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Series in Banach Spaces

1 Background material

1.1 Numerical series. Riemann’s Theorem

1.2 Main Definitions. Elementary Properties of Vector
Series

absolutely convergent ⇔
∑∞
k=1‖xk‖ <∞

1.3 Preliminary Material on Rearrangements of Series of
Elements of a Banach Space

unconditionally convergent ⇔ every rearrangements
∑
xπ(k) converges

absolute ⇒ unconditionally, the converse is not true
conditionally convergent ⇔ converges, but not unconditionally, i.e., among

its rearrangements there are divergent ones

Theorem. (1.3.1) If the series
∑∞
k=1 xk in the Banach space X is uncondi-

tionally convergent, then all its rearrangements have the same sum.

perfectly convergent ⇔
∑
αkxk converges for any choice αi = ±1

Theorem. (1.3.2) For series
∑∞
k=1 xk in a Banach space X the following con-

ditions are equivalent:

(i) the series converges unconditionally;

(ii) all series of the form xn1
+xn2

+xn3
+ . . . where n1 < n2 < . . . converge;

(all subseries)

(iii) the series converges perfectly.

Theorem (Gelfand’s theorem). (1.3.4) Let X be a Banach space and
∑∞
k=1 xi

be an unconditionally convergent series in X. Then the collection of the sums
s(α) =

∑∞
i=1 αixi, where α = {αi}∞i=1 runs through all sequences of ±1, forms

a compact set in X.

2 Series in a finite-dimensional space

2.1 Steinitz’s theorem on the sum range of a series

SR(
∑
xk) sums of all convergent rearrangements

∑
xπ(k)
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Lemma. (2.1.1) Let K be a polyhedron in Rn given by a system of linear
equalities and inequalities:

fi(x) = ai, i = 1, 2, . . . , p

gj(x) ≤ bj , j = 1, 2, . . . , q,

where fi and gj are linear functionals. Let x0 be a vertex (extreme point) of K
and A = {j; gj(x0) = bj}. Then the number of elements in A is not smaller
than n− p.

Lemma (Rounding-off-coefficients lemma). (2.1.2) Let (xi)
n
i=1 be a finite subset

of an m-dimensional normed space, (λi)
n
i=1 be a set of scalar coefficients, 0 ≤

λi ≤ 1, and x =
∑n
i=1 λixi. Then there exists a set of coefficients {θi}ni=1, each

θi equal to 0 or 1 (a set of rounded off coefficients) such that∥∥∥∥∥x−
n∑
i=1

θixi

∥∥∥∥∥ ≤ m

2
·max

i
‖xi‖ (1)

Lemma (Rearrangement lemma). (2.1.3) Suppose that in the m-dimensional
normed space X there is given a finite set {xi}ni=1 of vectors, whose sum is
denoted by x. Then one can rearrange the elements of this set in such a way
that for any natural k ≤ n the following inequality holds:∥∥∥∥∥

k∑
i=1

xπ(i) −
k −m
n

x

∥∥∥∥∥ ≤ m ·max
i
‖xi‖ (2)

∥∥∥∥∥
k∑
i=1

xπ(i)

∥∥∥∥∥ ≤ m ·max
i
‖xi‖+ (m+ 1)

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥ (3)

Definition. (2.1.2) Let X be a Banach space and let
∑∞
k=1 xk be a condition-

ally convergent series in X. A linear functional f ∈ X∗ is called a convergence
functional for this series if

∑∞
k=1|f(xk)| <∞. The set of all convergence func-

tionals of a series will be denoted by Γ. Also, we will denote by Γ⊥ ⊂ X the
annihilator of the set of convergence functionals:

Γ⊥ = {x ∈ X : f(x) = 0 for all f ∈ Γ}.

P((xk)∞k=1) = {xi1 + xi2 + · · ·+ xip ; i1 < i2 < · · · < ip; p ∈ N}

Q((xk)∞k=1) =

{
n∑
i=1

λixi; 0 ≤ λi ≤ 1;N = 1, 2, . . .

