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Haworth, McCoy: Baire spaces

Various details, problems etc., found when reading [HM].

Introduction
1 Basic properties of Baire spaces

1.1 Nowhere dense sets
1.2 First and second category sets
1.3 Baire spaces

1.4 Isolated points and Baire spaces
2 Concepts related to Baire spaces

2.1 Baire spaces in the strong sense
2.2 Baire Category Theorem
2.3 Complete type properties which imply Baire



2.4 Minimal spaces
2.4.1 Proposition 2.11
I have doubts about the proof of [HM, Proposition 2.11].

Proposition 2.4.1. Let (X,T) be a Baire space and T* be a topology on X
contained in T . If there exists a p € X such that {U € T|p ¢ U} C T*, then
(X,T™) is a Baire space.

Namely I see the following problems in the proof:
e “So U = |J N; where each N; is closed and nowhere dense in (X, 7*).”

=1
We only know this for U. Or, we know that U C |J N;.

=1
e How do we get contradiction in the second part of the proof if U — N,, = (7
At the moment I neither have a counterexample, nor am I able to correct
the proof in the full generality.
However, knowing this for the case that (X, 7T) is 77 seems to be sufficient
for the rest of this section of this book. Here’s the proof for that case. (I've
added the assumption that {p} is closed in (X, T).)

Proposition 2.4.2. Let (X,T) be a Baire space and T* be a topology on X
contained in T. If there exists a p € X such that {p} is closed in (X,T) and
{UeTlpg U} ST, then (X, T*) is a Baire space.

Proof. Notice that the induced topology on the subset X \ {p} is the same for
both topologies (X,7) and (X,7*). Indeed, let V' be open in the topology
induced on X \ {p} by T. If V is open in T, then it is open in 7, since p ¢ V.
The remaining possibility is that V = U\ {p} = U N (X \ {p}) for some set U
which is open in 7. But, since X \ {p} is open, this implies that V is open in
T, which is the case we have already solved.?

The subspace X \ {p} is an open subspace of (X, T), thus it is a Baire space
by [HM, Proposition 1.14].2

If the point p is not isolated in (X, 7*), then X \ {p} is dense in (X, 7).
Consequently, (X, 7*) is a Baire space by [HM, Theorem 1.15].3

If p is isolated in (X, T*), then T = T*. O

2.4.2 Minimal Hausdorff spaces

The following construction is used in proof of [HM, Proposition 2.14].

Lemma 2.4.3. Let (X, T) be a topological space, p € X and F and open filter
in X such that p is unique adherent point of F. Let us define T* = M UN,
where M ={U € T;p ¢ U} and N ={UUV;peUc€T,VeF}. (Le the
neighborhood basis for the new topology is changed only at the point p.)

INote that we have used the assumption that {p} is closed to show that the subspace
topology is the same.

2Every open subspace of a Baire space is a Baire space.

3Every space which contains a dense Baire subspace is a Baire space.



a) The system T* is a topology on X.

) If F does not converge to p, then T* is strictly weaker (coarser) than T .
) If T is Hausdorff, then so is T*.

) If F is a regular filter and T is regular , then so is T*.

e) If T is Urysohn filter and T is Urysohn, then so is T*.

b
¢
d

A system B C T \ {0}, is an open filter base, if, for each U,V € B, there
exists W € B such that W CUNV.

An open filter base B is reqular if, whenever U is a member of B then there
exists a member V of F with clV C U.

An open filter base B is Urysohn provided that for every y € X, if y is not an
adherent point of B, then there is an open set U containing y and a set V€ B
such that clU NeclV = (.

An Urysohn space, or T5; space, is a topological space in which any two
distinct points can be separated by closed neighborhoods.

A system F C T, is an open filter base, if:

e ¢ F;

e ABeF=ANDBeF,

e AcF,ACBeT = BecF.

Clearly, if B C T is an open filter base, then F = {F € T;(3B € B)B C F}
is an open filter such that B converges to z if and only if F converges to . The
cluster points of B and F are the same, too.

Proof. a) Clearly, ) € M, X € N.

Intersection. Uy, Uy e M = U NU; € M
pelUieT,pelseT =pecUNUsy €T and also V1,V, € F = V1,V € F.

