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Marián Fabian, Petr Habala, Petr Hájek, Vicente
Montesinos and Vaclav Zizler: Banach Space The-
ory. The Basis for Linear and Nonlinear Analysis

Notes from [FHHMZ].

1 Basic concepts in Banach spaces

1.1 Basic definitions

Definition. (1.3) [x, y] = {λx+ (1− λy); 0 ≤ λ ≤ 1} = closed segment
(x, y) = {λx+ (1− λy); 0 < λ < 1} = open segment (assuming x 6= y)

A set M ⊂ X is called symmetric if (−1)M ⊂M , and balanced if αM ⊂M
for all α ∈ K, |α| ≤ 1.

1.2 Hölder and Minkowski Inequalities, Classical Spaces
C[0, 1], `p, c0, Lp[0, 1]

Theorem (Hölder inequality). (1.10) p, q > 1 and 1
p + 1

q = 1

n∑
k=1

|akbk| ≤

(
n∑

k=1

|ak|p
) 1

p

·

(
n∑

k=1

|bk|q
) 1

q

(1.1)

Lemma. (1.11) p, q > 1 and 1
p + 1

q = 1,

ab ≤ ap

p
+
aq

q

for all a, b ≥ 0.

Definition. (1.15) c00 = sequences with finite support

Theorem (Hölder inequality). (1.19) If p > 1, 1/p + 1/q = 1, f ∈ Lp and
g ∈ Lq, then fg ∈ L1 and

∫ 1

0

|f(t)g(t)| dt ≤
(∫ 1

0

|f(t)|p
)1/p(∫ 1

0

|g(t)|q
)1/q

= ‖f‖p‖g‖q. (1.4)

Lemma. (1.22) A normed space X is a Banach space if and only if every
absolutely convergent series in X is convegent.
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1.3 Operators, Quotients, Finite-Dimensional Spaces

B(X,Y ) = bounded operators form X to Y
B(X) = B(X,X)
isomorphism = bijection such that T ∈ B(X,Y ) and T−1 ∈ B(X,Y )

Definition. (1.30) Let X, Y be isomorphic normed spaces. The Banach-Mazur
distance between X and Y is defined by

d(X,Y ) = inf{‖T‖.‖T−1‖;T an isomorphism of X onto Y }

Note that d(X,Y ) ≥ 1 and we have d(X,Z) ≤ d(X,Y )d(Y,Z). 1

Definition. (1.31) T ∈ B(X,Y ) is called a compact operator if T (BX) is com-
pact in Y .
K(X,Y ) = space of all compact operators from X into Y

Definition. (1.33) X ⊕ Y ; ‖(x, y)‖ = ‖x‖X + ‖y‖Y
Definition. (1.34) X/Y (for closed subspace Y of a normed space x); ‖x̂‖ =
inf{‖y‖; y ∈ x̂}
Proposition. (1.35) Let Y be a closed subspace of a Banach space X. Then
X/Y is a Banach space.

q : X → X/Y is continous operator and ‖q‖ = 1 (This can be shown using
Riesz’s lemma.)

Lemma (Riesz). (1.37) Let X be a normed space. If Y is a proper closed
subspace of X then for every ε > 0 there is x ∈ SX such that dist(x, Y ) ≥ 1− ε.
Theorem. (1.38) Let X be a normed space. The space X is finite-dimensional
if and only if the unit ball BX of X is compact.

Proposition. (1.39) Every operator T from a finite-dimensional normed space
X into a normed space Y is continuous.

Proposition. (1.40) K(X,Y ) is a closed subspace of B(X,Y )

Proposition. (1.42)

(i) If p ∈ [1,∞), then the space `p is separable.

(ii) The spaces c and c0 are separable.

(iii) The space `∞ is not separable.

Proposition. (1.43)

(i) The space C[0, 1] is separable.

(ii) If p ∈ [1,∞), then Lp is separable.

(iii) The space L∞ is not separable.

Proposition. (1.44) B(`2) contains an isometric copy of `∞ and thus it is not
separable

1In both parts we can use ‖S ◦ T‖ ≤ ‖S‖ · ‖T‖.
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1.4 Hilbert spaces

Theorem (Riesz). (1.49) Let F be a subspace of a Hilbert space H. If F is
closed, then F + F⊥ −H. Thus T : F ⊕ F⊥ → H defined by T (x, y) = x+ y is
an isomorphism of F ⊕ F⊥ onto H, and so H is the topological direct sum of
F and F⊥.

