

Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos and Vaclav Zizler: Banach Space Theory. The Basis for Linear and Nonlinear Analysis

Notes from [FHHMZ].

1 Basic concepts in Banach spaces

1.1 Basic definitions

Definition. (1.3) $[x, y] = \{\lambda x + (1 - \lambda)y; 0 \leq \lambda \leq 1\} = \text{closed segment}$
 $(x, y) = \{\lambda x + (1 - \lambda)y; 0 < \lambda < 1\} = \text{open segment}$ (assuming $x \neq y$)

A set $M \subset X$ is called symmetric if $(-1)M \subset M$, and balanced if $\alpha M \subset M$ for all $\alpha \in \mathbb{K}$, $|\alpha| \leq 1$.

1.2 Hölder and Minkowski Inequalities, Classical Spaces $C[0, 1]$, ℓ_p , c_0 , $L_p[0, 1]$

Theorem (Hölder inequality). (1.10) $p, q > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$

$$\sum_{k=1}^n |a_k b_k| \leq \left(\sum_{k=1}^n |a_k|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^n |b_k|^q \right)^{\frac{1}{q}} \quad (1.1)$$

Lemma. (1.11) $p, q > 1$ and $\frac{1}{p} + \frac{1}{q} = 1$,

$$ab \leq \frac{a^p}{p} + \frac{a^q}{q}$$

for all $a, b \geq 0$.

Definition. (1.15) c_{00} = sequences with finite support

Theorem (Hölder inequality). (1.19) If $p > 1$, $1/p + 1/q = 1$, $f \in L_p$ and $g \in L_q$, then $fg \in L_1$ and

$$\int_0^1 |f(t)g(t)| dt \leq \left(\int_0^1 |f(t)|^p dt \right)^{1/p} \left(\int_0^1 |g(t)|^q dt \right)^{1/q} = \|f\|_p \|g\|_q. \quad (1.4)$$

Lemma. (1.22) A normed space X is a Banach space if and only if every absolutely convergent series in X is convergent.

1.3 Operators, Quotients, Finite-Dimensional Spaces

$\mathcal{B}(X, Y)$ = bounded operators from X to Y

$\mathcal{B}(X) = \mathcal{B}(X, X)$

isomorphism = bijection such that $T \in \mathcal{B}(X, Y)$ and $T^{-1} \in \mathcal{B}(Y, X)$

Definition. (1.30) Let X, Y be isomorphic normed spaces. The *Banach-Mazur distance* between X and Y is defined by

$$d(X, Y) = \inf\{\|T\| \cdot \|T^{-1}\|; T \text{ an isomorphism of } X \text{ onto } Y\}$$

Note that $d(X, Y) \geq 1$ and we have $d(X, Z) \leq d(X, Y)d(Y, Z)$.¹

Definition. (1.31) $T \in \mathcal{B}(X, Y)$ is called a *compact operator* if $\overline{T(B_X)}$ is compact in Y .

$\mathcal{K}(X, Y)$ = space of all compact operators from X into Y

Definition. (1.33) $X \oplus Y; \|(x, y)\| = \|x\|_X + \|y\|_Y$

Definition. (1.34) X/Y (for closed subspace Y of a normed space X); $\|\hat{x}\| = \inf\{\|y\|; y \in \hat{x}\}$

Proposition. (1.35) Let Y be a closed subspace of a Banach space X . Then X/Y is a Banach space.

$q: X \rightarrow X/Y$ is continuous operator and $\|q\| = 1$ (This can be shown using Riesz's lemma.)

Lemma (Riesz). (1.37) Let X be a normed space. If Y is a proper closed subspace of X then for every $\varepsilon > 0$ there is $x \in S_X$ such that $\text{dist}(x, Y) \geq 1 - \varepsilon$.

Theorem. (1.38) Let X be a normed space. The space X is finite-dimensional if and only if the unit ball B_X of X is compact.

Proposition. (1.39) Every operator T from a finite-dimensional normed space X into a normed space Y is continuous.

