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Haworth, McCoy: Baire spaces

Notes from [HM].

Introduction

In some instances one needs to have a “complete” space only to use a theorem
such as the Baire Category Theorem, so that being a Baire space all that is
really necessary. This is the case in such well-known theorems as the Closed
Graph Theorem, the Open Mapping Theorem and the Uniform Boundedness
Theorem.

The letters N, @, and J will represent the natural numbers, the rational
numbers, and the irrational numbers, respectively.

1 Basic properties of Baire spaces

1.1 Nowhere dense sets

Let A be a subset of a topological space X. Then A is dense in X if clA = X,
and A is somewhere dense in X if Intcl A # (. If A is not somewhere dense in
X then it is called nowhere dense in X.

Proposition. (1.2) Let N be a family of nowhere dense subsets of X. If N is
locally finite at a dense set of points of X, then |JN is nowhere dense in X.

Proposition. (1.3) Let Y be a subspace of X, and let N be a subset of Y. If
N is nowhere dense in'Y, then N is nowhere dense in X. Conversely, if Y is
open (or dense) in X and N is nowhere dense in X, then N is nowhere dense
mY.

Proposition. (1.4) For each a € A let N, be a subset of the space X,. Then,

N, is nowhere dense in X, if and only if for some 8 € A, Ng is nowhere
B

acA a€A

dense in Xg or cl N, # X, for infinitely many a € A.

1.2 First and second category sets

first category = meager = countable union of nowhere dense sets

second category = nonmeager

Proposition 1.3 points out that if Y is an open or dense subset of a space X,
and if A C Y, then the category of A relative to Y is the same as the category
of A relative to X.

Proposition. (1.5) Every dense Gs-subset of a space of second category is of
second category.



Theorem (Banach category theorem). (1.6) In a topological space X, the union
of any family of open sets of first category is of first category.

Theorem. (1.7) Let A be a subset of the space X, and suppose that for every
nonempty open set U there exists a nonempty open set V contained in U such
that VN A is of first category in X. Then A is of first category in X.

Theorem. (1.8) A space X is of second category if and only if the intersection
of any (monotone decreasing) sequence of dense open subsets is nonempty.

Theorem. (1.9) Every T -space with no isolated points having a o-locally finite
base has a dense subspace which is of first category.

A collection P of nonempty open sets in a space X is a pseudo-base' for
X if every nonempty open subset of X contains at least one member of P. A
pseudo-base P is said to be locally countable if each member of P contains only
countably many members of P.

Lemma. (1.10) Let X andY be spaces with Y having a countable pseudo-base.
If N is nowhere dense (of first category, resp.) in X XY, then N, is nowhere
dense (of first category, resp.) in'Y for all x except a set of first category in X.

Theorem. (1.11) Let X and Y be spaces with at least one of them having a
locally countable pseudo-base. Let A C X and B CY. Then A x B is of first
category in X XY if and only if A is of first category in X or B is of first
category in Y.

Corollary. (1.12) Let X and Y be spaces with at least one of them having a
locally countable pseudo-base. Let A C X and B CY. Then A x B is of second
category in X XY if and only if A is of second category in X and B is of second
category in'Y .

1.3 Baire spaces

A Buaire space is a topological space such that every nonempty open subset is
of second category.

Theorem. (1.13) The following are equivalent for a space X :
(i) X is a Baire space.
(i) The intersection of any (monotone decreasing) sequence of dense open sets
is dense in X.
(iii) The complement of any set of first category in X is dense in X.
(iv) Every countable union of closed sets with no interior points in X has no
interior point in X.

Proposition. (1.14) Every open subspace of a Baire space is a Baire space.

1Some authors use the name 7-base for this notion; e.g. [J, p.5]



In contrast, not every closed subspace of a Baire space is a Baire space,
as can be seen by taking the space E? — {(z,0)|x € J}. The closed subspace
{(z,0)|x € Q} is clearly of first category.

Theorem. (1.15) Every space which contains a dense Baire subspace is a Baire
space.

Proposition. (1.16) X is a Baire space if and only if the complement of every
nonempty subset of first category in X is a Baire space.

Proposition. (1.17) Let Y be a subspace of the Baire space X. Then'Y is of
first category in X if and only if X —Y contains a dense Gs-subset of X.

Proposition. (1.18) In a topological space X, the union of any family of open
Baire subspaces is a Baire space.

Proposition. (1.19) In a topological space X, the union of a finite number of
Baire subspaces is a Baire space.

