

Series in Banach Spaces

1 Background material

1.1 Numerical series. Riemann's Theorem

1.2 Main Definitions. Elementary Properties of Vector Series

absolutely convergent $\Leftrightarrow \sum_{k=1}^{\infty} \|x_k\| < \infty$

1.3 Preliminary Material on Rearrangements of Series of Elements of a Banach Space

unconditionally convergent \Leftrightarrow every rearrangements $\sum x_{\pi(k)}$ converges

absolute \Rightarrow unconditionally, the converse is not true

conditionally convergent \Leftrightarrow converges, but not unconditionally, i.e., among its rearrangements there are divergent ones

Theorem. (1.3.1) *If the series $\sum_{k=1}^{\infty} x_k$ in the Banach space X is unconditionally convergent, then all its rearrangements have the same sum.*

perfectly convergent $\Leftrightarrow \sum \alpha_k x_k$ converges for any choice $\alpha_i = \pm 1$

Theorem. (1.3.2) *For series $\sum_{k=1}^{\infty} x_k$ in a Banach space X the following conditions are equivalent:*

- (i) *the series converges unconditionally;*
- (ii) *all series of the form $x_{n_1} + x_{n_2} + x_{n_3} + \dots$ where $n_1 < n_2 < \dots$ converge; (all subsequences)*
- (iii) *the series converges perfectly.*

Theorem (Gelfand's theorem). (1.3.4) *Let X be a Banach space and $\sum_{k=1}^{\infty} x_i$ be an unconditionally convergent series in X . Then the collection of the sums $s(\alpha) = \sum_{i=1}^{\infty} \alpha_i x_i$, where $\alpha = \{\alpha_i\}_{i=1}^{\infty}$ runs through all sequences of ± 1 , forms a compact set in X .*

2 Series in a finite-dimensional space

2.1 Steinitz's theorem on the sum range of a series

$\text{SR}(\sum x_k)$ sums of all convergent rearrangements $\sum x_{\pi(k)}$

Lemma. (2.1.1) Let K be a polyhedron in \mathbb{R}^n given by a system of linear equalities and inequalities:

$$\begin{aligned} f_i(x) &= a_i, & i &= 1, 2, \dots, p \\ g_j(x) &\leq b_j, & j &= 1, 2, \dots, q, \end{aligned}$$

where f_i and g_j are linear functionals. Let x_0 be a vertex (extreme point) of K and $A = \{j; g_j(x_0) = b_j\}$. Then the number of elements in A is not smaller than $n - p$.

Lemma (Rounding-off-coefficients lemma). (2.1.2) Let $(x_i)_{i=1}^n$ be a finite subset of an m -dimensional normed space, $(\lambda_i)_{i=1}^n$ be a set of scalar coefficients, $0 \leq \lambda_i \leq 1$, and $x = \sum_{i=1}^n \lambda_i x_i$. Then there exists a set of coefficients $\{\theta_i\}_{i=1}^n$, each θ_i equal to 0 or 1 (a set of rounded off coefficients) such that

$$\left\| x - \sum_{i=1}^n \theta_i x_i \right\| \leq \frac{m}{2} \cdot \max_i \|x_i\| \quad (1)$$

Lemma (Rearrangement lemma). (2.1.3) Suppose that in the m -dimensional normed space X there is given a finite set $\{x_i\}_{i=1}^n$ of vectors, whose sum is denoted by x . Then one can rearrange the elements of this set in such a way that for any natural $k \leq n$ the following inequality holds:

$$\left\| \sum_{i=1}^k x_{\pi(i)} - \frac{k-m}{n} x \right\| \leq m \cdot \max_i \|x_i\| \quad (2)$$

$$\left\| \sum_{i=1}^k x_{\pi(i)} \right\| \leq m \cdot \max_i \|x_i\| + (m+1) \left\| \sum_{i=1}^n x_i \right\| \quad (3)$$

