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Series in Banach Spaces

This file contains (attempted) solutions of some problems from [KK] and some
comments on some places, which were unclear to me when reading the book.

1 Background material

1.1 Numerical series. Riemann’s Theorem

1.2 Main Definitions. Elementary Properties of Vector
Series

1.3 Preliminary Material on Rearrangements of Series of
Elements of a Banach Space

2 Series in a finite-dimensional space

2.1 Steinitz’s theorem on the sum range of a series

Remark 2.1.4 From Steinitz’s theorem it follows that the sum range of a
conditionally convergent series in a finite-dimensional space cannot reduce to a
single point.

If s+ 't = {s}, then I't = {0}. We first notice that this implies that
=X

Since X is finite-dimensional, we have dimX = dimX* = m. If " is a
proper subspace of z, then dimI' =k < m and I = [fi, ..., fx]. Now I'" is the
solution space of the system of k linear equations fi(x) = --- = fx(x) = 0 and
dimTt = m — k > 0. Hence dimT + dim ' = m. This equation has infinite-
dimensional counterparts under some conditions on I, see [Z, p.198,Proposition
3.9.21].

Now, since I' = X*, we get that > f(xx) is absolutely convergent for each
f € X*. This implies that every rearrangement ) f(x)) converges to f(s).
Again, since X is finite-dimensional, this implies that ) x4y = 2. (Conver-
gence on every coordinate is equivalent to convergence in X.)

2.2 The Dvoretzky-Hanani Theorem on Perfectly Diver-
gent Series

Exercise 2.2.1 For a Banach space X the following two assertions are equiva-
lent:

(1) for any perfectly divergent series in X the general term does not tend to
Zer0;



(2) there exists a constant C' > 0 such that, for any finite set of elements
{z;}"; C X there exists a set of coefficients ¢; = +1 (depending on the
set {z;}_ ;) for which

max
j<n

J
E tix;
i=1

< C'max||z|.
(2

Solution. The implication (2)= (1) is basically repeating the same argument as
in the proof of Dvoretzky-Hanani Theorem 2.2.1.

We show —(2) = —(1). Negation of (2) means that, for a given N:
(M) ) such that
1 Ty

for any choice of signs Vt1,. .., t5n) = *1

the inequality

There exists a finite set dz

k(N)
3 ™| > N max]|a|
=1

holds.
Using the above finite sets we construct a series y,, which is perfectly diver-
gent and lim y, =0
n— oo
(N) )

Now we put y;, ' = m We construct a series y by putting the
max (Ei
segments yN) one after another: y(),y® ...

Now, for any choice of signs ¢;, for the N-th segment

E(N)
Sty = 1
i=1

Hence the series y is not convergent.
On the other hand, we have maxHygN) | < %, which implies lim y, = 0.
n—oo

Exercise 2.2.2 Does the assertion of Exercise 2.2.1 holds true for noncomplete
normed space?

Hint from [KK]: In Exercise 2.2.1 each of assertions (1) and (2) is equiv-
alent to the space being finite-dimensional, independently of the completeness
assumption. In contrast to Exercise 2.2.1, the present problem is quite delicate.
We only know a proof based on Dvoretzky’s Theorem 6.2.1.

Solution (P.K.,M.S.). We did not use the completeness of the space in the proof
of (1)= (2).

It remains to prove (2)= (1). It suffices to show that if (2) holds in a linear
normed space X, then it holds in its completion X* as well.

Notice that the condition (2) can be reformulated as:

n
E tix;
i=1

min max

< Cmax|zi].
tie{x1}™ j<n i




Let us define: f: X™ — R by

f(z1,...,2,) = min max

We will show that this function is continuous (with respect to the product
topology on X™).

Suppose we are given a fixed finite set (t1,...,t,) € {£1}"™. It is easy to see
that the assignment

(%17 e ,xn) —> (tlxl,tlxl + t2$2, Ce ,tlfL'l + -4 tn{En)
is a continuous linear functional. Now, using the facts that = — ||z| is continu-
ous on X and the assignment (ay,...,a,) — max{ay,...,a,} is continuous as
a map from R"” to R, we see that, for any fixed ¢y ...t,, the map

J
E t;z;
i=1

(1,...,2pn) — max
Jj<n

is a continuous function from X" to R.

