extrémne
epiustie.

C

Dokaz. Nech Sor = Sos. Sor je tiez tstie, podla definicie limity teda existuje
jediny morfizmus s taky, ze Sor =S os, teda r = s.

Nech £ = Soe a e je epimorfizmus. Podla definicie limity existuje h také, ze
pre kazdé i € Ob(I) ;o h = s;. Potom [;ohoe =s;0e =1; =1; 0oidy. V prvej
Casti dokazu sme uz ukazali, ze limita je monozdroj, z coho vyplyva hoe = idy,.
KedZe e je epimorfizmus a koretrakcia, podla tvrdenia 11 je izomorfizmus.

Druhé ¢ast tvrdenia je duélna k prvej. O

Tvrdenie 13 (Jednoznaénost limity). Ak £ = (l;);cobm, li: L — D; je
limita diagramu D: 1 — A, tak

(i) pre kazZdi limitu I = (ki)icobw), ki: K — D;, diagramu D ezistuje izo-
morfizmus h: K — L taky, Ze K = Lo h,

(i) pre kazdy izomorfizmus h: A — L je zdroj L o h limita diagramu D.

Doékaz. (i) Z definicie limity vieme, Ze existuje jediny morfizmus h taky, Ze
K = Loh. Kedze K je tiez limita, sticasne existuje jediny morfizmus h’ taky, zZe
L =Kol/.Kedze Koh'oh = Loh = K = Koidg a K je podla predchddzajiceho
tvrdenia monozdroj, tak h' o h = idk. Analogicky sa ukdze aj h o h’' = idy, ¢o
znamena, ze h je izomorfizmus.

Kt
N

(i) Pretoze L je prirodzeny zdroj, aj £ o h je prirodzeny zdroj vzhladom
na D. Ozna¢me jeho morfizmy I} = hol;: LI’ — D Ak K je prirodzeny zdroj
vzhladom na D, tak existuje jediny morfizmus k: K — L taky, ze K = Lo k.
Potom h=tok: K — L’ je morfizmus taky, ze K = L' o (h~!ok). Jednoznac¢nost
vyplyva z toho, ze £ = h o L je monozdroj. Ak totiz roho L = soho L,
tak r o h = s o h, a pretoZze kazdy izomorfizmus je monomorfizmus, potom aj
r=Ss. O

Suéin a kosuéin

Definicia 24. Ustie P = (p;: P — A;);e; sa nazyva sicin ak pre kazdé tstie
S = (fi: A— A))cr existuje jediny morfizmus f: A — P taky, ze S =Po f.
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Priklad 4. V Set je sti¢inom Iubovolného systému mnozin ich kartézsky sucin,
projekcie st projekcie na zlozky p;: [[ 4: — A;.
iel

Sac¢in mozeme interpretovat ako limitu funktora z diskrétnej kategdrie (t.j.
schéma diagramu je kategoria, ktora okrem identit neobsahuje Ziadne iné mor-
fizmy).

7 tvrdenia o jednoznacnosti limity potom vyplyva, Ze sucin je jednoznacne
(az na izomorfizmus) uréeny objektami A;.

Sucin systému objektov (A;);cr oznaCujeme [ A;, morfizmy p;: [[ 4; —

i€l i€l

A; sa nazyvaju projekcie. Pre stcin kone¢ného systému pouzivame tiez znacCenie
Ay X - X Ag, resp. A X B.

Ak (JTA:,pi: [TAi — Ai)ier je siin a (A, fi: A — A;);er je ustie, tak
podTla definicie sti¢inu existuje jeding morfizmus f: A — [[ A; taky, ze f; = pjof
pre vSetky j € I. Tento morfizmus zna¢ime (f;).

AL 4,

Aj
V pripade, Ze mnozina I je koneéné, pouzivame tiez znacenie (f;) = (f1,..., fa)-

Tvrdenie 14. Ak (p;: P — A;)icr je sucin aig € I je také, Ze pre vietky i € I
plati hom(A;,, A;) # 0, tak p;, je retrakcia.

Dokaz. Pre kazdé i € I vyberme f; € hom(4;,, 4;), pricom f;, = ida, . Potom
(fi): Aiy — P je morfizmus s vlastnostou p;, o (fi) = fi, = ida, . O

Definicia 25. Hovorime, ze kategéria md siciny, ak pre kazdy systém objektov
(As)ier (I je mnozina) existuje sacin ([[ A, p;: [14i — 4j)jer.

Definicia 26. Ak f;: A; — B; st morfizmy a ([[A;,7;: [[4i — Aj)jer,
(I Bi,p;: [1Bi — Bj)jer, su stéiny, tak podla definicie sG¢inu existuje jediny
morfizmus f taky, ze diagram

HAif:Hftl—[Bi

komutuje pre kazdé j € I. Potom f oznacujeme [] f; a nazyvame sicinom
il
systému morfizmov (f;)icr. Ak I je konefnd, pouzivame tiez oznaCenie fi X

...Xf2.
Lema 2. [[gio[[fi=T1I(gio fi)

i€l iel iel
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Dokaz. Nech f;: A; — B, g;: B; — C}, projekcie ozna¢me p4,, pp,, pc,. Potom
plati pc; o [[(gio fi) = gjo fjopa; = gjopp; o] fi = pc; o[ gio]] fi. Priamo
z definicie st¢inu (alebo z toho, Ze sucin je limita, a teda monozdroj) uz potom

vyplyva, ze [[(gi o fi) = [1gi o [1 fi-

va, l vs, l e, l
Aj 7 Bj 7 C

Désledok 1. []ida, = idpq 4, -

Dokaz. pjo[[ida, = ida, o pj = pj = pjo idpy a; pre vsetky j € I. Kedze
produkt je monozdroj, tak z toho dostaneme [[ids, = idyy A, - O

Tvrdenie 15. (i) Ak f; je retrakcia pre kazdé i € I, tak ] fi je retrakcia.
(Sucin retrakcit je retrakcia).