}

Lemma ([F, Lemma 2]). Let C be a convex set in a Banach space X, Γ a subset
of X∗ and Γ⊥ its annihilator. If for every f /∈ Γ and every T > 0 there exist
x′, x′′ ∈ C such that f(x′) > T and f(x′′) < −T , then x ∈ C implies x+Γ⊥ ⊂ C
.
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Lemma. (2.1.4) Let X be and arbitrary Banach space, and let
∑∞
k=1 xk be a

conditionally convergent series in X. Then for any x ∈ Q the set x + Γ⊥ is
contained in Q.

Theorem (Steinitz’s theorem). (2.1.1) Let
∑∞
k=1 xk be a convergent series in

an m-dimensional space E, and let
∑∞
k=1 xk = s. Then the sum range of the

series is the affine subspace s + Γ⊥, where Γ⊥ is the annihilator of the set of
convergence functionals: SR(

∑∞
k=1 xk) = s+ Γ⊥.

From the last theorem it follows that the sum range of a conditionally con-
vergent series in a finite-dimensional space cannot reduce to a single point.

2.2 The Dvoretzky-Hanani Theorem on Perfectly Diver-
gent Series

Definition. (2.2.1) A series
∑∞
k=1 xk is said to be perfectly divergent if for any

arrangement of signs the series x1 ± x2 ± x3 ± . . . diverges.

Lemma. (2.2.1) Let (xi)
n
i=1 be elements of a space X, dimX = m. Then there

exist coefficients αi = ±1, i = 1, . . . , n such that

max
j≤n

∥∥∥∥∥
j∑
i=1

αixi

∥∥∥∥∥ ≤ 2m · max
1≤i≤n

‖xi‖.

Theorem (The Dvoretzky-Hanani Theorem). (2.2.1) If a series in a finite-
dimensional normed space is perfectly divergent, then its general term does not
tend to zero.

2.3 Pecherskii’s Theorem

Theorem. (2.3.1) Let X be an arbitrary Banach space, let
∑∞
k=1 xk be a con-

ditionally convergent series in X, and let
∑∞
k=1 xk = x0. Further, suppose that

no rearrangement makes the series perfectly divergent. Then SR(
∑∞
k=1 xk) is

the closed affine subspace x0 + Γ⊥, where Γ⊥ is the annihilator in X of the set
Γ ⊂ X∗ of convergence functionals (the terminology is taken from Definitions
2.1.1 and 2.1.2). 1

SR(

∞∑
k=1

xk) = x0 + Γ⊥

Analyzing the proof of Steinitz’s theorem, one can derive the following as-
sertion, which already holds in any Banach space.

Lemma. (2.3.1) Suppose the series
∑∞
n=1 xn in a Banach space X has the

following two properties:
∑∞
n=1 xn = x and

1An equivalent formulation from [C]: y ∈ SR
∑∞
n=1 xn ⇔ (∀g ∈ X∗) (∃σ) g(s) =

g(
∑∞
k=1)xσ(k)
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(A) for any ε > 0 there exists N = N(ε) and δ > 0 such that if {yi}ni=1 is a
finite set of terms of series {yi}ni=1 ⊂ {xi}∞i=N , ‖

∑n
i=1 yi‖ ≤ δ, then one

can find a permutation π of the first n natural numbers for which

max
j≤n

∥∥∥∥∥
j∑
i=1

yπ(j)

∥∥∥∥∥ ≤ ε;
(B) for any ε > 0 there exists a number M = M(ε) such that if {yi}ni=1 is

a finite set of terms of series {yi}ni=1 ⊂ {xi}∞i=M , and if 0 ≤ λi ≤ 1,
i = 1, . . . , n, then one can find a set of coefficients {θi}ni=1, θi ∈ {0, 1},
for which ∥∥∥∥∥

n∑
i=1

λiyi −
n∑
i=1

θiyi

∥∥∥∥∥ ≤ ε.
Then for any x ∈ SR(

∑∞
n=1 xn) the equality SR(

∑∞
n=1 xn) = x+ Γ⊥ holds.