Proposition. (1.40) $\mathcal{K}(X, Y)$ is a closed subspace of $\mathcal{B}(X, Y)$

Proposition. (1.42)

(i) If $p \in [1, \infty)$, then the space ℓ_p is separable.

(ii) The spaces c and c_0 are separable.

(iii) The space ℓ_∞ is not separable.

Proposition. (1.43)

(i) The space $C[0, 1]$ is separable.

(ii) If $p \in [1, \infty)$, then L_p is separable.

(iii) The space L_∞ is not separable.

Proposition. (1.44) $\mathcal{B}(\ell_2)$ contains an isometric copy of ℓ_∞ and thus it is not separable

¹In both parts we can use $\|S \circ T\| \leq \|S\| \cdot \|T\|$.

1.4 Hilbert spaces

Theorem (Riesz). (1.49) Let F be a subspace of a Hilbert space H . If F is closed, then $F + F^\perp = H$. Thus $T: F \oplus F^\perp \rightarrow H$ defined by $T(x, y) = x + y$ is an isomorphism of $F \oplus F^\perp$ onto H , and so H is the topological direct sum of F and F^\perp .

Corollary. (1.50) If F is a closed subspace of a Hilbert space H , then F is one-complemented in H , i.e., there is a linear projection of norm 1 from H onto F .

Proposition. (1.51) Let H be a Hilbert space and F be a subspace of H . Then F is linearly isometric to H/F^\perp .

Definition. (1.52) A maximal orthonormal set in H is called an *orthonormal basis* of H .

Theorem. (1.53) Every Hilbert space has an orthonormal basis.

Theorem. (1.54) Let H be a Hilbert space, and let H_0 be a closed subspace of H_0 can be extended to an orthonormal basis of H .

Theorem. (1.55) Every separable infinite-dimensional Hilbert space H has an orthonormal basis $(e_i)_{i=1}^\infty$.

Moreover, if $(e_i)_{i=1}^\infty$ is an orthonormal basis of H , then for every $x \in H$,

$$x = \sum_{i=1}^{\infty} (x, e_i) e_i.$$

Proposition. (1.56) Let $(e_i)_{i=1}^\infty$ be an orthonormal set in a Hilbert space H and $x \in H$. then

(i) (The Bessel inequality)

$$\sum_{i=1}^{\infty} |(x, e_i)|^2 \leq \|x\|^2 \quad (1)$$

(ii) (The Parseval equality) If $(e_i)_{i=1}^\infty$ is an orthonormal basis of H , then

$$\|x\|^2 = \sum_{i=1}^{\infty} |(x, e_i)|^2 \quad (2)$$

(iii) If the Parseval equality holds for every $x \in H$, then $(e_i)_{i=1}^\infty$ is an orthonormal basis of H .

(iv) If $\overline{\text{span}}((e_i)_{i=1}^\infty) = H$, then $(e_i)_{i=1}^\infty$ is an orthonormal basis of H .

Theorem (Riesz, Fischer). (1.57) Every separable infinite-dimensional Hilbert space H is linearly isometric to ℓ_2 .

1.5 Remarks and Open Problems

Exercises for Chapter 1

(1.15) Let $1 \leq p \leq q \leq \infty$. Then $\|x\|_{\ell_q} \leq \|x\|_{\ell_p}$ for $x \in \ell_p$ and $\|f\|_{L_p} \leq \|f\|_{L_q}$ for $f \in L_p[0, 1]$.²

In particular, $\ell_p \subset \ell_q$ and, if $1 \leq p < \infty$, then $\ell_p \subset c_0$. Moreover, $L_q[0, 1] \subset L_p[0, 1]$. All the corresponding operators have norm one.

(1.15) Hilbert cube $Q = \{x = (x_i) \in \ell_2; (\forall i)|x_i| \leq 2^{-i}\}$ is a compact set in ℓ_2 .³

² If we use (1.4) for functions $|f|^p$ and $g(x) = 1$ and for $r = \frac{q}{p} > 1$, we get

$$\int_0^1 |f(x)|^p \, dx \leq \int_0^1 (|f(x)|^q)^{p/q} \, dx,$$

which is equivalent to $\|f\|_{L_p}^p \leq \|f\|_{L_q}^p$.