Actually Proposition 1.19 is true for a locally finite collection of Baire sub-
spaces (see [M]).

Proposition. (1.20) Every disjoint topological sum of Baire spaces is a Baire
space.

A pseudo-cover (also called almost cover or proximate cover) for a space X
is a collection of subsets of X whose union is dense in X. A pseudo-cover U is
said to be open if each member of U is open in X.

Theorem. (1.21) If X has an open pseudo-cover, each member of which is a
Baire space, then X is a Baire space.

Corollary. (1.22) X is a Baire space if and only if each point of X has a
neighborhood which is a Baire space.

Proposition. (1.23) Every dense Gs-subspace of a Baire space is a Baire space.

Theorem. (1.24) Let X be a dense subspace of the Baire space Y .
(i) X is a Baire space if and only if every somewhere dense Gg-subset of Y
intersects X.
(i) X is a Baire space if and only if every Gs-subset of Y contained in Y — X
is nowhere dense in'Y .
(iii) If every Gs-subset of Y contained in Y — X is nowhere dense in Y — X,
then X is a Baire space.
(iv) If Y — X is dense in Y, then X is a Baire space if and only if every
Gs-subset of Y contained in' Y — X is nowhere dense in Y — X.



1.4 Isolated points and Baire spaces

Proposition. (1.28) In every topological space X there are open (possibly empty)
subspaces Xp and Xp such that
a) XpNXp =10, and Xp U Xp is dense in X;
b) Xp is a Baire space;
c) and every singleton subset of Xp is nowhere dense in Xp.
Furthermore, X is a Baire space if and only if Xp is a Baire space.

Proposition. (1.30) If X is a countable Baire Ty-space, then the set of isolated
points of X is dense in X. Furthermore, if X is countably infinite, then the set
of isolated points of X is also infinite.

Proposition. (1.31) Let X be a Baire T -space with no isolated points, and let
G be a somewhere dense Gg-subset of X. If C' is a countable subset of G, then
G — C is a somewhere dense Gs-subset of X.

Proposition. (1.52) Let X be a Baire T} -space with no isolated points, and let
G be a somewhere dense Gs-subset of X. If D is a dense first category subset
of X, then GN (X — D) is uncountable.

2 Concepts related to Baire spaces

2.1 Baire spaces in the strong sense

A space X is a Baire space in the strong sense (also called totally non-meager)
if every nonempty closed subspace is of second category in itself.

The next proposition: Baire space in the strong sense = a Baire space. The
example given after Proposition 1.14 is a metric Baire space that is not a Baire
space in the strong sense.

Proposition. (2.1) X is a Baire space in the strong sense if and only if every
nonempty closed subspace is a Baire space.

Proposition. (2.2) Every Gs-subspace of a Baire space in the strong sense X
18 a Baire space in the strong sense.

2.2 Baire Category Theorem

Theorem. (2.3) Every locally compact Hausdorff space X is a Baire space, and
hence is a Baire space in the strong sense.

Theorem (Baire Category). (2.4) Every complete metric space X is a Baire
space, and hence is a Baire space in the strong sense.

Van Doren [67] has shown that the closed continuous image of a complete
metric space contains a dense completely metrizable subspace. Thus, the Baire
Category Theorem is valid for every closed continuous image of a complete
metric space (see Theorem 4.10).

The example given after Proposition 1.14 is a metrizable Baire space mm is
neither topologically complete nor locally compact.



2.3 Complete type properties which imply Baire

A Tychonoff space X is complete in the sense of Cech if there exists a sequence
{U;} of open coverings of X such that for every family of closed sets {F,|a € A}
which has the finite intersection property, and which has the property that for

each 4, there exists an F, contained in some U € U;; (| Fo # 0.
acA

It is well known that for a metric space complete in the sense of Cech is
equivalent to being topologically complete. The above definition was chosen
so that one could easily see that the Cech complete spaces contain the almost
countably complete spaces.

A space is quasi-regular if every nonempty open set contains the closure of
some nonempty open set. A quasi-regular space X is almost countably com-
plete if there exists a sequence {P,} of pseudo-bases for X such that for every
sequence of sets {U;} which has the finite intersection property U,, € Pp,;
[o ]

N clU,, # 0. A space X is pseudo-complete if it is quasi-regular and if there
k=1
exists a sequence {P;} of pseudo-bases for X such that for every sequence of
oo
sets {U;} with U; € P; and clU; 41 C U; for each i; () U; # 0.
i=1

Pseudo-completeness has an interesting generalization called weakly a-favorable
which utilizes ideas from game theory. 2

Also see the section on Banach-Mazur game.