Arbitrary union. Suppose W; € T* for each ¢ € I. If each W; belongs to M,
then so does |J W;.

i€l

Now suppoese that there is at least one ig such that W;, = U, U V;, with
p € U, and V;, € F. We can rewrite each W; as W, = U, UV, where U, € T
and V; is either () or a non-empty open set from F, depending on whether W;
belongs to M or N.

Then we get |JW; =U UV, where U = (JU; and V = |J V;. We have

il il il

p €Uy, CUandU € T. Also, since V;, C V, we have V € F. Thus
W=UnVeN.

b) It is obvious that every set from 7* is open in 7, ie. T*C T.

The filter F does not converge to p in 7, but it does in 7*. Hence the
topology T* is strictly weaker than 7T .

c) Let x € X and = # p. Since z is not a cluster point of F, there is a
V € F such that x ¢ V. This implies that 2 has a neighborhood U; such that
Uynv =0.

We also know, that T is Hausdorff, and therefore there are Us, U € T such
that € Uy, p € U and UsNU = (). Then the sets U1 NUy and UUV are T *-open
neighborhoods of x and p, respectively. These neighborhoods are disjoint.



d) We want to show that for each point of X and each neighborhood W of
this point in 7* there is a smaller closed neighborhood, which is contained in
w.

If pe UUV where U € T and V € F, then there are U’, V' such that
clU’ C U and clV/ C V. Thus we have p € U' UV’ C clU’' UclV’. The later
set is closed in T*, too, since the complement is a 7-open set which does not
contain p.

Now x € U € 7. Since z is not a cluster point of V then there is a set
V € F such that z ¢ clV. This implies that there is a neighborhood U; C U
of z such that U1 NV = and clU; C U. Then (X \ clU;) UV is a T*-open
subset, which has empty intersection with U;. This implies that the T *-closure
of U; has empty intersection with this set, too, therefore it is a subset of ¢l Uy
and, consequently, of U.

TODO Remaining possibility x € V € F (i.e. x € UUV); it is similar, since
V' is T-open

e) TODO O

The following result is mentioned e.g. in [B, p.146, Exercise 9.18], [W,
Exercise 17M].

Corollary 2.4.4. Let X be a Hausdorff space. X is minimal Hausdorff <
every open filter with unique cluster point converges.

Recall, that a Hausdorff space (X, T) is minimal Hausdorff if and only if for
every Hausdorff topology 7’ on X we have 7' C T = 7' = T. (Equivalently:
Every one-to-one continuous map of X to a Hausdorff space is a homeomor-
phism.)

Proof. [= ]Suppose that there is an open filter 7 on X, which has unique cluster
point but does not converge. Then Lemma 2.4.3 yields a topology 7* which is
strictly weaker than 7 and Hausdorff.

Suppose that (X, 7) has the property, that every open filter with unique
cluster point converges. Suppose that there is a topology 7’ which is strictly
coarser than 7, i.e. 7" G T and 7" is Hausdorff.

This implies, that there is a set V € T\ 7’. In particular, Int' V S V, where
Int’ V denotes the interior of V in the topology 7.

Let us choose any point p € V' \ Int’ V. In particular, the choice of p means
that for every T’-neighborhood U of p we have U \ V # 0.

Now, since 7’ is Hausdorff, for every z # p we have U,,V, € T’ such that
pe Uy, v€V,and U, NV, = 0. Let F is the smallest open filter containing
{Ug;z € X\ {p}}. (An explicit description of F would be that F consists of all
open supersets of finite intersections of sets from given sets. Note also that all
sets U, are T-open, t00.)

In (X,T), we have {p} = N cx Uz. (It is clear that p belongs to this set
and that x ¢ U, for x # p.) This implies that p is unique cluster point of F.
Thus F converges to p, which implies V' € F. This contradicts the fact, that F
contains no 7’-open neighborhoods of p. O



2.4.3 More on minimal Hausdorff spaces

compact Hausdorff = minimal Hausdorff = H-closed = Hausdorff

H-closed spaces. A Hausdorff topological space X is called H-closed or ab-
solutely closed if it is closed in any Hausdorff space, which contains X as a
subspace. Similarly, P-closed spaces can be defined for any topological property
P.

E.g., it is well-known that every compact Hausdorff space is H-closed.

