

Haworth, McCoy: Baire spaces

Various details, problems etc., found when reading [HM].

Introduction

1 Basic properties of Baire spaces

1.1 Nowhere dense sets

1.2 First and second category sets

1.3 Baire spaces

1.4 Isolated points and Baire spaces

2 Concepts related to Baire spaces

2.1 Baire spaces in the strong sense

2.2 Baire Category Theorem

2.3 Complete type properties which imply Baire

2.4 Minimal spaces

2.4.1 Proposition 2.11

I have doubts about the proof of [HM, Proposition 2.11].

Proposition 2.4.1. *Let (X, \mathcal{T}) be a Baire space and \mathcal{T}^* be a topology on X contained in \mathcal{T} . If there exists a $p \in X$ such that $\{U \in \mathcal{T} \mid p \notin U\} \subseteq \mathcal{T}^*$, then (X, \mathcal{T}^*) is a Baire space.*

Namely I see the following problems in the proof:

- “So $U = \bigcup_{i=1}^{\infty} N_i$ where each N_i is **closed** and nowhere dense in (X, \mathcal{T}^*) .”

We only know this for \overline{U} . Or, we know that $U \subseteq \bigcup_{i=1}^{\infty} N_i$.

- How do we get contradiction in the second part of the proof if $U - N_n = \emptyset$?

At the moment I neither have a counterexample, nor am I able to correct the proof in the full generality.

However, knowing this for the case that (X, \mathcal{T}) is T_1 seems to be sufficient for the rest of this section of this book. Here's the proof for that case. (I've added the assumption that $\{p\}$ is closed in (X, \mathcal{T}) .)

Proposition 2.4.2. *Let (X, \mathcal{T}) be a Baire space and \mathcal{T}^* be a topology on X contained in \mathcal{T} . If there exists a $p \in X$ such that $\{p\}$ is closed in (X, \mathcal{T}) and $\{U \in \mathcal{T} \mid p \notin U\} \subseteq \mathcal{T}^*$, then (X, \mathcal{T}^*) is a Baire space.*

Proof. Notice that the induced topology on the subset $X \setminus \{p\}$ is the same for both topologies (X, \mathcal{T}) and (X, \mathcal{T}^*) . Indeed, let V be open in the topology induced on $X \setminus \{p\}$ by \mathcal{T} . If V is open in \mathcal{T} , then it is open in \mathcal{T}^* , since $p \notin V$. The remaining possibility is that $V = U \setminus \{p\} = U \cap (X \setminus \{p\})$ for some set U which is open in \mathcal{T} . But, since $X \setminus \{p\}$ is open, this implies that V is open in \mathcal{T} , which is the case we have already solved.¹

The subspace $X \setminus \{p\}$ is an open subspace of (X, \mathcal{T}) , thus it is a Baire space by [HM, Proposition 1.14].²

If the point p is not isolated in (X, \mathcal{T}^*) , then $X \setminus \{p\}$ is dense in (X, \mathcal{T}) . Consequently, (X, \mathcal{T}^*) is a Baire space by [HM, Theorem 1.15].³

If p is isolated in (X, \mathcal{T}^*) , then $\mathcal{T} = \mathcal{T}^*$. □

2.4.2 Minimal Hausdorff spaces

The following construction is used in proof of [HM, Proposition 2.14].

Lemma 2.4.3. *Let (X, \mathcal{T}) be a topological space, $p \in X$ and \mathcal{F} and open filter in X such that p is unique adherent point of \mathcal{F} . Let us define $\mathcal{T}^* = \mathcal{M} \cup \mathcal{N}$, where $\mathcal{M} = \{U \in \mathcal{T} \mid p \notin U\}$ and $\mathcal{N} = \{U \cup V \mid p \in U \in \mathcal{T}, V \in \mathcal{F}\}$. (I.e. the neighborhood basis for the new topology is changed only at the point p .)*

¹Note that we have used the assumption that $\{p\}$ is closed to show that the subspace topology is the same.

