

## Classical descriptive set theory

Notes from [Ke]. <sup>1</sup>

### 1 Polish spaces

#### 1.1 Topological and metric spaces

**1.A Topological spaces** The initial topology is called *topology generated by*  $(f_i)_{i \in I}$ .

#### 1.B Metric spaces

**Theorem** (Urysohn metrization theorem). (1.1) *Let  $X$  be a second countable topological space. Then  $X$  is metrizable iff  $X$  is  $T_1$  and regular.*

<sup>2</sup>

**Theorem** (Urysohn's Lemma). (1.2) *Let  $X$  be a metrizable space. If  $A, B$  are two disjoint subsets of  $X$ , there is a function  $f: X \rightarrow \langle 0, 1 \rangle$  such that  $f(x) = 0$  for  $x \in A$  and  $f(x) = 1$  for  $x \in B$ .*

**Theorem** (Tietze Extension Theorem). (1.3) *Let  $X$  be a metrizable space. If  $A \subseteq X$  is closed and  $f: A \rightarrow \mathbb{R}$  is continuous, there is  $\hat{f}: X \rightarrow \mathbb{R}$  which is continuous and extends  $f$ . Moreover, if  $f$  is bounded by  $M$ , i.e.,  $|f(x)| \leq M$  for  $x \in A$ , so is  $\hat{f}$ .*

#### 1.2 Trees

**2.A Basic concepts**  $A^n =$  all sequences  $(s_0, \dots, s_{n-1})$  with  $s_i$  from the set  $A$

$$A^0 = \{\emptyset\}$$

$\emptyset$  = empty sequence

$\text{length}(s)$  = length of a finite sequences

$$A^{<\mathbb{N}} = \bigcup_{n \in \mathbb{N}} A^n$$

$$s|m = (s_0, \dots, s_{m-1}) \text{ and } s|0 = \emptyset$$

---

<sup>1</sup>My note: Supplementary reading: [Mo] and [S]. Also [A, Chapter 3] seems to be a good introduction into the problematic of Polish spaces, Borel and analytic sets. For some details in the topological proofs I have consulted [E] and [AB], both these books have advantage that they are rather exhaustive and contain detailed proofs.

<sup>2</sup>LH We can replace regular by normal. TODO check

We say that  $s \in A^n$  is an *initial segment* of  $x \in A^{\mathbb{N}}$  if  $s = x|n$ . We will write  $s \subseteq n$  is  $s$  is an initial segment of  $x$ .

Two finite sequences are *compatible* if one is an initial segment of the other and *incompatible* otherwise. We use  $s \perp t$  to indicate that  $s$  and  $t$  are incompatible.

The *concatenation* of two sequences  $s = (s_i)_{i < n}$  and  $t = (t_j)_{j < m}$  is the sequence  $s \hat{t} = (s_0, \dots, s_{n-1}, t_0, \dots, t_{m-1})$ . We write  $s \hat{a}$  for  $s \hat{(a)}$  if  $a \in A$ .

infinite concatenation

**Definition.** (2.1) *Tree* = subset  $T \subseteq A^{<\mathbb{N}}$  closed under initial segments. (I.e., if  $t \in T$  and  $s \subseteq t$ , then  $s \in T$ .)

*nodes* = elements of  $T$

An *infinite branch* of  $T$  is a sequence  $x \in A^{\mathbb{N}}$  such that  $x|n \in T$ , for all  $n$ . The *body* of  $T$ , written as  $[T]$ , consist of all infinite branches of  $T$ , i.e.,

$$[T] = \{x \in A^{\mathbb{N}} : \forall n (x|n \in T)\}.$$

Finally, we call a tree  $T$  *pruned* if every  $s \in T$  has a proper extension  $t \supsetneq s$ ,  $t \in T$ .

**2.B Trees and Closed Sets** If we take  $A$  as a topological space with the *discrete topology*, then  $A$  is metrizable;  $d(a, b) = 1$ .

$A^{\mathbb{N}}$  viewed as the product space – metric  $d(x, y) = 2^{-n-1}$  if  $x \neq y$  and  $n$  is the least number with  $x_n \neq y_n$ .

A metric  $d$  is an *ultrametric* if

$$d(x, y) \leq \max\{d(x, z), d(y, z)\}.$$

Show that the above metric is an ultrametric.

The *standard basis* for the topology of  $A^{\mathbb{N}}$  consists of the sets

$$N_s = \{x \in A^{\mathbb{N}} : s \subseteq x\},$$

where  $s \in A^{<\mathbb{N}}$ . Note that  $s \subseteq t \Leftrightarrow N_s \supseteq N_t$  and  $s \perp t \Leftrightarrow N_s \cap N_t = \emptyset$ .

**Proposition.** (2.4) *The map  $T \mapsto [T]$  is a bijection between pruned trees on  $A$  and closed subsets of  $A^{\mathbb{N}}$ . Its inverse is given by*

$$F \mapsto T_F = \{x|n : x \in F, n \in \mathbb{N}\}.$$

We call  $T_F$  the *tree of  $F$* .