(i) Ak f; je koretrakcia pre kazdé i € I, tak [] fi je koretrakcia. (Sucin koret-
rakcit je koretrakcia).

(iii) Ak f; je izomorfizmus pre kaZdé i € I, tak [[ f; je izomorfizmus. (Sucin
izomorfizmov je izomorfizmus).

(iv) Ak f; je monomorfizmus pre kazdé i € I, tak [] fi je monomorfizmus.
(Sicin monomorfizmov je monomorfizmus).

Dokaz. (i): Ak fjog; = ida,, tak podla predchidzajicej lemy a dosledku [] f; o
[19; = idy 4,- (ii) sa ukaze tiplne analogicky ako (i) a (iii) vyplyva z (i) a (ii).
(iv): Oznaéme m = [[m;. Nech f,g: C — [] A; st také, ze mo f =mog.

m=[]m;

f
C:>>QHAi—>HBi

A;C—— B
m;

Potom mjopjof =gjom = f = giomog = m;op;og. Pretoze m je
monomorfizmus, tak potom p; o f = p; o g. Vdaka tomu, Ze st€in je monozdroj,
vyplyva z toho f = g. O

Lema 3. Nech A md suciny. Nech I je mnozina a e;: E; — A; je A-ekvalizdtor
fisgit Ai — By pre kazdé i € I. Potom [[e;: [[A:i — [[B: je ekvalizator
[1fi,[1g:: 14 — 1B



12

Dokaz.
Hei H fx
[Ei— 114 —=1I]B:

ITg:
L
) fi

J
B

J J

9

Sucin je limita, a teda monozdroj. Preto z gj o [[ fio[[e; = fjoe; =qjoe; =
g; o [1gio[le; pre vietky j € I dostaneme, ze [ fio[[e; =[[g:o[]es-

Nech h: E — [[ A; je morfizmus taky, ze [ fi o h = [[g; o h. Potom f; o
pj o h = g; op;joh pre vietky j € I. Preto pre kazdé j € I existuje morfizmus
h; taky, ze pj o h = e; o h; (vyuzili sme, ze (E;, e;) je ekvalizator.) Potom pre
(fi: E — [ E; plati pj o [[e; o (h;) = ejomjo(h;) =ejoh; =pjoh, teda
[1ei o (h;) = h. Jednoznac¢nost takéhoto morfizmu vyplyva z toho, ze []e; je
monomorfizmus (predchddzajtce tvrdenie).

H € H fL

[1E: [TA: = [[B:
\(’W) h/ [Ty:

Lyl E Pj q;

h.
- A

J
Ej—— A, ——=B;
gj

Z tejto lemy lahko vyplyva, Ze:

Tvrdenie 16. V kategorii, ktord md suciny plati, Ze ak f; je reguldrny mo-
nomorfizmus pre kazdé i € I, tak ] fi je reguldrny monomorfizmus. (Sicin
requldrnych monomorfizmov je requldrny monomorfizmus).
Duaélny pojem k stucinu je kostcin.
Definicia 27. Zdroj P = (p;: A; — P);cs sa nazyva kosicin ak pre kazdé tstie
S = (fi: A; — A);er existuje jeding morfizmus f: P — A taky, ze S = f o P.
Pre kostéin platia duélne tvrdenia ako pre sucin. Prehlad oznadeni pouziva-
nych pre kostcin je v tabulke

suéin kostéin
(ITAip;) | (5, 1TA)

projekcia p; | injekcia ;

Ax B AUB
(fi) [fi]
[ xg fUg

[[fi [ fi
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Pushout a pullback

Definicia 28. Diagram

o1y
)b
B——P
f

sa nazyva pushout, ak komutuje a pre kazdy komutujici diagram tvaru

-

FU><T:I>

&)
-

D:J
-]

existuje jediny morfizmus k: P — P taky, Ze komutuje diagram

Dualny pojem k pushoutu je pullback:

Definicia 29. Diagram

P*f>B
; i
A?C

sa nazyva pullback, ak komutuje a pre kazdy komutujici diagram tvaru

B
lg
C

!
—

<

_—
f

13
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existuje jediny morfizmus k: P-p taky, Ze komutuje diagram

Pushout je kolimita diagramu

lﬁ.

Pullback je limita dudlneho diagramu.

Niektoré tvrdenia budeme formulovat pre pushout a niektoré pre pullback,
vzdy samozrejme plati aj dudlne tvrdenie.

Tvrdenie 17 (Kanonicka konstrukcia pushoutu). Nech f:C— A, g:C—
B su morfizmy, AU B je kosiucin s injekciami qa: A — AUB, qg: B — AUB.
Nech ¢: AUB — P je c = Coeq(ga o f,qp o f). Potom

c—1s4
Qi c€oga
B——>P
cogB
je pushout.
Dokaz.
!

C A
e
9 . AUB N hi
B/ N

H

Nech hy: A— H, hg: B— Hahyog=hyofah=][hy,hs]: AUB — H.
Pre h plati hogqao f =hyo f=hsog=hogq,o g a z definicie koekvalizitora
mame, Ze existuje morfizmus k: P — H taky, ze h = k o c. Jednoznacnost
existencie takéhoto morfizmu vyplyva z toho, Ze c o g4, ¢ o qp ako zlozenie
epiusti je epiustie. O
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Tvrdenie 18 (Kons$trukcia ekvalizitorov pomocou stiéinov a pullbac-
kov). Ak f,g: A — B si morfizmy, (A x B,ma,7p) je sicin A a B, a

p
%A

P
pzl iidAXf
A

—— AXxB
idaXg

je pullback, tak p1 = po je ekvalizator f a g.
Dokaz. Pretoze (idg X f)op; = (ida X g) o pa, mame
pr=mao0 (ida x f)opr =m0 (ida X g) o p2 = pa.
Nech k: K — A je morfizmus taky, ze f o k = g o k. Potom
wpo(ida X flok=mpo(idaxg)oka

mao(ida X flok=ma0 (ida X g) 0 k.