²Every open subspace of a Baire space is a Baire space.

³Every space which contains a dense Baire subspace is a Baire space.

- a) The system \mathcal{T}^* is a topology on X .
- b) If \mathcal{F} does not converge to p , then \mathcal{T}^* is strictly weaker (coarser) than \mathcal{T} .
- c) If \mathcal{T} is Hausdorff, then so is \mathcal{T}^* .
- d) If \mathcal{F} is a regular filter and \mathcal{T} is regular, then so is \mathcal{T}^* .
- e) If \mathcal{T} is Urysohn filter and \mathcal{T} is Urysohn, then so is \mathcal{T}^* .

A system $\mathcal{B} \subseteq \mathcal{T} \setminus \{\emptyset\}$, is an *open filter base*, if, for each $U, V \in \mathcal{B}$, there exists $W \in \mathcal{B}$ such that $W \subseteq U \cap V$.

An open filter base \mathcal{B} is *regular* if, whenever U is a member of \mathcal{B} then there exists a member V of \mathcal{F} with $\text{cl } V \subset U$.

An open filter base \mathcal{B} is *Urysohn* provided that for every $y \in X$, if y is not an adherent point of \mathcal{B} , then there is an open set U containing y and a set $V \in \mathcal{B}$ such that $\text{cl } U \cap \text{cl } V = \emptyset$.

An Urysohn space, or $T_{2\frac{1}{2}}$ space, is a topological space in which any two distinct points can be separated by closed neighborhoods.

A system $\mathcal{F} \subseteq \mathcal{T}$, is an *open filter base*, if:

- $\emptyset \notin \mathcal{F}$;
- $A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$;
- $A \in \mathcal{F}, A \subseteq B \in \mathcal{T} \Rightarrow B \in \mathcal{F}$.

Clearly, if $\mathcal{B} \subseteq \mathcal{T}$ is an open filter base, then $\mathcal{F} = \{F \in \mathcal{T}; (\exists B \in \mathcal{B}) B \subseteq F\}$ is an open filter such that \mathcal{B} converges to x if and only if \mathcal{F} converges to x . The cluster points of \mathcal{B} and \mathcal{F} are the same, too.

Proof. a) Clearly, $\emptyset \in \mathcal{M}$, $X \in \mathcal{N}$.

Intersection. $U_1, U_2 \in \mathcal{M} \Rightarrow U_1 \cap U_2 \in \mathcal{M}$

$p \in U_1 \in \mathcal{T}$, $p \in U_2 \in \mathcal{T} \Rightarrow p \in U_1 \cap U_2 \in \mathcal{T}$ and also $V_1, V_2 \in \mathcal{F} \Rightarrow V_1, V_2 \in \mathcal{F}$.

Arbitrary union. Suppose $W_i \in \mathcal{T}^*$ for each $i \in I$. If each W_i belongs to \mathcal{M} , then so does $\bigcup_{i \in I} W_i$.

Now suppose that there is at least one i_0 such that $W_{i_0} = U_{i_0} \cup V_{i_0}$ with $p \in U_{i_0}$ and $V_{i_0} \in \mathcal{F}$. We can rewrite each W_i as $W_i = U_i \cup V_i$ where $U_i \in \mathcal{T}$ and V_i is either \emptyset or a non-empty open set from \mathcal{F} , depending on whether W_i belongs to \mathcal{M} or \mathcal{N} .

Then we get $\bigcup_{i \in I} W_i = U \cup V$, where $U = \bigcup_{i \in I} U_i$ and $V = \bigcup_{i \in I} V_i$. We have $p \in U_{i_0} \subseteq U$ and $U \in \mathcal{T}$. Also, since $V_{i_0} \subseteq V$, we have $V \in \mathcal{F}$. Thus $W = U \cup V \in \mathcal{N}$.

b) It is obvious that every set from \mathcal{T}^* is open in \mathcal{T} , i.e. $\mathcal{T}^* \subseteq \mathcal{T}$.

