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A Hitchhiker’s Guide

Notes from [AB2].

1 Odds and Ends

2 Topology

2.1 Topological spaces

Example. (2.2) A semimetric = triangle inequality and d(x, x) = 0.

2.6 Nets and filters

For each α ∈ D define the section or tail Fα = {xβ ;β ≥ α} and consider the
family of sets B = {Fα;α ∈ D}. It is a routine matter to verify that B is a filter
base. The filter F generated by B is called the section filter of {xα} or the filter
generated by the net {xα}.

2.13 Weak topologies

weak topology or initial topology on X generated by the family of functions
{fi}i∈I

Let w denote this weak topology.

Lemma. (2.52) A net satisfies xα
w→ x for the weak topology w if and only if

fi(xα)
τi→ fi(x) for each i ∈ I.

For a family F of real functions on X, the weak topology generated by F is
denoted by σ(F , X).

3 Metrizable spaces

3.13 The Cantor set

Lemma. (3.59) Any nonempty closed subset of ∆ is a retract of ∆.

3.14 The Baire space NN

Lemma. (3.64) Every nonempty closed subset of N is a retract of N .
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3.15 Uniformities

3.16 The Hausdorff distance

Definition. (3.70) Let (X, d) be a semimetric space. For each pair of nonempty
subsets A and B of X, define

hd(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b, A)}.

The extended real number hd(A,B) is the Hausdorff distance between A and
B relative to the semimetric d. The function hd is the Hausdorff semimetric
induced by d. By convention, hd(∅, ∅) = 0 and hd(A, ∅) =∞ for A 6= ∅.

Lemma. (3.71) If A and B are nonempty subsets of a semimetric space (X, d),
then

h(A,B) = inf{ε > 0;A ⊂ Nε(B) and B ⊂ Nε(A)}.

The function h has all the properties of semimetric except for the fact that
it can take on the value ∞. 1

Lemma. (3.72)

1. h(A,B) ≥ 0 and h(A,A) = 0

2. h(A,B) = h(B,A)

3. h(A,B) ≤ h(A,C) + h(C,B)

4. h(A,B) = 0 if and only if A = B

Lemma. (3.74) Let (X, d) be a semimetric space. Then for any nonempty
subsets A and B of X

h(A,B) = sup
x∈X
|d(x,A)− d(x,B)|.

3.17 The Hausdorff metric topology

Given a metric space (X, d),

• F denotes the collection of nonempty closed subsets of X,

• Fd denotes the collection of nonempty d-bounded closed subsets of X,

• K denotes the collection of nonempty compact subsets of X.

Corollary. (3.79) Let (X, d) be a metric space. Ten Fn
τh→ F in F if and only

if the sequence {d(·, Fn)} of real functions converges uniformly to d(·, F ) on X.

1My question: Is also the function δ(A,B) = supa∈A d(a,B) a semimetric “without sym-
metry”?
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4 Measurability

4.1 Algebras of sets

Algebra of sets = complements and unions

4.2 Rings of sets

5 Topological vector spaces

5.7 Convex and concave functions

Definition. (5.38) A function f : C → R on a convex set C in a vector space is

• convex if f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) for all x, y ∈ C and
0 ≤ α ≤ 1.

• strictly convex

• concave

• strictly concave

5.8 Sublinear functions and gauges

A real function f defined on a vector space is subadditive if

f(x+ y) ≤ f(x) + f(y).

Recall that a nonempty subset C of a vector space is a cone if x ∈ C implies
αx ∈ C for every α ≥ 0. A real function f defined on a cone C is positively
homogeneous if

f(αx) = αf(x)

for every α ≥ 0. Clearly, if f is positively homogeneous, then f(0) = 0 and f is
completely determined by its values on any absorbing set.

Definition. A real function on a vector space is sublinear if it is both pos-
itively homogeneous and subadditive, or equivalently, if it is both positively
homogeneous and convex.

5.9 The Hahn-Banach Extension Theorem

One of the most important and far-reaching results in analysis is the following
seemingly mild theorem. It is usually stated for the case where p is sublinear,
but this more general statement is as easy to prove. Recall that a real-valued
function f dominates a real-valued function g on A if f(x) ≥ g(x) for all x ∈ A.
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Theorem (Hahn-Banach Extension Theorem). (5.53) Let X be a vector space
and let p : X → R be any convex function. Let M be a vector subspace of X
and let f : M → R be a linear functional dominated by p on M . Then there is
a (not generally unique) linear extension f̂ of f to X that is dominated by p on
X.