Now, taking minimum is also a continuous function from R™ to R, and to
obtain the function f we just take the minimum over the finite set {£1}".

Hence the function f is continuous, too. We will use this fact to prove the
validity of (2) in X*.

Suppose we are given a finite subset {z1...xz,} of X*. From the density of
X in X* we have a sequence x;; of elements of X converging to z;. Now, as
the condition (2) holds in X, for each k we have

f@ig, - wax) < Cmax|a.
Since both sides of this inequality are continuous functions X™ — R and the
convergence in X" with the product topology is equivalent to the pointwise

convergence, we get
flz1, ..., 2,) < Cmax||z,]]

by taking the limit k£ — oo.
Notice that the hint from [KK] claims even more — that these conditions are
equivalent to finite-dimensionality of the space X. We did not show this fact.

3 Conditional convergence in an infinite-dimensional
space

3.1 Basic counterexamples

3.2 A series whose sum range consists of two points

Constant — in the proof of Theorem 3.2.1 The reasoning why the limit of
any convergent rearrangement of the given series is a constant function was not
clear to me.



KKl p.33]: “For any k € N, starting with one of them, will not depend
on the coordinate t;. Since all terms take only integer values, hg is an integer
constant.”

Proof of [Wl Proposition 2.2]: “Thus for some integer Ky the function
Eszl Co(k) is constant with regard to z; for K > Ky, and thus the limit of
the series also has to be constant with regard to z;. As this applied to an
arbitrary [, the limit simply has to be constant.”

The notions “not depending on #;,” and “constant with regard to t;” means
(if T understand them correctly) that, if I change the value of ¢, and all remaining
coordinates are unchanged, the value of the function hq is unchanged as well.
(This is equivalent to saying that level sets are tail sets — see bellow.) There are
non-constant functions having this property: just take fz(x) = F-lim x,, for any
free ultrafilter . (This function has also integer values if x,, is integer-valued.)

Another thing, which makes this claim suspicious, is that in L, (which con-

sists of equivalence classes of functions) I would expect result like “is constant
almost everywhere” instead of “is constant”. (Although probably when author
works in Ly, this is what he means under “constant function” — but what I
mean is that if the same argument would prove that it is constant everywhere,
then it looks suspiciously.)
Proof using 0-1 law. (M.S.) I'll give my proof that the limit hy of any
convergent rearrangement of the series in this proof is a constant function. I did
not use the special form of the series. I have only used the fact that, starting
from some index, the partial sums of the series do not depend on k-th coordinate
and the fact that the limit is integer valued. So maybe it is possible to find a
simpler proof for this particular situation.

First of all, it is known that if a sequence f, converges to f in L,, then
the exists a subsequence which converges to f almost everywhere (e.g. [DM|
Theorem 2.8.2]). E| This can be used to show that the limit hy does not depend
on the k-th coordinate.

We say that a subset A of @ = (0,1)* is a tail set if x € A and z =* y
implies y € A, where x =* y denotes the fact that the sequences x and y differ
only in finitely many terms.

We will use Kolmogorov’s 0-1 law, which is usually formulated in terms
of random variables [S, p.381,Theorem 1] [H, p.201]. For us, the reformulation
using probability measures is more appropriate (like in [Kl p.104,Exercise 17.1]).
For our situation:

Theorem (Zero-one law). If A C Q is a measurable tail set, then either u(A) =
0 or u(A) = 1.

Recall, that we are working on the space (0,1)* with the standard product
measure obtained from Lebesgue measure on (0, 1). In particular, u(Q) = 1.

Now, the fact that hg does not depend on k-th coordinate for any k£ means
that the level sets L. = {x € Q; ho(z) = ¢} (where ¢ can be any real number) are

ITODO reference from [SSN|



tail set. We assume that hg € L,(Q), therefore it is measurable. Hence all level
sets are measurable. Then for each ¢ we have either u(L.) =1 or u(L.) = 0.