Pretoze stéin je monozdroj, dostaneme (ida x f)ok = (idg x f) ok, a pretoze
uvedeny diagram je pullback, existuje jediné h: K — P také, ze k =pioh. O

Definicia 30. Trieda morfizmov M sa nazyva uzavretd na tvorbu pullbackov,
ak pre kazdy pullback

P—f>B )
gJ{ lg
A—f>C

ak f € M, tak aj f € M.

Tvrdenie 19. Monomorfizmy, requldrne monomorfizmy a retrakcie si uzavreté
na tvorbu pullbackov.

Dokaz. Nech f je monomorfizmus a predchadzajaci diagram je pullback.

(i) Nech h,k: Q — P st morfizmy také, ze foh = fok,tak goh =gok.
Pretoze pullback je monozdroj, vyplyva z toho uz h = k.

(ii) Nech f je ekvalizator p a q. Potom (pog)o f = (gog) o f. Chceme
ukazat, ze f je ekvalizdtor po g a go g. Nech t: Q — B je morfizmus taky, ze
(pog)ot = (gog)ot. Potom podla definicie ekvalizitora existuje nejaké u: @ — A
také, ze fou = got. Potom podla definicie pullbacku existuje nejaké h: Q@ — P
také, ze t = f o h. Jednoznac¢nost h vyplyva z toho, Ze f je monomorfizmus.

(#5i) Ak f je retrakcia, tak existuje nejaké s: C' — A také, ze fos = idc.
Potom fo(sog) = goidp a podla definicie pullbacku existuje nejaké h: B — P

také, ze idg = f o h. O
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Prieniky a koprieniky

Definicia 31. Nech (A;, m;);cr je systém podobjektov objektu A. Potom uspo-
riadana dvojica (M, m), kde m: M — A je morfizmus, sa nazyva prienikom
systému (A;, m;)i € I, ak

(i) pre kazdé i € I existuje d;: M — A; tak, ze m; od; =m,
(ii) pre ITubovolnt usporiadant dvojicu (K, k), kde k: K — A je morfizmus
taky, Ze pre kazdé ¢ € I existuje morfizmus k;: K — A; am; o k; = k,

existuje prave jeden morfizmus h: K — M taky, ze moh = k.

Oznacujeme (M, m) = [ (4;,m;).
iel

Tvrdenie 20. Ak (A1, m1), (As, ma) st podobjekty B, tak prienik je diagondlny
morfizmus pullbacku A, — ™, B T2 A,.

Dokaz. Vyplyva priamo z definicie. O

Veta 2. Ak (M,m) = () (A;,m;), m;: A; — A, tak (M, m) je podobjekt A.
i€l
Ak (A;,m;) su regquldrne podobjekty a kategoria A md suciny, tak aj (M, m)
je reqularny podobjekt A.

Dokaz. Kedze prienik sme interpretovali ako limitu, tak (M, (d;)ier,m) je mo-
nozdroj. mor =mos = m;od;or =m;od;os = d; or = d; o s. Ked plati
mor =mos,d;or =d;os tak aj r = s (vdaka tomu, Ze prienik je monozdroj).

Nech m; = Eq(fi,9i), fi,gi: A — C;. [[ C; nech je sté¢in a p;: [[C; — C;
projekcie. Oznaéme f = (f;): A — [[Ci, g = (9:): A — [[C;. Tvrdime, ze
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N [1C;
d; % Pi

p;ofom =p;om;od; = fiom;od; = g;om;od; =p;ogom;od; =p;ogom
= fom = gom (lebo siéin je extrémny monozdroj).

Nech t: C — A je morfizmus taky, ze fot = got. Potom p;o fot =p;0got
t.j. fi ot = g; ot pre vSetky i. Pretoze m; je ekvalizator f; a g;, tak pre kazdé
1 € I existuje jediny morfizmus c¢;: C — A; taky, Ze m; o ¢; = t. Podla definicie
prieniku potom existuje jediny morfizmus h: C — D taky, ze mo h =t. O

Duadlny pojem k prieniku sa nazyva koprienik.

Dalsie limity Ekvalizator dvojice morfizmov moZeme interpretovaf ako li-
mitu diagramu so schémou e —= o .
Terminalny objekt moZno chapat ako limitu prazdneho diagramu.

Definicia 32. Usmernend kolimita (nazyvand tiez induktivna limita) je koli-
mita diagramu, ktorého schéma je nahor usmernena mnozina interpretovana ako
kategdria (priklad 3).

0.1.5 Uplnost a kotplnost

Definicia 33. Hovorime, Ze kategdria A

(i) md siciny, ak pre kazdy systém (indexovany mnozinou) A-objektov exis-
tuje sucin v A.
(ii) md konecné siciny, ak pre kazdy konecny systém A-objektov existuje
sucin v A.
(iii) md ekvalizatory, ak pre kazda dvojicu morfizmov s rovnakym oborom a

kooborom existuje ekvalizator v A.

(iv) md pullbacky, ak pre kazdt dvojicu morfizmov s rovnakym kooborom exis-
tuje pullback v A.

(v) md prieniky, ak pre kazdy A-objekt A a kazdy systém jeho podobjektov
existuje prienik.

(vi) md konecné prieniky, ak pre kazdy A-objekt A a kazdy koneény systém
jeho podobjektov existuje prienik.

