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Series in Banach Spaces

This file contains (attempted) solutions of some problems from [KK] and some
comments on some places, which were unclear to me when reading the book.

1 Background material

1.1 Numerical series. Riemann’s Theorem

1.2 Main Definitions. Elementary Properties of Vector
Series

1.3 Preliminary Material on Rearrangements of Series of
Elements of a Banach Space

2 Series in a finite-dimensional space

2.1 Steinitz’s theorem on the sum range of a series

Remark 2.1.4 From Steinitz’s theorem it follows that the sum range of a
conditionally convergent series in a finite-dimensional space cannot reduce to a
single point.

If s + Γ⊥ = {s}, then Γ⊥ = {0}. We first notice that this implies that
Γ = X∗.

Since X is finite-dimensional, we have dimX = dimX∗ = m. If Γ is a
proper subspace of x, then dim Γ = k < m and Γ = [f1, . . . , fk]. Now Γ⊥ is the
solution space of the system of k linear equations f1(x) = · · · = fk(x) = 0 and
dim Γ⊥ = m − k > 0. Hence dim Γ + dim Γ⊥ = m. This equation has infinite-
dimensional counterparts under some conditions on Γ, see [Z, p.198,Proposition
3.9.21].

Now, since Γ = X∗, we get that
∑
f(xk) is absolutely convergent for each

f ∈ X∗. This implies that every rearrangement
∑
f(xπ(k)) converges to f(s).

Again, since X is finite-dimensional, this implies that
∑
xπ(k) = x. (Conver-

gence on every coordinate is equivalent to convergence in X.)

2.2 The Dvoretzky-Hanani Theorem on Perfectly Diver-
gent Series

Exercise 2.2.1 For a Banach space X the following two assertions are equiva-
lent:

(1) for any perfectly divergent series in X the general term does not tend to
zero;
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(2) there exists a constant C > 0 such that, for any finite set of elements
{xi}ni=1 ⊂ X there exists a set of coefficients ti = ±1 (depending on the
set {xi}ni=1) for which

max
j≤n

∥∥∥∥∥
j∑
i=1

tixi

∥∥∥∥∥ ≤ C max
i
‖xi‖.

Solution. The implication (2)⇒ (1) is basically repeating the same argument as
in the proof of Dvoretzky-Hanani Theorem 2.2.1.

We show ¬(2) ⇒ ¬(1). Negation of (2) means that, for a given N :

There exists a finite set ∃x(N)
1 , . . . , x

(N)
k(N) such that

for any choice of signs ∀t1, . . . , tk(N) = ±1
the inequality ∥∥∥∥∥∥

k(N)∑
i=1

tix
(N)
i

∥∥∥∥∥∥ ≥ N max‖xi‖

holds.
Using the above finite sets we construct a series yn which is perfectly diver-

gent and lim
n→∞

yn = 0

Now we put y
(N)
i =

x
(N)
i

N max‖x(N)
i ‖

. We construct a series y by putting the

segments y(N) one after another: y(1), y(2), . . .
Now, for any choice of signs ti, for the N -th segment∥∥∥∥∥∥

k(N)∑
i=1

tiy
(N)
i

∥∥∥∥∥∥ ≥ 1.

Hence the series y is not convergent.

On the other hand, we have max‖y(N)
i ‖ ≤ 1

N , which implies lim
n→∞

yn = 0.

Exercise 2.2.2 Does the assertion of Exercise 2.2.1 holds true for noncomplete
normed space?

Hint from [KK]: In Exercise 2.2.1 each of assertions (1) and (2) is equiv-
alent to the space being finite-dimensional, independently of the completeness
assumption. In contrast to Exercise 2.2.1, the present problem is quite delicate.
We only know a proof based on Dvoretzky’s Theorem 6.2.1.
Solution (P.K.,M.S.). We did not use the completeness of the space in the proof
of (1)⇒ (2).

It remains to prove (2)⇒ (1). It suffices to show that if (2) holds in a linear
normed space X, then it holds in its completion X∗ as well.

Notice that the condition (2) can be reformulated as:

min
ti∈{±1}n

max
j≤n

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥ ≤ C max
i
‖xi‖.
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Let us define: f : Xn → R by

f(x1, . . . , xn) = min
ti∈{±1}n

max
j≤n

∥∥∥∥∥
n∑
i=1

tixi

∥∥∥∥∥ .
We will show that this function is continuous (with respect to the product
topology on Xn).

