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Classical descriptive set theory

Notes from [Ke]. 1

1 Polish spaces

1.1 Topological and metric spaces

1.A Topological spaces The initial topology is called topology generated by
(fi)i∈I .

1.B Metric spaces

Theorem (Urysohn metrization theorem). (1.1) Let X be a second countable
topological space. Then X is metrizable iff X is T1 and regular.
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Theorem (Urysohn’s Lemma). (1.2) Let X be a metrizable space. If A, B are
two disjoint subsets of X, there is a function f : X → 〈0, 1〉 such that f(x) = 0
for x ∈ A and f(x) = 1 for x ∈ B.

Theorem (Tietze Extension Theorem). (1.3) Let X be a metrizable space. If

A ⊆ X is closed and f : A → R is continuous, there is f̂ : X → R which is
continuous and extends f . Moreover, if f is bounded by M , i.e., |f(x)| ≤ M
for x ∈ A, so is f .

1.2 Trees

2.A Basic concepts An = all sequences (s0, . . . , sn−1) with si from the set
A

A0 = {∅}
∅ = empty sequence
length(s) = length of a finite sequences

A<N =
⋃
n∈N

An

s|m = (s0, . . . , sm−1) and s|0 = ∅
1My note: Supplementary reading: [Mo] and [S]. Also [A, Chapter 3] seems to be a good

introduction into the problematic of Polish spaces, Borel and analytic sets. For some details
in the topological proofs I have consulted [E] and [AB], both these books have advantage that
they are rather exhaustive and contain detailed proofs.

2LH We can replace regular by normal. TODO check

1



We say that s ∈ An is an initial segment of x ∈ AN if s = x|n. We will write
s ⊆ n is s is an initial segment of x.

Two finite sequences are compatible if one is an initial segment of the other
and incompatible otherwise. We use s ⊥ t to indicate that s and t are incom-
patible.

The concatenation of two sequences s = (si)i<n and t = (tj)j<m is the
sequence ŝ t = (s0, . . . , sn−1, t0, . . . , tm−1). We write ŝ a for ŝ (a) if a ∈ A.

infinite concatenation

Definition. (2.1) Tree = subset T ⊆ A<N closed under initial segments. (I.e.,
if t ∈ T and s ⊆ t, then s ∈ T .)

nodes = elements of T
An infinite branch of T is a sequence x ∈ AN such that x|n ∈ T , for all n.

The body of T , written as [T ], consist of all infinite branches of T , i.e.,

[T ] = {x ∈ AN;∀n(x|n ∈ T )}.

Finally, we call a tree T pruned if every s ∈ T has a proper extension t % s,
t ∈ T .

2.B Trees and Closed Sets If we take A as a topological space with the
discrete topology, then A is metrizable; d(a, b) = 1.

AN viewed as the product space – metric d(x, y) = 2−n−1 if x 6= y and n is
the least number with xn 6= yn.

A metric d is an ultrametric if

d(x, y) ≤ max{d(x, z), d(y, z)}.

Show that the above metric is an ultrametric.
The standard basis for the topology of AN consists of the sets

Ns = {x ∈ AN : s ⊆ x},

where s ∈ A<N. Note that s ⊆ t ⇔ Ns ⊇ Nt and s ⊥ t ⇔ Ns ∩Nt = ∅.

Proposition. (2.4) The map T 7→ [T ] is a bijection between pruned trees on A
and closed subsets of AN. Its inverse is given by

F 7→ TF = {x|n : x ∈ F, n ∈ N}.

We call TF the tree of F .

If T is a tree on A, then for any s ∈ AN,

Ts = {t ∈ A<N; ŝ t ∈ T}

and
T[s] = {t ∈ T ; t is compatible with s}.

Thus [T[s]] = [T ] ∩Ns forms a basis for the topology of [T ]. Note that T[s] is a
subtree of T , but Ts in general is not.
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Definition. (2.5) Let S, T be trees (on sets A, B, resp.). A map ϕ : T → S is
called monotone if s ⊆ t implies ϕ(s) ⊆ ϕ(t). For such ϕ let

D(ϕ) = {x ∈ [S] : lim
n

length(ϕ(x|n)) =∞}.

For x ∈ D(ϕ), let

ϕ∗(x) =
⋃
n

ϕ(x|n) ∈ [T ].