The filter \mathcal{F} does not converge to p in \mathcal{T} , but it does in \mathcal{T}^* . Hence the topology \mathcal{T}^* is strictly weaker than \mathcal{T} .

c) Let $x \in X$ and $x \neq p$. Since x is not a cluster point of \mathcal{F} , there is a $V \in \mathcal{F}$ such that $x \notin \overline{V}$. This implies that x has a neighborhood U_1 such that $U_1 \cap V = \emptyset$.

We also know, that \mathcal{T} is Hausdorff, and therefore there are $U_2, U \in \mathcal{T}$ such that $x \in U_2$, $p \in U$ and $U_2 \cap U = \emptyset$. Then the sets $U_1 \cap U_2$ and $U \cup V$ are \mathcal{T}^* -open neighborhoods of x and p , respectively. These neighborhoods are disjoint.

d) We want to show that for each point of X and each neighborhood W of this point in \mathcal{T}^* there is a smaller closed neighborhood, which is contained in W .

If $p \in U \cup V$ where $U \in \mathcal{T}$ and $V \in \mathcal{F}$, then there are U', V' such that $\text{cl } U' \subseteq U$ and $\text{cl } V' \subseteq V$. Thus we have $p \in U' \cup V' \subseteq \text{cl } U' \cup \text{cl } V'$. The later set is closed in \mathcal{T}^* , too, since the complement is a \mathcal{T} -open set which does not contain p .

Now $x \in U \in \mathcal{T}$. Since x is not a cluster point of V then there is a set $V \in \mathcal{F}$ such that $x \notin \text{cl } V$. This implies that there is a neighborhood $U_1 \subseteq U$ of x such that $U_1 \cap V = \emptyset$ and $\text{cl } U_1 \subseteq U$. Then $(X \setminus \text{cl } U_1) \cup V$ is a \mathcal{T}^* -open subset, which has empty intersection with U_1 . This implies that the \mathcal{T}^* -closure of U_1 has empty intersection with this set, too, therefore it is a subset of $\text{cl } U_1$ and, consequently, of U .

TODO Remaining possibility $x \in V \in \mathcal{F}$ (i.e. $x \in U \cup V$); it is similar, since V is \mathcal{T} -open

e) TODO □

The following result is mentioned e.g. in [B, p.146, Exercise 9.18], [W, Exercise 17M].

Corollary 2.4.4. *Let X be a Hausdorff space. X is minimal Hausdorff \Leftrightarrow every open filter with unique cluster point converges.*

Recall, that a Hausdorff space (X, \mathcal{T}) is minimal Hausdorff if and only if for every Hausdorff topology \mathcal{T}' on X we have $\mathcal{T}' \subseteq \mathcal{T} \Rightarrow \mathcal{T}' = \mathcal{T}$. (Equivalently: Every one-to-one continuous map of X to a Hausdorff space is a homeomorphism.)

Proof. \Rightarrow Suppose that there is an open filter \mathcal{F} on X , which has unique cluster point but does not converge. Then Lemma 2.4.3 yields a topology \mathcal{T}^* which is strictly weaker than \mathcal{T} and Hausdorff.

\Leftarrow Suppose that (X, \mathcal{T}) has the property, that every open filter with unique cluster point converges. Suppose that there is a topology \mathcal{T}' which is strictly coarser than \mathcal{T} , i.e. $\mathcal{T}' \subsetneq \mathcal{T}$ and \mathcal{T}' is Hausdorff.

This implies, that there is a set $V \in \mathcal{T} \setminus \mathcal{T}'$. In particular, $\text{Int}' V \subsetneq V$, where $\text{Int}' V$ denotes the interior of V in the topology \mathcal{T}' .

Let us choose any point $p \in V \setminus \text{Int}' V$. In particular, the choice of p means that for every \mathcal{T}' -neighborhood U of p we have $U \setminus V \neq \emptyset$.

