
Poznámky z V.J.Arsenin: Matematická fyzika. Základné rovnice a špeciálne funkcie.
(str. 90) Tu je dokázaná jednoznačnosť riešenia hyperbolickej a parabolickej úlohy na ohra-
ničenej oblasti pomocou Steklovovej vety o rozvoji.
(str. 108) Tu sa spomína, že Fourierov rad ľubovoľnej kvadraticky integrovateľnej funkcie
podľa úplného ortonormálneho systému možno člen po člene integrovať bez ohľadu na to, či
tento rad konverguje alebo nie. (To vyplýva z toho, že Fourierov rad konverguje k f v strede.)
(str. 121) Jednoznačnosť pre jednorozmernú úlohu bez použitia vety o rozvoji. (Vlastne sa
ukáže, že energia kmitajúcej struny zostane konštantná, bude teda nulová.)

5 METÓDA FUNKCIÍ ZDROJOV (GREENOVEJ FUNKCIE) PRE ROVNICE PARA-
BOLICKÉHO TYPU

5.2. Fundamentálne riešenie (Greenova funkcia)
a2uxx = ut; u(x, 0) = δ(x− x0)

G(x− x0, t) = 1√
4πa2t

e−
(x−x0)2

4a2t

5.3. Riešenie úlohy o šírení tepla na priamke
a2uxx = ut; u(x, 0) = ϕ(0)
bodové zdroje tepla: dQ = cρϕ(ξ)dξ
teplota spôsobená bodovým zdrojom: dQ

cρ G(x− ξ, t) = ϕ(ξ)G(x− ξ, t)
u(x, t) =

∫∞
−∞ ϕ(ξ)G(x− ξ, t)

u(x, t) = G(x, t) ∗ ϕ(x)
a2uxx + f(x, t) = ut; u(x, 0) = 0
f(ξ, τ)G(x− ξ, t− τ)dξdτ = teplo od zdrojov na úsečke dĺžky dξ za čas dτ
u(x, t) =

∫ t
0

∫∞
−∞ f(ξ, τ)G(x− ξ, t− τ)dξdτ = G(x, t) ∗ f(x, t)

5.4. Riešenie úlohy o vedení tepla v trojrozmernom (dvojrozmernom) priestore
a24u = ut
Fundamentálne riešenieG(M,M0; t) je riešenie pre počiatočnú podmienku u(M, 0) = δ(M,M0)
Lema: Ak v Cauchyho úlohe a24u = ut, u(M, 0) = ϕ(M) je začiatočná funkcia v tvare
ϕ(M) = ϕ1(x)ϕ2(y)ϕ3(z), tak riešením danej úlohy je funkcia u(M, t) = u1(x, t)u2(y, t)u3(z, t),
kde u1, u2, u3 sú riešenia jednorozmerných úloh s počiatočnou podmienkou ϕ1, ϕ2, ϕ3.
δ(M,M0) = δ(x− x0)δ(y − y0)δ(z − z0)

G(M,M0; t) =
(

1√
4πa2t

)3
e−

(x−x0)2+(y−y0)2+(z−z0)2

4a2t

G(M,M0; t) =
(

1√
4πa2t

)2
e−

(x−x0)2+(y−y0)2

4a2t

u(x, y, z, t) = G(x, y, z, t) ∗ ϕ(x, y, z) =
∫∫∫
R3

G(x− ξ, y − η, z − ζ)

6 ROVNICE ELIPTICKÉHO TYPU
6.1. Greenov vzorec. Najjednoduchšie vlastnosti harmonických funkcií

L(u) = div(k∇u)− qu

R[u, v] = −
∫

D

vL(u)dτ =
∫

D

k(∇u.∇v)dτ +
∫

D

quvdτ −
∫

S

kv
∂u

∂n
dσ (1)

R[v, u]−R[u, v] =
∫
D

{vL(u)− uL(v)}dτ =
∫
S

k
(
v ∂u∂n − u ∂v∂n

)
(2)

1



v = 1, L(u) = f(M): ∫

S

k
∂u

∂n
dσ =

∫

D

f(M)dτ(3) (1)

L(u) = 4u = 0 - harmonické funkcie
V R2 ln 1

r a v R3 1
r (mimo r = 0)

Pre harmonické funkcie dostaneme z (3):
∫

S

∂u

∂n
dσ = 0

Veta o strednej hodnote:

u(M0) =
1

4ΠR2

∫

SR

u(M)dσ(6) (2)

v R2:

u(M0) =
1

2ΠR

∫

CR

u(M)dσ(7) (3)

ak u je harmonická a spojitá aj s prvými parciálnymi deriváciami.
6.2. Jednoznačnosť riešenia okrajových úloh

(str. 181) Veta o maxime a minimi a veta o jednoznačnosti
6.3. Metóda greenovej funkcie

2