Suppose we are given a fixed finite set (t1, . . . , tn) ∈ {±1}n. It is easy to see
that the assignment

(x1, . . . , xn) 7→ (t1x1, t1x1 + t2x2, . . . , t1x1 + · · ·+ tnxn)

is a continuous linear functional. Now, using the facts that x 7→ ‖x‖ is continu-
ous on X and the assignment (a1, . . . , an) 7→ max{a1, . . . , an} is continuous as
a map from Rn to R, we see that, for any fixed t1 . . . tn, the map

(x1, . . . , xn) 7→ max
j≤n

∥∥∥∥∥
j∑
i=1

tixi

∥∥∥∥∥
is a continuous function from Xn to R.

Now, taking minimum is also a continuous function from Rn to R, and to
obtain the function f we just take the minimum over the finite set {±1}n.

Hence the function f is continuous, too. We will use this fact to prove the
validity of (2) in X∗.

Suppose we are given a finite subset {x1 . . . xn} of X∗. From the density of
X in X∗ we have a sequence xik of elements of X converging to xi. Now, as
the condition (2) holds in X, for each k we have

f(x1k, . . . , xnk) ≤ C max
i
‖xik‖.

Since both sides of this inequality are continuous functions Xn → R and the
convergence in Xn with the product topology is equivalent to the pointwise
convergence, we get

f(x1, . . . , xn) ≤ C max‖xi‖
by taking the limit k →∞.

Notice that the hint from [KK] claims even more – that these conditions are
equivalent to finite-dimensionality of the space X. We did not show this fact.

3 Conditional convergence in an infinite-dimensional
space

3.1 Basic counterexamples

3.2 A series whose sum range consists of two points

Constant – in the proof of Theorem 3.2.1 The reasoning why the limit of
any convergent rearrangement of the given series is a constant function was not
clear to me.
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[KK, p.33]: “For any k ∈ N, starting with one of them, will not depend
on the coordinate tk. Since all terms take only integer values, h0 is an integer
constant.”

Proof of [W, Proposition 2.2]: “Thus for some integer K0 the function∑K
k=1 cσ(k) is constant with regard to xl for K ≥ K0, and thus the limit of

the series also has to be constant with regard to xl. As this applied to an
arbitrary l, the limit simply has to be constant.”

The notions “not depending on tk” and “constant with regard to tk” means
(if I understand them correctly) that, if I change the value of tk and all remaining
coordinates are unchanged, the value of the function h0 is unchanged as well.
(This is equivalent to saying that level sets are tail sets – see bellow.) There are
non-constant functions having this property: just take fF (x) = F-limxn for any
free ultrafilter F . (This function has also integer values if xn is integer-valued.)

Another thing, which makes this claim suspicious, is that in Lp (which con-
sists of equivalence classes of functions) I would expect result like “is constant
almost everywhere” instead of “is constant”. (Although probably when author
works in Lp, this is what he means under “constant function” – but what I
mean is that if the same argument would prove that it is constant everywhere,
then it looks suspiciously.)
Proof using 0-1 law. (M.S.) I’ll give my proof that the limit h0 of any
convergent rearrangement of the series in this proof is a constant function. I did
not use the special form of the series. I have only used the fact that, starting
from some index, the partial sums of the series do not depend on k-th coordinate
and the fact that the limit is integer valued. So maybe it is possible to find a
simpler proof for this particular situation.

First of all, it is known that if a sequence fn converges to f in Lp, then
the exists a subsequence which converges to f almost everywhere (e.g. [DM,
Theorem 2.8.2]). 1 This can be used to show that the limit h0 does not depend
on the k-th coordinate.

We say that a subset A of Q = 〈0, 1〉ω is a tail set if x ∈ A and x =∗ y
implies y ∈ A, where x =∗ y denotes the fact that the sequences x and y differ
only in finitely many terms.

We will use Kolmogorov’s 0-1 law, which is usually formulated in terms
of random variables [S, p.381,Theorem 1] [H, p.201]. For us, the reformulation
using probability measures is more appropriate (like in [K, p.104,Exercise 17.1]).
For our situation:

Theorem (Zero-one law). If A ⊆ Q is a measurable tail set, then either µ(A) =
0 or µ(A) = 1.

Recall, that we are working on the space 〈0, 1〉ω with the standard product
measure obtained from Lebesgue measure on 〈0, 1〉. In particular, µ(Q) = 1.

