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Notes from [CP].

1 Primes!

1.1 Problems and progress

1.2 Celebrated conjectures and curiosities
1.3 Primes of special form

1.4 Analytic number theory

1.4.1 The Riemann zeta function

1.4.2 Computational successes

1.4.3 Dirichlet L-functions
2 Number-theoretical tools

2.1 Modular arithmetic
2.2 Polynomial arithmetic

2.3 Squares and roots
2.3.1 Quadratic residues

Definition. (2.3.6) The quadratic Gauss sum G(a; N) is defined for integers
a, N as
N-1
Gla;N) = Y e2miad/N,

<

Theorem (Gauss). (2.5.7) For odd prime p and integer a # 0 (mod p),

a

G(a;p) = () G(1;p),
p
and generally, for positive integer m,

Gtm) = SVm(1 +i)(1+ (i)™,



For a # 0 (mod p)

() EE-G(EE

j 04=0
2.3.2 Square roots
3 Recognizing primes and composites

3.1 Trial division
3.2 Sieving
3.3 Recognizing smooth numbers

3.4 Pseudoprimes
3.4.1 Fermat pseudoprimes

For a coprime to n

3.4.2 Carmichael numbers

3.5 Probable primes and witnesses

Theorem. (3.5.1) Suppose that n is an odd prime and n — 1 = 2°t, where t is
odd. If a is not divisible by n then

{either a'=1 (mod n), (3.4)

ora?t=_1 (mod n) for some i with 0 <1i <s— 1.
strong probable prime base a

Definition. (3.5.3) strong pseudoprime base a = composite number fulfilling
(3.4)

S(n) ={a (mod n)): n is a strong pseudoprime base a} (3.5)
and S(n) = #8(n)
Theorem. (3.5.4) For each odd composite integer n > 9 we have S(n) < 1o(n).

Definition. (3.5.5) If n is an odd composite number and « is an integer in
[1,n — 1] for which (3.4) fails, we say that a is a witness for n. Thus, for an odd
composite number n, a witness is a base for which n is not a strong pseudoprime.

Lemma. (3.5.8) Say n is an odd composite number with n — 1 = 2°t, t odd.
Let v(n) denote the largest integer such that 2¢(") divides p — 1 for each prime

p dividing n. If n is a strong pseudoprime base a, then " =41 (mod n).



or(n)—1

S(n)={a (modn):a t=+1 (modn)}, S(n) =#8(n) (3.6)

Lemma. (3.5.9) Let w(n) the number of different prime factors of n. We have
S(n) =2 2= chd(t,p —-1).
pln

For an odd prime p and positive integer j, the group Z;j of reduced residues
modulo p’ is cyclic of order p? ~!(p—1); that is, there is a primitive root modulo

p’. (This theorem is mentioned in Section 1.4.3 and can be found in most books
on elementary number theory. Compare, too, to Theorem 2.2.5.)

3.5.1 The least witness for n
3.6 Lucas pseudoprimes
3.7 Fibonacci and Lucas pseudoprimes
u; =0,1,1,2,3,5,... starting with j =0
Theorem. (3.6.1) If n is prime then
Un—e, =0 (mod n) (1)

where €, = 1 when n = £1 (mod 5), €, = —1 when n = £2 (mod 5) and
en =0 when n =0 (mod 5).

Definition. We say that a composite number n is a Fibonacci pseudoprime if
(1) holds.

f(x) = 2% — ax + b, where a, b are integers with A = a? — 4b is not square

2l — (a—x)!

U = 2
Uy = Ujfa,b) = 0 (mod f() @)
V; = Vi(a,b) =2’ +(a—a) (mod f()) (3)
where the notation means that we take the remainder in Z[z] upon division by
fl). !
recurrence

Uj = an,1 — ij,Q, ij = an,l — b‘/j,Q

WithUOZO,U1:17%:2,V1:a

)

My note: This is the same as o

and 7 + @3, where ¢ 2 are the roots of the
polynomial f(x).



