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Notes from [CP].

1 Primes!

1.1 Problems and progress

1.2 Celebrated conjectures and curiosities

1.3 Primes of special form

1.4 Analytic number theory

1.4.1 The Riemann zeta function

1.4.2 Computational successes

1.4.3 Dirichlet L-functions

2 Number-theoretical tools

2.1 Modular arithmetic

2.2 Polynomial arithmetic

2.3 Squares and roots

2.3.1 Quadratic residues

Definition. (2.3.6) The quadratic Gauss sum G(a;N) is defined for integers
a,N as

G(a;N) =
N−1∑
j=0

e2πiaj2/N .

Theorem (Gauss). (2.3.7) For odd prime p and integer a 6≡ 0 (mod p),

G(a; p) =
(

a

p

)
G(1; p),

and generally, for positive integer m,

G(1;m) =
1
2
√

m(1 + i)(1 + (−i)m).
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For a 6≡ 0 (mod p)(
a

p

)
=

c
√

p

p−1∑
j=0

p−1∑
j=0

e2πiaj2/p =
c
√

p

(
j

p

) p−1∑
j=0

p−1∑
j=0

e2πiaj/p (2.12)

2.3.2 Square roots

3 Recognizing primes and composites

3.1 Trial division

3.2 Sieving

3.3 Recognizing smooth numbers

3.4 Pseudoprimes

3.4.1 Fermat pseudoprimes

For a coprime to n
an−1 ≡ 1 (mod n). (3.3)

3.4.2 Carmichael numbers

3.5 Probable primes and witnesses

Theorem. (3.5.1) Suppose that n is an odd prime and n− 1 = 2st, where t is
odd. If a is not divisible by n then{

either at ≡ 1 (mod n),
or a2it ≡ −1 (mod n) for some i with 0 ≤ i ≤ s− 1.

(3.4)

strong probable prime base a

Definition. (3.5.3) strong pseudoprime base a = composite number fulfilling
(3.4)

S(n) = {a (mod n)) : n is a strong pseudoprime base a} (3.5)

and S(n) = #S(n)

Theorem. (3.5.4) For each odd composite integer n > 9 we have S(n) ≤ 1
4ϕ(n).

Definition. (3.5.5) If n is an odd composite number and a is an integer in
[1, n− 1] for which (3.4) fails, we say that a is a witness for n. Thus, for an odd
composite number n, a witness is a base for which n is not a strong pseudoprime.

Lemma. (3.5.8) Say n is an odd composite number with n − 1 = 2st, t odd.
Let ν(n) denote the largest integer such that 2ν(n) divides p− 1 for each prime
p dividing n. If n is a strong pseudoprime base a, then a2ν(n)−1

t ≡ ±1 (mod n).
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S(n) = {a (mod n) : a2ν(n)−1
t ≡ ±1 (mod n)}, S(n) = #S(n) (3.6)

Lemma. (3.5.9) Let ω(n) the number of different prime factors of n. We have

S(n) = 2 · 2(ν(n)−1)ω(n)
∏
p|n

gcd(t, p− 1).

For an odd prime p and positive integer j, the group Z∗
pj of reduced residues

modulo pj is cyclic of order pj−1(p−1); that is, there is a primitive root modulo
pj . (This theorem is mentioned in Section 1.4.3 and can be found in most books
on elementary number theory. Compare, too, to Theorem 2.2.5.)

3.5.1 The least witness for n

3.6 Lucas pseudoprimes

3.7 Fibonacci and Lucas pseudoprimes

uj = 0, 1, 1, 2, 3, 5, . . . starting with j = 0

Theorem. (3.6.1) If n is prime then

un−εn
≡ 0 (mod n) (1)

where εn = 1 when n ≡ ±1 (mod 5), εn = −1 when n ≡ ±2 (mod 5) and
εn = 0 when n ≡ 0 (mod 5).

Definition. We say that a composite number n is a Fibonacci pseudoprime if
(1) holds.

f(x) = x2 − ax + b, where a, b are integers with ∆ = a2 − 4b is not square

Uj = Uj(a, b) =
xj − (a− x)j

x− (a− x)
(mod f(x)) (2)

Vj = Vj(a, b) = xj + (a− x)j (mod f(x)) (3)

where the notation means that we take the remainder in Z[x] upon division by
f(x). 1

recurrence

Uj = aUj−1 − bUj−2, Vj = aVj−1 − bVj−2

with U0 = 0, U1 = 1, V0 = 2, V1 = a

1My note: This is the same as
ϕn

1−ϕn
2

ϕ1−ϕ2
and ϕn

1 + ϕn
2 , where ϕ1,2 are the roots of the

polynomial f(x).
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Theorem. (3.6.3) If p is a prime with gcd(p, 2b∆) = 1, then

Up−(∆
p ) ≡ 0 (mod p). (4)

Definition. We say that a composite number n with gcd(n, 2b∆) = 1 is a Lucas
pseudoprime with respect to x2 − ax + b if Un−(∆

n ) ≡ 0 (mod n)..