It is easy to see that every pseudo-complete space is weakly a-favorable.
White [70] shows that the concepts of weakly a-favorable and pseudo-complete
coincide for the class of quasi-regular spaces which have dense metrizable sub-
spaces.

Theorem. (2.5) Every weakly a-favorable spaces X is a Baire space.

The example given after Proposition 1.14 is pseudo-complete and, thus,
weakly a-favorable. However, it is not a Baire space in the strong sense.

Lemma ([Ku, p.514-515, Lemma I11.40.2]). Let R be a set of cardinality ¢ and
M be a family of subsets of R such that M| < ¢ and each element of M has
cardinality c. Then R contains a subset Z such that both Z and R — Z have

cardinality ¢ and both contain at least one element from each set belonging to
the family M.

Theorem. (2.6) If (X, T) is a separable completely metrizable space® with no
isolated points, then there exists a subset Z of X with the following properties:
(i) Both Z and X —Z are dense in X, have cardinality ¢, and are Baire spaces
in the strong sense;
(i) If Y is a subspace of Z or X — Z that does not have an isolated point,
then Y is not weakly a-favorable.

2weakly a-favorable space is called Choquet space in [Ke] < Player II has a winning strategy
in Choquet game.
3=Polish space



Proposition. (2.7) Every complete pseudo-semi-metric quasi-reqular space (X, T)
is pseudo-complete.

closed base, cospace, cocompact °
An open filter base F on a space X is a nonempty collection of nonempty
open subsets of X such that whenever U and V' are members of F, then there
exists a member W of F with W C UNV. F is regular if, whenever U is
a member of F then there exists a member V of F with cl1V C U. A space
(X,T) is countably subcompact if there exists an open base B for (X, T) such
o0
that whenever {U;} is a countable regular filter base contained in B, (| U; # 0.
i=1
Theorem. (2.8) Every quasi-reqular countably subcompact space X is a Baire
space.

Theorem. (2.9) Fvery quasi-regular countably cocompact space is a Baire space.

2.4 Minimal spaces

Proposition. (2.10) A minimal Ty-space (X, T) is a Baire space if and only if
X is finite or uncountable.

Proposition. (2.11) Let (X,T) be a Baire space and T* be a topology on X
contained in T . If there exists a p € X such that {U € T|p ¢ U} C T*, then
(X, T*) is a Baire space.%

Proposition. (2.12) Every minimal (T Baire)-space is finite or uncountable.

Theorem. (2.13). (X,T) is a minimal (T} Baire)-space if and only if (X, T)
is a Baire minimal T -space.

Let F be an open filter base on a space X. adherent point = cluster point,
convergent to x = contains all open neighborhoods

F is Urysohn provided that for every y € X, if y is not an adherent point
of F, then there is an open set U containing y and a set V' € F such that
cdUnNnclV =4.

A space (X, T) is a minimal Hausdorff (resp. Urysohn,” regular Hausdorff)
space if and only if every open (resp. Urysohn, regular) filter base with a unique
adherent point is convergent [V].

4TODO Definition of pseudo-semi-metric space

5TODO

6My note: Does this condition imply that the subspace of (X, 7) and (X, 7*) on the subset
X\ {p} is the same?

7An Urysohn space, or T5 space, is a topological space in which any two distinct points
can be separated by closed neighborhoods.



Proposition. (2.14) Let (X, T) be a Hausdorff (resp. Urysohn, reqular Haus-
dorff) Baire space, and let F be a nonconvergent open (resp. Urysohn, reg-
ular) filter base with a unique adherent point p. If Tx = M UN, where
M={UeT;p¢ Ut and N={UUV;peUe€T andV € F}, then T*
is a Hausdorff (resp, Urysohn, reqular Hausdorff) Baire topology on X that is
properly contained in T .

Proposition. (2.15) Let (X,T) be a regular Hausdorff Baire space, and let
F be a nonconvergent open (resp. Urysohn, regular) filter base with a unique
adherent point p. If B= M UN, where M ={U € T;U C X —clV for each
VeF}and N ={U € T;p € clU}, then the topology on X generated by the
subbase {X — clU|U € B} is a Hausdorff (resp. Urysohn, regular Hausdorff)
Baire topology properly contained in T. 8

Theorem. (2.16) (X,T) is a minimal (Hausdorff Baire)-space if and only if
(X, T) is a Baire minimal Hausdorff space.