Duélne pojmy: Kat A ma (koneéné) kosiciny, koekvalizdatory, pushouty, (ko-
neéné) prieniky.
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Definicia 34. Kategdria A sa nazyva uplnd, ak pre kazdy maly diagram (t.j.
taky, ktorého schéma je mala kategéria) existuje v A limita.

Dokaz dalSej vety je stiasne dokazom, Ze Tubovolnd limitu mozno zostrojit
pomocou sucinov a ekvalizdtorov (a duélne Tubovolni kolimitu pomocou kosi-
¢inov a koekvalizatorov).

Veta 3. Pre kategoriu A st nasledovné podmienky ekvivalentné:
(i) A je uplnd,
(i) A ma siciny a ekvalizatory,
(i) A md siciny a konecné prieniky.
Dokaz. (i) = (ii7) vyplyva z toho, Ze stfiny a prieniky st limity malych dia-
gramov.
(#9i) = (it) vyplyva z tvrdenia 18 a tvrdenia 20.
(#4) = (i) Nech kategéria A méa sGéiny a ekvalizatory, a nech D: I — A je

maly diagram. Pre kazdy I-morfizmus ¢: ¢ — j polozme d(t) = i a c(t) = j.
Nech ] Dija J[ Dy st saciny s projekciami 7;:  [[ D; — Dy,

i€Ob(I) teMor(A) 1€O0b(I)
7 I Dew — Des)- Pre kazdé t € Mor(I) mame teda dvojicu morfizmov
teMor(I)
Ty, Dtomguy:  [I  — Dey, mozeme teda definovat dvojicu morfizmov f =
i€Ob(T)
<Dto77d(t)>ag:<7Tc(t)>7fag: H D’L_) H Dc(t)~NeChe: E— H D’L
i€Ob(I) teMor(I) i€Ob(I)

je ekvalizétor tejto dvojice a pre kazdé ¢ € Ob(I) e; = m; o e. Tvrdime, Ze
(E,e;i)icon() je limita diagramu D v A.

Najprv overme, ze je to prirodzeny zdroj pre D. Nech s: ¢ — j je I-morfizmus.|j
Potom e; = mjoe = Te(5)0€ = 7;0(Te(y))0€ = Ts0(Diomyyy)oe = Dgomys)oe =
D,omioe= Dgoe;.

<7Tc(t)>
;‘ H Dz —_— H Dc
E 1€0b(I) teMor(I) ®
\ l <Dt07rd(t)> \L
D; D Dc(s)

Nech (K, k;) je prirodzeny zdroj vzhladom na D a nech k = (k;): K —
[I Di. KedZe je to prirodzeny zdroj, pre kazdé s € Mor(I) plati k. =
€Ob(I)
Dy okg(s). Potom 7,0 (mopy) 0k = Te(s) 0k = ke(s) = Dsokgrsy = Dsomgsyok =
7t(s) o (Dy o mae)) © k.
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5 e 4 H Di (ch(t)> H Dc(t)
1€0b(I) (Dyomas) teMor(I)
K o D, Dc(s)

To znamena, Ze (7)) o k = (Dy o mg1)) o k, a pretoze (E,e) je ekvalizator,
existuje jediné k’': K — F také, ze k = eok’. Potom ¢; 0 k' = k a jednoznacnost
k' zabezpedi to, Ze e; je zloZenie dvoch (extrémnych) monozdrojov, teda je to
monozdroj. O

0.1.6 Faktorizacie

Definicia 35. Nech E (M) je trieda epimorfizmov (monomorfizmov) uzavretd
na skladanie s izomorfizmami v kategérii A. Hovorime, Ze A je (E, M)-fakto-
rizovatelnd, ak pre kazdy A-morfizmus f existuji e € E a n € M také, Ze
f=moe.

A sa nazyva jednoznacne (E,M)-faktorizovatelnd kategdria, ak navyse poza-
dujeme, ze (E, M)-faktorizicia je jednozna¢né az na izomorfizmus v tom zmysle,
zeak f =moe=m'oée e e € E, m,m' € M, st rozne (F, M)-faktorizacie,
tak existuje izomorfizmus taky, Ze diagram

[ )
‘|
[ )
komutuje.

A je (E, M)-kategoria, ak je jednoznacéne (E, M)-faktorizovatelna a navyse
E a M st uzavreté vzhladom na skladanie.

Ak Specialne zvolime za FE triedu vSetkych epimorfizmov a za M triedu
v8etkych extrémnych monomorfizmov v A, tak dostaneme pojmy (epi,extrémne
mono )-faktorizovatelnd kategdria, jednoznacne (epi,extrémne mono)-faktorizo-
vatelnd kategdria a (epi,extrémne mono)-kategdria.

Duélne pojmy k tymto pojmom dostaneme, ak polozime za F triedu vSetkych
extrémnych epimorfizmov a za M triedu vSetkych monomorfizmov: (extrémne
epi, mono)-faktorizovatelnd kategoria, jednoznacéne (extrémne epi,mono)-fakto-
rizovatelnd kategoria, (extrémne epi, mono)-kategdria.

— %5 e
j /

/

7/ \Lm
/,
— e

’
m

Definicia 36. Ak E(M) je trieda epimorfizmov (monomorfizmov) uzavreta na
skladanie s izomorfizmami, tak hovorime, ze B je E-kvocient (M-podobjekt)
objektu A, ak existuje morfizmus e: A — B (m: B — A) také, ze e € E
(m e M).

