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Haworth, McCoy: Baire spaces

Various details, problems etc., found when reading [HM].

Introduction

1 Basic properties of Baire spaces

1.1 Nowhere dense sets

1.2 First and second category sets

1.3 Baire spaces

1.4 Isolated points and Baire spaces

2 Concepts related to Baire spaces

2.1 Baire spaces in the strong sense

2.2 Baire Category Theorem

2.3 Complete type properties which imply Baire
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2.4 Minimal spaces

2.4.1 Proposition 2.11

I have doubts about the proof of [HM, Proposition 2.11].

Proposition 2.4.1. Let (X, T ) be a Baire space and T ∗ be a topology on X
contained in T . If there exists a p ∈ X such that {U ∈ T |p /∈ U} ⊆ T ∗, then
(X, T ∗) is a Baire space.

Namely I see the following problems in the proof:

� “So U =
∞⋃
i=1

Ni where each Ni is closed and nowhere dense in (X, T ∗).”

We only know this for U . Or, we know that U ⊆
∞⋃
i=1

Ni.

� How do we get contradiction in the second part of the proof if U−Nn = ∅?
At the moment I neither have a counterexample, nor am I able to correct

the proof in the full generality.
However, knowing this for the case that (X, T ) is T1 seems to be sufficient

for the rest of this section of this book. Here’s the proof for that case. (I’ve
added the assumption that {p} is closed in (X, T ).)

Proposition 2.4.2. Let (X, T ) be a Baire space and T ∗ be a topology on X
contained in T . If there exists a p ∈ X such that {p} is closed in (X, T ) and
{U ∈ T |p /∈ U} ⊆ T ∗, then (X, T ∗) is a Baire space.

Proof. Notice that the induced topology on the subset X \ {p} is the same for
both topologies (X, T ) and (X, T ∗). Indeed, let V be open in the topology
induced on X \ {p} by T . If V is open in T , then it is open in T ∗, since p /∈ V .
The remaining possibility is that V = U \ {p} = U ∩ (X \ {p}) for some set U
which is open in T . But, since X \ {p} is open, this implies that V is open in
T , which is the case we have already solved.1

The subspace X \ {p} is an open subspace of (X, T ), thus it is a Baire space
by [HM, Proposition 1.14].2

If the point p is not isolated in (X, T ∗), then X \ {p} is dense in (X, T ).
Consequently, (X, T ∗) is a Baire space by [HM, Theorem 1.15].3

If p is isolated in (X, T ∗), then T = T ∗.

2.4.2 Minimal Hausdorff spaces

The following construction is used in proof of [HM, Proposition 2.14].

Lemma 2.4.3. Let (X, T ) be a topological space, p ∈ X and F and open filter
in X such that p is unique adherent point of F . Let us define T ∗ = M∪N ,
where M = {U ∈ T ; p /∈ U} and N = {U ∪ V ; p ∈ U ∈ T , V ∈ F}. (I.e. the
neighborhood basis for the new topology is changed only at the point p.)

1Note that we have used the assumption that {p} is closed to show that the subspace
topology is the same.

2Every open subspace of a Baire space is a Baire space.
3Every space which contains a dense Baire subspace is a Baire space.
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a) The system T ∗ is a topology on X.
b) If F does not converge to p, then T ∗ is strictly weaker (coarser) than T .
c) If T is Hausdorff, then so is T ∗.
d) If F is a regular filter and T is regular , then so is T ∗.
e) If T is Urysohn filter and T is Urysohn, then so is T ∗.

A system B ⊆ T \ {∅}, is an open filter base, if, for each U, V ∈ B, there
exists W ∈ B such that W ⊆ U ∩ V .

An open filter base B is regular if, whenever U is a member of B then there
exists a member V of F with clV ⊂ U .

An open filter base B is Urysohn provided that for every y ∈ X, if y is not an
adherent point of B, then there is an open set U containing y and a set V ∈ B
such that clU ∩ clV = ∅.

An Urysohn space, or T2½ space, is a topological space in which any two
distinct points can be separated by closed neighborhoods.