In fact, the proofs shows that, for a given v ∈ X, there exists an extension
such that the value f̂(v) = c can be chosen anywhere between

sup
x∈M,λ>0

1

λ
[f(x)− p(x− λv)] ≤ c ≤ inf

y∈M,µ>0

1

µ
[p(y + µv)− f(y)].

5.10 Separating hyperplane theorems

5.11 Separation by continuous functionals

5.12 Locally convex spaces and seminorms

5.13 Separation in locally convex spaces

5.14 Dual pairs

Definition. (5.90) A dual pair (or a dual system) is a pair 〈X,X ′〉 of vector
spaces together with a bilinear functional (x, x′) 7→ 〈x, x′〉, from X ×X ′ to R,
that separates the points of X and X ′. That is:

1. The mapping x′ 7→ 〈x, x′〉 is linear for each x ∈ X.

2. The mapping x 7→ 〈x, x′〉 is linear for each x′ ∈ X ′.

3. If 〈x, x′〉 = 0 for each x′ ∈ X ′, then x = 0.

4. If 〈x, x′〉 = 0 for each x ∈ X, then x′ = 0.

Each space of a dual pair 〈X,X ′〉 can be interpreted as a set of linear func-
tionals on the other.

5.15 Topologies consistent with a given dual

Definition. (5.96) A locally convex topology τ on X is consistent (or compati-
ble) with the dual pair 〈X,X ′〉 if (X, τ)′ = X ′. Consistent topologies on X ′ are
defined similarly.
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6 Normed spaces

6.1 Normed spaces and Banach spaces

6.2 Linear operators on normed spaces

6.3 The norm dual of a normed space

Definition. (6.7) The norm dual X ′ if a normed space (X, ‖·‖) is Banach space
L(X,R). The operator norm on X ′ is also called the dual norm, also denoted
‖·‖. That is,

‖x′‖ = sup
‖x‖≤1

|x′(x)| = sup
‖x‖=1

|x′(x)|

Theorem. (6.8) The norm dual of a normed space is a Banach space.

6.4 The uniform boundedness principle

6.5 Weak topologies on normed spaces

We have the following very important special case of Alaoglus Compactness
Theorem 5.105.

Theorem (Alaoglu’s theorem). (6.21) The closed unit ball of the norm dual
of a normed space is weak* compact. Consequently, a subset of the norm dual
of a normed space is weak* compact if and only if it is weak* closed and norm
bounded.
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7 Convexity

7.1 Extended-valued convex functions

7.2 Lower semicontinuous convex functions

7.3 Support points

7.4 Subgradients

7.5 Supporting hyperplanes and cones

7.6 Convex functions on finite dimensional spaces

7.7 Separation and support in finite dimensional spaces

7.8 Supporting convex subsets of Hilbert spaces

7.9 The Bishop-Phelps Theorem

7.10 Support functionals

7.11 Extreme points of convex sets

Definition. (7.61) An extreme subset of a (not necessarily convex) subset C of
a vector space, is a nonempty subset F of C with the property that if x belongs
to F it cannot be written as a convex combination of points of C outside F .
That is, if x ∈ F and x = αy + (1 − α)z, where 0 < α < 1 and y, z ∈ C, then
y, z ∈ F . A point x is an extreme point of C if the singleton {x} is an extreme
set. The set of extreme points of C is denoted E(C).

Theorem (The Krein-Milman Theorem). (7.68) In a locally convex Hausdorff
space X each nonempty convex compact subset is the closed convex hull of its
extreme points.

If X is finite dimensional, then every nonempty convex compact subset is the
convex hull of its extreme points.

8 Riesz spaces

8.1 Orders, lattices and cones

8.2 Riesz spaces

An ordered vector space that is also a lattice is called a Riesz space or a vector
space.

For a vector x in a Riesz space, the positive part x+, the negative part x−,
and the absolute value |x| are defined by

x+ = x ∨ 0, x− = (−x) ∨ 0 and |x| = x ∨ (−x).
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Note that
x = x+ − x− and |x| = x+ + x−.

