
Bressoud.tex November 27, 2019

Bressoud: A Radical Approach to Real Analysis

Notes from [B].

1 Crisis in Mathematics: Fourier’s Series

2 Infinite Summations

2.1 The Archimedean Understanding

2.2 Geometric Series

2.3 Calculating π

2.4 Logarithms and Harmonic Series
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Euler’s Constant
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γ ≈ 0·577,215,665

Estimating Euler’s Gamma
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xn < γ < yn, xn is increasing and yn is decreasing
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Figure 1: Harmonic series nad the function 1
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From this we can get that xn+1 > xn and yn < yn+1.
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The Nested Interval Principle

Approximating Partial Sums of the Harmonic Series
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