The aim of the following lemmas is to show that under the assumptions of
Theorem 2.3.1 the series

∑∞
n=1 xn satisfies the conditions (A) and (B) of Lemma

2.3.1.

Lemma. (2.3.2) Suppose that there is no rearrangement that makes the series∑∞
n=1 xn perfectly divergent. Then for any ε > 0 there exists a number N =

N(ε) such that, for any finite collection, written in arbitrary order, of elements
{y1, y2, . . . , yn} of the set {xN , xN+1, xN+2, . . . } one can find a collection of
signs αi = ±1 for which

max
j≤n

∥∥∥∥∥
j∑
i=1

αiyi

∥∥∥∥∥ ≤ ε.
Lemma. (2.3.3) Let ε be an arbitrary positive number, and let {xi}Ni=1 be a
set of elements of the normed space X, with the property that for any finite
subset {yi}mi=1 ⊂ {xi}Ni=1 there exist signs αi = ±1 such that ‖

∑m
i=1 αiyi‖ ≤ ε.

Then for any set of coefficients {λi}Ni=1, 0 ≤ λi ≤ 1 there exist “rounded off”
coefficients θi ∈ {0, 1} for which∥∥∥∥∥

N∑
i=1

λixi −
N∑
i=1

θixi

∥∥∥∥∥ ≤ ε.
Lemma (Chobanyan’s lemma). (2.3.4) Let {xi}ni=1 be elements of the space X,
with

∑n
i=1 xi = 0. Then there exists a permutation σ such that, for any choice

of signs αi = ±1,

max
k≤n

∥∥∥∥∥
k∑
i=1

αixσ(i)

∥∥∥∥∥ ≥ max
k≤n

∥∥∥∥∥
k∑
i=1

xσ(i)

∥∥∥∥∥ . (4)
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Lemma. (2.3.5) Let {xi}ni=1 ⊂ X, ‖
∑n
i=1 xi‖ ≤ ε, and assume that for any

permutation ν there exists a choice of signs αi = ±1 for which

max
k≤n

∥∥∥∥∥
k∑
i=1

αixν(i)

∥∥∥∥∥ ≤ ε.
Then there exists a permutation σ such that maxk≤n‖

∑k
i=1 xσ(i)‖ ≤ 3ε.

3 Conditional convergence in an infinite-dimensional
space

3.1 Basic counterexamples

There is no known example of a series in a Hilbert space whose sum range is a
linear, but nonclosed subspace.

3.2 A series whose sum range consists of two points

Based on papers of Kornilov [K] and Kadets-Wozniakowski.2

Construction of this example is done in Lp(Q), where Q = [0, 1]ω.

Theorem. (3.2.1) The series
∑∞
n=1 hn converges to 0 in the metric of any

spaces Lp(Q), 1 ≤ p <∞. There exists a permutation π such that the rearrange
series

∑∞
n=1 hπ(n) converges to 1. The sum of any convergent rearrangement of

the original series, h0 =
∑∞
n=1 hσ(n), is equal to either 0 or 1

Lemma. (3.2.1)3 Let (X,µ) and (Y, ν) be measures spaces with probability mea-
sures. Let f(x, y) and g(x, y) be functions in L1(X×Y ), each of which depends
on only one variable: f(x, y) = f̃(x), g(x, y) = g̃(y). Then

‖f + g‖ ≥ ‖f‖+ ‖g‖[1− 2(µ× ν)(supp f)].

It is not known whether any set in a Hilbert space for any n ∈ N can serve
as the sum range of the series.4

3.3 Chobanyan’s Theorem

r1, r2, . . . denotes a sequence of independent random variables that take the
values ±1 with equal probabilities.

Consider the random variables Sk = ‖
∑k
i=1 rixi‖.

2This paper was not available to me.
3This lemma is given without proof in [KK]. An easy proof can be found in [W, Lemma

4.1].
4Is seems that this problem has been solved since the publication of the book – see [W].
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Lemma. (3.3.1) For any t > 0,

P

[
sup
k≤n

Sk > t

]
≤ 2P [Sn > t].