Also note that |x| = 0 if and only if x = 0.
Examples: Rn, C(X), Cb(X), Lp(µ) (0 ≤ p ≤ ∞) with almost everywhere

pointwise ordering, ba(A) signed charges of bounded variations on a given alge-
bra A of subsets of a set X, `p (0 < p ≤ ∞) under pointwise ordering, c0 under
pointwise ordering

8.3 Order bounded sets

8.4 Order and lattice properties

8.5 The Riesz decomposition property

8.6 Disjointness

8.7 Riesz subspaces and ideals

8.8 Order converges and order continuity

8.9 Bands

If S is a nonempty subset of a Riesz space E, then its disjoint complement Sd,
defined by

Sd = {x ∈ E; |x| ∧ |y| = 0 for all y ∈ S}
is necessarily a band.

8.10 Positive functionals

8.11 Extending positive functionals

We can now state a more general form of the HahnBanach Extension Theorem.
Its proof is a Riesz space analogue of the proof of Theorem 5.53; see [AB1,
Theorem 2.1, p. 21].

TODO 8.30,

Theorem. (8.31) Let F be a Riesz subspace of a Riesz space E and let f : F →
R be a positive linear functional. Then f extends to a positive linear functional
on all of E if and only if there is a monotone sublinear function p : E → R
satisfying f(x) ≤ p(x) for all x ∈ F .

8.12 Positive operators

8.13 Topological Riesz spaces

Definition. (8.44) TODO

Definition. (8.45) A seminorm p on a Riesz space is a lattice seminorm (or a
Riesz seminorm) if |x| ≤ |y| implies p(x) ≤ p(y) or, equivalently, if
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1. p is absolute, p(x) = p(|x|) for all x; and

2. p is monotone on the positive cone, 0 ≤ x ≤ y implies p(x) ≤ p(y).

Theorem. (8.46) A linear topology on a Riesz space is locally convex-solid if
and only if it is generated by a family of lattice seminorms.

Example (Locally convex-solid Riesz spaces). (8.47)
4. ba(A)=signed measures of bounded variation with the topology generated

by the lattice norm ‖µ‖ = |µ|(X). For details see Theorem 10.53.

9 Banach lattices

9.1 Fréchet and Banach lattices

Recall that a lattice norm ‖·‖ has the property that |x| ≤ |y| in E implies
‖x‖ ≤ ‖y‖. A Riesz space equipped with a lattice norm is called a normed Riesz
space. A complete normed Riesz space is called a Banach lattice.

9.2 The StoneWeierstrass Theorem

9.3 Lattice homomorphisms and isometries

9.4 Order continuous norms

9.5 AM- and AL-spaces

10 Charges and measures

10.1 Set functions

µ : S → [−∞,∞] where S is a semiring.
signed charge = additive, assumes at most one of values ±∞ and µ(∅) = 0
charge = only nonnegative values
signed measure, measure

10.10 The AL-space of charges

If µ : X → 〈−∞,∞〉 is a signed charge, then total variation (or simply the
variation) of µ is defined by

Vµ = sup{
n∑
i=1

|µ(Ai)|; {A1, . . . , An} is a partition of X}

A signed charge is of bounded variation if Vµ <∞.

Theorem. (10.53) If A is an algebra of subsets of some set X, then its space
of charges ba(A) is an AL-space. Specifically:
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1. The lattice operations on ba(A) are given by

(µ ∨ ν)(A) = sup{µ(B) + ν(A \B);B ∈ A and B ⊂ A}; and

(µ ∧ ν)(A) = inf{µ(B) + ν(A \B);B ∈ A and B ⊂ A}

2. The Riesz space ba(A) is order complete and µα ↑ µ in the lattice sense if
and only if µα(A) ↑ µ(A) for each A ∈ A.

3. The total variation |µ| = Vµ = |µ|(X) is the L-norm on ba(A).

11 Integrals

11.1 The integral of a step function

representation for a µ-step function
standard representation
The integral is defined using the standard representation, but Lemma 11.4

shows that the same value is obtained for any representation.

11.2 Finitely additive integration of bounded functions

finite charge µ on an algebra A of subsets of a set X
TODO lower integral, upper integral

Theorem. (11.6) For a bounded function f : X → R and a finite charge µ on
an algebra of subsets of X, the following statements are equivalent.

1. The function f is integrable.

2. For each ε > 0 there exist two step functions ϕ and ψ satisfying ϕ ≤ f ≤ ψ
and

∫
(ψ − ϕ)dµ < ε.

3. There exist sequences (ϕn)∞n=1 and (ψn)∞n=1 of step functions satisfying
ϕn ↑≤ f , ψn ↓≥ f , and

∫
(ϕn − ψn)dµ ↓ 0.