Now, since \mathcal{T}' is Hausdorff, for every $x \neq p$ we have $U_x, V_x \in \mathcal{T}'$ such that $p \in U_x$, $x \in V_x$ and $U_x \cap V_x = \emptyset$. Let \mathcal{F} is the smallest open filter containing $\{U_x; x \in X \setminus \{p\}\}$. (An explicit description of \mathcal{F} would be that \mathcal{F} consists of all open supersets of finite intersections of sets from given sets. Note also that all sets U_x are \mathcal{T} -open, too.)

In (X, \mathcal{T}) , we have $\{p\} = \bigcap_{x \in X} \overline{U}_x$. (It is clear that p belongs to this set and that $x \notin \overline{U}_x$ for $x \neq p$.) This implies that p is unique cluster point of \mathcal{F} . Thus \mathcal{F} converges to p , which implies $V \in \mathcal{F}$. This contradicts the fact, that \mathcal{F} contains no \mathcal{T}' -open neighborhoods of p . □

2.4.3 More on minimal Hausdorff spaces

compact Hausdorff \Rightarrow minimal Hausdorff \Rightarrow H-closed \Rightarrow Hausdorff

H-closed spaces. A Hausdorff topological space X is called *H-closed* or *absolutely closed* if it is closed in any Hausdorff space, which contains X as a subspace. Similarly, *P-closed* spaces can be defined for any topological property P .

E.g., it is well-known that every compact Hausdorff space is H-closed.

Every minimal Hausdorff space is H-closed. To show this we will use a characterization of H-closed spaces using open filters (see e.g. [W, Problem 17K]. Lemma 2.4.7 and Lemma 2.4.8 are taken from [W, Problem 17K], too.).

Lemma 2.4.5. *Let X be a Hausdorff space. X is H-closed if and only if every open filter in X has a cluster point.*

Proof. \Rightarrow Suppose that (X, \mathcal{T}) is a H-closed space and that \mathcal{F} is an open filter on X with no cluster point.

For $p \notin X$ we define topology $\mathcal{T}^* = \mathcal{M} \cup \mathcal{N}$ on $X \cup \{p\}$, where

$$\begin{aligned}\mathcal{M} &= \{U \subseteq X; U \in \mathcal{T}\} \\ \mathcal{N} &= \{\{p\} \cup F; F \in \mathcal{F}\}\end{aligned}$$

It is easy to show that:

- \mathcal{T}^* is a topology on X . (The proof is similar to the proof given in Lemma 2.4.3).
- X is a subspace of $X \cup \{p\}$.
- X is not closed in $X \cup \{p\}$. (Since every set in \mathcal{F} is non-empty, we see that every \mathcal{T}^* /neighborhood $\{p\} \cup F$ of the point p has a non-empty intersection with X .)

If we show that $(X \cup \{p\}, \mathcal{T}^*)$ is Hausdorff, we obtain a contradiction and we are done.

If $x, y \in X$ are two distinct points, they can be separated in $X \cup \{p\}$ by the same open sets as in X .

Now let $x \in X$. We want to show that x and p can be separated by sets from \mathcal{T}^* . Since x is not a cluster point of F , there exists a set $F \in \mathcal{F}$ such that $x \notin \text{cl } F$. This means that x has an open neighborhood U such that $U \cap F = \emptyset$. Then the sets U and $F \cup \{p\}$ are \mathcal{T}^* -neighborhoods of x and p which separate these two points.

\Leftarrow Let X be a space which is not H-closed. This means that there is some Hausdorff space Y such that X is a subspace of Y and X is not closed in Y . Let $p \in \overline{X} \setminus X$ and let \mathcal{N}_p denotes the set of all neighborhoods of p in Y . Then $\mathcal{F} = \{U \cap X; U \in \mathcal{N}_p\}$ is an open filter on X . (Every set $U \cap X$ is non-empty, since $p \in \overline{X}$.)