A system F ⊆ T , is an open filter base, if:
� ∅ /∈ F ;
� A,B ∈ F ⇒ A ∩B ∈ F ;
� A ∈ F , A ⊆ B ∈ T ⇒ B ∈ F .
Clearly, if B ⊆ T is an open filter base, then F = {F ∈ T ; (∃B ∈ B)B ⊆ F}

is an open filter such that B converges to x if and only if F converges to x. The
cluster points of B and F are the same, too.

Proof. a) Clearly, ∅ ∈ M, X ∈ N .
Intersection. U1, U2 ∈M ⇒ U1 ∩ U2 ∈M

p ∈ U1 ∈ T , p ∈ U2 ∈ T ⇒ p ∈ U1 ∩ U2 ∈ T and also V1, V2 ∈ F ⇒ V1, V2 ∈ F .
Arbitrary union. Suppose Wi ∈ T ∗ for each i ∈ I. If each Wi belongs toM,

then so does
⋃
i∈I

Wi.

Now suppose that there is at least one i0 such that Wi0 = Ui0 ∪ Vi0 with
p ∈ Ui0 and Vi0 ∈ F . We can rewrite each Wi as Wi = Ui ∪ Vi where Ui ∈ T
and Vi is either ∅ or a non-empty open set from F , depending on whether Wi

belongs to M or N .
Then we get

⋃
i∈I

Wi = U ∪ V , where U =
⋃
i∈I

Ui and V =
⋃
i∈I

Vi. We have

p ∈ Ui0 ⊆ U and U ∈ T . Also, since Vi0 ⊆ V , we have V ∈ F . Thus
W = U ∩ V ∈ N .

b) It is obvious that every set from T ∗ is open in T , i.e. T ∗ ⊆ T .
The filter F does not converge to p in T , but it does in T ∗. Hence the

topology T ∗ is strictly weaker than T .
c) Let x ∈ X and x 6= p. Since x is not a cluster point of F , there is a

V ∈ F such that x /∈ V . This implies that x has a neighborhood U1 such that
U1 ∩ V = ∅.

We also know, that T is Hausdorff, and therefore there are U2, U ∈ T such
that x ∈ U2, p ∈ U and U2∩U = ∅. Then the sets U1∩U2 and U∪V are T ∗-open
neighborhoods of x and p, respectively. These neighborhoods are disjoint.
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d) We want to show that for each point of X and each neighborhood W of
this point in T ∗ there is a smaller closed neighborhood, which is contained in
W .

If p ∈ U ∪ V where U ∈ T and V ∈ F , then there are U ′, V ′ such that
clU ′ ⊆ U and clV ′ ⊆ V . Thus we have p ∈ U ′ ∪ V ′ ⊆ clU ′ ∪ clV ′. The later
set is closed in T ∗, too, since the complement is a T -open set which does not
contain p.

Now x ∈ U ∈ T . Since x is not a cluster point of V then there is a set
V ∈ F such that x /∈ clV . This implies that there is a neighborhood U1 ⊆ U
of x such that U1 ∩ V = ∅ and clU1 ⊆ U . Then (X \ clU1) ∪ V is a T ∗-open
subset, which has empty intersection with U1. This implies that the T ∗-closure
of U1 has empty intersection with this set, too, therefore it is a subset of clU1

and, consequently, of U .
TODO Remaining possibility x ∈ V ∈ F (i.e. x ∈ U ∪V ); it is similar, since

V is T -open
e) TODO

The following result is mentioned e.g. in [B, p.146, Exercise 9.18], [W,
Exercise 17M].

Corollary 2.4.4. Let X be a Hausdorff space. X is minimal Hausdorff ⇔
every open filter with unique cluster point converges.

Recall, that a Hausdorff space (X, T ) is minimal Hausdorff if and only if for
every Hausdorff topology T ′ on X we have T ′ ⊆ T ⇒ T ′ = T . (Equivalently:
Every one-to-one continuous map of X to a Hausdorff space is a homeomor-
phism.)