Definition. (2.1.2) Let X be a Banach space and let $\sum_{k=1}^{\infty} x_k$ be a conditionally convergent series in X . A linear functional $f \in X^*$ is called a *convergence functional* for this series if $\sum_{k=1}^{\infty} |f(x_k)| < \infty$. The set of all convergence functionals of a series will be denoted by Γ . Also, we will denote by $\Gamma^{\perp} \subset X$ the annihilator of the set of convergence functionals:

$$\Gamma^{\perp} = \{x \in X : f(x) = 0 \text{ for all } f \in \Gamma\}.$$

$$\begin{aligned} \mathcal{P}((x_k)_{k=1}^{\infty}) &= \{x_{i_1} + x_{i_2} + \dots + x_{i_p}; i_1 < i_2 < \dots < i_p; p \in \mathbb{N}\} \\ \mathcal{Q}((x_k)_{k=1}^{\infty}) &= \left\{ \sum_{i=1}^n \lambda_i x_i; 0 \leq \lambda_i \leq 1; N = 1, 2, \dots \right\} \end{aligned}$$

Lemma ([F, Lemma 2]). Let C be a convex set in a Banach space X , Γ a subset of X^* and Γ^{\perp} its annihilator. If for every $f \notin \Gamma$ and every $T > 0$ there exist $x', x'' \in C$ such that $f(x') > T$ and $f(x'') < -T$, then $x \in C$ implies $x + \Gamma^{\perp} \subset C$

Lemma. (2.1.4) Let X be an arbitrary Banach space, and let $\sum_{k=1}^{\infty} x_k$ be a conditionally convergent series in X . Then for any $x \in \overline{\mathcal{Q}}$ the set $x + \Gamma^{\perp}$ is contained in $\overline{\mathcal{Q}}$.

Theorem (Steinitz's theorem). (2.1.1) Let $\sum_{k=1}^{\infty} x_k$ be a convergent series in an m -dimensional space E , and let $\sum_{k=1}^{\infty} x_k = s$. Then the sum range of the series is the affine subspace $s + \Gamma^{\perp}$, where Γ^{\perp} is the annihilator of the set of convergence functionals: $\text{SR}(\sum_{k=1}^{\infty} x_k) = s + \Gamma^{\perp}$.

From the last theorem it follows that the sum range of a conditionally convergent series in a finite-dimensional space cannot reduce to a single point.

2.2 The Dvoretzky-Hanani Theorem on Perfectly Divergent Series

Definition. (2.2.1) A series $\sum_{k=1}^{\infty} x_k$ is said to be *perfectly divergent* if for any arrangement of signs the series $x_1 \pm x_2 \pm x_3 \pm \dots$ diverges.

Lemma. (2.2.1) Let $(x_i)_{i=1}^n$ be elements of a space X , $\dim X = m$. Then there exist coefficients $\alpha_i = \pm 1$, $i = 1, \dots, n$ such that

$$\max_{j \leq n} \left\| \sum_{i=1}^j \alpha_i x_i \right\| \leq 2m \cdot \max_{1 \leq i \leq n} \|x_i\|.$$

Theorem (The Dvoretzky-Hanani Theorem). (2.2.1) If a series in a finite-dimensional normed space is perfectly divergent, then its general term does not tend to zero.

2.3 Pecherskii's Theorem

Theorem. (2.3.1) Let X be an arbitrary Banach space, let $\sum_{k=1}^{\infty} x_k$ be a conditionally convergent series in X , and let $\sum_{k=1}^{\infty} x_k = x_0$. Further, suppose that no rearrangement makes the series perfectly divergent. Then $\text{SR}(\sum_{k=1}^{\infty} x_k)$ is the closed affine subspace $x_0 + \Gamma^{\perp}$, where Γ^{\perp} is the annihilator in X of the set $\Gamma \subset X^*$ of convergence functionals (the terminology is taken from Definitions 2.1.1 and 2.1.2).¹

$$\text{SR}(\sum_{k=1}^{\infty} x_k) = x_0 + \Gamma^{\perp}$$

Analyzing the proof of Steinitz's theorem, one can derive the following assertion, which already holds in any Banach space.