Now, as h is integer valued, we have Q = J ., Lec and 1 = >, u(Lc) by
o-additivity. Therefore there exists ¢ € Z such that u(L.) = 1, i.e., f(z) = ¢
almost everywhere. O

Notice, that the example with fr shows that the same result is not true true
without the assumption that the function in question is integer valued. I.e., not
every function f: @@ — R such that the level sets are tail set is constant almost
everywhere.

3.3 Chobanyan’s Theorem

Proof of Theorem 3.3.1:
Let AC G CN. Then

i€A i€EG\A

N

i€A

g T

i€G

icA i€EG\A

) (1)

The inequality (%) follows from the triangle inequality. The equality (A)
is a consequence of E (szeG ’I“i.I‘iH) = F (HEieA riT; + ZZEG\A 7T ) =
E (HZieA Ti%i = D ieca TiTi ) (Modifying some 7;’s to the opposite sign
does not change the random variable we are working with.)E|

Using this inequality, the assumption lim,,sn—oo E(||> i, rizi]]) = 0 and

Chobanyan’s inequality we are going to verify the conditions (A) and (B) of
Lemma 2.3.1.

(A) for any € > 0 there exists N = N(¢) and ¢ > 0 such that if {y;}? is a
finite set of terms of series {y;}1; C {@;}32y, |27, vill < 6, then one
can find a permutation 7 of the first n natural numbers for which

max
i<n

j
Yr() || < &
=1

(B) for any € > 0 there exists a number M = M (e) such that if {y;}, is
a finite set of terms of series {y;}7; C {2}, and if 0 < A; < 1,
i=1,...,n, then one can find a set of coeflicients {6;}?_,, 6; € {0, 1}, for

which
n n
> Ay — > by
i=1 i=1

20bservation of P.L. If &; = 1 for each 4, then this is the well-known “drunken sailor
problem”. This inequality then says that the average distance from the beginning is larger, if
we allow him to walk longer. Which is intuitively clear.

<e.




Proof of condition (A). Given € > 0 choose N such that for m > n > N the
inequality E(||>;",, rix;]]) < £ holds and put § = £.

Let {y;}1; C {z;}2y and ||}, y1|| < 4. Let us denote 21 = y1,...,2, =
Yn and 2,11 = — > o, yi. Now Z 1 z; = 0, so we can use Chobanyan’s
inequality for the elements 21, ..., 2z541-

We get the existence of a permutation o€ Sht1

k n+1
krélr?fl z_;za(z) <2E< ;7"122 ) <2E< Zrzyz >+2E ||Tn+1zn+1||)

We have B (|[rot1zn1l]) = llzorill = 127wl < §. Using (@) we ge]
E (327 riyill) < £. So together we have

k

Z o (i)
i=1

Next we modify the permutation o € S,,+1 to a permutation 7 € S, in a
natural way, by omitting the element n + 1. (More precisely, if (ko) = n + 1,
then (i) = o (i) for i < kg and 7(i) = o(i+ 1) for i > ko.) E| For any k we have

either
k k
Z Yr(i) = Z Zo (1)
=1 =1

k+1

Zyﬂ' (2) + Zn+1 = ZZO'(’L

Using triangle inequality we get

k
Zyﬂ'(i) ZZO'( )
=1

Proof of condition (B). We can choose N and ¢ as in the first part. By
Lemma 2.3.3 it suffices to show the existence of a; = £1 with [|>°1 ; auyil| <e.
But since (using in the same way as above)

() -

there exists some a; = +1 with |>°1 | auyil| <e.

max

< 4
—€
k<n+1 -5

or

< max
kE<n+1

max
k<n

U!Hk
™

+ lznpall <

U\\m

3If y; = Zn, and n = minn;, m = maxn,; then we can choose G = {n,...,m} and
A= {7:17 s 7in}'
4This can be displayed graphically as follows:

1 ... k-1 k E+1 ... n n+1
(0(1) ... o(k—=1) n+1 o(k+1) ... o(n) o(n+1)
( 1 ... k-1 k k+1 ... n n+1 )
(U(l) .