Proof. ⇒ Suppose that there is an open filter F on X, which has unique cluster
point but does not converge. Then Lemma 2.4.3 yields a topology T ∗ which is
strictly weaker than T and Hausdorff.
⇐ Suppose that (X, T ) has the property, that every open filter with unique

cluster point converges. Suppose that there is a topology T ′ which is strictly
coarser than T , i.e. T ′ $ T and T ′ is Hausdorff.

This implies, that there is a set V ∈ T \T ′. In particular, Int′ V $ V , where
Int′ V denotes the interior of V in the topology T ′.

Let us choose any point p ∈ V \ Int′ V . In particular, the choice of p means
that for every T ′-neighborhood U of p we have U \ V 6= ∅.

Now, since T ′ is Hausdorff, for every x 6= p we have Ux, Vx ∈ T ′ such that
p ∈ Ux, x ∈ Vx and Ux ∩ Vx = ∅. Let F is the smallest open filter containing
{Ux;x ∈ X \ {p}}. (An explicit description of F would be that F consists of all
open supersets of finite intersections of sets from given sets. Note also that all
sets Ux are T -open, too.)

In (X, T ), we have {p} =
⋂

x∈X Ux. (It is clear that p belongs to this set

and that x /∈ Ux for x 6= p.) This implies that p is unique cluster point of F .
Thus F converges to p, which implies V ∈ F . This contradicts the fact, that F
contains no T ′-open neighborhoods of p.
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2.4.3 More on minimal Hausdorff spaces

compact Hausdorff ⇒ minimal Hausdorff ⇒ H-closed ⇒ Hausdorff

H-closed spaces. A Hausdorff topological space X is called H-closed or ab-
solutely closed if it is closed in any Hausdorff space, which contains X as a
subspace. Similarly, P-closed spaces can be defined for any topological property
P.

E.g., it is well-known that every compact Hausdorff space is H-closed.
Every minimal Hausdorff space is H-closed. To show this we will use a

characterization of H-closed spaces using open filters (see e.g. [W, Problem
17K]. Lemma 2.4.7 and Lemma 2.4.8 are take from [W, Problem 17K], too.).

Lemma 2.4.5. Let X be a Hausdorff space. X is H-closed if and only if every
open filter in X has a cluster point.

Proof. ⇒ Suppose that (X, T ) is a H-closed space and that F is an open filter
on X with no cluster point.

For p /∈ X we define topology T ∗ =M∪N on X ∪ {p}, where

M = {U ⊆ X;U ∈ T }
N = {{p} ∪ F ;F ∈ F}

It is easy to show that:
� T ∗ is a topology on X. (The proof is similar to the proof given in Lemma

2.4.3).
� X is a subspace of X ∪ {p}.
� X is not closed in X∪{p}. (Since every set in F is non-empty, we see that

every T ∗/neighborhood {p}∪F of the point p has a non-empty intersection
with X.)

If we show that (X ∪ {p}, T ∗) is Hausdorff, we obtain a contradiction and
we are done.

If x, y ∈ X are two distinct points, they can be separated in X ∪ {p} by the
same open sets as in X.

Now let x ∈ X. We want to show that x and p can be separated by sets
from T ∗. Since x is not a cluster point of F , there exists a set F ∈ F such that
x /∈ clF . This means that x has an open neighborhood U such that U ∩F = ∅.
Then the sets U and F ∪ {p} are T ∗-neighborhoods of x and p which separate
these two points.
⇐ Let X be a space which is not H-closed. This means that there is some

Hausdorff space Y such that X is a subspace of Y and X is not closed in Y .
Let p ∈ X \X and let Np denotes the set of all neighborhoods of p in Y . Then
F = {U ∩X;U ∈ Np} is an open filter on X. (Every set U ∩X is non-empty,
since p ∈ X.)

We will show that this open filter has no cluster point in X. Indeed, let
x ∈ X. In the Hausdorff space Y we have neighborhoods V 3 x and U 3 p
such that V ∩ Y = ∅. Then V ∩ X is a neighborhood of x in X such that
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(V ∩X)∩ (U ∩X) = ∅, which shows that x /∈ U ∩X and x is not a cluster point
of F .