Now, the fact that h0 does not depend on k-th coordinate for any k means
that the level sets Lc = {x ∈ Q;h0(x) = c} (where c can be any real number) are

1TODO reference from [ŠŠN]
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tail set. We assume that h0 ∈ Lp(Q), therefore it is measurable. Hence all level
sets are measurable. Then for each c we have either µ(Lc) = 1 or µ(Lc) = 0.

Now, as h is integer valued, we have Q =
⋃
c∈Z Lc and 1 =

∑
c∈Z µ(Lc) by

σ-additivity. Therefore there exists c ∈ Z such that µ(Lc) = 1, i.e., f(x) = c
almost everywhere.

Notice, that the example with fF shows that the same result is not true true
without the assumption that the function in question is integer valued. I.e., not
every function f : Q→ R such that the level sets are tail set is constant almost
everywhere.

3.3 Chobanyan’s Theorem

Proof of Theorem 3.3.1:
Let A ⊆ G ⊆ N. Then

E

(∥∥∥∥∥∑
i∈A

rixi

∥∥∥∥∥
)

(∗)
≤ 1

2

E
∥∥∥∥∥∥
∑
i∈A

rixi +
∑
i∈G\A

rixi

∥∥∥∥∥∥
+

+ E

∥∥∥∥∥∥
∑
i∈A

rixi −
∑
i∈G\A

rixi

∥∥∥∥∥∥
 (4)

= E

(∥∥∥∥∥∑
i∈G

rixi

∥∥∥∥∥
)

(1)

The inequality (∗) follows from the triangle inequality. The equality (4)

is a consequence of E
(∥∥∑

i∈G rixi
∥∥) = E

(∥∥∥∑i∈A rixi +
∑
i∈G\A rixi

∥∥∥) =

E
(∥∥∥∑i∈A rixi −

∑
i∈G\A rixi

∥∥∥). (Modifying some ri’s to the opposite sign

does not change the random variable we are working with.)2

Using this inequality, the assumption limm>n→∞E(‖
∑m
i=n rixi‖) = 0 and

Chobanyan’s inequality we are going to verify the conditions (A) and (B) of
Lemma 2.3.1.

(A) for any ε > 0 there exists N = N(ε) and δ > 0 such that if {yi}ni=1 is a
finite set of terms of series {yi}ni=1 ⊂ {xi}∞i=N , ‖

∑n
i=1 yi‖ ≤ δ, then one

can find a permutation π of the first n natural numbers for which

max
j≤n

∥∥∥∥∥
j∑
i=1

yπ(j)

∥∥∥∥∥ ≤ ε;
(B) for any ε > 0 there exists a number M = M(ε) such that if {yi}ni=1 is

a finite set of terms of series {yi}ni=1 ⊂ {xi}∞i=M , and if 0 ≤ λi ≤ 1,
i = 1, . . . , n, then one can find a set of coefficients {θi}ni=1, θi ∈ {0, 1}, for
which ∥∥∥∥∥

n∑
i=1

λiyi −
n∑
i=1

θiyi

∥∥∥∥∥ ≤ ε.
2Observation of P.L. If xi = 1 for each i, then this is the well-known “drunken sailor

problem”. This inequality then says that the average distance from the beginning is larger, if
we allow him to walk longer. Which is intuitively clear.
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Proof of condition (A). Given ε > 0 choose N such that for m > n > N the
inequality E(‖

∑m
i=n rixi‖) <

ε
5 holds and put δ = ε

5 .
Let {yi}ni=1 ⊂ {xi}∞i=N and ‖

∑n
i=1 yi‖ ≤ δ. Let us denote z1 = y1, . . . , zn =

yn and zn+1 = −
∑n
i=1 yi. Now

∑n+1
i=1 zi = 0, so we can use Chobanyan’s

inequality for the elements z1, . . . , zn+1.
We get the existence of a permutation σ ∈ Sn+1

max
k≤n+1

∥∥∥∥∥
k∑
i=1

zσ(i)

∥∥∥∥∥ ≤ 2E

(∥∥∥∥∥
n+1∑
i=1

rizi

∥∥∥∥∥
)
≤ 2E

(∥∥∥∥∥
n∑
i=1

riyi

∥∥∥∥∥
)

+2E (‖rn+1zn+1‖)

We have E (‖rn+1zn+1‖) = ‖zn+1‖ = ‖
∑n
i=1 yi‖ ≤

ε
5 . Using (1) we get3

E (‖
∑n
i=1 riyi‖) ≤

ε
5 . So together we have

max
k≤n+1

∥∥∥∥∥
k∑
i=1

zσ(i)

∥∥∥∥∥ ≤ 4

5
ε

Next we modify the permutation σ ∈ Sn+1 to a permutation π ∈ Sn in a
natural way, by omitting the element n + 1. (More precisely, if σ(k0) = n + 1,
then π(i) = σ(i) for i ≤ k0 and π(i) = σ(i+ 1) for i ≥ k0.) 4 For any k we have
either

k∑
i=1

yπ(i) =

k∑
i=1

zσ(i)

or
k∑
i=1

yπ(i) + zn+1 =

k+1∑
i=1

zσ(i).

