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2 Just, Weese: Discovering Modern Set Theory
II – Set-Theoretic Tools for Every Mathemati-
cian

2.13 Filters and ideals in partial orders

2.13.1 The general concept of a filter

F∗ = dual ideal
The sets in P(X) \ F∗ are called the stationary sets w.r.t. F , or simply the

F-stationary sets.
Let κ be a regular uncountable cardinal, and let F be a filter on a non-

empty set X. We say that F is κ-complete or κ-closed if
⋂
A ∈ F for every

A ∈ [F ]<κ . An ℵ1-complete filter is also called countably complete.
If the neighborhood filter Nx is countably complete, then x is said to be a

P-point in X.
If there exists a nonprincipal κ-complete filter on a set of size κ, then κ is

called a measurable cardinal.

Definition. (13.3) Let 〈P,≤〉 be a p.o., and let A ⊆ P . An element p of P is a
lower bound for A if p ≤ q for every q ∈ A. We say that p and q are compatible
in A if A contains a lower bound for the set {p, q}, we write p 6⊥ q. Otherwise
we say that p and q are incompactible and write p ⊥ q. A subset F of P is
called a filter in 〈P,≤〉 if:

(i) F is closed upwords, i.e., ∀p ∈ F ∀q ∈ P (p ≤ q → q ∈ F );

(ii) Every finite subset of F has a lower bound in F . 1

Note that we speak about filters in P to avoid confusion with filters on X.
K(X) = filter of closed sets
Ideal = (I)∗ closed downwards and (II)∗ every finite subset has an upper

bound in I.
Exercise. Let 〈P,≤〉 be a p.o. Then {I ⊆ P ; I satisfies (I)∗} is a topology

on P .
A subset B of P is a filter base in 〈P,≤〉 if it satisfies condition (II) of the

definition of a filter.
A ⊆ P is centered if every finite subset of A has a lower bound in P . Unfor-

tunately, it is not always true that every centered subset of a p.o. is contained
in a filter.

Counterexample: P = {{n};n ∈ ω} ∪ {ω \ {n};n ∈ ω}. The set A =
{ω \ {n};n ∈ ω} is a centered system which is not contained in any filter in
〈P,⊆〉.

1V*? Is this not the condition that F is down-directed???
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A p.o. is called well-met if every two compatible elements have a greatest
lower bound in P .

Theorem. (13.5) Let 〈P,≤〉 be a well-met p.o., and let A be a centered subset
of P . Then there eixsts a smallest filter F in 〈P,≤〉 such that A ⊆ F .

Theorem. (13.6) Let X be a topological space. The following are equivalent:

(i) X is compact;

(ii) Every filter of closed subsets of X has a nonempty intersection.

(iii) Every ultrafilter of closed subsets of X is fixed.

Remark 13.8: In chapter 9 we showed that Tychonoff’s Theorem implies the
Axiom of Choice. Note that (AC) is necessary in the proof of Theorem 13.7
in order to guarantee the existence of a function f as in Exercise 13.13. But if
each of the spaces Xi is Hausdorff, then the function f is uniquely determined.

However, this does not mean that the restriction of Tychonoff’s Theorem to
the class of Hausdorff spaces is provable in ZF alone. We also used the fact taht
there exists an ultrafilter of closed sets in

∏
i∈I Xi, and this fact is not provable

in ZF alone, althought it follows from the so-called Prime Ideal Theorem which
is weaker than the full Axiom of Choice.

Let κ be a regular uncountable cardinal. A p.o. is κ-closed if every decreas-
ing sequence 〈pξ : ξ < λ〉 of elements of P of length λ < κ has a lower bound in
P . A p.o. P is κ-directed closed if every filter base B ⊆ P of size less than κ
has a lower bound in P .

κ-directed closed ⇒ κ-closed
A subset A ⊆ P is an antichain in P if every two elements of A are incom-

patible.2

A subset D ⊆ P is a dense subset in P if ∀p ∈ P ∃q ∈ D (q ≤ p).
A subset C ⊆ P is a predense subset in P if ∀p ∈ P ∃q ∈ C (q 6⊥ p).
A p.o. 〈P,≤〉 satisfies κ-chain condition if every antichain in P has cardi-

nality less than κ. The ℵ1-c.c. is also called the countable chain condition.
A topological space (X, τ) has the c.c.c. if and only if the p.o. 〈τ \ {∅},⊆〉

has the c.c.c.

2.13.2 Ultraproducts

SKIPPED

2.13.3 A first look at Boolean algebras

Finco(A) = finite + cofinite subsets of A
F<κ(A = {X ⊆ A; |X| < κ ∨ |−X| < κ})
TODO p.17–19 Stone duality

2V*?

2



2.14 Trees

A tree is a p.o. 〈T,≤T 〉 such that for every t ∈ T the initial segment t̂ = {s ∈
T : s <T t} is wellordered by the relation ≤T .

Let κ, λ be cardinals > 0, and <κλ =
⋃
{αλ : α < κ}. Then 〈<κ ,⊆〉 is a

tree. If λ = 2, this tree is called the full binary tree of height κ.
A node r of a tree T is splitting if there are nodes s, t ∈ T such that r <T t,

r <T s and s, t are incomparable in 〈T,≤T 〉.
The height ht(t) of a node t ∈ T is the ordert type of t̂. The height of the

tree T is the ordinal ht(T ) = sup{ht(t) + 1; t ∈ T}. For an ordinal α we define:
T (α) = {t ∈ T ;ht(t) = α};
T(α) = {t ∈ T ;ht(t) < α}.