We will show that this open filter has no cluster point in X . Indeed, let $x \in X$. In the Hausdorff space Y we have neighborhoods $V \ni x$ and $U \ni p$ such that $V \cap Y = \emptyset$. Then $V \cap X$ is a neighborhood of x in X such that

$(V \cap X) \cap (U \cap X) = \emptyset$, which shows that $x \notin \overline{U \cap X}$ and x is not a cluster point of \mathcal{F} . \square

Lemma 2.4.6. *Let X be a Hausdorff space. X is H-closed if and only if every open cover \mathcal{C} of X contains a finite subsystem \mathcal{D} such that $\bigcup\{\overline{D}; D \in \mathcal{D}\} = X$, i.e., the closures of the sets from \mathcal{D} cover X .*

Proof. \Rightarrow We assume that there is an open cover \mathcal{C} such that $\bigcup\{\overline{D}; D \in \mathcal{D}\} \subsetneq X$ for every finite incollection \mathcal{D} of \mathcal{C} . We will show that

$$\mathcal{B} = \{X \setminus \overline{U}; U \in \mathcal{C}\}$$

is an open filter base with no cluster point.

The fact that closures of no finite incollection of \mathcal{C} cover X means that \mathcal{B} has finite intersection property. All sets in \mathcal{B} are open, hence \mathcal{B} is an open filter base.

If $x \in X$ then there exists $U \in \mathcal{C}$ such that $x \in U$. We have $U \cap (X \setminus \overline{U}) = \emptyset$. This shows that x is not a cluster point of \mathcal{B} .

\Leftarrow Suppose that X is not H-closed. This implies the existence of an open filter \mathcal{F} which has no cluster point. Let

$$\mathcal{C} = \{X \setminus \overline{F}; F \in \mathcal{F}\}.$$

Let us show first that \mathcal{C} is a cover. Indeed, any point $x \in X$ is not a cluster point of \mathcal{F} . This implies existence of an $F \in \mathcal{F}$ such that $x \notin \overline{F}$, i.e. $x \in X \setminus \overline{F}$.

Now if we have a finite subsystem

$$\mathcal{D} = \{X \setminus \overline{F_i}; i = 1, \dots, n\}$$

then

$$\bigcup_{D \in \mathcal{D}} \overline{D} = \bigcup_{i=1}^n \overline{X \setminus \overline{F_i}} = \bigcup_{i=1}^n (X \setminus \text{Int } \overline{F_i}) \subseteq \bigcup_{i=1}^n (X \setminus F_i) = X \setminus \bigcap_{i=1}^n \overline{F_i} \subseteq X \setminus \bigcap_{i=1}^n F_i \subsetneq X.$$

(The last inclusion follows from the fact that $\bigcap_{i=1}^n F_i$ belongs to \mathcal{F} , hence it is non-empty.)

We have shown that closures for no finite subsystem $\mathcal{D} \subseteq \mathcal{C}$ cover the space X . \square

We have already mentioned that every compact space is H-closed. Both 2.4.6 and 2.4.7 show that H-closedness is, in some sense, similar to compactness.

It is very natural to ask whether every H-closed space is compact.

Lemma 2.4.7. *Let X be an H-closed space. X is compact if and only if X is regular.*

Proof. \Rightarrow Every compact Hausdorff space is completely regular.

\Leftarrow If we have open cover of X , then for each $x \in X$ there is (at least one) set U_x from this cover such that $x \in U_x$. I.e. we have an open cover $\mathcal{C} = \{U_x; x \in X\}$. Since X is regular, for every x we have an open set V_x such that

$$x \in V_x \subseteq \overline{V_x} \subseteq U_x.$$

This yields an open cover $\mathcal{C}' = \{V_x; x \in X\}$.