Lemma 2.4.6. Let X be a Hausdorff space. X is H-closed if and only if every
open cover C of X contains a finite subsystem D such that

⋃
{D;D ∈ D} = X,

i.e., the closures of the sets from D cover X.

Proof. ⇒ We assume that there is an open cover C such that
⋃
{D;D ∈ D} $

X for every finite incollection D of C. We will show that

B = {X \ U ;U ∈ C}

is an open filter base with no cluster point.
The fact that closures of no finite incollection of C cover X means that B

has finite intersection property. All sets in B are open, hence B is an open filter
base.

If x ∈ X then there exists U ∈ C such that x ∈ U . We have U ∩ (X \U) = ∅.
This shows that x is not a cluster point of B.
⇐ Suppose that X is not H-closed. This implies the existence of an open

filter F which has no cluster point. Let

C = {X \ F ;F ∈ F}.

Let us show first that C is a cover. Indeed, any point x ∈ X is not a cluster
point of F . This implies existence of an F ∈ F such that x /∈ F , i.e. x ∈ X \F .

Now if we have a finite subsystem

D = {X \ Fi; i = 1, . . . , n}

then

⋃
D∈D

D =

n⋃
i=1

X \ Fi =

n⋃
i=1

(X\IntFi) ⊆
n⋃

i=1

(X\Fi) = X\
n⋂

i=1

Fi ⊆ X\
n⋂

i=1

Fi $ X.

(The last inclusion follows from the fact that
n⋂

i=1

Fi belongs to F , hence it is

non-empty.)
We have shown that closures for no finite subsystem D ⊆ C cover the space

X.

We have already mentioned that every compact space is H-closed. Both 2.4.6
and 2.4.7 show that H-closedness is, in some sense, similar to compactness.

It is very natural to ask whether every H-closed space is compact.

Lemma 2.4.7. Let X be an H-closed space. X is compact if and only if X is
regular.
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Proof. ⇒ Every compact Hausdorff space is completely regular.
⇐ If we have open cover of X, then for each x ∈ X there is (at least

one) set Ux from this cover such that x ∈ X. I.e. we have an open cover
C = {Ux;x ∈ X}. Since X is regular, for every x we have an open set Vx such
that

x ∈ Vx ⊆ V x ⊆ Ux.

This yields an open cover C′ = {Vx;x ∈ X}.
By Lemma 2.4.7 there exist a finite set x1 . . . xn such that the closures V xi ,

i = 1, . . . , n cover X. We get

X ⊆
n⋃

i=1

Vxi
⊆

n⋃
i=1

Uxi
,

hence {Uxi
; i = 1, . . . , n} is a finite subcover.

Lemma 2.4.8. Every minimal Hausdorff space is H-closed.

Proof. TODO

Lemma 2.4.9. Every minimal Hausdorff space is semiregular.

Proof. TODO ???

Proposition 2.4.10. X is minimal Hausdorff ⇔ X is H-closed and semiregu-
lar.

Dôkaz. ⇒
⇐ TODO
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3 Characterizations of Baire spaces

3.1 Blumberg type theorems

3.2 Covering and filter characterizations

3.3 Characterizations of Baire spaces involving pseudo-
complete spaces

3.4 The Banach-Mazur game

3.5 Countably-Baire spaces

4 The dynamics of Baire spaces

4.1 Images and inverse images of Baire spaces

4.2 Baire spaces extensions

B = {U∗;U is open in X} is a base for a topology on X(F ). Since
X∗ = X(F ), we see that B covers X(F ). If x ∈ U∗∩V ∗, then also x ∈ (U ∩V )∗.
Since (U ∩ V )∗ = U∗ ∩ V ∗, we see that (U ∩ V )∗ ⊆ U∗ and (U ∩ V )∗ ⊆ V ∗.