If  $T$  is a tree on  $A$ , then for any  $s \in A^{\mathbb{N}}$ ,

$$T_s = \{t \in A^{<\mathbb{N}} : s \hat{t} \in T\}$$

and

$$T_{[s]} = \{t \in T ; t \text{ is compatible with } s\}.$$

Thus  $[T_{[s]}] = [T] \cap N_s$  forms a basis for the topology of  $[T]$ . Note that  $T_{[s]}$  is a subtree of  $T$ , but  $T_s$  in general is not.

**Definition.** (2.5) Let  $S, T$  be trees (on sets  $A, B$ , resp.). A map  $\varphi: T \rightarrow S$  is called *monotone* if  $s \subseteq t$  implies  $\varphi(s) \subseteq \varphi(t)$ . For such  $\varphi$  let

$$D(\varphi) = \{x \in [S] : \lim_n \text{length}(\varphi(x|n)) = \infty\}.$$

For  $x \in D(\varphi)$ , let

$$\varphi^*(x) = \bigcup_n \varphi(x|n) \in [T].$$

We call  $\varphi$  *proper* if  $D(\varphi) = [S]$ .

**Proposition.** (2.6) *The set  $D(\varphi)$  is  $G_\delta$  in  $[S]$  and  $\varphi^*: D(\varphi) \rightarrow [T]$  is continuous. Conversely, if  $f: G \rightarrow [T]$  is continuous, with  $G \subseteq [S]$  a  $G_\delta$  set, then there is monotone  $\varphi: S \rightarrow T$  with  $f = \varphi^*$ .*

A closed set  $F$  in a topological space  $X$  is a *retract* of  $X$  if there is a continuous surjection  $f: X \rightarrow F$  such that  $f(x) = x$  for  $x \in F$ .

**Proposition.** (2.8) *Let  $F \subseteq H$  be two closed nonempty subsets of  $A^\mathbb{N}$ . Then  $F$  is a retract of  $H$ .*

**2.C Trees on Products** A tree on  $A = B \times C$  can be understood as a subset of  $B^{<\mathbb{N}} \times C^{<\mathbb{N}}$  with the property  $(t, u) \in T \Rightarrow \text{length}(t) = \text{length}(u)$ .

If  $T$  is a tree on  $B \times C$  and  $x \in B^\mathbb{N}$ , consider *section tree*  $T(x)$  on  $C$  defined by

$$T(x) = \{s \in C^{<\mathbb{N}}; (x| \text{length}(s), s) \in T\}.$$

Note that if  $T$  is pruned it is not necessarily true that  $T(x)$  is also pruned. Also,

$$(x, y) \in [T] \Leftrightarrow y \in [T(x)].$$

Similarly, for  $s \in B^{<\mathbb{N}}$ , we define  $T(s) = \{t \in C^{<\mathbb{N}}; \text{length}(t) \leq \text{length}(s) \wedge (s| \text{length}(t), t) \in T\}$ .

**2.D Leftmost Branches** Let  $T$  be a tree on  $A$  and let  $<$  be a well-ordering of  $A$ . If  $[T] \neq \emptyset$ , then we specify the *<-leftmost branch* of  $T$ , denoted by  $a_T$ , as follows. We define  $a_T(n)$  by recursion on  $n$ :

$$a_T(n) = \text{the } < \text{-least element of } A \text{ such that } [T_{(a_T|n)}] \neq \emptyset.$$

*lexicographical ordering* on  $A^\mathbb{N}$  or on  $A^m$

When  $T$  is pruned,  $a_T$  is also characterized by the property that for each  $m$ ,  $a_T|_m$  is the lexicographically least element of  $T \cap A^m$ .

**2.E Well-founded Trees and Ranks** If a tree  $T$  on  $A$  has no infinite branches, i.e.,  $[T] = \emptyset$ , then we call  $T$  *well-founded*. This is because it is equivalent to saying that the relation  $s \prec t \Leftrightarrow s \supseteq t$  restricted to  $T$  is well-founded. (See appendix B.) On the other hand, if  $[T] \neq \emptyset$ , we call  $T$  *ill-founded*. If  $T$  is a well-founded tree, we denote the *rank function* of  $\prec$  restricted to  $T$  by  $\rho_T$ .

$$\rho_T(s) = \sup\{\rho_T(t) + 1 : t \in T, t \supsetneq s\},$$

for  $s \in T$ . An easy argument shows that we also have

$$\rho_T(s) = \sup\{\rho_T(s \hat{a}) + 1 : s \hat{a} \in T\}.$$

Also,  $\rho_T(s) = 0$  if  $s \in T$  is *terminal*, i.e., for no  $a$ ,  $s \hat{a} \in T$ . We also put  $\rho_T(s) = 0$  if  $s \notin T$ . The *rank* of a well-founded tree is defined by  $\rho(T) = \sup\{\rho_T(s) + 1 : s \in T\}$ . Thus if  $T \neq \emptyset$   $\rho(T) = \rho_T(\emptyset) + 1$ . The *rank* of a well-founded tree is defined by  $\rho(T) \sup\{\rho_T(s) + 1 : s \in T\}$ .