Theorem. (2.17) (X,T) is a minimal (Urysohn Baire)-space if and only if
(X,T) is a Baire minimal Urysohn space.

Proposition. (2.18) Every minimal (regular Hausdorff)-space (X, T) is count-
ably subcompact.

Theorem. (2.19) (X, T) is a minimal (regular Hausdorff Baire)-space if and
only if (X, T) is a minimal (reqular Hausdorff)-space.

Proposition. (2.20) If (X,T) is a regular Hausdorff Baire space, then the
following are equivalent:

(i) (X, T) is a minimal Hausdorff (resp. Urysohn, reqular Hausdorff)-space.

(i) Let B be any open base for T and let T* be the topology on X generated
by the subbase {x — clU|U € B}. If T* is a Hausdorff (resp. Urysohn,
reqular Hausdor(f) Baire topology, then T* =T.

Given a topological property P, a P-space (X, T) is P-closed if its image is
closed in every P-space in which it can be embedded.

Proposition. (2.21) Every Baire-closed space is finite.

3 Characterizations of Baire spaces

3.1 Blumberg type theorems

We will say that space X has Blumberg’s property with respect to Y if for ev-
ery function f: X — Y, there exists a dense subset D of X such that f|p is
continuous.

8(Probably) a typo in the book: U € X — clV should be U C X — clV; “for each” should
be “for some”



Theorem. (3.1) Let Y contain an infinite discrete subset. Then if X has
Blumberg’s property with respect to Y, X is a Baire space.

Theorem. (3.2) Let X be a pseudo-semi-metrizable Baire space, let Y be a
second countable space, and let f: X — Y be a function. Then there exists a
dense metrizable subspace D of X such that f|p is continuous.

Corollary. (3.3) Let X be a pseudo-semi-metrizable space, and let Y be a sec-
ond countable space which contains an infinite discrete subset. Then X is a
Baire space if and only if it has Blumberg’s property with respect to Y.

Corollary. (8.4) Every pseudo-semi-metrizable Baire space contains a dense
metrizable subspace.

Theorem. (3.5) Let X have a o-disjoint pseudo-base, and let Y be a second
countable space which contains an infinite discrete subset. Then X is a Baire
space if and only if it has Blumberg’s property with respect to Y .

3.2 Covering and filter characterizations

Theorem. (3.10) The following are equivalent for a space X :
(i) X is a Baire space;
(i) Every point finite open cover of X is locally finite at a dense set of points.
(iii) Every countable point finite open cover of X is locally finite at a dense set
of points.

Theorem. (3.11) The following are equivalent for a space X :
(i) X is of second category.
(i) Every point finite open cover of X is locally finite somewhere.
(#ii) Every countable point finite open cover of X is locally finite somewhere.

A space X is lightly compact (also called feebly compact or weakly compact)
if every locally finite collection of open sets of X is finite. Iséki [[32] has shown
that a space is lightly compact if and only if for every decreasing sequence of

o0
nonempty open sets {U;}, () clU; # 0.
i=1

quasi-regular lightly con?pact = pseudocomplete

Theorem. (3.12) If X is a quasi-regular space, then the following are equiva-
lent:
(i) X is Baire space.
(i) X is a Baire space.
(#ii) Every point finite open filter base F on X is locally finite at a dense set
of points of |JF.
(iv) Every countable, point finite, reqular open filter base F on X is locally
finite at a dense set of points of |JF.
(v) Every countable, point finite, regular open filter base F which is not locally
finite at any point of U F has an adherent point.



3.3 Characterizations of Baire spaces involving pseudo-
complete spaces

Proposition. (5.13) In every quasi-reqular space X there are open (possibly
empty) subspaces Xp and X4 such that
(i) XpNXa=0, and Xp U X4 is dense in X;
(ii) Xp is pseudocomplete;
(iii) and every pseudocomplete subspace of X4 is nowhere dense in X 4.
Furthermore, X is a Baire space if and only if X 4 is a Baire space.

3.4 The Banach-Mazur game
U = all subsets of X such that IntU # ()

A, B disjoint and AU B = X
Game G(A, B): Two players (A) and (B) alternately choose sets U; from U

such that U;4q C U; for each i. Player (A) wins if AN () U;) # 0; otherwise
=1

K2

player (B) wins.

Proposition. A space X is of second category if and only if player (0) does not
have a winning strategy for the game G(X,0) with (X) playing first.