X is a dense subspace of X(F ). Since ∅∗ = ∅, every non-empty basic set
has the form U∗ for some U 6= ∅. Then U∗ ∩X = U is non-empty.

Every open filter is contained in an open ultrafilter. TODO finite in-
tersection property should be sufficient

TODO Zorn

If A is an open dense subset in X and F is an open ultrafilter on X,
then A ∈ F . This follows from the fact that the system F ∪ {A} has f.i.p.

More generally: If A is an open set which intersects every element of F
(where F is an open ultrafilter), then A ∈ F .

If f is an open continuous function from X into Y , then there is an
open continuous function g from X(F ) into X(G) such that g|X = f .
Let f : X → Y be any map. If we are given a set F of open filters on X, we can
define the corresponding set of open filters on Y as

G := {f [F ];F ∈ F},

where
f [F ] = {B ⊆ Y ;B is open and f−1(B) ∈ F .}

If f is continuous then each f [F ] is indeed an open filter.
Now we can define g : X(F )→ Y (G) as g(x) = f(x) for x ∈ X and g(F) =

f [F ] for F ∈ F . It is clear that g|X = f .
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This map is also continuous. It suffices to notice that for an open subset
V ⊆ Y we have

g(F) ∈ V ∗ ⇔ F ∈ f−1(V )

which implies that
g−1(V ∗) = (f−1(V ))∗.

TODO open map ??? !!!

Set of all open ultrafilters is admissible. TODO filter base

Theorem 4.14. If F is an admissible set of open filters on X, then X(F ) is
a Baire space (in fact X(F ) is α-favorable).

We will describe the tactic (stationary strategy) for the second player. Sup-
pose that the player I has chosen a non-empty open set Un. This open set
contains some set of the form W ∗n , where Wn is a non-empty open subset of X.
The player II can simply choose Vn = W ∗n .

For any run of the game we get a system {Wn;n ∈ N} of open subsets of X
such that Wn+1 ⊆Wn. There are two possibilities.

Either
⋂

n∈N
Wn 6= ∅. Since Wn ⊆W ∗n ⊆ Un, this implies that

⋂
n∈N

Un 6= ∅ and

player II wins.
The second possibility is that

⋂
n∈N

Wn = ∅. In this case, there exists an open

filter F ∈ F such that {Wn;n ∈ N} ⊆ F . (This follows from the fact that F
is admissible.) So we get for each n ∈ N that Wn ∈ F ⇒ F ∈ W ∗n ⇒ F ∈ Un.
Hence F ∈

⋂
n∈N

Un and the intersection
⋂

n∈N
Un is non-empty.

Almost compact spaces

if F is the set of all open filters or the set of all open ultrafilters on
a space X, then X(F ) is a generalized absolutely closed space. Let F
be any open ultrafilter on X. First we show that {A∩X;A ∈ F} has the finite
intersection property.

Suppose that A, B are two open subsets of X(F ) which belong to F . Then
A ∩ B 6= ∅ and there exists a point x ∈ A ∩ B. (The point x belongs to X(F ),
so it is an ultrafilter on x.) From this we have existence of sets UA, UB , which
are open in X, such that
x ∈ U∗A ⊆ A, x ∈ U∗B ⊆ B
⇒ U∗A ∩ U∗B = (UA ∩ UB)∗ 6= ∅
⇒ UA ∩ UB 6= ∅
⇒ A ∩B ∩X 6= ∅

The same argument works for finitely many sets instead of two sets.
This shows that {A ∩X;A ∈ F} is a system of open subset of X that has

finite intersection property. Therefore there exists an open ultrafilter y ∈ X(F )
such that {A ∩X;A ∈ F} ⊆ y.
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Now if y ∈ U∗, then U belongs to y, which implies U ∩A ∩X 6= ∅ for every
A ∈ F . From this we get U∗ ∩ A 6= ∅ for every A ∈ F . This means that y is a
cluster point of the open ultrafilter F .

Filters generated by the countably infinite point finite monotone open
bases. TODO

The product
∏

a sXa is a Baire space. TODO

If X is first countable, then sX is first countable. TODO
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