If  $S, T$  are trees (on  $A, B$  resp.), a map  $\varphi: S \rightarrow T$  is *strictly monotone* if  $s \subsetneq t \Rightarrow \varphi(s) \subsetneq \varphi(t)$ , i.e., if  $\varphi$  is order preserving for the relation  $\supsetneq$ .

**Proposition.** (2.9) *Let  $S, T$  be trees on  $A, B$  respectively. If  $T$  is well-founded, then  $S$  is well-founded with  $\varrho(S) < \varrho(T)$  iff there is a strictly monotone map  $\varphi: S \rightarrow T$ .*

## 2.F The Well-founded Part of a Tree

**2.G The Kleene-Brouwer Ordering** Now let  $(A, <)$  be a linearly ordered set. We define the *Kleene-Brouwer ordering*  $<_{KB}$  on  $A^{<\mathbb{N}}$  as follows: If  $s = (s_0, \dots, s_{m-1})$ ,  $t = (t_0, \dots, t_{n-1})$ , then

$$s <_{KB} t \Leftrightarrow (s \supsetneq t) \text{ or } [\exists i < \min\{m, n\} (\forall j < i (s_j = t_j) \wedge s_i < t_i)].$$

**Proposition.** (2.12) *Assume that  $(A, <)$  is a wellordered set. Then for any tree  $T$  on  $A$ ,  $T$  is well-founded iff Kleene-Brouwer ordering restricted to  $T$  is a wellordered.*

## 1.3 Polish spaces

Cauchy sequence, completion, complete

Given any metric space  $(X, d)$ , there is a complete metric space  $(\hat{X}, \hat{d})$  such that  $(X, d)$  is a subspace of  $(\hat{X}, \hat{d})$  and  $X$  is dense in  $\hat{X}$ . This space is unique up to isometry and is called the *completion* of  $(X, d)$ . Clearly,  $\hat{X}$  is separable if and only if  $X$  is separable.

**Definition.** (3.1) A topological space  $X$  is *completely metrizable* if it admits a compatible metric  $d$  such that  $(X, d)$  is complete. A separable completely metrizable space is called *Polish*.

Open interval  $(0, 1)$  is Polish although its usual metric is not complete.

**Proposition.** (3.3)

- (i) *The completion of a separable metric space is Polish.*
- (ii) *A closed subspace of a Polish space is Polish.*
- (iii) *The product of a sequence of completely metrizable (resp. Polish) spaces is completely metrizable (resp. Polish). The sum of a family of completely metrizable spaces is completely metrizable. The sum of a sequence of Polish spaces is Polish.*

Examples:  $\mathbb{R}$ ,  $\mathbb{C}$ ,  $\mathbb{R}^n$ ,  $\mathbb{C}^n$ ,  $\mathbb{R}^{\mathbb{N}}$ ,  $\mathbb{C}^{\mathbb{N}}$ , unit interval  $\mathbb{I}$  and unit circle  $\mathbb{T}$  are Polish. The  $n$ -dimensional cube  $\mathbb{I}^n$ , the *Hilbert cube*  $\mathbb{I}^{\mathbb{N}}$ , the  $n$ -dimensional torus  $\mathbb{T}^n$  and the infinite dimensional torus  $\mathbb{T}^{\mathbb{N}}$  are Polish.

$A = \text{countable discrete} \Rightarrow A^{\mathbb{N}}$  is Polish

the *Cantor space*  $\mathcal{C} = 2^{\mathbb{N}}$

the *Baire space*  $\mathcal{N} = \mathbb{N}^{\mathbb{N}}$

**Example.** (3.4.5) Let  $X, Y$  be separable Banach spaces. We denote by  $L(X, Y)$  the (generally non-separable) Banach space of bounded linear operators  $T: X \rightarrow Y$  with norm  $\|T\| = \sup\{\|Tx\|; x \in X, \|x\| \leq 1\}$ . If  $X = Y$  we let  $L(X, Y) = L(X)$ . Denote by  $L_1(X, Y)$  the unit ball

$$L_1(X, Y) = \{T \in L(X, Y); \|T\| \leq 1\}$$

of  $L(X, Y)$ . The *strong topology* on  $L(X, Y)$  is the topology generated by the family of functions  $f_x(T) = Tx$ ,  $f_x: L(X, Y) \rightarrow Y$ , for  $x \in X$ .

$L_1(X, Y)$  is a Polish space.