X is a Baire space if and only if player (Q) does not have a winning strategy
for the game G(X,0) with (0) playing first.

We might point out that X is a-favorable if and only if player (X) has
a winning strategy for the game G(X,0) with (0) playing first. Thus, being
a-favorable obviously implies being a Baire space in this setting.

Theorem. (3.16) TODO

3.5 Countably-Baire spaces

A space is said to have the countable chain condition if every disjoint family of
nonempty open subsets of X is countable.

Proposition. (8.17) If every pseudo-base for X contains a countable pseudo-
cover, then X has the countable chain condition.

4 The dynamics of Baire spaces

4.1 Images and inverse images of Baire spaces
TODO feebly continuous, feebly open, feeble homomorphism

Theorem. (4.1) If f is an almost continuous feebly open function from a Baire
space X onto a space Y, then'Y is a Baire space.



4.2 Baire spaces extensions

If X is a topological space, an open filter base F on X is an open filter on X
if whenever U € F and V is an open subset of X containing U, then V € F.
Also F will be said to be free if (| F = 0. An open ultrafilter is an open filter
which is maximal in the collection of all open filters. °

Let F be any set of open filters on X, and let X (F') be the disjoint union of
X and F. For each set U, open in X, let U* = UU{F € F;U € F}. Note that
(UNV)* =U*NV* for every open U and V in X. Let X (F') have the topology
generated by the base {U*;U is open in X}. Now X is a dense subspace of
X(F).

Proposition. (4.13) If there are no free open ultrafilters on a space X, then X
18 a Baire space.

We will say that a set of open filters F' on a space X is admissible if for every
collection % = {U;}$2, of non-empty'® open subsets of X with U,y C U; and
() U; = 0 there exists and F € F such that % C F. Admissible sets of filters

=1
include all open filters, all open ultrafilters, and all free open ultrafilters.

Theorem. (4.14) If F is an admissible set of open filters on X, then X (F) is
a Baire space (in fact X(F) is a-favorable).

Theorem. (4.15) If F is the set of all open filters on the space X, then X (F)
s a Baire space in the strong sense.

Corollary. (4.16) Every topological space X is a dense subspace of some com-
pact Baire space in the strong sense.

It is easy to see that if F' is the set of all open filters or the set of all open
ultrafilters on a space X, then X(F) is a generalized absolutely closed space;
that is, every open filter on X (F') has an adherent point.

Theorem. (4.17) Every topological space X is a closed nowhere dense subset
of some generalized absolutely closed Baire space.

Herrlich [H] gives an example of a Hausdorff-closed space which is not a
Baire space.

Theorem. (4.18) If F is an admissible set of open ultrafilters on the quasi-
reqular space X, then X (F') is pseudo-complete.

Corollary. (4.19) Every quasi-regular space is a dense subspace of some pseudo-
complete space.

9Typo: In the books the authors write: “whenever U € F and V is an subset of X
containing U”; it should be “whenever U € F and V is an open subset of X containing U”

10The authors did not include the condition U; # @} in the book. But I think that without
this condition no non-empty set of open filters would be admissible.

10



Corollary. (4.20) Every quasi-regular space is a closed nowhere dense subset
of some pseudo-complete space.

If X is a topological space, define sX = X (F'), where F' is the smallest set
of admissible open filters on X, or equivalently, F' is the set of open filters on X
generated by the countably infinite point finite monotone decreasing open filter
bases on X.

Let X be a subset of the topological space Y. We say that Y is first countable
outside of X it for each point z € Y \ X there is a countable collection B of
open subsets of Y containing = such that every open subset of Y containing x
contains some element of B.

Let A and B be subsets of the topological space X. We say that A is point
separated from B if for each a € A and b € B there is an open set containing a
that does not contain b.

Theorem. (4.21) For any topological space X the following are true:
(i) sX is first countable outside of X. (ii) sX — X is Ty and point separated
from X.

Corollary. (4.22) Every first countable space is a dense subspace of some first
countable Baire space.

A subset U of the topological space X is regular-open if IntclU = U. X is
semiregular if the collection of all regular-open sets is a base for the topology
on X.

Theorem. (4.23) IfY is a semireqular extension of the space X such that
(i) Y is first countable outside of X,

(i) Y\ X is Ty and point separated from X,

then' Y can be embedded as a subspace of sX containing X.

4.3 Hyperspaces and function spaces
5 Products of Baire spaces

5.1 Finite products
5.2 Infinite products
5.3 k-Baire products

5.4 Product counterexamples
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