Theorem. (3.6.3) If p is a prime with ged(p, 2bA) = 1, then

Up—(

p—

<[>

)= 0 (mod p). (4)

Definition. We say that a composite number n with ged(n,2bA) = 1 is a Lucas
pseudoprime with respect to 2 — ax + b if Unf(é) =0 (mod n)..

n

3.7.1 Grantham’s Frobenius Test

3.7.2 Implementing Lucas and quadratic Frobenius test

2V, —aVp
Um = m+1A 1 (5)
Vigr = ViV = b Vj_j for 0 < j <k (6)
(7)
Suppose now that b =1
Vo =Vi =2, Vo =ViViy—a (8)

Exercise 3.417

3.8 Counting primes
3.9 Exercises

3.10 Research problems
4 Primality proving
4.1 The n—1 test
Theorem (Lucas theorem). (4.1.1) If a, n are integers with n > 1 and
a" =1 (modn), but a™V/9%£1 (mod n) for every prime q | n—1, (9)
then n is prime.
Theorem (Pepin test). (4.1.2) For k > 1, the number Fj, = 22° + 1 is prime
if and only if 3Fx=D/2 = —1 (mod F}).
4.2 The n+1 test
4.2.1 The Lucas-Lehmer test
f(z) =2* —ax + b, A=a®—4b (4.12)



U; = Uj(a,b) = m (mod f(z)) (4.13)

Vy = Vi(a,b) =29 +(a—2) (mod f(x)) (10)

Definition. (4.2.1) With the above notation, if n is a positive integer with
ged(n, 26A) = 1, the rank of appearance of n denoted by rf(n), is the least
positive integer r with U, =0 (mod n).

2

It is apparent from the definition that (Uy) is a “divisibility sequence,” that
isk|j= Ug|Uj. It follows from (4.13) that if gcd(n,2bA) =1 then U; =0
(mod n) if and only if j =0 (mod ry(n)).

Theorem. (4.2.2) With f, A as in (4.12) and p a prime not dividing 2bA, we

A

have r¢(p) | p — (;).

Theorem (Morrison). (4.2.8) Let f, A be as in (4.12) and let n be a positive
integer with ged(n,2b) =1, (%) = —1. If F is a divisor of n+ 1 and

Unt1 =0 (mod n), ged(Up1y/q,n) = 1 for every prime q | F (11)

then every prime dividing n satisfies p = (%) (mod F). In particular, if F >
vn+1 and (11) holds, then n is a prime.

The condition (11) implies Up41 = 0 (mod p) and Un+1 # 0 (mod p) for

q

prime divisors ¢ of F.
Theorem. (4.2.4) Let p be an odd prime and let N be the number of pairs
a,be {0,1,...,p— 1} such that if f, A are given as in (4.12), then (%) =-1
and r¢(p) =p+1. Then N = 3(p— 1)p(p +1).

Theorem. (4.2.5) Let f, A be as in (4.12) and let n be a positive integer with
ged(n,2b) =1 and (%) = —1. If F is an even divisor of n + 1 and

Ve/a =0 (mod n), ged(Vp2,n) = 1 for every prime q | F, (12)

then every prime p dividing n satisfies p = (%) (mod F). In particular, if
F > \/n+1, then n is prime.

Theorem (Lucas-Lehmer test for Mersenne primes). (4.2.6) Consider
the sequence (vy) for k = 0,1,..., recursively defined by vo = 4 and vp41 =
vZ — 2. Let p be an odd prime. Then M, = 2P — 1 is a prime if and only if
vp—2 =0 (mod M,).

2My note: Does r¢(n) exist for each n?



The proof uses the polynomial f(x) = 22 — 4z + 1 with A = 12. Tt is shown
that (MAJ =-1.3

4.3 The finite field primality test

Indeed, we have the following theorem, which appeared in [Adleman et al. 1983].
The proof uses some deep tools in analytic number theory.

Theorem. (4.5.5) Let I(x) be the least positive squarefree integer I such that
the product of primes p with p— 1| I exceeds x. Then there is a number ¢ such
that I(x) < (Inz)°™ne for all 2 > 16.

4.4 Gauss and Jacobi sums

In 1983, Adleman, Pomerance, and Rumely [Adleman et al. 1983] published
a primality test with the running-time bound of (Inn)¢!"!" for prime inputs
n and some positive constant c. The proof rested on Theorem 4.3.5 and on
arithmetic properties of Jacobi sums.

4.4.1 Gauss sums test

4.4.2 Jacobi sums test
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