Every minimal Hausdorff space is H-closed. To show this we will use a
characterization of H-closed spaces using open filters (see e.g. [W, Problem
17K]. Lemma 2.4.7 and Lemma 2.4.8 are take from [W, Problem 17K], too.).

Lemma 2.4.5. Let X be a Hausdorff space. X is H-closed if and only if every
open filter in X has a cluster point.

Proof. Suppose that (X, 7T) is a H-closed space and that F is an open filter
on X with no cluster point.
For p ¢ X we define topology 7* = M UN on X U {p}, where

M={UCX;UeT}
N={{ptuF;FeF}

It is easy to show that:
e T*is a topology on X. (The proof is similar to the proof given in Lemma
2.4.3).
e X is a subspace of X U {p}.
e X is not closed in X U{p}. (Since every set in F is non-empty, we see that
every T*/neighborhood {p}UF of the point p has a non-empty intersection
with X.)

If we show that (X U {p}, T7*) is Hausdorff, we obtain a contradiction and
we are done.

If 2,y € X are two distinct points, they can be separated in X U {p} by the
same open sets as in X.

Now let x € X. We want to show that z and p can be separated by sets
from T*. Since z is not a cluster point of F', there exists a set F' € F such that
x ¢ cl F. This means that x has an open neighborhood U such that U N F = (.
Then the sets U and F U {p} are T*-neighborhoods of x and p which separate
these two points.

Let X be a space which is not H-closed. This means that there is some
Hausdorff space Y such that X is a subspace of Y and X is not closed in Y.
Let p € X \ X and let N, denotes the set of all neighborhoods of p in Y. Then
F={UNX;U € N,} is an open filter on X. (Every set U N X is non-empty,
since p € X.)

We will show that this open filter has no cluster point in X. Indeed, let
z € X. In the Hausdorff space Y we have neighborhoods V> x and U > p
such that V' NY = (. Then V N X is a neighborhood of x in X such that



(VNX)N(UNX) =0, which shows that z ¢ U N X and z is not a cluster point
of F. O

Lemma 2.4.6. Let X be a Hausdorff space. X is H-closed if and only if every
open cover C of X contains a finite subsystem D such that \J{D; D € D} = X,
e., the closures of the sets from D cover X.

Proof. We assume that there is an open cover C such that | J{D; D € D} &
X for every finite incollection D of C. We will show that

B={X\TU;UecC}

is an open filter base with no cluster point.

The fact that closures of no finite incollection of C cover X means that B
has finite intersection property. All sets in BB are open, hence B is an open filter
base.

If 2 € X then there exists U € C such that x € U. We have UN (X \U) = 0.
This shows that z is not a cluster point of B.

Suppose that X is not H-closed. This implies the existence of an open
filter F which has no cluster point. Let

C={X\TF,FeF}.

Let us show first that C is a cover. Indeed, any point z € X is not a cluster
point of F. This implies existence of an F' € F such that z ¢ F,ie. x € X\ F.
Now if we have a finite subsystem

D={X\F,i=1,...,n}

then
U U \F, = U (X\Int F;) C U(X\Fi) =X\ ﬂ ﬂ
DeD i=1 i=1 i=1 i=1 i=1

n
(The last inclusion follows from the fact that () F; belongs to F, hence it is
i=1
non-empty.)
We have shown that closures for no finite subsystem D C C cover the space
X. O

We have already mentioned that every compact space is H-closed. Both 2.4.6
and 2.4.7 show that H-closedness is, in some sense, similar to compactness.
It is very natural to ask whether every H-closed space is compact.

Lemma 2.4.7. Let X be an H-closed space. X is compact if and only if X is
regular.



Proof. Every compact Hausdorff space is completely regular.

If we have open cover of X, then for each € X there is (at least
one) set U, from this cover such that x € X. Le. we have an open cover
C = {U,;z € X}. Since X is regular, for every x we have an open set V, such
that

eV, CV, CU,.

This yields an open cover C' = {V,;z € X}. B
By Lemma 2.4.7 there exist a finite set ; ...x, such that the closures V,,
1=1,...,n cover X. We get

n

XgOmgUw“
i=1 i

=1

hence {U,,;i =1,...,n} is a finite subcover. O
Lemma 2.4.8. Every minimal Hausdorff space is H-closed.