We call ϕ proper if D(ϕ) = [S].

Proposition. (2.6) The set D(ϕ) is Gδ in [S] and ϕ∗ : D(ϕ)→ [T ] is continu-
ous. Conversely, if f : G→ [T ] is continuous, with G ⊆ [S] a Gδ set, then there
is monotone ϕ : S → T with f = ϕ∗.

A closed set F in a topological space X is a retract of X if there is a
continuous surjection f : X → F such that f(x) = x for x ∈ F .

Proposition. (2.8) Let F ⊆ H be two closed nonempty subsets of AN. Then
F is a retract of H.

2.C Trees on Products A tree on A = B×C can be understood as a subset
of B<N × C<N with the property (t, u) ∈ T ⇒ length(t) = length(u).

If T is a tree on B×C and x ∈ BN, consider section tree T (x) on C defined
by

T (x) = {s ∈ C<N; (x| length(s), s) ∈ T}.

Note that if T is pruned it is not necessarily true that T (x) is also pruned. Also,

(x, y) ∈ [T ] ⇔ y ∈ [T (x)].

Similarly, for s ∈ B<N, we define T (s) = {t ∈ C<N; length(t) ≤ length(s) ∧
(s| length(t), t) ∈ T}.

2.D Leftmost Branches Let T be a tree on A and let < be a well-ordering
of A. If [T ] 6= ∅, then we specify the <-leftmost branch of T , denoted by aT , as
follows. We define aT (n) by recursion on n:

aT (n) = the < -least elementa of A such that [T(aT |n)] 6= ∅.

lexicographical ordering on AN or on Am

When T is pruned, aT is also characterized by the property that for each m,
aT |m is the lexicographically least element of T ∩Am.
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2.E Well-founded Trees and Ranks If a tree T on A has no infinite
branches, i.e., [T ] = ∅, then we call T well-founded. This is because it is equiv-
alent to saying that the relation s ≺ t ⇔ s % t restricted to T is well-founded.
(See appendix B.) On the other hand, if [T ] 6= ∅, we call T ill-founded. If T is
a well-founded tree, we denote the rank function of ≺ restricted to T by ρT .

ρT (s) = sup{ρT (t) + 1; t ∈ T, t % s},

for s ∈ T . An easy argument shows that we also have

ρT (s) = sup{ρT (ŝ a) + 1 : ŝ a ∈ T}.

Also, ρT (s) = 0 if s ∈ T is terminal, i.e., for no a, ŝ a ∈ T . We also put
ρT (s) = 0 if s /∈ T . The rank of a well-founded tree is defined by ρ(T ) =
sup{ρT (s) + 1 : s ∈ T}. Thus if T 6= ∅ ρ(T ) = ρT (∅) + 1. The rank of a
well-founded tree is defined by ρ(T ) sup{ρT (s) + 1 : s ∈ T}.

If S, T are trees (on A, B resp.), a map ϕ : S → T is strictly monotone if
s $ t ⇒ ϕ(s) $ ϕ)(, i.e, if ϕ is order preserving for the relation %.

Proposition. (2.9) Let S, T be trees on A, B respectively. If T is well-founded,
then S is well-founded with %(S) < %(T ) iff there is a strictly monotone map
ϕ : S → T .

2.F The Well-founded Part of a Tree

2.G The Kleene-Brouwer Ordering Now let (A,<) be a linearly ordered
set. We define the Kleene-Brouwer ordering <KB on A<N as follows: If s =
(s0, . . . , sm−1), t = (t0, . . . , tn−1), then

s <KB t ⇔ (s % t) or [∃i < min{m,n}(∀j < i(sj = tj) ∧ si < ti)].

Proposition. (2.12) Assume that (A,<) is a wellordered set. Then for any
tree T on A, T is well-founded iff Kleene-Brouwer ordering restricted to T is a
wellordered.

1.3 Polish spaces

Cauchy sequence, completion, complete
Given any metric space (X, d), there is a complete metric space (X̂, d̂) such

that (X, d) is a subspace of (X̂, d̂) and X is dense in X̂. This space is unique
up to isometry and is called the completion of (X, d). Clearly, X̂ is separable if
and only if X is separable.

Definition. (3.1) A topological space X is completely metrizable if it admits
a compatible metric d such that (X, d) is complete. A separable completely
metrizable space is called Polish.