A subset P of T is a path in T if P is a chain such that t̂ ⊆ P for all t ∈ P .
A branch is a maximal path. A branch B is cofinal in T if B intersects every
nonempty level of T , i.e., if ot(〈B,≤T 〉) = ht(T ).

recursion over tree - as an example they prove:
Every closed subset of a Polish space is either countable or of cardinality 2ℵ0 .

For a cardinal κ, let us call T a κ-Kurepa tree if T has height κ, every level
of T is of cardinality < κ, and T has > κ cofinal branches.
ℵ1-Kurepa tree = Kurepa tree
Kurepa hypothesis (KH) There exists a Kurepa tree.
KH is relatively consistent with ZFC. On the other hand, if the existence of

an inaccessible cardinal is consistent with ZFC, then so is the negation of KH.

Lemma (König). (14.2) If T is a tree of height ω such that T (n) is finite for
all n ∈ ω. Then T contains a cofinal branch.

Lemma. (14.3) If |X| = κ, |Y| < cf(κ) and X =
⋃
Y ⇒ |Y | = κ for some

Y ∈ Y

König’s lemma and AC - SKIPPED
Consider the following statements:
(WTY) Every product

∏
n∈ωXn of finite non empty Hausdorff spaces Xn is

nonempty and compact.
(WCT) Let L be a first-order language without functional symbols, and let

(Sn)n∈ω be an increasing sequence of finite sets of quantifier-free sentences of
L. If each Sn has a model, then the theory S =

⋃
n∈ω Sn also has a model.

Theorem (ZF). (14.4) The following statments are equivalent:
(i) König’s Lemma;

(ii) (WTY);
(iii) (WCT).

If κ is an infinite cardinal, then a κ-tree is a tree T of height κ such that
|T (α)| > κ for every κ < α. In particular, a κ-Kurepa tree is a κ-tree. A
κ-Aronszajn tree is a κ-tree without cofinal branches. An ℵ1-Aronszajn tree is
simply called an Aronszajn tree. An infinite cardinal has the tree propperty if
there are no κ-Aronszajn trees.

König’s Lemma asserts that ℵ0 has the tree property.
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Theorem. (14.8) There exists an Aronszajn tree.

Theorem. (14.11) If κ is a regular infinite cardinal such that 2<κ = κ, then
there exists a κ+-Aronszajn tree.

GCH ⇒ existence of κ+-Aronszajn trees for every regular infinite cardinal
κ

Strongly inaccessible cardinals with the tree property are called weakly com-
pact cardinals. See Chapters 15 and 24.

An antichain in a tree 〈T,≤T 〉 is a subset A ⊆ T of pairwise incomparable
elements of T . This notion of “antichain” is different from the one in Chapter
13, but there is a closed connection between the two concepts.

Trees if height ω1 without uncountable chains or antichains are called Suslin
trees.

Suslin Hypothesis (SH) There are no Suslin trees.
MA ⇒ SH (Chapter 19)
Chapter 22: SH is relatively consistent
The rest of the chapter SKIPPED

2.15 A little Ramsey Theory

Theorem (Pigeonhole Principle). (15.1) Assume κ is an infinite cardinal, A
is a set of cardinality κ and A =

⋃
i<σ Ai where σ < cf(κ). Then there exists

i < σ such that |Ai| = κ.

[X]ρ = family of all subsets of X with cardinality ρ
P = {Pi; in ∈ I} is a partition of [X]ρ if⋃

{{Pi; in ∈ I}} = [X]ρ and Pi ∩ Pk = ∅.

fP : [X]ρ → I canonical coloring associated with P
A set Y is homogeneous for the partition P if there is an i0 ∈ I such that

[Y ]ρ ⊆ Pi0 .
Let κ, λ, ρ, σ be cardinals. The symbol3

κ → (λ)ρσ

stands for the following statement:
Whenever X is a set of cardinality κ, I is a set of cardinality σ and P =

{Pi; i ∈ I} is a partition of [X]ρ, there exists Y ⊆ X with |Y | = λ thait is
homogeneous for P.

Theorem 15.1 can be expressed as

Theorem. (15.2) For all infinite cardinals κ and for all σ < cf(κ), the relation
κ → (κ)1σ holds.

3Read: κ arrows λ super ρ sub σ
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Exercise 15.2: Let κ, λ, ρ, σ,κ′, λ′, ρ′, σ′ be cardinals such that κ′ ≥ κ, λ′ ≤
λ, ρ′ ≤ ρ and σ′ ≤ σ. Show that if κ → (λ)ρσ then also κ′ → (λ′)ρ

′

σ′ .

Theorem (Ramsey’s Theorem). (15.3) For positive natural numbers k, l:

ω → (ω)kl .

Theorem. (15.4)Let m, k, l be positive natural nubmers. There exists a natural
number n such that

n→ (m)kl .

A subset A ⊆ ω is called relatively large if |A| ≥ minA. We write n
∗→ (m)kl

if for every coloring f : [n]k → l there exists a relatively large homogeneous set
of size at least m.

Contents

2 Just, Weese: Discovering Modern Set Theory II – Set-Theoretic
Tools for Every Mathematician 1
2.13 Filters and ideals in partial orders . . . . . . . . . . . . . . . . . 1

2.13.1 The general concept of a filter . . . . . . . . . . . . . . . . 1
2.13.2 Ultraproducts . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.13.3 A first look at Boolean algebras . . . . . . . . . . . . . . . 2

2.14 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.15 A little Ramsey Theory . . . . . . . . . . . . . . . . . . . . . . . 4

5