By Lemma 2.4.7 there exist a finite set $x_1 \dots x_n$ such that the closures \overline{V}_{x_i} , $i = 1, \dots, n$ cover X . We get

$$X \subseteq \bigcup_{i=1}^n \overline{V_{x_i}} \subseteq \bigcup_{i=1}^n U_{x_i},$$

hence $\{U_{x_i}; i = 1, \dots, n\}$ is a finite subcover. \square

Lemma 2.4.8. *Every minimal Hausdorff space is H-closed.*

Proof. TODO \square

Lemma 2.4.9. *Every minimal Hausdorff space is semiregular.*

Proof. TODO ??? \square

Proposition 2.4.10. *X is minimal Hausdorff $\Leftrightarrow X$ is H-closed and semiregular.*

Dôkaz. \Rightarrow
 \Leftarrow TODO \square

3 Characterizations of Baire spaces

3.1 Blumberg type theorems

3.2 Covering and filter characterizations

3.3 Characterizations of Baire spaces involving pseudo-complete spaces

3.4 The Banach-Mazur game

3.5 Countably-Baire spaces

4 The dynamics of Baire spaces

4.1 Images and inverse images of Baire spaces

4.2 Baire spaces extensions

$\mathcal{B} = \{U^*; U \text{ is open in } X\}$ is a base for a topology on $X(F)$. Since $X^* = X(F)$, we see that \mathcal{B} covers $X(F)$. If $x \in U^* \cap V^*$, then also $x \in (U \cap V)^*$. Since $(U \cap V)^* = U^* \cap V^*$, we see that $(U \cap V)^* \subseteq U^*$ and $(U \cap V)^* \subseteq V^*$.

X is a dense subspace of $X(F)$. Since $\emptyset^* = \emptyset$, every non-empty basic set has the form U^* for some $U \neq \emptyset$. Then $U^* \cap X = U$ is non-empty.

Every open filter is contained in an open ultrafilter. TODO finite intersection property should be sufficient

TODO Zorn

If A is an open dense subset in X and \mathcal{F} is an open ultrafilter on X , then $A \in \mathcal{F}$. This follows from the fact that the system $\mathcal{F} \cup \{A\}$ has f.i.p.

More generally: If A is an open set which intersects every element of \mathcal{F} (where \mathcal{F} is an open ultrafilter), then $A \in \mathcal{F}$.

If f is an open continuous function from X into Y , then there is an open continuous function g from $X(F)$ into $X(G)$ such that $g|_X = f$. Let $f: X \rightarrow Y$ be any map. If we are given a set F of open filters on X , we can define the corresponding set of open filters on Y as

$$G := \{f[\mathcal{F}]; \mathcal{F} \in F\},$$

where

$$f[\mathcal{F}] = \{B \subseteq Y; B \text{ is open and } f^{-1}(B) \in \mathcal{F}\}.$$

If f is continuous then each $f[\mathcal{F}]$ is indeed an open filter.

Now we can define $g: X(F) \rightarrow Y(G)$ as $g(x) = f(x)$ for $x \in X$ and $g(\mathcal{F}) = f[\mathcal{F}]$ for $\mathcal{F} \in F$. It is clear that $g|_X = f$.

This map is also *continuous*. It suffices to notice that for an open subset $V \subseteq Y$ we have

$$g(\mathcal{F}) \in V^* \Leftrightarrow \mathcal{F} \in f^{-1}(V)$$

which implies that

$$g^{-1}(V^*) = (f^{-1}(V))^*.$$

TODO open map ??? !!!

Set of all open ultrafilters is admissible. TODO filter base

Theorem 4.14. If F is an admissible set of open filters on X , then $X(F)$ is a Baire space (in fact $X(F)$ is α -favorable).

We will describe the tactic (stationary strategy) for the second player. Suppose that the player I has chosen a non-empty open set U_n . This open set contains some set of the form W_n^* , where W_n is a non-empty open subset of X . The player II can simply choose $V_n = W_n^*$.

For any run of the game we get a system $\{W_n; n \in \mathbb{N}\}$ of open subsets of X such that $W_{n+1} \subseteq W_n$. There are two possibilities.

Either $\bigcap_{n \in \mathbb{N}} W_n \neq \emptyset$. Since $W_n \subseteq W_n^* \subseteq U_n$, this implies that $\bigcap_{n \in \mathbb{N}} U_n \neq \emptyset$ and player II wins.