Proof. TODO O
Lemma 2.4.9. Every minimal Hausdorff space is semiregular.

Proof. TODO 777

O
Proposition 2.4.10. X s minimal Hausdorff < X is H-closed and semirequ-
lar.
Dokaz.
TODO



3 Characterizations of Baire spaces

3.1 Blumberg type theorems
3.2 Covering and filter characterizations

3.3 Characterizations of Baire spaces involving pseudo-
complete spaces

3.4 The Banach-Mazur game
3.5 Countably-Baire spaces

4 The dynamics of Baire spaces

4.1 Images and inverse images of Baire spaces

4.2 Baire spaces extensions

B = {U*;U is open in X} is a base for a topology on X(F). Since
X* = X (F), we see that B covers X (F). If x € U*NV™*, then also x € (UNV)*.
Since (UNV)* =U*NV*, we see that (UNV)* CU* and (UNV)* CV*.

X is a dense subspace of X(F). Since §* = ), every non-empty basic set
has the form U* for some U # (). Then U* N X = U is non-empty.

Every open filter is contained in an open ultrafilter. TODO finite in-
tersection property should be sufficient
TODO Zorn

If A is an open dense subset in X and F is an open ultrafilter on X,
then A € . This follows from the fact that the system F U {A} has f.i.p.

More generally: If A is an open set which intersects every element of F
(where F is an open ultrafilter), then A € F.

If f is an open continuous function from X into Y, then there is an
open continuous function g from X(F) into X(G) such that g|x = f.
Let f: X — Y be any map. If we are given a set F' of open filters on X, we can
define the corresponding set of open filters on Y as

G = {f[F; F € F},

where
fIF] ={B CY; B is open and f_l(B) eF.}
If f is continuous then each f[F] is indeed an open filter.
Now we can define g: X(F) — Y(G) as g(z) = f(z) for z € X and g(F) =
fIF] for F € F. It is clear that g|x = f.



This map is also continuous. It suffices to notice that for an open subset
V CY we have
g(F)eV* e Fef (V)

which implies that
g V) = (V)
TODO open map 777 !l

Set of all open ultrafilters is admissible. TODO filter base

Theorem 4.14. If F is an admissible set of open filters on X, then X (F') is
a Baire space (in fact X (F) is a-favorable).

We will describe the tactic (stationary strategy) for the second player. Sup-
pose that the player I has chosen a non-empty open set U,. This open set
contains some set of the form W}¥, where W, is a non-empty open subset of X.
The player II can simply choose V,, = Wr.

For any run of the game we get a system {W,;n € N} of open subsets of X
such that W,,.1 C W,,. There are two possibilities.

Either (| W, # 0. Since W,, C W} C U,,, this implies that (| U, # 0 and
neN neN
player II wins.

The second possibility is that (| W,, = 0. In this case, there exists an open
neN
filter F € F such that {W,;n € N} C F. (This follows from the fact that F'

is admissible.) So we get for each n € N that W,, e F = F e W} = F € U,.

Hence F € () U, and the intersection (] U, is non-empty.
neN neN

Almost compact spaces

if I is the set of all open filters or the set of all open ultrafilters on
a space X, then X(F) is a generalized absolutely closed space. Let F
be any open ultrafilter on X. First we show that {AN X; A € F} has the finite
intersection property.

Suppose that A, B are two open subsets of X (F') which belong to F. Then
AN B # () and there exists a point x € AN B. (The point « belongs to X (F),
s0 it is an ultrafilter on x.) From this we have existence of sets Ua, Up, which
are open in X, such that
reUyCA 2cU;CB
=UiNU;=U0UanUp)*#0
= UaNUp #1@
= ANBNX #(

The same argument works for finitely many sets instead of two sets.

This shows that {AN X; A € F} is a system of open subset of X that has
finite intersection property. Therefore there exists an open ultrafilter y € X (F')
such that {ANX;Ae F} Cy.



Now if y € U*, then U belongs to y, which implies U N AN X # () for every
A € F. From this we get U* N A # ( for every A € F. This means that y is a
cluster point of the open ultrafilter F.

Filters generated by the countably infinite point finite monotone open
bases. TODO

The product [], sX, is a Baire space. TODO

If X is first countable, then sX is first countable. TODO
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