**3.B Extensions of Continuous Function and Homeomorphisms** Let  $X$  be a topological space,  $(Y, d)$  a metric space and  $f: A \rightarrow Y$ .

$$\text{osc}_f = \inf\{\text{diam}(f(U)); U \text{ is an open nbhd of } X\}$$

**Theorem** (Kuratowski). (3.8) *Let  $X$  be metrizable,  $Y$  be completely metrizable,  $A \subseteq X$ , and  $f: A \rightarrow Y$  be continuous. Then there is a  $G_{\delta}$  set  $G$  with  $A \subseteq G \subseteq \overline{A}$  and a continuous extension  $g: G \rightarrow Y$  of  $f$ .*

**3.C Polish Subspaces of Polish Spaces**

**Theorem.** (3.11) *If  $X$  is metrizable and  $Y \subseteq X$  is completely metrizable, then  $Y$  is a  $G_{\delta}$  in  $X$ . Conversely, if  $X$  is completely metrizable and  $Y \subseteq X$  is a  $G_{\delta}$ , then  $Y$  is completely metrizable.*

*In particular, a subspace of a Polish space is Polish iff it is a  $G_{\delta}$ .*

**1.4 Compact metrizable spaces**

**4.A Basic facts**

**Proposition.** (4.6) *Let  $X$  be a compact topological space. Then  $X$  is metrizable iff  $X$  is Hausdorff and second countable.<sup>3</sup>*

---

<sup>3</sup>See Urysohn's metrization theorem 1.1

## 4.B Examples

**Theorem** (Banach). (4.7) *The unit ball  $B_1(X^*)$  of a separable Banach space is compact in the weak\*-topology. A compatible metric is given by*

$$d(x^*, y^*) = \sum_{n=0}^{\infty} 2^{-n-1} |\langle x_n, x^* \rangle - \langle x_n, y^* \rangle|$$

for  $(x_n)$  dense in the unit ball.<sup>4</sup> <sup>5</sup>

$$B_1(\ell_\infty) = [-1, 1]^\mathbb{N}$$

**Example.** (4.9) Let  $X, Y$  be separable Banach spaces. The *weak topology* on  $L(X, Y)$  is the one generated by the functions (from  $L(X, Y)$  into the scalar field)

$$T \mapsto \langle Tx, y^* \rangle; \quad x \in X, y^* \in Y^*.$$

Show that if  $Y$  is reflexive,  $L_1(X, Y)$  with the weak topology is compact metrizable. Find compatible metric.<sup>6</sup> <sup>7</sup>

**Example.** (4.10) *Extreme points* in a topological vector space.

If  $K$  is a compact metrizable (in the relative topology) convex subset of a topological vector space, then the set  $\partial_e K$  is  $G_\delta$  in  $K$  and thus Polish.<sup>8</sup>

**Example** (König's Lemma). (4.12) Let  $T$  be a tree on  $A$ . If  $T$  is finite splitting then  $[T] \neq \emptyset$  iff  $T$  is infinite.

## 4.C A Universality Property of the Hilbert Cube

**Theorem.** (4.14) *Every separable metrizable space is homeomorphic to a subspace of the Hilbert cube  $I^\mathbb{N}$ . In particular, the Polish spaces are, up to homeomorphism, exactly the  $G_\delta$  subspaces of the Hilbert cube.*

**Theorem.** (4.17) *Every Polish space is homeomorphic to a closed subspace of  $\mathbb{R}^\mathbb{N}$ .* <sup>9</sup>

**4.D Continuous Images of the Cantor Space** A point  $X$  in a topological space is called *condensation point* if every open neighborhood of  $x$  in uncountable.

**Theorem.** (4.18) *Every non-empty compact metrizable space is a continuous image of  $\mathcal{C}$ .*

---

<sup>4</sup>My note: This shows Keller's Theorem 9.19.

<sup>5</sup>This result often appears in functional-analysis texts under the name Alaoglu's theorem. Usually only the *compact* part is shown. See [Me] for the history.

<sup>6</sup>See [AB, Theorem 6.25] for the proof of the case  $Y = \mathbb{R}$ .

<sup>7</sup>MS:  $L(X, Y^{**}) = L(X, L(Y^*, \mathbb{R}))$ . This would be naturally isomorphic to  $L(X \otimes Y, \mathbb{R})$  if we had an appropriate tensor product for Banach spaces, but here the situation is not so simple.

<sup>8</sup>It can be shown that every Polish space is homeomorphic to some  $\partial_e K$ . Result of R. Haydon, see [Ke, 33.L]. An introduction into this topic can be found in [AB, Section 7.12].

<sup>9</sup>Different proof [E, Lemma 4.3.22–Theorem 4.3.24].