Open interval (0, 1) is Polish although its usual metric is not complete.
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Proposition. (3.3)

(i) The completion of a separable metric space is Polish.

(ii) A closed subspace of a Polish space is Polish.

(iii) The product of a sequence of completely metrizable (resp. Polish)spaces is
completely metrizable (resp. Polish). The sum of a family of completely
metrizable spaces is completely metrizable. The sum of a sequence of Pol-
ish spaces is Polish.

Examples: R, C, Rn, Cn, RN, CN, unit interval I and unit circle T are Polish.
The n-dimensional cube In, the Hilbert cube IN, the n-dimensional torus Tn and
the infinite dimensional torus TN are Polish.

A= countable discrete ⇒ AN is Polish
the Cantor space C = 2N

the Baire space N = NN

Example. (3.4.5)Let X, Y be separable Banach spaces. We denote by L(X,Y )
the (generally non-separable) Banach space of bounded linear operators T : X →
Y with norm ‖T‖ = sup{‖TX‖;x ∈ X, ‖x‖ ≤ 1}. If X = Y we let L(X,Y ) =
L(X). Denote by L1(X,Y ) the unit ball

L1(X,Y ) = {T ∈ L(X,Y ); ‖T‖ ≤ 1}

of L(X,Y ). The strong topology on L(X,Y ) is the topology generated by the
family of functions fx(T ) = Tx, fx : L(X,Y )→ Y , for x ∈ X.

L1(X,Y ) is a Polish space.

3.B Extensions of Continuous Function and Homeomorphisms Let X
be a topological space, (Y, d) a metric space and f : A→ Y .

oscf = inf{diam(f(U));U is an open nbhd of X}
Theorem (Kuratowski). (3.8) Let X be metrizable, Y be completely metrizable,
A ⊆ X, and f : A→ Y be continuous. Then there is a Gδ set G with A ⊆ G ⊆ A
and a continuous extension g : G→ Y of f .

3.C Polish Subspaces of Polish Spaces

Theorem. (3.11) If X is metrizable and Y ⊆ X is completely metrizable, then
Y is a Gδ in X. Conversely, if X is completely metrizable and Y ⊆ X is a Gδ,
then Y is completely metrizable.

In particular, a subspace of a Polish space is Polish iff it is a Gδ.

1.4 Compact metrizable spaces

4.A Basic facts

Proposition. (4.6) Let X be a compact topological space. Then X is metrizable
iff X is Hausdorff and second countable.3

3See Urysohn’s metrization theorem 1.1
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4.B Examples

Theorem (Banach). (4.7) The unit ball B1(X∗) of a separable Banach space
is compact in the weak∗-topology. A compatible metric is given by

d(x∗, y∗) =

∞∑
n=0

2−n−1|〈xn, x∗〉 − 〈xn, y∗〉|

for (xn) dense in the unit ball.4 5

B1(`∞) = [−1, 1]N

Example. (4.9) Let X, Y be separable Banach spaces. The weak topology on
L(X,Y ) is the one generated by the functions (from L(X,Y ) into the scalar
field)

T 7→ 〈Tx, y∗〉; x ∈ X, y∗ ∈ Y ∗.
Show that if Y is reflexive, L1(X,Y ) with the weak topology is compact metriz-
able. Find compatible metric. 6 7

Example. (4.10) Extreme points in a topological vector space.
If K is a compact metrizable (in the relative topology) convex subset of a

topological vector space, then the set ∂eK is Gδ in K and thus Polish.8

Example (König’s Lemma). (4.12) Let T be a tree on A. If T is finite splitting
then [T ] 6= ∅ iff T is infinite.

4.C A Universality Property of the Hilbert Cube

Theorem. (4.14) Every separable metrizable space is homeomorphic to a sub-
space of the Hilbert cube IN. In particular, the Polish spaces are, up to homeo-
morphism, exactly the Gδ subspaces of the Hilbert cube.

Theorem. (4.17) Every Polish space is homeomorphic to to a closed subspace
of RN. 9

4.D Continuous Images of the Cantor Space A point X in a topological
space is called condensation point if every open neighborhood of x in uncount-
able.

Theorem. (4.18) Every non-empty compact metrizable space is a continuous
image of C.

4My note: This shows Keller’s Theorem 9.19.
5This result often appears in functional-analysis texts under the name Alaoglu’s theorem.