Tvrdenie 21. Ak C je (E, M)-faktorizovatelnd kategoria, tak si ekvivalentné
tieto podmienky:
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(i) C je (E, M)-kategdria

(ii) Pre kazdy komutativny diagram v C

lm

[S)
o<—-20

]

o<—-"20
=

taky, Ze e € E a m € M, ezistuje C-morfizmus k taky, Ze diagram

8

S)
o<—-20

‘\k_
o< o
>

komutuge. ((E, M)-diagondlna vlastnost)

Dokaz. Nech g =m/ o€’ a h =m” oe” st (E, M)-faktorizicie morfizmov
gahanech f=hoe=mog. Potom f=m"o(e"ce)a f=(mom')oe st
dve (E, M)-faktorizacie f. Potom existuje izomorfizmus j taky, Ze diagram

e
[ ) [}
\ /
€ e
J
g o< — —0 h
/ \:
m m
[ ) [}
m

komutuje. Potom k = m’ o joe” je hladany diagonalny morfizmus.
(i) Ak f = moe=moe st (F, M)-faktorizacie morfizmu f, tak existuju
morfizmy k a k' také, ze diagramy

[’/
—_— e _—
ml m,
komutuji. Pretoze e je epimorfizmus z idoe = e = (k' o k) o e vyplyva, Ze

id = k' o k a pretoze €' je epimorfizmus z ido e’ = ¢ = (ko k') o€’ vyplyva,
7e id = k' o k. Teda k je izomorfizmus. Tym sme ukdzali, Ze C je jednoznacne
(E, M)-faktorizovatelna.

(13) Ak my1,mo € M st také, Ze sa daju skladat, overme ¢i aj mg om; € M.
Nech my o my = moe je (E, M)-faktorizacia ich zloZenia. Potom musi podla
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(ii) existovat morfizmus k taky, ze diagram

my

oe<—-29

komutuje. Pretoze k' o e = id, e je koretrakcia. e je sti¢asne epimorfizmus, teda
e je izomorfizmus. m € M, preto aj mgom; =moe € M.

(#4i) Uvazujme opét (E, M)-faktorizciu ez 0 e = moe. Podla predpokladu
existuje k také, ze komutuje diagram

Teda m o k' = id, ¢o znamend, %e k' je retrakcia. k' je retrakcia aj monomor-
fizmus, musi to teda byt izomorfizmus. KedZze E je uzavretd na skladanie s
izomorfizmami, tak e 0e; =moe € E. O

Lema 4. Nech A je (E, M)-kategdria, e, f, m si A-morfizmy, e € E, m € M,
m = f oe. Potom e je izomorfizmus.

Dokaz. Podla (E, M)-diagonélnej podmienky existuje morfizmis g taky, ze dia-

gram

€
_—

L]
g /
. /
zdl P f
¥
L) [ ]

_
m

komutuje. KedZ7e g o e = id, tak e je koretrakcia. e je stiCasne epimorfizmus,
preto e je izomorfizmus. O
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Tvrdenie 22. Ak C je (E, M)-kategoria a m; € I, tak Mm; € M.

Dokaz. Oznaéme m = Mm;. Nech m = m’ o e je (E, M)-faktorizécia m, pricom
e: NX;, — Z, m': Z — NY; Podla (E, M)-diagonélnej vlastnosti existuje pre
kazdé i € I morfizmus h; taky, ze h; oe = p; a m; o h; = q; om/. Podla definicie
sucinu potom existuje h: Z — MX; také, ze h o p; = h;.

nx; — "1y

N,
A

Xi ———Y;

Ppi

Pretoze p; oidnx, = p; —h;0oe =p;ohoe, mdme hoe = idnx,. € je teda epi-
k3 J k3

morfizmus a retrakcia, ¢ize izomorfizmus. m’ € M a M je uzavreta na skladanie

s izomorfizmami, teda m € M. O

0.1.7 Kategorie Top a Haus

Specialne morfizmy

Tvrdenie 23. V kategoriaich Top a Haus si monomorfizmy prdve prosté
spojité zobrazenia. V Top su epimorfizmy prdve surjektivne spojité zobraze-
nia. V Haus st epimorfizmy prdve husté spojité zobrazenia. (Spojité zobrazenie
f: X =Y je husté, ak f[X]=Y.)

Dokaz. Najprv ukézeme, ze [ je Top (Haus)-monomorfizmus < f je prosté.
Nech f: X — Y je Top-monomorfizmus a f(a) = f(b). Zoberme zobrazenia
g a h z jednoprvkového topologického priestoru {0} do X, pricom ¢g(0) = a a
f(0) =0b. KedZe fog = foh, tak z definicie monomorfizmu musi byt aj a = b.
Naopak, nech f: X — Y je prosté. Ak fog = foh tak pre kazdé x € X
f(g(x)) = f(h(z)) a z injektivnosti f potom vyplyva g(z) = h(x), teda g = h.

Dalej ukdzme, ze Top-epimorfizmy s prave surjektivne spojité zobrazenia.
Nech by f: X — Y, ktoré nie je surjektivne, bol Top-epimorfizmus. Zoberme
dvojprvkovy indiskrétny priestor I = {0,1}. Zvolime 2 zobrazenia g,h: Y — I
tak, ze g = 0 a hlyx) = 0, hly_fx) = 1. Tieto zobrazenia su spojité, lebo
kazdé zobrazenie do indiskrétneho priestoru je spojité. Navyse plati go f = ho f
ag#h (Y\ f(X)# 0, lebo f nie je surjektivne), ¢o je spor s predpokladom, ze
f je epimorfizmus. Opac¢na implikacia vyplyva z lemy 6.

Haus-epimorfizmy st prave husté spojité zobrazenia. Jeden smer vyplyva z
nasledujicej lemy a jej dosledku. Opacény smer vyplyva z lemy 6. O

Lema 5. Pre kazdé dve spojité zobrazenia f,g: X — Y, kde Y je hausdorffov-
sky, je mnozina {x € X|f(z) = g(x)} uzavretd.
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Dékaz. Ukdzeme, ze A = {x € X|f(x) # g(x)} je otvorena. Ak f(x) # g(x),
tak existuji otvorené mnoziny U a V také, ze f(x) € U, g(z) e VaUNV =0.
Potom f~1(U)N g~ (V) je otvorené okolie x, ktoré lezi pod A. O

Déosledok 2. Ak f,g: X — Y su spojité, Y je hausdorffovsky a fla = gla pre
nejakid mnozinu A husti v X, tak f = g.