. o(k=1) pAT o(k+1) ... o(n) U(n+1)
1

1 ... — k k4+1 ... n—1
o(1) ... o(k—1) o(k+1) o(k+2) ... o(n) U(n+1)



3.4 Khintchin inequalities. Theorem of M. I. Kadets

Estimates in the proof of Khinchin inequalities.

I have posted my solutions here:
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372367
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372373
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372375
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372376
(With the hope that someone will comment on them or post a better solution.)

min {1 — [/  cost;; > t2 =1} =1— (cosﬁ)

1-— <cos \/15)” >1—e /2
EIE

The inequality

1
cosh ﬁ S 61/2n

follows from comparing Taylor expansions:
cosh:c:1+§+%+...

e =l4z+Z ...
coshﬁzl—i—ﬁ—i—ﬁ—i-&%

5This was incorrect:
First let us recall the well-known inequality (14 %)” <'e. (The sequence (1 + %)n is increas-
ing, see [VN| Veta V.1.3])

n
From this inequality we get that (1 - %)n (1 + %)n = (1 - —2) <1 and

1
n

(1_1)"<¥>1
W) ST

This did not work either:
First, let us recall the well-known inequality (see [KNJ 2.1.38])

1 n 1 n+1
(1+7> §e§(1+7) .
n n

We have that (1—%)"(1+%)"“:(1—#)”(1+%)2(1—%)(1+%):1—%

n
6 Another unsuccessful trial:
The sequence (1 — %)n is increasing — by AM-GM inequality forap =1,a1 = -+ = an = 1+%

1\7 14 (n=1)\" 1 _ 1\t
P O e ol

Hence
(1-3) =
1—— < -
n e

2
We know that cosz > 1 — %Z-. Hence

2
()= (-4


http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372367
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372373
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372375
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=372376

n __ 1 1 1
e =14 5 + 312n)? T 31(2n)7

1 < 1
(2k)Ink = Ekl2Fnk

cosh % < e/?" = cosh (ﬁ) < el/2

References

[DM] L. Debnath and P. Mikusinski. Introduction to Hilbert spaces with appli-
cations. Academic Press, San Diego, 1990.

[H]  P. Halmos. Measure Theory. Springer-Verlag, New York, 1974. Graduate
Texts in Mathamtics 18.

[K]  A.S. Kechris. Classical descriptive set theory. Springer-Verlag, Berlin,
1995. Graduate Texts in Mathematics 156.

[KK] M.I. Kadets and V.M. Kadets. Series in Banach spaces. Birkh&user
Verlag, Basel, 1997. Operator Theory; Vol. 94.

[KN] W. J. Kaczor and M. T. Nowak. Problems in Mathematical Analysis
I. Real numbers, sequences and series. American Mathematical Society,
Providence, 2000.

[S]  A.N. Shiryaev. Probability. Springer.

[SSN] M. Svec, T. Salét, and T. Neubrunn. Matematickd analijza funkcii redinej
premennej. Alfa, Bratislava, 1987.

[VN] J. Vencko and T. Neubrunn. Matematickd analjza. MFF UK, Bratislava,
1992.

[W] Jakub Onufry Wojtaszczyk. A series whose sum range is an arbitrary
finite set. Studia Mathematica, 171(3-4):261-281, 2005. http://arxiv.
org/abs/0803.0415.

[Z] K. Zeidler. Applied Functional Analysis. Main Principles and their Ap-

plications. Springer-Verlag, New York, 1995.


http://arxiv.org/abs/0803.0415
http://arxiv.org/abs/0803.0415

	Background material
	Numerical series. Riemann's Theorem
	Main Definitions. Elementary Properties of Vector Series
	Preliminary Material on Rearrangements of Series of Elements of a Banach Space

	Series in a finite-dimensional space
	Steinitz's theorem on the sum range of a series
	The Dvoretzky-Hanani Theorem on Perfectly Divergent Series

	Conditional convergence in an infinite-dimensional space
	Basic counterexamples
	A series whose sum range consists of two points
	Chobanyan's Theorem
	Khintchin inequalities. Theorem of M. I. Kadets