Corollary. (1.50) If F is a closed subspace of a Hilbert space H, then F is
one-complemented in H, i.e., there is a liner projection of norm 1 from H onto
F .

Proposition. (1.51) Let H be a Hilbert space and F be a subspace of H. Then
F is linearly isometric to H/F⊥.

Definition. (1.52) A maximal orthonormal set in H is called an orthonormal
basis of H.

Theorem. (1.53) Every Hilbert space has an orthonormal basis.

Theorem. (1.54) Let H be a Hilbert space, and let H0 be a closed subspace of
H0 can be extended to an orthonormal basis of H.

Theorem. (1.55) Every separable infinite-dimensional Hilbert space H has an
orthonormal basis (ei)

∞
i=1.

Moreover, if (ei)
∞
i=1 is an orthonormal basis of H, then for every x ∈ H,

x =

∞∑
i=1

(x, ei)ei.

Proposition. (1.56) Let (ei)
∞
i=1 be an orthonormal set in a Hilbert space H

and x ∈ H. then

(i) (The Bessel inequality)

∞∑
i=1

|(x, ei)|2 ≤ ‖x‖2 (1)

(ii) (The Parseval equiality) If (ei)
∞
i=1 is an orthonormal basis of H, then

‖x‖2 =

∞∑
i=1

|(x, ei)|2 (2)

(iii) If the Parseval equality holds for every x ∈ H, then (ei)
∞
i=1 is an orthonor-

mal basis of H.

(iv) If span((ei)
∞
i=1) = H, then (ei)

∞
i=1 is an orthonormal basis of H.

Theorem (Riesz, Fischer). (1.57) Every separable infinite-dimensional Hilbert
space H is linearly isometric to `2.
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1.5 Remarks and Open Problems

Exercises for Chapter 1

(1.15) Let 1 ≤ p ≤ q ≤ ∞. Then ‖x‖`q ≤ ‖x‖`p for x ∈ `p and ‖f‖Lp
≤ ‖f‖Lq

for f ∈ Lp[0, 1]. 2

In particular, `p ⊂ `q and, if 1 ≤ p <∞, then `p ⊂ c0. Moreover, Lq[0, 1] ⊂
Lp[0, 1]. All the corresponding operators have norm one.

(1.15) Hilbert cube Q = {x = (xi) ∈ `2; (∀i)|xi| ≤ 2−i} is a compact set in
`2.3

2 If we use (1.4) for functions |f |p and g(x) = 1 and for r = q
p
> 1, we get∫ 1

0
|f(x)|p dx ≤

∫ 1

0
(|f(x)|q)p/q dx,

which is equivalent to ‖f‖pLp
≤ ‖f‖pLq

.

Proof using Jensen’s inequality:∫ 1

0
|f(x)|q dx =

∫ 1

0
(|f(x)|p)

q
p dx ≥

∫ 1

0
(|f(x)|p)

q
p

(using the fact that q/p ≥ 1 and the function xq/p is convex.) The above inequality is
equivalent to ‖f‖qLq

≥ ‖f‖pLp
.

Similarly one can show ‖f‖p ≤ µ(S)(1/p)−(1/q)‖f‖q for spaces Lp(S, µ), Lq(S, µ) such that
µ(S) <∞.

3As a topological space, Q is homeomorphic to [0, 1]ω .
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2 Hahn-Banach and Banach Open Mapping The-
orems

3 Weak Topologies and Banach Spaces

3.1 Dual Pairs,Weak Topologies

3.2 Topological Vector Spaces

3.3 Locally Convex Spaces

3.4 Polarity

3.5 Topologies Compatible with a Dual Pair

3.6 Topologies of Subspaces and Quotients

3.7 Weak Compactness

3.8 Extreme Points, KreinMilman Theorem

3.9 Representation and Compactness

3.10 The Space of Distributions

3.11 Banach Spaces

3.11.1 Banach-Steinhaus Theorem

3.11.2 BanachDieudonné Theorem

3.11.3 The Bidual Space

3.11.4 The Completion of a Normed Space

3.11.5 Separability and Metrizability

3.11.6 Weak Compactness

3.11.7 Reflexivity

3.11.8 Boundaries

Dirac Deltas and Extreme Points of BC(K)∗

James Boundaries

Strong James Boundaries

James Boundaries and James Theorem
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The RainwaterSimons Theorem

Corollary (Rainwater). (3.137) Let X be a Banach space, let {xn} be a bounded
sequence in X and x ∈ X. If f(xn) → f(x) for every f ∈ Ext(BX∗), then

xn
w→ x.

3.12 Remarks and Open Problems
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