Let AR denote the algebra generated in R by the collection of all half open
intervals {[a, b); a < b}.

Theorem. (11.7) The collection of all bounded integrable functions with respect
to a finite charge is a Riesz space, and in fact, a function space. Moreover, the
integral is a ‖·‖∞-continuous positive linear functional on the vector space of
bounded integrable functions.

Theorem. (11.8) Every bounded (A,AR)-measurable function is integrable with
respect to any finite charge.
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12 Measures and topology

13 Lp-spaces

14 Riesz Representation Theorems

14.1 The AM-space Bb(Σ) and its dual

14.2 The dual of Cb(X) for normal spaces

Theorem (Positive functionals on Cb(X)). Let X be a normal Hausdorff topo-
logical space and let Λ: Cb(X) → R be a positive linear functional. Then there
exists a unique finite normal charge µ on the algebra AX generated by the open
sets satisfying µ(X) = ‖Λ‖ = Λ(1) and

λ(f) =

∫
fdµ

for each f ∈ Cb(X).

Theorem (Dual of Cb(X), with X normal). (14.10) LetX be a Hausdorff nor-
mal topological space and let AX be the algebra generated by the open subsets of
X. Then the mapping Λ: ban(AX)→ C ′b(X), defined by

λµ(f) =

∫
fdµ =

∫
fdµ+ − inf fdµ−,

is a surjective lattice isometry. In other words, the norm dual of the AM-space
Cb(X) can be identified with the AL-space ban(AX).

Corollary (Dual of `∞(N)). (14.11) Let X be a set and let `∞(X) denote the
AM-space of all bounded real real functions on X. Then the norm dual of `∞(X)
coincides with ba(X), the AL-space of all signed measures of bounded variation
defined on the power set of X.

14.3 The dual of Cc(X) for locally compact spaces

14.4 Baire vs. Borel measures

15 Probability measures

15.1 The weak* topology on P(X)

15.2 Embedding X in P(X)

Theorem (Point masses are extreme). (15.9) If X is a separable metrizable
topological space, then the set of extreme points of P(X) is identified with X
under the embedding x 7→ δx.
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15.3 Properties of P(X)

16 Spaces of sequences

16.1 The basic sequences spaces

Given a sequence x we define the n-tail of x by

x(n) = (0, . . . , 0, xn+1, xn+2, . . .)

and the n-head by
(n) = (x1, . . . , xn, 0, 0, . . .).

〈x, y〉 =
∞∑
n=1

xnyn

16.2 The sequence spaces RN and ϕ

16.6 `1 and the symmetric Riesz pair 〈`∞, `1〉
16.7 The sequence space `∞

Theorem. (16.28) The AM-space `∞ is not separable.

`′∞ = ba(N) = ca(N)⊕ pa(N)

Lemma. (16.29) A signed charge in ba(N) is purely finitely additive if and only
if it vanishes on the finite subsets of N.

Theorem. (16.31) The norm dual of the AM-space `∞ is given by

`′∞ = `1 ⊕ `d1 = ca⊕ pa,

with the following identifications

1. The AL-spaces `1 and ca are identified via the lattice isometry x 7→ µx
defined by µx(A) =

∑
n∈A xn; and

2. The AL-spaces `d1 and pa are identified via the lattice isometry θ 7→ µθ
defined by µθ(A) = θ(χA).

Moreover, we have (`∞)̃n = `1 = ca and (`∞)̃s = `d1 = pa.
To put it another way: Every countably additive finite signed measure on N

corresponds to exactly one sequence belonging to `1, and every purely additive
finite signed charge corresponds to exactly one extension of a scalar multiple of
the limit functional on c.
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16.8 More on `′∞ = ba(N)

By mimicking the proof of Theorem 15.9, we see that the zero-one charges are
the extreme points of the set of probability charges. They are also the charges
generated by ultrafilters.

Lemma. (16.35) A charge µ ∈ ba(N) is a zero-one-charge if and only if µ = πU
for a unique ultrafilter U on N. Moreover for an ultrafilter U :

1. If U is free, then πU is purely finitely additive.

2. If U is fixed, then πU is countably additive.

16.9 Embedding sequence spaces

16.10 Banach-Mazur limits and invariant measures

Theorem. (16.48) Every continuous function on a compact metrizable topolog-
ical space has an invariant measure.

17 Correspondences

18 Measurable correspondences

19 Markov transitions

20 Ergodicity
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