Usually only the compact part is shown. See [Me] for the history.
6See [AB, Theorem 6.25] for the proof of the case Y = R.
7MS: L(X,Y ∗∗) = L(X,L(Y ∗,R)). This would be naturally isomorphic to L(X ⊗ Y,R)

if we had an appropriate tensor product for Banach spaces, but here the situation is not so
simple.

8It can be shown that every Polish space is homeomorphic to some ∂eK. Result of R.
Haydon, see [Ke, 33.L]. An introduction into this topic can be found in [AB, Section 7.12].

9Different proof [E, Lemma 4.3.22–Theorem 4.3.24].
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1.5 Locally compact spaces

4.E The space of continuous functions on a compact space

4.F The Hyperspace of compact sets 10

topological upper limit TlimnKn is the set

{x ∈ X; Every open nbhd of x meets Kn for infinitely many n}

topological lower limit TlimnKn is the set

{x ∈ X; Every open nbhd of x meets Kn for all but finitely many n}

1.6 Perfect Polish spaces

6.A Embedding the Cantor space in a perfect Polish space

Definition. (6.1) A Cantor scheme on a set X is a family (As)s∈2<N such that:

(i) As0 ∩As1 = ∅ for s ∈ 2<N,

(ii) Asi ⊆ As, for s ∈ 2<N, i ∈ {0, 1}.

Theorem. (6.2) Let X be a nonempty perfect Polish space. Then there is an
embedding of C into X.

The proof is by constructing a Cantor scheme of open subsets of X with
decreasing diameter.

Corollary. (6.3) If X is a nonempty perfect Polish space, then cardX = 2ℵ0 .
In particular, a nonempty perfect subset of a Polish space has the cardinality of
the continuum.

6.B The Cantor-Bendixson theorem

Theorem (Cantor-Bendixson). (6.4) Let X be a Polish space. Then X can be
uniquely written as X = P ∪ C, with P a perfect subset of X and C countable
open.

Corollary. (6.5) Any uncountable Polish space contains a homeomorphic copy
of C and in particular has cardinality 2ℵ0 .

1.7 Zero-dimensional spaces

7.A Basic facts

Theorem. (7.3) Let X be separable metrizable. Then X is zero-dimensional
iff every non-empty closed subset of X is a retract of X. 11

10My note: Proof that the Hausdorff metric and Vietoris topology coincide on K(X) can
be found in [AB, Theorem 3.91]

11This book does not include the proof, it refers to [Ku, Ch.II,§6,Cor.2]
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7.B A Topological Characterization of the Cantor Space

Theorem (Brouwer). (7.4) The Cantor space C is unique, up to homeomor-
phism, perfect nonempty, compact metrizable, zero-dimensional space.

7.C A Topological Characterization of the Baire Space

Definition. (7.5) A Lusin scheme on a set X is a family (As)s∈N<N such that:

(i) Asi ∩Asj = ∅ for s ∈ N<N,

(ii) Asi ⊆ As, for s ∈ N<N, i ∈ {0, 1}.

TODO vanishing diameter, associated map

1.8 Baire category

8.A Meager sets meager = first category = countable union of nowhere
dense sets

The complement of a meager set is called comeager (or residual). So a set
is comeager iff it contains the intersection of a countable family of dense open
sets.

8.B Baire Spaces

Proposition. (8.1) Let X be a topological space. The following statements are
equivalent:

(i) Every nonempty open set in X is non-meager.

(ii) Every comeager set in X is dense.

(iii) The intersection of countably many dense open sets in X is dense.

Definition. (8.2) A topological space is called a Baire space if it satisfies the
equivalent conditions of 8.1.

Proposition. (8.3) If X is a Baire space and U ⊆ X is open, U is a Baire
space.

Theorem (The Baire Category theorem). (8.4) Every completely metrizable
space is Baire. Every locally compact Hausdorff space is Baire.

Definition. (8.5) Let X be a topological space and P ⊆ X. If P is comeager,
we say that P holds generically or that the generic element of X is in P .
(Sometimes the word typical is used instead of generic.)

12

12Exercise 8.6 – see [S, Proposition 2.5.11]
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8.C Choquet Games and Spaces

Definition. (8.10) Choquet game: Players I and II take turns in playing nonempty
open subsets of X so that U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ . . . .

