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Bressoud: A Radical Approach to Real Analysis

Notes from [B].

1 Crisis in Mathematics: Fourier’s Series

2 Infinite Summations

2.1 The Archimedean Understanding

2.2 Geometric Series

2.3 Calculating π
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2.4 Logarithms and Harmonic Series

Taylor series for logarithms at the point 1.
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Radius of convergence: 1. Converges for x ∈ (−1, 1].

Error: ln(1 + x) = x− x2

2 + · · ·+ (−1)n−1xn

n +Rn.

For x > 0 we have an alternating series and |Rn| ≤ |x|
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n+1 .
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Problem 2.4.4. Let Sn(x) =
n∑
k=1

(−1)n−1xn

n

ln(1 + x) S10(x) S100(x)
x = 1.1 0·741,937 0·612,543 −71·098,341
x = 1.01 0·698,135 0·645,378 0·684,611
x = 1.001 0·693,647 0·645,632 0·692,289
x = 1 0·693,147 0·645,635 0·688,172

x = 0.999 0·692,647 0·645,632 0·688,148
x = 0.99 0·688,135 0·645,391 0·686,323
x = 0.9 0·641,854 0·626,198 0·641,854
x = 0.5 0·405,465 0·405,434 0·405,465

ln(1 + x) S10(x) S100(x) S1000(x)
x = −0.9 −2·302,585 −2·118,748 −2·302,583 −2·302,585
x = −0.99 −4·605,170 −2·831,179 −4·389,453 −4·605,166
x = −0.999 −6·907,755 −2·918,997 −5·089,800 −6·688,739

ln(1 + x)− S10(x) ln(1 + x)− S100(x) ln(1 + x)− S1000(x)
x = 1 5 · 10−2 5 · 10−3 5 · 10−4

x = 0.999 5 · 10−2 5 · 10−3 5 · 10−4

x = 0.5 3 · 10−3 0 0
x = −0.999 −4 −2 −0.2

Problem 2.4.5.
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(2.38)

Estimate for the error is the sum of errors of (2n+1)-th order or the positive
and negative part of (2.27).
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For x = 4 we have z = 2
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1−|z| = 4, so
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−1

−1

f(z) = 1+z
1−z

−1

−1

f(x) = x
x+2

.
For x = − 4

5 we have z = − 2
3 and, again, |z| = 2

3 . So we get the same
estimates on the error term.

If we want to estimate the error term by hand, we might use inequalities(
3
2

)2
= 9

2 > 2 and
(
3
2

)4
= 81

16 > 5. (Which together give
(
3
2

)6
> 10.)

n 2n+1
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3 7
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3
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)7 ≈ 30 7
4 · 32
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4 · 32 · 10 > 10

4 9
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3
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3
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(
3
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7 15
4

(
3
2

)15 ≈ 1600 15
4

(
3
2

)15
> 15

4 · 32 · 2 · 102 > 103

8 17
4

(
3
2

)17 ≈ 4000

9 19
4

(
3
2

)19 ≈ 10000

12 25
4

(
3
2

)25 ≈ 160000 25
4

(
3
2

)25
>
(
3
2

)24
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n Gn(4) log(5)−Gn(4)
log 5 1·609,437,912

3 1·583,539,095 ≈ 3 · 10−2

5 1·606,041,794 ≈ 3 · 10−3

7 1·608,934,295 ≈ 5 · 10−4

11 1·609,424,767 ≈ 1.3 · 10−5

12 1·609,432,515 ≈ 5 · 10−6

For x = − 4
5 and z = − 2

3 we get exactly opposite values.
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Problem 2.4.6.

ln(1 + x)−G10(x) ln(1 + x)−G100(x) ln(1 + x)−G1000(x)
x = 1 10−11 0 0

x = 0.999 10−11 0 0
x = 0.5 0 0 0

x = −0.999 −2.5 −0.7 −4 · 10−3

Problem 2.4.7.
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Estimate with the first 1000 terms:

π

4
+

ln 2

2
= 1·131,971,753,677,421

S1000 = 1·130,972,254,176,419

Problem 2.4.10. Kempner series1
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S ≤ 8
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8
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10
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Problem 2.4.11. Neither 8 nor 9:
7 + 7·8

10 + 7·82
102 + · · · = 7

1− 8
10

= 35

Problem 2.4.12. No digit 1:
8
2 + 8·9

2·10 + 8·92
2·102 + · · · = 40

1https://en.wikipedia.org/wiki/Kempner_series
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Problem 2.4.13.

Sn =

n∑
k=1

1√
k

n Sn 2
√
n+ 1− 2 2

√
n

10 5·020,998 4·633 6·325
100 18·589,604 18·100 20

1,000 61·801,009 61·277 63·246
10,000 198·544,645 198·010 200
100,000 630·996,759 630·459 632·455

1,000,000 1,998·540,145 1,998·001 2,000
10,000,000 6,323·095,123,940 6,322·556 6,324·555

Problem 2.4.14.
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Problem 2.4.16.
∞∑
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lnn− ln(n− 1) >
1

n
>

1

n
· 1 + 1

n

2
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2n

(
1 +

1

n

)
> ln(n− 1)

Hn−1 > ln(n− 1) + γ

Problem 2.4.18. Ant on a rubber rope https://en.wikipedia.org/wiki/

Ant_on_a_rubber_rope

1

2000

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)

lnn+ γ ≈ 2000

n ≈ e2000−γ

More generally:
α = ant’s speed
c = initial rope length
v = how much length grows
c+ vn = length before the n’th step
θ(n) = ratio covered after the n’th set

Discrete case.

θ(n− 1) =
α

c+ v
+

α

c+ 2v
+ · · ·+ α

c+ (n− 1)v

θ(n− 1) ≥
∫ n

1

α

c+ vt
dt =

[α
v

ln(c+ vt)
]n
1

θ(n− 1) ≥ α

v
ln

(
c+ vn

c+ v

)
Continuous case.
c+ vt = length at time t

y(t) = position
φ(t) = ratio

y′(t) = α+
vy(t)

c+ vt

φ(t) =
y(t)

c+ vt
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y(t) = φ(t)(c+ vt)

y′(t) = φ′(t)(c+ vt) + vφ(t)

y′(t) = φ′(t)(c+ vt) +
vy(t)

c+ vt

y′(t)− vy(t)

c+ vt
= φ′(t)(c+ vt)

α = φ′(t)(c+ vt)
α

c+ vt
= φ′(t)

φ′(t) =
α

c+ vt

φ(t) =

∫ t

0

α

c+ vx
dx

φ(t) =
α

v
ln

(
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c

)
α

v
ln

(
c+ vT

c

)
= 1 ⇔ T =

c

v

(
ev/α − 1

)
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