## 1.5 Locally compact spaces

### 4.E The space of continuous functions on a compact space

#### 4.F The Hyperspace of compact sets <sup>10</sup>

*topological upper limit*  $\overline{\text{Tlim}}_n K_n$  is the set

$\{x \in X; \text{Every open nbhd of } x \text{ meets } K_n \text{ for infinitely many } n\}$

*topological lower limit*  $\underline{\text{Tlim}}_n K_n$  is the set

$\{x \in X; \text{Every open nbhd of } x \text{ meets } K_n \text{ for all but finitely many } n\}$

## 1.6 Perfect Polish spaces

### 6.A Embedding the Cantor space in a perfect Polish space

**Definition.** (6.1) A *Cantor scheme* on a set  $X$  is a family  $(A_s)_{s \in 2^{<\mathbb{N}}}$  such that:

- (i)  $A_{s^0} \cap A_{s^1} = \emptyset$  for  $s \in 2^{<\mathbb{N}}$ ,
- (ii)  $A_{s^i} \subseteq A_s$ , for  $s \in 2^{<\mathbb{N}}$ ,  $i \in \{0, 1\}$ .

**Theorem.** (6.2) *Let  $X$  be a nonempty perfect Polish space. Then there is an embedding of  $\mathcal{C}$  into  $X$ .*

The proof is by constructing a Cantor scheme of open subsets of  $X$  with decreasing diameter.

**Corollary.** (6.3) *If  $X$  is a nonempty perfect Polish space, then  $\text{card } X = 2^{\aleph_0}$ . In particular, a nonempty perfect subset of a Polish space has the cardinality of the continuum.*

### 6.B The Cantor-Bendixson theorem

**Theorem** (Cantor-Bendixson). (6.4) *Let  $X$  be a Polish space. Then  $X$  can be uniquely written as  $X = P \cup C$ , with  $P$  a perfect subset of  $X$  and  $C$  countable open.*

**Corollary.** (6.5) *Any uncountable Polish space contains a homeomorphic copy of  $\mathcal{C}$  and in particular has cardinality  $2^{\aleph_0}$ .*

## 1.7 Zero-dimensional spaces

### 7.A Basic facts

**Theorem.** (7.3) *Let  $X$  be separable metrizable. Then  $X$  is zero-dimensional iff every non-empty closed subset of  $X$  is a retract of  $X$ .* <sup>11</sup>

<sup>10</sup>My note: Proof that the Hausdorff metric and Vietoris topology coincide on  $K(X)$  can be found in [AB, Theorem 3.91]

<sup>11</sup>This book does not include the proof, it refers to [Ku, Ch.II, §6, Cor.2]

## 7.B A Topological Characterization of the Cantor Space

**Theorem** (Brouwer). (7.4) *The Cantor space  $\mathcal{C}$  is unique, up to homeomorphism, perfect nonempty, compact metrizable, zero-dimensional space.*

## 7.C A Topological Characterization of the Baire Space

**Definition.** (7.5) A *Lusin scheme* on a set  $X$  is a family  $(A_s)_{s \in \mathbb{N}^{<\mathbb{N}}}$  such that:

- (i)  $A_{s^i} \cap A_{s^j} = \emptyset$  for  $s \in \mathbb{N}^{<\mathbb{N}}$ ,
- (ii)  $A_{s^i} \subseteq A_s$ , for  $s \in \mathbb{N}^{<\mathbb{N}}$ ,  $i \in \{0, 1\}$ .

TODO vanishing diameter, associated map

## 1.8 Baire category

**8.A Meager sets** meager = first category = countable union of nowhere dense sets

The complement of a meager set is called *comeager* (or *residual*). So a set is comeager iff it contains the intersection of a countable family of dense open sets.

## 8.B Baire Spaces

**Proposition.** (8.1) *Let  $X$  be a topological space. The following statements are equivalent:*

- (i) *Every nonempty open set in  $X$  is non-meager.*
- (ii) *Every comeager set in  $X$  is dense.*
- (iii) *The intersection of countably many dense open sets in  $X$  is dense.*

**Definition.** (8.2) A topological space is called a *Baire space* if it satisfies the equivalent conditions of 8.1.

**Proposition.** (8.3) *If  $X$  is a Baire space and  $U \subseteq X$  is open,  $U$  is a Baire space.*

**Theorem** (The Baire Category theorem). (8.4) *Every completely metrizable space is Baire. Every locally compact Hausdorff space is Baire.*

**Definition.** (8.5) Let  $X$  be a topological space and  $P \subseteq X$ . If  $P$  is comeager, we say that  $P$  *holds generically* or that the *generic element of  $X$*  is in  $P$ . (Sometimes the word *typical* is used instead of generic.)

---

<sup>12</sup>Exercise 8.6 – see [S, Proposition 2.5.11]

### 8.C Choquet Games and Spaces

**Definition.** (8.10) *Choquet game*: Players I and II take turns in playing nonempty open subsets of  $X$  so that  $U_0 \supseteq V_0 \supseteq U_1 \supseteq V_1 \supseteq \dots$

We say that II wins this run of game if  $\bigcap_n V_n (= \bigcap_n U_n) \neq \emptyset$ .