We say that II wins this run of game if
⋂
n Vn(=

⋂
n Un) 6= ∅.

Theorem (Oxtoby). (8.11) A nonempty topological space X is a Baire space
iff player I has no winning strategy in the Choquet game GX .

13

Definition. (8.12) A nonempty topological space is a Choquet space if player
II has a winning strategy in GX .

Every Choquet space is Baire. (The converse fails even for nonempty sepa-
rable metrizable spaces.)

Products of Choquet spaces are Choquet.14 Also, open nonempty subspaces
of Choquet spaces are Choquet. (It is not true that product of Baire spaces are
Baire. See, however, 8.44.)

8.D Strong Choquet Games and Spaces

Definition. (8.14) strong Choquet game
A nonempty space is called a strong Choquet space if player II has a winning

strategy in GsX .

Any strong Choquet space is Choquet. (The converse turns out to be false.)

8.E A Characterization of Polish Spaces

Theorem. (8.17) Let X be a nonempty separable metrizable space and X̂ a
Polish space in which X is dense. Then

i) (Oxtoby) X is Choquet ⇔ X is comeager in X̂;

ii) (Choquet) X is strong Choquet ⇔ X is Gδ in X̂ ⇔ X is Polish

Theorem (Choquet). (8.18) A nonempty, second countable topological space is
Polish iff it is T1, regular and strong Choquet.

Theorem (Sierpiński). (8.19) Let X be Polish and Y separable metrizable. If
there is a continuous open surjection of X onto Y , then Y is Polish.

13In fact the proof shows that: Baire ⇒ II has a stationary winning strategy. (Stationary
strategies are called tactics by some authors.)

14My note: I think that almost the same proof will work for the box product.
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8.F Sets with the Baire Property Let I be a σ-ideal on a set X.
A =I B ⇔ A4B ∈ I
A =∗ B ⇔ A, B are equal modulo meager sets

Definition. (8.21) Let X be a topological space. A set A ⊆ X has the Baire
property (BP) if A =∗ U for some open set U ⊆ X.

Proposition. (8.22) Let X be a topological space. The class of sets having the
BP is a σ-algebra on X. It is the smallest σ-algebra containing all open sets
and all meager sets.

Proposition. (8.23) Let X be a topological space and A ⊆ X. Then the fol-
lowing statements are equivalent:

i) A has the BP;

ii) A = G ∪M , where G is Gδ nad M is meager;

iii) A = F \M where F is Fσ and M is meager.

Example. (8.24) There exists a subset A ⊆ R not having BP.

8.G Localization

Definition. (8.25) If A is comeager in U , we say that A holds generically in U
or that U forces A, in symbols

U |= A.

Thus A is comeager if X |= A.

Note that
U ⊆ V,A ⊆ B ⇒ (V |= A⇒ U |= B).

Proposition. (8.26) Let X be a topological space and suppose that A ⊆ X has
the BP. Then either A is meager or there is a nonempty open set U ⊆ X on
which A is comeager (i.e., X |= (X \A) or there is nonempty open U ⊆ X, with
U |= A). If X is a Baire space, exactly one of these alternatives holds.

A weak basis for a topological space X is a collection of nonempty open sets
such that every nonempty open set contains one of them. It is clear that in the
previous result U can be chosen in any given weak basis.

∼ A = X \A

Proposition. (8.27) Let X be a topological space.

(i) If An ⊆ X, then for any open U ⊆ X,

U |=
⋂
n

An ⇔ ∀n(U |= An)
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(ii) If X is a Baire space, A has BP in X and U varies below over nonempty
open sets in X, and V over a weak basis, then

U |=∼ A⇔ ∀V ⊆ U(V 6|= A).

Theorem. (8.29) Let X be a topological space and A ⊆ X. Put

U(A) =
⋃
{Uopen ;U |= A}.

Then U(A) \A is meager, and if A has the BP, A \U(A), and thus A∆U(A) is
meager, so A =∗ U(A).

8.H The Banach-Mazur game Banach-Mazur game (or ∗∗-game) G∗∗(A)
Player II wins the run if the game if

⋂
n Vn(=

⋂
n Un) ⊆ A.

Theorem (Banach-Mazur, Oxtoby). (8.33) Let X be a nonempty topological
space. Then

i) A is comeager ⇔ II has a winning strategy in G∗∗(A).

ii) If X is Choquet and there is a metric d on X whose open balls are open
in X, then A is meager in a nonempty open set ⇔ I has winning strategy
in G∗∗(A).

