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Bressoud: A Radical Approach to Real Analysis

Notes from [B].

1 Crisis in Mathematics: Fourier’s Series

2 Infinite Summations
2.1 The Archimedean Understanding

2.2 Geometric Series

2.3 Calculating 7
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2.4 Logarithms and Harmonic Series

Taylor series for logarithms at the point 1.
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For x > 0 we have an alternating series and |R,,| <
For z < 0 we get
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Problem 2.4.4. Let S,(z) = Y %
k=1

111(1 + l’) Slo(l‘) Sloo(ﬂf)
r=11 |0-741,937 0-612,543 —71-098,341
=101 | 0-698,135 0-645,378  0-684,611

x = 1.001 | 0-693,647 0-645,632  0-692,289

r=1 0-693,147 0-645,635  0-688,172
x=0.999 | 0-692,647 0-645,632  0-688,148
z=0.99 | 0-688,135 0-645,391  0-686,323
x =09 |0-641,854 0-626,198  0-641,854
z =05 | 0405465 0405434  0-405,465

‘ 111(1 + SC) Slo(l‘) 5100(93) Slooo(m)
r=-0.9 | —2-302,b85 —2-118,748 —2-302,583 —2-302,585
r=-0.99 | —4.605,170 —2-831,179 —4-389,453 —4-605,166
r=—0.999 | —6-907,755 —2.918,997 —5-089,800 —6-688,739

‘ 111(1 + l’) — Slo(fﬂ) 111(1 + l’) — Sloo(l’) ln(l =+ I) — SlOOO(I)

T = 51072 5-1073 5-1071
z = 0.999 5-1072 5-1073 5-1074
z=0.5 3-1073 0 0
z = —0.999 —4 -2 —0.2

Problem 2.4.5.
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Estimate for the error is the sum of errors of (2n+1)-th order or the positive

and negative part of (2.27)).
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For z = f% we have z

estimates on the error term.
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and, again, |z|

So we get the same
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If we want to estimate the error term by hand, we might use inequalities

(%)2 =2>2and (%)4 =2 > 5. (Which together give (%)6 > 10.)
n 2n+1 (3 2n+1
74 3 (721 7.3(3\0-7.3 4 1

3 z(5)9~30 13(3) >7-5-10>10
4 % (%) ~ 86
5] H(3) ~238 L) > (3)" >0
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1
8 | i (g)19 ~ 4000
9 | L2(3)" ~ 10000
12 | 28 (2)® ~ 160000 25 (3)% 5 (2)* 5 108
TE) = 2E) " >@) >
n G, (4) log(s) — G, (4)
log5 | 1-609,437,912

3 [ 1583,539,005 | ~3- 102

5 | 1-606,041,794 ~3-1073

7 | 1-608,934,205 | ~5 107

11 | 1.609,424,767 | ~1.3-107°

12 | 1-609,432,515 | ~5-10©

For x = —% and z = —% we get exactly opposite values.



Problem 2.4.6.

‘ ln(l + $) — Glo(l‘) 111(1 =+ .T) — GlOO(-T) ln(l + CC) — GlOOO(l‘)

z=1 101 0 0

z = 0.999 10~ 0 0
xz=0.5 0 0 0

x = —0.999 —-2.5 -0.7 —4-1073

Problem 2.4.7.
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Estimate with the first 1000 terms:

In2
% n HT — 1.131,971,753,677,421

Si000 = 1-130,972,254,176,419

Problem 2.4.10. Kempner Seriesﬂ
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Problem 2.4.11. Neither 8 nor 9:
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Problem 2.4.12. No digit 1:
8, 89 8-92 —
2 T 210 T 2102 T =40

Ihttps://en.wikipedia.org/wiki/Kempner_series
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Problem 2.4.13.

1
Si=Y —~
= vk
n S 2yn+1-2 2v/n
10 5-020,998 4-633 6-325
100 18-589,604 18-100 20
1,000 61-801,009 61-277 63-246
10,000 198-544,645 198-010 200
100,000 630-996,759 630-459 632-455
1,000,000 1,998-540,145 1,998-001 2,000
10,000,000 | 6,323-095,123,940 6,322-556 6,324-555
Problem 2.4.14.
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Problem 2.4.15.
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Problem 2.4.16.
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Problem 2.4.18. Ant on a rubber rope https://en.wikipedia.org/wiki/
Ant_on_a_rubber_rope
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More generally:

a = ant’s speed

¢ = initial rope length

v = how much length grows

¢ + vn = length before the n’th step

0(n) = ratio covered after the n’th set
Discrete case.
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Continuous case.
¢+ vt = length at time ¢
y(t) = position

@(t) = ratio
'y vy(t)
y (t) sot c+ vt
0
¢(t) e+t
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() = d(t)(c +vt)

y(t) = & () (e + ot) +vo(t)
YO =0+t + 2L
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o) = [ da
o(t) = %ln (c—i;vt)
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