**Theorem** (Oxtoby). (8.11) *A nonempty topological space  $X$  is a Baire space iff player I has no winning strategy in the Choquet game  $G_X$ .*

<sup>13</sup>

**Definition.** (8.12) A nonempty topological space is a *Choquet space* if player II has a winning strategy in  $G_X$ .

Every Choquet space is Baire. (The converse fails even for nonempty separable metrizable spaces.)

Products of Choquet spaces are Choquet.<sup>14</sup> Also, open nonempty subspaces of Choquet spaces are Choquet. (It is not true that product of Baire spaces are Baire. See, however, 8.44.)

### 8.D Strong Choquet Games and Spaces

**Definition.** (8.14) *strong Choquet game*

A nonempty space is called a *strong Choquet space* if player II has a winning strategy in  $G_X^s$ .

Any strong Choquet space is Choquet. (The converse turns out to be false.)

### 8.E A Characterization of Polish Spaces

**Theorem.** (8.17) *Let  $X$  be a nonempty separable metrizable space and  $\hat{X}$  a Polish space in which  $X$  is dense. Then*

- i) (Oxtoby)  $X$  is Choquet  $\Leftrightarrow X$  is comeager in  $\hat{X}$ ;
- ii) (Choquet)  $X$  is strong Choquet  $\Leftrightarrow X$  is  $G_\delta$  in  $\hat{X} \Leftrightarrow X$  is Polish

**Theorem** (Choquet). (8.18) *A nonempty, second countable topological space is Polish iff it is  $T_1$ , regular and strong Choquet.*

**Theorem** (Sierpiński). (8.19) *Let  $X$  be Polish and  $Y$  separable metrizable. If there is a continuous open surjection of  $X$  onto  $Y$ , then  $Y$  is Polish.*

---

<sup>13</sup>In fact the proof shows that: Baire  $\Rightarrow$  II has a *stationary* winning strategy. (Stationary strategies are called tactics by some authors.)

<sup>14</sup>My note: I think that almost the same proof will work for the box product.

### 8.F Sets with the Baire Property

$$A =_{\mathcal{I}} B \Leftrightarrow A \Delta B \in \mathcal{I}$$

$$A =^* B \Leftrightarrow A, B \text{ are equal modulo meager sets}$$

**Definition.** (8.21) Let  $X$  be a topological space. A set  $A \subseteq X$  has the *Baire property* (BP) if  $A =^* U$  for some open set  $U \subseteq X$ .

**Proposition.** (8.22) Let  $X$  be a topological space. The class of sets having the BP is a  $\sigma$ -algebra on  $X$ . It is the smallest  $\sigma$ -algebra containing all open sets and all meager sets.

**Proposition.** (8.23) Let  $X$  be a topological space and  $A \subseteq X$ . Then the following statements are equivalent:

- i)  $A$  has the BP;
- ii)  $A = G \cup M$ , where  $G$  is  $G_\delta$  and  $M$  is meager;
- iii)  $A = F \setminus M$  where  $F$  is  $F_\sigma$  and  $M$  is meager.

**Example.** (8.24) There exists a subset  $A \subseteq \mathbb{R}$  not having BP.

### 8.G Localization

**Definition.** (8.25) If  $A$  is comeager in  $U$ , we say that  $A$  holds generically in  $U$  or that  $U$  forces  $A$ , in symbols

$$U \models A.$$

Thus  $A$  is comeager if  $X \models A$ .

Note that

$$U \subseteq V, A \subseteq B \Rightarrow (V \models A \Rightarrow U \models B).$$

**Proposition.** (8.26) Let  $X$  be a topological space and suppose that  $A \subseteq X$  has the BP. Then either  $A$  is meager or there is a nonempty open set  $U \subseteq X$  on which  $A$  is comeager (i.e.,  $X \models (X \setminus A)$  or there is nonempty open  $U \subseteq X$ , with  $U \models A$ ). If  $X$  is a Baire space, exactly one of these alternatives holds.

A *weak basis* for a topological space  $X$  is a collection of nonempty open sets such that every nonempty open set contains one of them. It is clear that in the previous result  $U$  can be chosen in any given weak basis.

$$\sim A = X \setminus A$$

**Proposition.** (8.27) Let  $X$  be a topological space.

- (i) If  $A_n \subseteq X$ , then for any open  $U \subseteq X$ ,

$$U \models \bigcap_n A_n \Leftrightarrow \forall n (U \models A_n)$$

(ii) If  $X$  is a Baire space,  $A$  has BP in  $X$  and  $U$  varies below over nonempty open sets in  $X$ , and  $V$  over a weak basis, then

$$U \models \sim A \Leftrightarrow \forall V \subseteq U (V \not\models A).$$

**Theorem.** (8.29) Let  $X$  be a topological space and  $A \subseteq X$ . Put

$$U(A) = \bigcup \{U \text{ open} ; U \models A\}.$$

Then  $U(A) \setminus A$  is meager, and if  $A$  has the BP,  $A \setminus U(A)$ , and thus  $A \Delta U(A)$  is meager, so  $A =^* U(A)$ .