Lema 6. Ku kaZdému (Ty—)priestoru Y a kaZdému (uzavretému) podpriesto-
ru U C Y existuji (Ta-)priestor Q a spojité zobrazenia r,s: Y — Q také, Ze
U={yeYlr(y) =s()}

Dokaz. @) dostaneme tak, ze v Y UY stotoznime U v oboch képidch priestoru
Y. Teda @ bude faktorovy priestor Y LY podla relacie ekvivalencie definovanej
T~y =yVu(z) =uy (y) €UVu(y) = uy () € U, kde up,uz: Y —
Y UY st vlozenia. Ak Y je Ty a Q je uzavretd, tak dostaneme opét Th-priestor.
(Dva body toho istého s¢itanca, ktoré sa v iom daja oddelit pomocou U a V,
oddelime vo faktorovom topologickom priestore otvorenymi mnoZinami u;(U) a
u; (V). Ak st z réznych séitancov (t.j. ani jeden nemoze byt z U), tak ich oddelia
2 képie mnoziny Y \ U.) Ak oznacime h: YUY — Q, h = [u1,us] tak za r a s
spliiajiice vlastnosti z tvrdenia lemy mozno zvolif r = howu; a s = houy. [0

Tvrdenie 24. f je Top (Haus)-izomorfizmus prdve vtedy, ked f je homeomor-
fizmus.

Definicia 37. Podpriestor A topologického priestoru Y sa nazyva retrakt topo-
logického priestoru Y, ak existuje spojité zobrazenie r: Y — A, ktoré ponechava
na mieste kazdy bod A (t.j. 7 o i = id4; kde i je vloZenie). Takéto zobrazenie r
sa nazyva topologickd retrakcia.

Tvrdenie 25. f je Top-koretrakcia prdve vtedy, ked f je topologické vioZenie a
f1X] je retrakt, éiZe koretrakcie v Top si (aZ na homeomorfizmus) prdve vloZe-
nia retraktov. f je retrakcia v Top prdve vtedy, ked existuje topologickd retrakcia
r a homeomorfizmus h, Ze f = hor, t.j. retrakcie st (aZ na homeomorfizmus)
topologické retrakcie.
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Dokaz. Nech f: A — X, g: X — A, go f = idy. Potom f: A — f[A] je
bijektivne a pre U C A je f[U] = g~ 1(U) otvorena, tzn. f je homeomorfizmus
medzi A a podpriestorom X, teda f je vlozenie. Pritom komutuje diagram

Ozna¢me r = fog. Potom roi = fo(goi) = fo f~ =idsa). Teda f je vlozenie
a f[A] je retrakt. TieZ g je (az na homeomorfizmus) retrakcia, lebo f: A — f[A]
je homeomorfizmus. O

KedZe Haus je plna podkategéria Top, tak retrakcie a koretrakcie v Haus
su tie isté ako v Top.

Tvrdenie 26. Nech X,Y € Top (X,Y € Haus) a f,g: X — Y su spojité.
Potom ekvalizdtor f a g v Top (Haus) je podpriestor Z = {x € X: f(x) =
g(x)} priestoru X spolu s vioZenim i: Z — X.

Dokaz. Platnost foi = goi je zrejma. Nech f o h = g o h pre nejaké spojité
zobrazenie f: Z — X. Potom musi platit h[X] C Z. Ak teda vezmeme h: Z' —
X, h(x) = h(x), tak plati ioh = h. Jednoznac¢nost takéhoto morfizmu zabezpeci
fakt, ze i je monomorfizmus.

Z<—>X:g>>Y
A

0 A

ZI

O

Tvrdenie 27. Nech X,Y € Top (X,Y € Haus) a f,g: X — Y su spojité.
Oznaéme R reldciu ekvivalencie na Y wuréend tym, Ze f(x)Rg(z) pre vetky
x € X. Nech Y/R je faktorovy priestor a p: Y — Y/R prirodzend projekcia.
Potom (p,Y/R) je koekvalizator dvojice f, g.

Dokaz. Pre kazdé x € X plati f(z)Rg(z), z éoho vyplyva p(f(z)) = p(g(x)),
tedapo f=pog.

Nech h: Y — Y’ je spojité zobrazenie také, ze h o f = h o g. Definujme
potom h: Y/R — Y’ predpisom h(p(y)) = h(y). Aby sme ukazali, Ze tento
predpis dobre definuje zobrazenie treba overit, ¢i plati y1 Rys = h(y1) = h(y2).
Oznacme R’ = {(y1,92): h(y1) = h(y2)}. Zrejme R’ je relacia ekvivalencie a
pre kazdé x € X plati f(z)R'g(x). KedZze R je najmensia relacia ekvivalencie
s tymito vlastnostami, tak R C R/, ¢o je vlastne implikécia, ktort sme chceli
dokazaf. Spojitost h vyplyva z toho, ze h o p = h je spojité a p je faktorové
zobrazenie.

Ukéazali sme teda, 7e existuje spojité zobrazenie také, ze h o p = h. Jedno-
znacnost takéhoto zobrazenia vyplyva z toho, Ze p je surjektivne, a teda je to
epimorfizmus. O
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Tvrdenie 28. Nech f: A — B je Top (Haus)-morfizmus. Potom si nasle-
dovné podmienky ekvivalentné:

(i) [ je vloZenie (uzavreté vloZenie),
(ii) f je reguldrny monomorfizmus,
(iii) f je extrémny monomorfizmus.

(Pod uzavretym vloZenim sa rozumie, Ze f[A] je uzavrety podpriestor B, co je
ekvivalentné s tym, Ze vloZenie f je uzavreté zobrazenie.)