The second possibility is that $\bigcap_{n \in \mathbb{N}} W_n = \emptyset$. In this case, there exists an open filter $\mathcal{F} \in F$ such that $\{W_n; n \in \mathbb{N}\} \subseteq \mathcal{F}$. (This follows from the fact that F is admissible.) So we get for each $n \in \mathbb{N}$ that $W_n \in \mathcal{F} \Rightarrow \mathcal{F} \in W_n^* \Rightarrow \mathcal{F} \in U_n$. Hence $\mathcal{F} \in \bigcap_{n \in \mathbb{N}} U_n$ and the intersection $\bigcap_{n \in \mathbb{N}} U_n$ is non-empty.

Almost compact spaces

if F is the set of all open filters or the set of all open ultrafilters on a space X , then $X(F)$ is a generalized absolutely closed space. Let \mathcal{F} be any open ultrafilter on X . First we show that $\{A \cap X; A \in \mathcal{F}\}$ has the finite intersection property.

Suppose that A, B are two open subsets of $X(F)$ which belong to \mathcal{F} . Then $A \cap B \neq \emptyset$ and there exists a point $x \in A \cap B$. (The point x belongs to $X(F)$, so it is an ultrafilter on x .) From this we have existence of sets U_A, U_B , which are open in X , such that

$$\begin{aligned} & x \in U_A^* \subseteq A, x \in U_B^* \subseteq B \\ & \Rightarrow U_A^* \cap U_B^* = (U_A \cap U_B)^* \neq \emptyset \\ & \Rightarrow U_A \cap U_B \neq \emptyset \\ & \Rightarrow A \cap B \cap X \neq \emptyset \end{aligned}$$

The same argument works for finitely many sets instead of two sets.

This shows that $\{A \cap X; A \in \mathcal{F}\}$ is a system of open subset of X that has finite intersection property. Therefore there exists an open ultrafilter $y \in X(F)$ such that $\{A \cap X; A \in \mathcal{F}\} \subseteq y$.

Now if $y \in U^*$, then U belongs to y , which implies $U \cap A \cap X \neq \emptyset$ for every $A \in \mathcal{F}$. From this we get $U^* \cap A \neq \emptyset$ for every $A \in \mathcal{F}$. This means that y is a cluster point of the open ultrafilter \mathcal{F} .

Filters generated by the countably infinite point finite monotone open bases. TODO

The product $\prod_a sX_a$ is a Baire space. TODO

If X is first countable, then sX is first countable. TODO

Contents

1 Basic properties of Baire spaces	1
1.1 Nowhere dense sets	1
1.2 First and second category sets	1
1.3 Baire spaces	1
1.4 Isolated points and Baire spaces	1
2 Concepts related to Baire spaces	1
2.1 Baire spaces in the strong sense	1
2.2 Baire Category Theorem	1
2.3 Complete type properties which imply Baire	1
2.4 Minimal spaces	2
2.4.1 Proposition 2.11	2
2.4.2 Minimal Hausdorff spaces	3
2.4.3 More on minimal Hausdorff spaces	5
3 Characterizations of Baire spaces	9
3.1 Blumberg type theorems	9
3.2 Covering and filter characterizations	9
3.3 Characterizations of Baire spaces involving pseudo-complete spaces	9
3.4 The Banach-Mazur game	9
3.5 Countably-Baire spaces	9
4 The dynamics of Baire spaces	9
4.1 Images and inverse images of Baire spaces	9
4.2 Baire spaces extensions	9

References

[B] N. Bourbaki. *Elements of Mathematics. General Topology. Chapters I-IV.* Springer-Verlag, Berlin, 1989.

- [HM] R.C. Haworth and R.A. McCoy. *Baire spaces*. PWN, Warszawa, 1977.
Dissertationes Mathematicae CXLI.
- [SS] L. A. Steen and J. A. Seebach. *Counterexamples in Topology*. Springer Verlag, New York, 1978.
- [W] S. Willard. *General topology*. Addison-Wesley, Massachussets, 1970.