**8.H The Banach-Mazur game** Banach-Mazur game (or  $^{**}$ -game)  $G^{**}(A)$   
Player II wins the run if the game if  $\bigcap_n V_n (= \bigcap_n U_n) \subseteq A$ .

**Theorem** (Banach-Mazur, Oxtoby). (8.33) Let  $X$  be a nonempty topological space. Then

- i)  $A$  is comeager  $\Leftrightarrow$  II has a winning strategy in  $G^{**}(A)$ .
- ii) If  $X$  is Choquet and there is a metric  $d$  on  $X$  whose open balls are open in  $X$ , then  $A$  is meager in a nonempty open set  $\Leftrightarrow$  I has winning strategy in  $G^{**}(A)$ .

**Definition.** (8.34) A game is *determined* if at least one of the two players has a winning strategy.

**8.K The Kuratowski-Ulam Theorem** Exercise 8.44: If  $X, Y$  are second countable Baire spaces, so is  $X \times Y$ .

## 1.9 Polish groups

### 9.D Universal Polish groups

**Theorem** (Uspenskii). (9.18) Every Polish group is isomorphic to a (necessarily closed) subgroup of  $H(\mathbb{I}^{\mathbb{N}})$ .<sup>15</sup>

We use now the following result in infinite-dimensional topology (see [BP]).

**Theorem** (Keller's Theorem). (9.19) If  $X$  is a separable infinite-dimensional Banach space,  $B_1(X^*)$  with the weak\*-topology is homeomorphic to the Hilbert cube  $\mathbb{I}^{\mathbb{N}}$ .

---

<sup>15</sup>The proof uses Theorem 4.7 Banach-Alaoglu.

## 2 Borel sets

### 2.10 Measurable Spaces and Functions

### 2.11 Borel Sets and Functions

#### 11.B The Borel Hierarchy

$$\begin{aligned}\Sigma_1^0(X) &= \{U \subseteq X; U \text{ is open}\} \\ \Pi_\xi^0(X) &= \sim \Sigma_\xi^0(X) \\ \Sigma_\xi^0(X) &= \{\bigcup_n A_n; A_n \in \Pi_{\xi_n}^0, \xi_n < \xi, n \in \mathbb{N}\}, \text{ if } \xi > 1\end{aligned}$$

**11.C Borel functions** Let  $X, Y$  be topological spaces. A map  $f: X \rightarrow Y$  is Borel (measurable) if the inverse image of a Borel (equivalently: open or closed) set is Borel.

If  $Y$  is metrizable and Borel functions  $f_n: X \rightarrow Y$  converge to  $f: X \rightarrow Y$  pointwise, then the limit function  $f$  is Borel. Exercise 11.2i.

**Proposition.** (11.5) *Every Borel set has the Baire property, and every Borel function is Baire measurable.*

**Theorem** (Lebesgue, Hausdorff). (11.6) *Let  $X$  be a metrizable space. The class of Borel functions  $f: X \rightarrow \mathbb{R}$  is the smallest class of functions from  $X$  into  $\mathbb{R}$  which contains all the continuous functions and is closed under taking pointwise limits of sequences of functions.*

### 2.12 Standard Borel Spaces

### 2.13 Borel Sets as Clopen Sets

### 2.14 Analytic Sets and the Separation Theorem

#### 14.A Basic Facts about Analytic Sets

**Definition.** (14.1) Let  $X$  be a Polish space. A set  $A \subseteq X$  is called analytic if there is a Polish space  $Y$  and a continuous function  $f: Y \rightarrow X$  with  $f(Y) = A$ . (The empty set is analytic, by taking  $Y = \emptyset$ .)

#### 14.B The Lusin Separation Theorem

### 2.15 Borel Injections and Isomorphisms

### 2.16 Borel Sets and Baire Category

### 2.17 Borel Sets and Measures

#### 17.D Lusin's Theorem on Measurable Functions

**Theorem** (Lusin). (17.12) Let  $X$  be a metrizable space and  $\mu$  a finite Borel measure on  $X$ . Let  $Y$  be a second countable topological space and  $f: X \rightarrow Y$  a  $\mu$ -measurable function. For every  $\varepsilon > 0$ , there is a closed set  $F \subseteq X$  with  $\mu(X \setminus F) < \varepsilon$  such that  $f|F$  is continuous. Moreover, if  $X$  is Polish, we can take  $F$  to be compact.

In particular, if  $Y = \mathbb{R}$ , there is a continuous  $g: X \rightarrow \mathbb{R}$  with  $\mu(\{x; f(x) \neq g(x)\}) < \varepsilon$ .