Dokaz. (i) = (ii) Ak v leme 6 polozime U = f[X], tak pre r, s, ktorych exis-
tenciu tato lema zarucuje plati f = Eq(r, s).

(ii) = (iii) Tvrdenie 10. -

(iii) = (i) Nech U = f[X] (resp. U = f[X]) a h: U — Y je vlozenie (resp.
uzavreté vloZenie). Potom existuje prave jedno spojité zobrazenie g: X — U
také, ze ho g = f a g je surjektivne (husté), je to teda epimorfizmus. Potom g
musi byt izomorfizmus (lebo f je extrémny monomorfizmus). Potom aj f = hog
je vlozenie (uzavreté vloZenie). O

Tvrdenie 29. Nech f: A — B je Top (Haus)-morfizmus. Potom si nasle-
dovné podmienky ekvivalentné:

(i) f je faktorové zobrazenie,
(i) f je reguldrny epimorfizmus,
(iii) f je extrémny epimorfizmus.

Dokaz. (i) = (ii) Nech X x X je st¢in s projekciami p; a k = Eq(f op1, f o p2).
Tvrdime, Ze potom f = Coeq(p;ok, paok). Podla tvrdenia 26 a vety 13 hovoriacej
o jednoznac¢nosti limit, mézeme predpokladat, ze k: K — X x X je vloZenie,
pricom K = {(z,y) € X x X: f(z) = f(y)}. Overme, ¢ (f,Y) mé vlastnosti
koekvalizatora.

Rovnost fop; ok = fopsok je zrejmd. Nech plati gop; ok =gopyok
pre nejaky morfizmus g: X — Z. Potom zrejme plati implikicia f(z) = f(y) =
g(z) = g(y). Z toho vyplyva, Ze modZeme najst g: Y — Z tak, aby go f =g.

VA

g /’\7
/ g
I

P1
KC—k>X><X4>4>X—f>Y
P2

(ii) = (iii) Tvrdenie 10.

(iii) = (i) Na Z = f[X] definujeme topoldgiu, ktora je faktorova vzhladom na
zobrazenie g: X — Z, ktoré je ztizenim f. Nech h: Z — Y je zobrazenie také, ze
hlz =idz. Potom f = hog a h je monomorfizmus. Potom h je izomorfizmus, lebo
f je extrémny a kedZe g je faktorové zobrazenie, aj f je faktorové zobrazenie. [

Tvrdenie 30. f je konstantny morfizmus v Top (Haus) prave vtedy, ked f je
konstantné zobrazenie.
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Specialne morfizmy
Tvrdenie 31. KaZdy neprdzdny priestor v Top (Haus) je generdtor.

Dokaz. Nech X # () a f,g: Y — Z st nejaké morfizmy také, ze f # g. Potom
existuje y € Y také, ze f(y) # ¢(y). Pre konStantné zobrazenie h: X — Y,
h(z) = y potom plati f o h # g o h, a konStantné zobrazenie je samozrejme
spojité. O

Limity a kolimity

Tvrdenie 32. Sucin v kategdrii Top (Haus) je topologicky sicin topologickych
priestorov. Kosucin v kategorii Top (Haus) je topologicky siucet topologickych
priestorov.

KedZe kategérie Top a Haus maji, ako sme videli, stéiny, ekvalizdtory,
kostciny a koekvalizatory, tak na zdklade vety 3 plati:

Tvrdenie 33. Kategorie Top a Haus su upiné a koupiné.
V topoldgii sa definuje adjungovany priestor takto:

Definicia 38. Nech X, Y st topologické priestory, M C X je topologicky
podpriestor a f: M — Y je spojité. X Uy Y = (X UY)/E, kde E je najmensia
ekvivalencia na X UY takd, ze E f(x) pre vSetky = € M.

Poznamenajme, ze napriklad v [ENG] sa navySe pozaduje, aby M bol uzav-
rety podpriestor X, my to vyzadovat nebudeme.

Ked porovname uvedent definiciu s kanonickou konstrukciou pushoutu (trv-
denie 17), vidime, Ze ide o t1 istu konstrukciu, s tym rozdielom, Ze pri pushoute
neziadame, aby m: M — X bolo vlozenie, teda pushout je vseobecnejsi. Plati
teda tvrdenie:

Tvrdenie 34. Nasledujici diagram je pushout:
Iy
S

X — XUy

Ak Y je jednobodovy, tak X Uy Y = X/M.
Nechix: X — XUY,iy:Y — XUY st vloZeniaa q: X®Y — XUy YV
je prirodzend projekcia. Ich zlozenia

j=qix: X =>XUsYak=qy:Y - XU Y

s spojité a mnozina C' C XU;Y je otvorend (uzavretd) prave vtedy, ked j—1(C)
a k~1(C) st otvorené (uzavreté) v X resp. v Y.
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[C je otvorena (uzavretd) v X Uy Y & ¢ {(C) v X @Y & iy'¢ {(C)v X a
i (C) v Y ]
Lahko sa overi, Ze:

j'k(B)=f"YB)ak 'k(B)=Bpre BCY, (1)

A =AU ANM)ak T j(A) = f(ANM)pre AC X. (2

J
7 'k(B) = prvky z X, ktoré st ekvivalentné s prvkami z B = f~1(B)
k='k(B) = prvky z Y, ktoré st ekvivalentné s prvkami z B = B
j71i(A) = prvky z X, ktoré st ekvivalentné s prvkami z A = AU f~1f(A)
k~1j(A) = prvky z Y, ktoré st ekvivalentné s prvkami z A = f(A N M)]
Na zéklade tychto vzfahov moéZeme ukézat, Ze plati:

Tvrdenie 35. Nech X, Y su topologické priestory, A C X, f: A — Y je
faktorové zobrazenie. (Nepredpokladdm uzavretost A.) Potom k: Y — X U; Y
je vloZenie a j: X — X Uy Y je faktorové zobrazenie. Ak navyse M C 'Y je
otvoreny (uzavrety) podpriestor, tak k(Y) je otvoreny (uzavrety) podpriestor.