Definition. (8.34) A game is determined if at least one of the two players has
a winning strategy.

8.K The Kuratowski-Ulam Theorem Exercise 8.44: If X, Y are second
countable Baire spaces, so is X × Y .

1.9 Polish groups

9.D Universal Polish groups

Theorem (Uspenskĭı). (9.18) Every Polish group is isomorphic to a (necessarily
closed) subgroup of H(IN). 15

We use now the following result in infinite-dimensional topology (see [BP]).

Theorem (Keller’s Theorem). (9.19) If X is a separable infinite-dimensional
Banach space, B1(X∗) with the weak∗-topology is homeomorphic to the Hilbert
cube IN.

15The proof uses Theorem 4.7 Banach-Alaoglu.
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2 Borel sets

2.10 Measurable Spaces and Functions

2.11 Borel Sets and Functions

11.B The Borel Hierarchy

Σ0
1(X) = {U ⊆ X;U is open}

Π0
ξ(X) =∼ Σ0

ξ(X)

Σ0
ξ(X) = {

⋃
n

An;An ∈ Π0
ξn , ξn < ξ, n ∈ N}, if ξ > 1

11.C Borel functions Let X, Y be topological spaces. A map f : X → Y is
Borel (measurable) if the inverse image of a Borel (equivalently: open or closed)
set is Borel.

If Y is metrizable and Borel functions fn : X → Y converge to f : X → Y
pointwise, then the limit function f is Borel. Exercise 11.2i.

Proposition. (11.5) Every Borel set has the Baire property, and every Borel
function is Baire measurable.

Theorem (Lebesgue, Hausdorff). (11.6) Let X be a metrizable space. The
class of Borel functions f : X → R is the smallest class of functions from X
into R which contains all the continuous functions and is closed under taking
pointwise limits of sequences of functions.

2.12 Standard Borel Spaces

2.13 Borel Sets as Clopen Sets

2.14 Analytic Sets and the Separation Theorem

14.A Basic Facts about Analytic Sets

Definition. (14.1) Let X be a Polish space. A set A ⊆ X is called analytic if
there is a Polish space Y and a continuous function f : Y → X with f(Y ) = A.
(The empty set is analytic, by taking Y = ∅.)

14.B The Lusin Separation Theorem

2.15 Borel Injections and Isomorphisms

2.16 Borel Sets and Baire Category

2.17 Borel Sets and Measures

17.D Lusin’s Theorem on Measurable Functions
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Theorem (Lusin). (17.12) Let X be a metrizable space and µ a finite Borel
measure on X. Let Y be a second countable topological space and f : X → Y
a µ-measurable function. For every ε > 0, there is a closed set F ⊆ X with
µ(X \ F ) < ε such that f |F is continuous. Moreover, if X is Polish, we can
take F to be compact.

In particular, if Y = R, there is a continuous g : X → R with µ({x; f(x) 6=
g(x)}) < ε.

17.E The Space of Probability Borel Measures

2.22 The Borel Hierarchy

TODO 22.14 reduction property

2.23 Some Examples

2.24 The Baire Hierarchy

24.A The Baire Classes of Functions

Definition. (24.1) Let X, Y be metrizable spaces. A function f : X → Y is of
Baire class 1 if f−1(U) ∈ Σ0

2(X) for every open set U ⊆ Y . If Y is separable,
it is clearly enough in this definition to restrict U to any countable subbasis for
Y . Recursively, for 1 < ξ < ω1 we define now a function f : X → Y to be of
Baire class ξ if it is the pointwise limit of a sequence of functions fn : X → Y ,
where fn is of Baire class ξn < ξ.

Notation: Bξ(X,Y )
As usual, Bξ(X) = Bξ(X,K), where K = R or C (the context should make

clear which case we are considering).

Thus Σ0
1-measurable = continuous and Σ0

2-measurable = Baire class 1. The
following

Theorem (Lebesgue, Hausdorff, Banach). (24.3) Let X, Y be metrizable spaces,
with Y separable. Then for 1 < ξ < ωi, f : X → Y is in Bξ iff f is Σ0

ξ+1-
measurable. In particular,

⋃
ξ Bξ is the class of Borel functions.
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