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Notes from [FHHMZ].

1 Basic concepts in Banach spaces

1.1 Basic definitions

Definition. (1.3) [z,y] = { Az + (1 — A\y); 0 < A < 1} = closed segment
(z,y) ={ x4+ (1 = Ay);0 < A < 1} = open segment (assuming = # y)

A set M C X is called symmetric if (—1)M C M, and balanced if «M C M
for all o € K, || < 1.

1.2 Holder and Minkowski Inequalities, Classical Spaces
C10,1], £, co, Lp[0,1]

Theorem (Holder inequality). (1.10) p,q > 1 and ]% + % =1

1 1
3 Jantul < (Zakw) | (Zbk|q> 1)
k=1 k=1 k=1
Lemma. (1.11) p,q > 1 and % + % =1,

aP  af
ab < — + —
p q

for all a,b > 0.
Definition. (1.15) cog = sequences with finite support

Theorem (Hoélder inequality). (1.19) If p > 1, 1/p+1/q =1, f € L, and
g € Ly, then fg € Ly and

[swras ([ 1|f(t)|”)1/p (/ 1g<t>‘l)1/q ol (1)

Lemma. (1.22) A normed space X is a Banach space if and only if every
absolutely convergent series in X 1is convegent.



1.3 Operators, Quotients, Finite-Dimensional Spaces

B(X,Y) = bounded operators form X to Y
B(X)=B(X,X)
isomorphism = bijection such that T € B(X,Y) and T~ € B(X,Y)

Definition. (1.30) Let X, Y be isomorphic normed spaces. The Banach-Mazur
distance between X and Y is defined by

d(X,Y) =inf{||T||.|IT~*|; T an isomorphism of X onto Y}
Note that d(X,Y) > 1 and we have d(X, Z) < d(X,Y)d(Y, Z). E|

Definition. (1.31) T € B(X,Y) is called a compact operator if T(Bx) is com-
pact in Y.
K(X,Y) = space of all compact operators from X into Y

Definition. (1.33) X @Y ||(z,v)|| = llzllx + |lylly

Definition. (1.34) X/Y (for closed subspace Y of a normed space z); ||&| =
inf{[lyll;y € &}

Proposition. (1.35) Let Y be a closed subspace of a Banach space X. Then
X/Y is a Banach space.

q: X = X/Y is continous operator and ||¢|| = 1 (This can be shown using
Riesz’s lemma.)

Lemma (Riesz). (1.87) Let X be a normed space. If'Y is a proper closed
subspace of X then for every e > 0 there is x € Sx such that dist(z,Y) > 1—¢.

Theorem. (1.38) Let X be a normed space. The space X is finite-dimensional
if and only if the unit ball Bx of X is compact.

Proposition. (1.39) Every operator T' from a finite-dimensional normed space
X into a normed space Y is continuous.

Proposition. (1.40) K(X,Y) is a closed subspace of B(X,Y)
Proposition. (1.42)
(1) If p € [1,00), then the space £, is separable.
(ii) The spaces ¢ and c¢o are separable.
(#ii) The space L~ is not separable.
Proposition. (1.43)
(i) The space C[0,1] is separable.
(it) If p € [1,00), then L, is separable.
(#ii) The space Lo is not separable.

Proposition. (1.44) B(¢3) contains an isometric copy of Lo and thus it is not
separable

In both parts we can use ||S o T|| < ||S|| - [|T|-



1.4 Hilbert spaces

Theorem (Riesz). (1.49) Let F be a subspace of a Hilbert space H. If F is
closed, then F + F+ — H. Thus T: F & F+ — H defined by T(x,y) =z +y is
an isomorphism of F @& F onto H, and so H is the topological direct sum of
F and F*.

Corollary. (1.50) If F is a closed subspace of a Hilbert space H, then F is
one-complemented in H, i.e., there is a liner projection of norm 1 from H onto
F.