Dékaz. Nech U C Y je otvorend. Treba zistit, ¢i k(U) je otvorend v Y. Vyuzitim
(1) a (2) dostaneme, ze k~1(k[U]) = U je otvorena v Y a j~1k(U) = f~1(U) je
otvorend v X, ¢ize k(U) je otvorend. Tym sme overili, Ze k je vloZenie.

Overme tiez, ¢i j je faktorové. Ak j=1(U) je otvorend v X, tak f~tk=1(U) =
77 HU) N A je otvorena v A, ¢ize aj k=1 (U) je otvorena (f je faktorové). Kedze
j7YU) aj k=1(U) st otvorené, U musi byt otvorena.

Ak plati, ze M je otvorena (uzavretd) v Y, tak j~1(k(Y)) = f~1(Y) =M
aj k=1(k(Y)) = Y st otvorené (uzavreté), teda aj k(Y) je uzavreta. otvorené
(uzavreté) O

Definicia 39. Nech A je usmernend mnoZina a { R,; o € A} je systém navzajom
topologickych priestorov. Nech pre kazdua dvojicu a, § € A taka, ze o < (3 je
dané spojité zobrazenie pj5: Ro — Rg a plati ¢ = ¢ o apg pre a < f3 < 7.
Potom systém {Rmapg;a,ﬁ € A,a < f(} nazyvame usmerneny (induktivny)
systém topologickych priestorov.

Nech R = || Ra, definujme na R ekvivalenciu tak, Ze p, € R, a ps € Rg
acA

su ekvivalentné prave vtedy, ked ¢S (pa) = @g(pg) pre nejaké v € A. Potom
faktorovy priestor R* priestoru R vzhladom na tato ekvivalenciu sa nazyva
priama (induktivna, usmernend) limita systému { R, ¢5}. a oznacuje sa R* =

lim{ R, p3; 0,8 € A,a < B}.

Napriklad ak A = N a ¢}, | su vlozenia, tak R* je priestor obsahujuci vSetky
R,, ako svoje podpriestory, kazdy z nich je induktivne vlozeny v nasledujiicom.

Vlastnosti kategorii Top a Haus

Lema 7. Ak X je hausdorffovsky priestor a A C X, tak plati card A < g2eerd A
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Dokaz. Pre kazdé x € A definujme systém mnozin A(x) = {U C A : z €
U a U je otvorend v A}. Z oddelitelnosti Tubovolnych dvoch bodov otvorenymi
mnoZinami vyplyva, Ze pre z # y A(z) # A(y). Pretoze kardinalita vSetkych
, .. . L vep oocard A , — geard A
systémov podmnoZina A nemdze prevysit 2 , mame card A < 2 .

Tvrdenie 36. Kategorie Top a Haus su lokdlne malé, kolokdlne malé, ex-
trémne lokalne malé, extrémne kolokdlne malé.

Dokaz. Reprezentativhu mnozinu podobjektov a extrémnych podobjektov X
mozno vybrat z topologickych priestorov na podmnozindch X. Podobne pre
kvocienty a extrémne kvocienty v Top, lebo kardinalita obrazu v surjektiv-
nom zobrazeni nepresiahne kardinalitu oboru zobrazenia. V Haus plati nerov-
nost card A < 22CMM, a teda epimorfizmy a extrémne epimorfizmy moézeme

reprezentovat pomocou zobrazeni do mnoziny P(P (X)), ktorda mé kardinalitu
2car(l X D

Lema 8. V Top (Haus) sa kazdy morfizmus f dd napisat v tvare f = moboe,
kde m je monomorfizmus, b je bimorfizmus a e je epimorfizmus.

Dokaz. Nech f: X — Y je spojité. Nech B je podpriestor Y na mnozine
fIX] (f[X]). Nech A je topologicky priestor na mnozine f[X] (f[X]), ktory
je faktorovy vzhladom na zobrazenie f (resp..jeho prislusné zaZenie). Potom
b =id: A — B je spojité (lebo A ma najhrubsiu topoldgiu, pri ktorej je f
spojité, teda B ma jemnejsiu topolégiu ako A). Potom f = mobo e je hladana
faktorizacia. U

Tvrdenie 37. Top (Haus) je (epi, extrémne mono)-faktorizovatelnd kategoria
a (extrémne epi, mono)-faktorizovatelnd kategoria.

Dokaz. Uzavretost vystupujicich tried epimorfizmov a monomorfizmov je zrej-
ma z toho, ako su tieto typy morfizmov charakterizované v kategériach Top a
Haus. Ak f = mobo e je faktorizacia morfizmu f: X — Y z predchadzajicej
lemy, tak f = (mob)oe je (extrémne epi,mono)-faktorizicia a f = mo (boe)
je (epi, extrémne mono)-faktorizacia f. Aby sme ukézali jednozna¢nost v oboch
tychto faktorizéciach, stadi ukdzatf jednoznacnost v rozklade z predchadzajtce]
lemy. Nech teda f = mj oby 0oe; = mqy o by 0 eg st takéto faktorizacie f cez Ay
a By resp. cez Ay a By. m1 a my st homeomorfizmy medzi svojim oborom a
fI1X] (f[X]), to znamend, ze By a Bs st navzadjom homeomorfné podpriestory
Y. by a by mozeme (homeomorfne) nahradit identitou, a potom dostaneme ho-
meomorfizmus medzi faktorovymi priestormi A; a As, lebo budi homeomorfné
s faktorovym priestorom danym tym istym faktorovym zobrazenim. O