Lemma. (2.3.1) Suppose the series $\sum_{n=1}^{\infty} x_n$ in a Banach space X has the following two properties: $\sum_{n=1}^{\infty} x_n = x$ and

¹An equivalent formulation from [C]: $y \in \text{SR} \sum_{n=1}^{\infty} x_n \Leftrightarrow (\forall g \in X^*) (\exists \sigma) g(s) = g(\sum_{k=1}^{\infty} x_{\sigma(k)})$

(A) for any $\varepsilon > 0$ there exists $N = N(\varepsilon)$ and $\delta > 0$ such that if $\{y_i\}_{i=1}^n$ is a finite set of terms of series $\{y_i\}_{i=1}^n \subset \{x_i\}_{i=N}^\infty$, $\|\sum_{i=1}^n y_i\| \leq \delta$, then one can find a permutation π of the first n natural numbers for which

$$\max_{j \leq n} \left\| \sum_{i=1}^j y_{\pi(i)} \right\| \leq \varepsilon;$$

(B) for any $\varepsilon > 0$ there exists a number $M = M(\varepsilon)$ such that if $\{y_i\}_{i=1}^n$ is a finite set of terms of series $\{y_i\}_{i=1}^n \subset \{x_i\}_{i=M}^\infty$, and if $0 \leq \lambda_i \leq 1$, $i = 1, \dots, n$, then one can find a set of coefficients $\{\theta_i\}_{i=1}^n$, $\theta_i \in \{0, 1\}$, for which

$$\left\| \sum_{i=1}^n \lambda_i y_i - \sum_{i=1}^n \theta_i y_i \right\| \leq \varepsilon.$$

Then for any $x \in \text{SR}(\sum_{n=1}^\infty x_n)$ the equality $\text{SR}(\sum_{n=1}^\infty x_n) = x + \Gamma^\perp$ holds.

The aim of the following lemmas is to show that under the assumptions of Theorem 2.3.1 the series $\sum_{n=1}^\infty x_n$ satisfies the conditions (A) and (B) of Lemma 2.3.1.

Lemma. (2.3.2) Suppose that there is no rearrangement that makes the series $\sum_{n=1}^\infty x_n$ perfectly divergent. Then for any $\varepsilon > 0$ there exists a number $N = N(\varepsilon)$ such that, for any finite collection, written in arbitrary order, of elements $\{y_1, y_2, \dots, y_n\}$ of the set $\{x_N, x_{N+1}, x_{N+2}, \dots\}$ one can find a collection of signs $\alpha_i = \pm 1$ for which

$$\max_{j \leq n} \left\| \sum_{i=1}^j \alpha_i y_i \right\| \leq \varepsilon.$$

Lemma. (2.3.3) Let ε be an arbitrary positive number, and let $\{x_i\}_{i=1}^N$ be a set of elements of the normed space X , with the property that for any finite subset $\{y_i\}_{i=1}^m \subset \{x_i\}_{i=1}^N$ there exist signs $\alpha_i = \pm 1$ such that $\|\sum_{i=1}^m \alpha_i y_i\| \leq \varepsilon$. Then for any set of coefficients $\{\lambda_i\}_{i=1}^N$, $0 \leq \lambda_i \leq 1$ there exist “rounded off” coefficients $\theta_i \in \{0, 1\}$ for which

$$\left\| \sum_{i=1}^N \lambda_i x_i - \sum_{i=1}^N \theta_i x_i \right\| \leq \varepsilon.$$

Lemma (Chobanyan’s lemma). (2.3.4) Let $\{x_i\}_{i=1}^n$ be elements of the space X , with $\sum_{i=1}^n x_i = 0$. Then there exists a permutation σ such that, for any choice of signs $\alpha_i = \pm 1$,

$$\max_{k \leq n} \left\| \sum_{i=1}^k \alpha_i x_{\sigma(i)} \right\| \geq \max_{k \leq n} \left\| \sum_{i=1}^k x_{\sigma(i)} \right\|. \quad (4)$$

Lemma. (2.3.5) Let $\{x_i\}_{i=1}^n \subset X$, $\|\sum_{i=1}^n x_i\| \leq \varepsilon$, and assume that for any permutation ν there exists a choice of signs $\alpha_i = \pm 1$ for which

$$\max_{k \leq n} \left\| \sum_{i=1}^k \alpha_i x_{\nu(i)} \right\| \leq \varepsilon.$$

Then there exists a permutation σ such that $\max_{k \leq n} \|\sum_{i=1}^k x_{\sigma(i)}\| \leq 3\varepsilon$.