Proof using Jensen's inequality:

$$\int_0^1 |f(x)|^q \, dx = \int_0^1 (|f(x)|^p)^{\frac{q}{p}} \, dx \geq \int_0^1 (|f(x)|^p)^{\frac{q}{p}}$$

(using the fact that $q/p \geq 1$ and the function $x^{q/p}$ is convex.) The above inequality is equivalent to $\|f\|_{L_q}^q \geq \|f\|_{L_p}^p$.

Similarly one can show $\|f\|_p \leq \mu(S)^{(1/p)-(1/q)} \|f\|_q$ for spaces $L_p(S, \mu)$, $L_q(S, \mu)$ such that $\mu(S) < \infty$.

³As a topological space, Q is homeomorphic to $[0, 1]^\omega$.

2 Hahn-Banach and Banach Open Mapping Theorems

3 Weak Topologies and Banach Spaces

3.1 Dual Pairs, Weak Topologies

3.2 Topological Vector Spaces

3.3 Locally Convex Spaces

3.4 Polarity

3.5 Topologies Compatible with a Dual Pair

3.6 Topologies of Subspaces and Quotients

3.7 Weak Compactness

3.8 Extreme Points, KreinMilman Theorem

3.9 Representation and Compactness

3.10 The Space of Distributions

3.11 Banach Spaces

3.11.1 Banach-Steinhaus Theorem

3.11.2 BanachDieudonné Theorem

3.11.3 The Bidual Space

3.11.4 The Completion of a Normed Space

3.11.5 Separability and Metrizability

3.11.6 Weak Compactness

3.11.7 Reflexivity

3.11.8 Boundaries

Dirac Deltas and Extreme Points of $B_{C(K)^*}$

James Boundaries

Strong James Boundaries

James Boundaries and James Theorem

The RainwaterSimons Theorem

Corollary (Rainwater). (3.137) *Let X be a Banach space, let $\{x_n\}$ be a bounded sequence in X and $x \in X$. If $f(x_n) \rightarrow f(x)$ for every $f \in \text{Ext}(B_{X^*})$, then $x_n \xrightarrow{w} x$.*

3.12 Remarks and Open Problems

Contents

1 Basic concepts in Banach spaces	1
1.1 Basic definitions	1
1.2 Hölder and Minkowski Inequalities, Classical Spaces $C[0, 1]$, ℓ_p , c_0 , $L_p[0, 1]$	1
1.3 Operators, Quotients, Finite-Dimensional Spaces	2
1.4 Hilbert spaces	3
1.5 Remarks and Open Problems	4
2 Hahn-Banach and Banach Open Mapping Theorems	5
3 Weak Topologies and Banach Spaces	5
3.1 Dual Pairs, Weak Topologies	5
3.2 Topological Vector Spaces	5
3.3 Locally Convex Spaces	5
3.4 Polarity	5
3.5 Topologies Compatible with a Dual Pair	5
3.6 Topologies of Subspaces and Quotients	5
3.7 Weak Compactness	5
3.8 Extreme Points, KreinMilman Theorem	5
3.9 Representation and Compactness	5
3.10 The Space of Distributions	5
3.11 Banach Spaces	5
3.11.1 Banach-Steinhaus Theorem	5
3.11.2 BanachDieudonné Theorem	5
3.11.3 The Bidual Space	5
3.11.4 The Completion of a Normed Space	5
3.11.5 Separability and Metrizability	5
3.11.6 Weak Compactness	5
3.11.7 Reflexivity	5
3.11.8 Boundaries	5
3.12 Remarks and Open Problems	6

References

[FHHMZ] Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos, and Vaclav Zizler. *Banach Space Theory. The Basis for Linear and Non-linear Analysis*. Springer, New York, 2011. CMS books in mathematics.