## 17.E The Space of Probability Borel Measures

### 2.22 The Borel Hierarchy

TODO 22.14 *reduction property*

### 2.23 Some Examples

### 2.24 The Baire Hierarchy

#### 24.A The Baire Classes of Functions

**Definition.** (24.1) Let  $X, Y$  be metrizable spaces. A function  $f: X \rightarrow Y$  is of *Baire class 1* if  $f^{-1}(U) \in \Sigma_2^0(X)$  for every open set  $U \subseteq Y$ . If  $Y$  is separable, it is clearly enough in this definition to restrict  $U$  to any countable subbasis for  $Y$ . Recursively, for  $1 < \xi < \omega_1$  we define now a function  $f: X \rightarrow Y$  to be of *Baire class  $\xi$*  if it is the pointwise limit of a sequence of functions  $f_n: X \rightarrow Y$ , where  $f_n$  is of Baire class  $\xi_n < \xi$ .

Notation:  $\mathcal{B}_\xi(X, Y)$

As usual,  $\mathcal{B}_\xi(X) = \mathcal{B}_\xi(X, \mathbb{K})$ , where  $\mathbb{K} = \mathbb{R}$  or  $\mathbb{C}$  (the context should make clear which case we are considering).

Thus  $\Sigma_1^0$ -measurable = continuous and  $\Sigma_2^0$ -measurable = Baire class 1. The following

**Theorem** (Lebesgue, Hausdorff, Banach). (24.3) Let  $X, Y$  be metrizable spaces, with  $Y$  separable. Then for  $1 < \xi < \omega_1$ ,  $f: X \rightarrow Y$  is in  $\mathcal{B}_\xi$  iff  $f$  is  $\Sigma_{\xi+1}^0$ -measurable. In particular,  $\bigcup_\xi \mathcal{B}_\xi$  is the class of Borel functions.

## Contents

|                                             |          |
|---------------------------------------------|----------|
| <b>1 Polish spaces</b>                      | <b>1</b> |
| 1.1 Topological and metric spaces . . . . . | 1        |
| 1.2 Trees . . . . .                         | 1        |
| 1.3 Polish spaces . . . . .                 | 4        |
| 1.4 Compact metrizable spaces . . . . .     | 5        |
| 1.5 Locally compact spaces . . . . .        | 7        |
| 1.6 Perfect Polish spaces . . . . .         | 7        |
| 1.7 Zero-dimensional spaces . . . . .       | 7        |

|          |                                                    |           |
|----------|----------------------------------------------------|-----------|
| 1.8      | Baire category . . . . .                           | 8         |
| 1.9      | Polish groups . . . . .                            | 11        |
| <b>2</b> | <b>Borel sets</b>                                  | <b>12</b> |
| 2.10     | Measurable Spaces and Functions . . . . .          | 12        |
| 2.11     | Borel Sets and Functions . . . . .                 | 12        |
| 2.12     | Standard Borel Spaces . . . . .                    | 12        |
| 2.13     | Borel Sets as Clopen Sets . . . . .                | 12        |
| 2.14     | Analytic Sets and the Separation Theorem . . . . . | 12        |
| 2.15     | Borel Injections and Isomorphisms . . . . .        | 12        |
| 2.16     | Borel Sets and Baire Category . . . . .            | 12        |
| 2.17     | Borel Sets and Measures . . . . .                  | 12        |
| 2.22     | The Borel Hierarchy . . . . .                      | 13        |
| 2.23     | Some Examples . . . . .                            | 13        |
| 2.24     | The Baire Hierarchy . . . . .                      | 13        |

## References

- [A] William Arveson. *An Invitation to  $C^*$ -Algebras*. Springer-Verlag, New York, 1981. Graduate Texts in Mathematics 39.
- [AB] Charalambos D. Aliprantis and Kim C. Border. *Infinite Dimensional Analysis, A Hitchhiker's Guide*. Springer, Berlin, 3rd edition, 2006.
- [BP] Czesław Bessaga and Alexander Pełczyński. *Selected Topics in Infinite-Dimensional Topology*. PWN, Warszawa, 1975.
- [E] R. Engelking. *General Topology*. Heldermann Verlag, Berlin, 1989. Revised and completed edition, Sigma Series in Pure Mathematics, Vol. 6.
- [Ke] A. S. Kechris. *Classical descriptive set theory*. Springer-Verlag, Berlin, 1995. Graduate Texts in Mathematics 156.
- [Ku] K. Kuratowski. *Topology, Vol. I*. Academic Press, New York, 1966.
- [Me] Robert E. Megginson. *An Introduction to Banach Space Theory*. Springer, New York, 1998. GTM 193.
- [Mo] Y. N. Moschovakis. *Descriptive set theory*. North-Holland Publishing Company, Amsterdam, 1980.
- [S] S. M. Srivastava. *A Course on Borel Sets*. Springer Verlag, New York, 1998. Graduate Texts in Mathematics 180.