Using triangle inequality we get

max
k≤n

∥∥∥∥∥
k∑
i=1

yπ(i)

∥∥∥∥∥ ≤ max
k≤n+1

∥∥∥∥∥
k∑
i=1

zσ(i)

∥∥∥∥∥+ ‖zn+1‖ ≤
4

5
ε+

ε

5
= ε.

Proof of condition (B). We can choose N and δ as in the first part. By
Lemma 2.3.3 it suffices to show the existence of αi = ±1 with ‖

∑n
i=1 αiyi‖ ≤ ε.

But since (using (1) in the same way as above)

E

(∥∥∥∥∥
n∑
i=1

riyi

∥∥∥∥∥
)
≤ ε

5
< ε,

there exists some αi = ±1 with ‖
∑n
i=1 αiyi‖ ≤ ε.

3If yi = xni and n = minni, m = maxni then we can choose G = {n, . . . ,m} and
A = {i1, . . . , in}.

4This can be displayed graphically as follows:(
1 ... k−1 k k+1 ... n n+1

σ(1) ... σ(k−1) n+1 σ(k+1) ... σ(n) σ(n+1)

)
(

1 ... k−1 k k+1 ... n n+1

σ(1) ... σ(k−1)��n+1 σ(k+1) ... σ(n) σ(n+1)

)
(

1 ... k−1 k k+1 ... n−1 n
σ(1) ... σ(k−1) σ(k+1) σ(k+2) ... σ(n) σ(n+1)

)
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3.4 Khintchin inequalities. Theorem of M. I. Kadets

Estimates in the proof of Khinchin inequalities.
I have posted my solutions here:

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372367

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372373

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372375

http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372376

(With the hope that someone will comment on them or post a better solution.)

min
{

1−
∏n
i=1 cos ti;

∑
t2i = 1

}
= 1−

(
cos 1√

n

)n
1−

(
cos

1√
n

)n
≥ 1− e−1/2

5 6

The inequality

cosh
1√
n
≤ e1/2n

follows from comparing Taylor expansions:

coshx = 1 + x2

2! + x4

4! + . . .

ex = 1 + x+ x2

2! + . . .
cosh 1√

n
= 1 + 1

2!n + 1
4!n2 + 1

6!n3

5This was incorrect:
First let us recall the well-known inequality (1 + 1

n
)n ≤ e. (The sequence

(
1 + 1

n

)n
is increas-

ing, see [VN, Veta V.1.3])

From this inequality we get that
(
1− 1

n

)n (
1 + 1

n

)n
=

(
1− 1

n2

)n
≤ 1 and(

1−
1

n

)n
≤

1(
1 + 1

n

)n ≥ 1

e
.

This did not work either:
First, let us recall the well-known inequality (see [KN, 2.1.38])(

1 +
1

n

)n
≤ e ≤

(
1 +

1

n

)n+1

.

We have that
(
1− 1

n

)n (
1 + 1

n

)n+1
=

(
1− 1

n2

)n (
1 + 1

n

)
≥

(
1− 1

n

) (
1 + 1

n

)
= 1− 1

n2

6Another unsuccessful trial:
The sequence

(
1− 1

n

)n
is increasing – by AM-GM inequality for a0 = 1, a1 = · · · = an = 1+ 1

n

we get
(
1− 1

n

)n ≤ (
1+(n−1)
n+1

)n+1
=

(
1− 1

n+1

)n+1

Hence (
1−

1

n

)n
≤

1

e

We know that cosx ≥ 1− x2

2
. Hence(

cos
1
√
n

)
≥

(
1−

1

2n

)n
.
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e1/2n = 1 + 1
2n + 1

2!(2n)2 + 1
3!(2n)3

1

(2k)!nk
≤ 1

k!2knk

cosh 1√
n
≤ e1/2n ⇒ cosh

(
1√
n

)n
≤ e1/2
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