3 Conditional convergence in an infinite-dimensional space

3.1 Basic counterexamples

There is no known example of a series in a Hilbert space whose sum range is a linear, but nonclosed subspace.

3.2 A series whose sum range consists of two points

Based on papers of Kornilov [K] and Kadets-Wozniakowski.²

Construction of this example is done in $L_p(Q)$, where $Q = [0, 1]^\omega$.

Theorem. (3.2.1) The series $\sum_{n=1}^\infty h_n$ converges to 0 in the metric of any spaces $L_p(Q)$, $1 \leq p < \infty$. There exists a permutation π such that the rearrange series $\sum_{n=1}^\infty h_{\pi(n)}$ converges to 1. The sum of any convergent rearrangement of the original series, $h_0 = \sum_{n=1}^\infty h_{\sigma(n)}$, is equal to either 0 or 1

Lemma. (3.2.1)³ Let (X, μ) and (Y, ν) be measures spaces with probability measures. Let $f(x, y)$ and $g(x, y)$ be functions in $L_1(X \times Y)$, each of which depends on only one variable: $f(x, y) = \tilde{f}(x)$, $g(x, y) = \tilde{g}(y)$. Then

$$\|f + g\| \geq \|f\| + \|g\| [1 - 2(\mu \times \nu)(\text{supp } f)].$$

It is not known whether any set in a Hilbert space for any $n \in \mathbb{N}$ can serve as the sum range of the series.⁴

3.3 Chobanyan's Theorem

r_1, r_2, \dots denotes a sequence of independent random variables that take the values ± 1 with equal probabilities.

Consider the random variables $S_k = \|\sum_{i=1}^k r_i x_i\|$.

²This paper was not available to me.

³This lemma is given without proof in [KK]. An easy proof can be found in [W, Lemma 4.1].

⁴It seems that this problem has been solved since the publication of the book – see [W].

Lemma. (3.3.1) For any $t > 0$,

$$P \left[\sup_{k \leq n} S_k > t \right] \leq 2P[S_n > t].$$

Lemma. (3.3.2) $E(\sup_{k < n} S_k) \leq 2E(S_n)$.

Lemma (Chobanyan's inequality). (3.3.3) Let $\{x_i\}_{i=1}^n$ be elements of a normed space with $\sum_{i=1}^n x_i = 0$. Then there exists a permutation σ for which

$$\sup_{k \leq n} \left\| \sum_{i=1}^k x_{\sigma(i)} \right\| \leq 2E \left(\left\| \sum_{i=1}^n r_i x_i \right\| \right).$$

Theorem. (3.3.1) Let $\{x_i\}_{i=1}^n$ be elements of a Banach space with the property that $\lim_{m > n \rightarrow \infty} E(\|\sum_{i=n}^m r_i x_i\|) = 0$. Then the assertion of Steinitz's theorem holds for the series $\sum_{i=1}^{\infty} x_i$.

Corollary (Chobanyan's theorem). (3.3.1) Let X be a Banach space. Then for the assertion of Steinitz's theorem to hold for a series $\sum_{n=1}^{\infty} x_n$ in X it is sufficient that the series $\sum_{n=1}^{\infty} r_n x_n$ converge almost everywhere, or, in the other words, that the series $\sum_{n=1}^{\infty} \pm x_n$ converge for almost all choices of signs.