Lemma. (3.3.2) E(supk<n Sk) ≤ 2E(Sn).

Lemma (Chobanyan’s inequality). (3.3.3) Let {xi}ni=1 be elements of a normed
space with

∑n
i=1 xi = 0. Then there exists a permutation σ for which

sup
k≤n

∥∥∥∥∥
k∑
i=1

xσ(i)

∥∥∥∥∥ ≤ 2E

(∥∥∥∥∥
n∑
i=1

rixi

∥∥∥∥∥
)
.

Theorem. (3.3.1) Let {xi}ni=1 be elements of a Banach space with the property
that limm>n→∞E(‖

∑m
i=n rixi‖) = 0. Then the assertion of Steinitz’s theorem

holds for the series
∑∞
i=1 xi.

Corollary (Chobanyan’s theorem). (3.3.1) Let X be a Banach space. Then
for the assertion of Steinitz’s theorem to hold for a series

∑∞
n=1 xn in X it

is sufficient that the series
∑∞
n=1 rnxn converge almost everywhere, or, in the

other words, that the series
∑∞
n=1±xn converge for almost all choices of signs.

3.4 The Khinchin Inequalities and the Theorem of M. I.
Kadets on Conditionally Convergent Series in Lp

4 Unconditionally convergent series

4.1 The Dvoretzky-Rogers Theorem

Lemma (The Dvoretzky-Rogers Lemma). (4.1.1) Let X be an n-dimensional
normed space. Then there exist elements {xi}ni=1 ⊂ S(X) such that∥∥∥∥∥

m∑
i=1

tixi

∥∥∥∥∥ ≤
(

1 +

√
m(m− 1)

n

)
·

√√√√ m∑
i=1

t2i (5)

5 Orlicz’s theorem and the structure of finite-
dimensional subspaces

5.1 Finite Representability

Definition. (5.1.1) Let X and Y be Banach Spaces. The Banach-Mazur dis-
tance between X and Y is the number d(X,Y ) = infT {‖T‖, ‖T−1‖}, where
the infimum is taken over all isomorphisms T : X → Y . If X and Y are not
isomorphic, we put d(X,Y ) = +∞.

d(X,Y ) · d(Y,Z) ≥ d(X,Z)
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6 Some results from the general theory of Ba-
nach spaces

6.1 Fréchet Differentiability of Convex Functions

6.2 Dvoretzky’s theorem

Theorem (Dvoretzky’s theorem). (6.2.1) Let k be an arbitrary natural number
and let ε > 0. Then there exists a number n(k, ε) such that, for any normed
space X with dimX > n(k, ε) there is a k-dimensional subspace Y ⊂ X such

that d
(
Y, l

(k)
2

)
< 1 + ε.

6.3 Basic sequences

A sequence (ek)∞k=1 in an infinite-dimensional Banach space is called a basis if
every element x ∈ X has a unique representation as a series in the elements ek:

x =

∞∑
k=1

ak(x)ek, ak(x) ∈ R.

A sequence of elements (ek)∞k=1 of a Banach space is called a basic sequence
if (ek)∞k=1 is a basis in Lin(ek)∞k=1.

Theorem. (6.3.3) Let X be an infinite-dimensional Banach space. Then for
any ε > 0 there exists a basic sequence (en)∞n=1 ⊂ X whose basic constant is not
smaller than 1− ε.

6.4 Some Applications to Conditionally Convergent Series

Theorem. (6.4.1) In any infinite-dimensional Banach space there are series
whose sum range reduces to a single point, but which are not unconditionally
convergent.5

Theorem (Bessage-Pelczyński theorem). (6.4.3) The following assertions are
equivalent:

(a) The Banach space x contains no subspaces isomorphic to c0.

(b) Every weakly absolutely convergent series in X is weakly convergent.

(c) Every weakly absolutely convergent series in X is unconditionally conver-
gent.

(d) Every weakly absolutely convergent series in X is norm convergent.

5My note: I think they use the fact that the projections (coefficient functionals) are con-
tinuous, (i.e., every basis is a Schauder basis). I am not sure that they have shown this result
in the text.
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