3.7.1 Grantham’s Frobenius Test

3.7.2 Implementing Lucas and quadratic Frobenius test

Um =
2Vm+1 − aVm

∆
(5)

Vj+k = VjVk − bjVk−j for 0 ≤ j ≤ k (6)
(7)

Suppose now that b = 1

V2j = V 2
j − 2, V2j+1 = VjVj+1 − a (8)

Exercise 3.41?

3.8 Counting primes

3.9 Exercises

3.10 Research problems

4 Primality proving

4.1 The n− 1 test

Theorem (Lucas theorem). (4.1.1) If a, n are integers with n > 1 and

an−1 ≡ 1 (mod n), but a(n−1)/q 6≡ 1 (mod n) for every prime q | n−1, (9)

then n is prime.

Theorem (Pepin test). (4.1.2) For k ≥ 1, the number Fk = 22k

+ 1 is prime
if and only if 3(Fk−1)/2 ≡ −1 (mod Fk).

4.2 The n + 1 test

4.2.1 The Lucas-Lehmer test

f(x) = x2 − ax + b, ∆ = a2 − 4b (4.12)
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Uj = Uj(a, b) =
xj − (a− x)j

x− (a− x)
(mod f(x)) (4.13)

Vj = Vj(a, b) = xj + (a− x)j (mod f(x)) (10)

Definition. (4.2.1) With the above notation, if n is a positive integer with
gcd(n, 2b∆) = 1, the rank of appearance of n denoted by rf (n), is the least
positive integer r with Ur ≡ 0 (mod n).

2

It is apparent from the definition that (Uk) is a “divisibility sequence,” that
is k | j ⇒ Uk | Uj . It follows from (4.13) that if gcd(n, 2b∆) = 1 then Uj ≡ 0
(mod n) if and only if j ≡ 0 (mod rf (n)).

Theorem. (4.2.2) With f , ∆ as in (4.12) and p a prime not dividing 2b∆, we
have rf (p) | p−

(
∆
p

)
.

Theorem (Morrison). (4.2.3) Let f , ∆ be as in (4.12) and let n be a positive
integer with gcd(n, 2b) = 1,

(
∆
n

)
= −1. If F is a divisor of n + 1 and

Un+1 ≡ 0 (mod n), gcd(U(n+1)/q, n) = 1 for every prime q | F (11)

then every prime dividing n satisfies p ≡
(

∆
p

)
(mod F ). In particular, if F >

√
n + 1 and (11) holds, then n is a prime.

The condition (11) implies Un+1 ≡ 0 (mod p) and Un+1
q

6≡ 0 (mod p) for
prime divisors q of F .

Theorem. (4.2.4) Let p be an odd prime and let N be the number of pairs
a, b ∈ {0, 1, . . . , p− 1} such that if f , ∆ are given as in (4.12), then

(
∆
p

)
= −1

and rf (p) = p + 1. Then N = 1
2 (p− 1)ϕ(p + 1).

Theorem. (4.2.5) Let f , ∆ be as in (4.12) and let n be a positive integer with
gcd(n, 2b) = 1 and

(
∆
n

)
= −1. If F is an even divisor of n + 1 and

VF/2 ≡ 0 (mod n), gcd(VF/2, n) = 1 for every prime q | F, (12)

then every prime p dividing n satisfies p ≡
(

∆
p

)
(mod F ). In particular, if

F >
√

n + 1, then n is prime.

Theorem (Lucas-Lehmer test for Mersenne primes). (4.2.6) Consider
the sequence (vk) for k = 0, 1, . . ., recursively defined by v0 = 4 and vk+1 =
v2

k − 2. Let p be an odd prime. Then Mp = 2p − 1 is a prime if and only if
vp−2 ≡ 0 (mod Mp).

2My note: Does rf (n) exist for each n?
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The proof uses the polynomial f(x) = x2 − 4x + 1 with ∆ = 12. It is shown
that

(
∆

Mp

)
= −1. 3

4.3 The finite field primality test

Indeed, we have the following theorem, which appeared in [Adleman et al. 1983].
The proof uses some deep tools in analytic number theory.

Theorem. (4.3.5) Let I(x) be the least positive squarefree integer I such that
the product of primes p with p− 1 | I exceeds x. Then there is a number c such
that I(x) < (lnx)c ln ln x for all x > 16.

4.4 Gauss and Jacobi sums

In 1983, Adleman, Pomerance, and Rumely [Adleman et al. 1983] published
a primality test with the running-time bound of (lnn)c ln ln n for prime inputs
n and some positive constant c. The proof rested on Theorem 4.3.5 and on
arithmetic properties of Jacobi sums.

4.4.1 Gauss sums test

4.4.2 Jacobi sums test
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