3.4 The Khinchin Inequalities and the Theorem of M. I. Kadets on Conditionally Convergent Series in L_p

4 Unconditionally convergent series

4.1 The Dvoretzky-Rogers Theorem

Lemma (The Dvoretzky-Rogers Lemma). (4.1.1) Let X be an n -dimensional normed space. Then there exist elements $\{x_i\}_{i=1}^n \subset S(X)$ such that

$$\left\| \sum_{i=1}^m t_i x_i \right\| \leq \left(1 + \sqrt{\frac{m(m-1)}{n}} \right) \cdot \sqrt{\sum_{i=1}^m t_i^2} \quad (5)$$

5 Orlicz's theorem and the structure of finite-dimensional subspaces

5.1 Finite Representability

Definition. (5.1.1) Let X and Y be Banach Spaces. The *Banach-Mazur distance* between X and Y is the number $d(X, Y) = \inf_T \{\|T\|, \|T^{-1}\|\}$, where the infimum is taken over all isomorphisms $T: X \rightarrow Y$. If X and Y are not isomorphic, we put $d(X, Y) = +\infty$.

$$d(X, Y) \cdot d(Y, Z) \geq d(X, Z)$$

6 Some results from the general theory of Banach spaces

6.1 Fréchet Differentiability of Convex Functions

6.2 Dvoretzky's theorem

Theorem (Dvoretzky's theorem). (6.2.1) *Let k be an arbitrary natural number and let $\varepsilon > 0$. Then there exists a number $n(k, \varepsilon)$ such that, for any normed space X with $\dim X > n(k, \varepsilon)$ there is a k -dimensional subspace $Y \subset X$ such that $d(Y, l_2^{(k)}) < 1 + \varepsilon$.*

6.3 Basic sequences

A sequence $(e_k)_{k=1}^\infty$ in an infinite-dimensional Banach space is called a *basis* if every element $x \in X$ has a unique representation as a series in the elements e_k :

$$x = \sum_{k=1}^{\infty} a_k(x) e_k, \quad a_k(x) \in \mathbb{R}.$$

A sequence of elements $(e_k)_{k=1}^\infty$ of a Banach space is called a *basic sequence* if $(e_k)_{k=1}^\infty$ is a basis in $\overline{\text{Lin}}(e_k)_{k=1}^\infty$.

Theorem. (6.3.3) *Let X be an infinite-dimensional Banach space. Then for any $\varepsilon > 0$ there exists a basic sequence $(e_n)_{n=1}^\infty \subset X$ whose basic constant is not smaller than $1 - \varepsilon$.*

6.4 Some Applications to Conditionally Convergent Series

Theorem. (6.4.1) *In any infinite-dimensional Banach space there are series whose sum range reduces to a single point, but which are not unconditionally convergent.⁵*

Theorem (Bessage-Pelczyński theorem). (6.4.3) *The following assertions are equivalent:*

- (a) *The Banach space x contains no subspaces isomorphic to c_0 .*
- (b) *Every weakly absolutely convergent series in X is weakly convergent.*
- (c) *Every weakly absolutely convergent series in X is unconditionally convergent.*
- (d) *Every weakly absolutely convergent series in X is norm convergent.*

⁵My note: I think they use the fact that the projections (coefficient functionals) are continuous, (i.e., every basis is a Schauder basis). I am not sure that they have shown this result in the text.

References

- [C] S. A. Chobanyan. Structure of the set of sums of a conditionally convergent series in a normed space. *Sbornik Mathematics USSR*, 56(1):49–62, 1987. translated from Matematicheskii Sbornik.
- [F] V. P. Fonf. Conditionally convergent series in a uniformly smooth Banach space. *Math. Notes*, 11(2):129–132, 1972. Translated from Matematicheskie Zametki.
- [K] P.A. Kornilov. On the set of sums of a conditionally convergent series of functions. *Mathematics of the USSR - Sbornik*, 65(1):119–131, 1990.
- [KK] M.I. Kadets and V.M. Kadets. *Series in Banach spaces*. Birkhäuser Verlag, Basel, 1997. Operator Theory; Vol. 94.
- [W] Jakub Onufry Wojtaszczyk. A series whose sum range is an arbitrary finite set. *Studia Mathematica*, 171(3–4):261–281, 2005. <http://arxiv.org/abs/0803.0415>.