Proposition. (1.51) Let H be a Hilbert space and F be a subspace of H. Then
F is linearly isometric to H/F*.

Definition. (1.52) A maximal orthonormal set in H is called an orthonormal
basis of H.

Theorem. (1.53) Every Hilbert space has an orthonormal basis.

Theorem. (1.54) Let H be a Hilbert space, and let Hy be a closed subspace of
Hy can be extended to an orthonormal basis of H.

Theorem. (1.55) Every separable infinite-dimensional Hilbert space H has an
orthonormal basis (€;)52.
Moreover, if (e;)32, is an orthonormal basis of H, then for every x € H,

oo
x = Z(a:,ei)ei.
i=1

Proposition. (1.56) Let (e;)$2, be an orthonormal set in a Hilbert space H
and x € H. then

(i) (The Bessel inequality)

o0

Dl el < Jlalf? (1)

i=1

(i) (The Parseval equiality) If (€;)2, is an orthonormal basis of H, then
lz)® =D I, e)? (2)
i=1

(i1i) If the Parseval equality holds for every x € H, then (e;)$2, is an orthonor-
mal basis of H.

(iv) If span((e;)2,) = H, then (e;)$2, is an orthonormal basis of H.

Theorem (Riesz, Fischer). (1.57) Every separable infinite-dimensional Hilbert
space H is linearly isometric to {.



1.5 Remarks and Open Problems

Exercises for Chapter 1

(1.15) Let 1 < p < g < 0o. Then ||z, < [|z[le, for x € £, and |||z, < [|f]lz,
for f € L,[0,1]. E|
In particular, ¢, C ¢, and, if 1 < p < oo, then £, C ¢g. Moreover, L,[0,1] C
L,[0,1]. All the corresponding operators have norm one.
E|(1.15) Hilbert cube Q = {z = (x;) € f2; (Vi)|x;| < 27"} is a compact set in
ly

2 If we use (1.4) for functions |f|P and g(x) = 1 and for r = % > 1, we get

1 1
2)|P dx 2)|9)P/9 4z
AUUIdSA(WN) da,

which is equivalent to ||f||’£zD < Hinq.
Proof using Jensen’s inequality:

1 1 q 1 a
AU@WM=A(WMﬂPMZA(WMﬁP

(using the fact that ¢/p > 1 and the function z9/P s convex.) The above inequality is
i q p

equivalent to HfHLq > ||f||Lp.

Similarly one can show ||f|l, < w(S)X/P)=(/D| f|l, for spaces Ly (S, ), Lq(S, ) such that

1(S) < oo.
3As a topological space, @ is homeomorphic to [0, 1]*.



2 Hahn-Banach and Banach Open Mapping The-
orems

3 Weak Topologies and Banach Spaces

3.1 Dual Pairs,Weak Topologies

3.2 Topological Vector Spaces

3.3 Locally Convex Spaces

3.4 Polarity

3.5 Topologies Compatible with a Dual Pair
3.6 Topologies of Subspaces and Quotients
3.7 Weak Compactness

3.8 Extreme Points, KreinMilman Theorem
3.9 Representation and Compactness

3.10 The Space of Distributions

3.11 Banach Spaces

3.11.1 Banach-Steinhaus Theorem

3.11.2 BanachDieudonné Theorem

3.11.3 The Bidual Space

3.11.4 The Completion of a Normed Space
3.11.5 Separability and Metrizability
3.11.6 Weak Compactness

3.11.7 Reflexivity

3.11.8 Boundaries

Dirac Deltas and Extreme Points of B¢ (k)-
James Boundaries
Strong James Boundaries

James Boundaries and James Theorem



The RainwaterSimons Theorem

Corollary (Rainwater). (3.137) Let X be a Banach space, let {x,} be a bounded
sequence in X and x € X. If f(xn) — f(x) for every f € Ext(Bx+), then
Ty S .

3.12 Remarks and Open Problems
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