Polish spaces

 $L_1(X,Y)$ with the strong topology is Polish for X,Y separable (14/Exercise 3.4.5). Let X,Y be separable Banach spaces. We denote by L(X,Y) the (generally non-separable) Banach space of bounded linear operators $T:X \to Y$ with norm $||T|| = \sup\{||TX||; x \in X, ||x|| \le 1\}$. If X = Y we let L(X,Y) = L(X). Denote by $L_1(X,Y)$ the unit ball

$$L_1(X,Y) = \{T \in L(X,Y); ||T|| \le 1\}$$

of L(X,Y). The strong topology on L(X,Y) is the topology generated by the family of functions $f_x(T) = Tx$, $f_x : L(X,Y) \to Y$, for $x \in X$.

We will use the term initial topology rather than "topology generated by a family of functions" (this term is used in both [E, Ke]). Initial topology on X w.r.t. family $\{f_i, i \in I\}$ is characterized by the property that $f: Y \to X$ is continuous if and only if all compositions $f_i \circ f$ are continuous. E.g., product space has the initial topology w.r.t. the projections and a subspace has the initial topology w.r.t the embedding.

We want to show that $L_1(X,Y)$ with the strong topology is a Polish space. We choose a countable subset $D \subseteq X$ which is dense in X and closed under the rational linear combinations. The space Y^D is Polish since D is countable and Y is separable. The map $T \mapsto T|_D$ from $L_1(X,Y)$ into Y^D is injective (since D is dense in X). The range of this map is the following closed subset of Y^D

$$F = \{ f \in Y^D; \forall x, y \in D \forall p, q \in \mathbb{Q}[f(px + qy) = pf(x) + qf(y)] \}$$
$$\land \forall x \in D(\|f(x)\| \le \|x\|).$$

(To see this we just need to note that only maps of this form can be obtained by a restriction of a map from $L_1(X,Y)$ and, on the other hand, every such a map can by uniquely extended to a map from $L_1(X,Y)$. The proof of this claim is standard – we define $\tilde{f}(x)$ as the limit of $f(x_n)$ for any $x_n \to x$ and we show that this map is well-defined and belongs to $L_1(X,Y)$.)

It remains to show that the map $\varphi \colon L_1(X,Y) \to F$ given by $T \mapsto T|_D$ is a homeomorphism. We have seen above that it is a bijection.

 φ is continuous Let us denote by $e \colon F \hookrightarrow Y^D$ the embedding of E into Y^D . The topological space F has the initial topology w.r.t. the family $p_d \circ e$, $d \in D$. (Note that Y_D has the initial topology w.r.t. p_d 's and F has the initial topology w.r.t. to e.)

We have the following commutative diagram.

$$L_1(X,Y) \xrightarrow{\varphi} F$$

$$f_d \downarrow \qquad \qquad \downarrow e$$

$$Y \xleftarrow{p_d} Y^D$$

The continuity of φ now follows from the continuity of $p_d \circ e \circ \varphi = f_d$.

(Since F is a compact space – we will show this later – the continuity of φ follows easily from the continuity of φ^{-1} . Nevertheless, it was good to include this prove, since now we will use similar method, but the case of φ is the easier one.)

 φ^{-1} is continuous

The map $\varphi^{-1} \colon F \to L_1(X,Y)$ assigns to a function $f \colon D \to Y$ which belongs to F (i.e., it is \mathbb{Q} -linear and has norm at most 1) a linear and continuous extension $\tilde{f} \colon X \to Y$ (belonging to $L_1(X,Y)$).

Now, $L_1(X,Y)$ has the initial topology w.r.t the family f_x , $x \in X$. Thus we need to show that $f_x \circ \varphi$ is continuous for any given $x \in X$.

Let $x \in X$ be fixed. Choose any sequence $x_n \in D$ such that $\lim_{n \to \infty} x_n = x$.

The map $f_x \circ \varphi^{-1}$ maps f to $\lim_{n \to \infty} f(x_n)$. Now

 $(\exists n_0)(\forall n \geq n_0)\|x_n - x\| \leq \frac{\varepsilon}{3}$ (by the convergence of the sequence x_n) Directly by the definition of F this implies $(\forall h \in F)(\forall n \geq n_0)\|h(x_n) - h(x)\| \leq \frac{\varepsilon}{3}$. $g \in U \Rightarrow \|g(x_{n_0}) - f(x_{n_0})\| \leq \frac{\varepsilon}{3}$ for some open neighborhood U of f. Using these 2 facts we get for every $g \in U$

$$||g(x) - f(x)|| \le ||g(x) - g(x_{n_0})|| + ||g(x_{n_0}) - f(x_{n_0})|| + ||f(x) - f(x_{n_0})|| \le \varepsilon.$$

This shows the continuity of φ^{-1} .

Metric on $L_1(X,Y)$ Since we have a homeomorphism between F and $L_1(X,Y)$ we can simply transfer the metric from F to this spaces. On F we have the product metric

$$d(f,g) = \sum_{d \in D} 2^{-n-1} ||f(d_n) - g(d_n)||.$$

Since the set D corresponds to a countable dense subset of X closed under \mathbb{Q} -linear combinations, this yields a metric on $L_1(X,Y)$

$$d_1(S,T) = \sum_{n=1}^{\infty} 2^{-n-1} ||S(d_n) - T(d_n)||$$

for any subset $D = \{d_n; n \in \mathbb{N}\}$ with the above properties. Now we claim that we obtain an equivalent metric if we take any dense countable set $\{x_n; n \in \mathbb{N}\}$ in the unit ball of X

$$d(S,T) = \sum_{n=1}^{\infty} 2^{-n-1} ||S(x_n) - T(x_n)||.$$

If we are given some such set $A = \{x_n; n \in \mathbb{N}\}$ we can construct the corresponding set $D = \{\sum_{i=1}^k c_{i_k} x_{i_k}; k \in \mathbb{N}, c_{i_k} \in \mathbb{Q}\}$ of all \mathbb{Q} -linear combinations.

To see that these two metrics on $L_1(X,Y)$ are equivalent it suffices to observe that for a linear map T the sequence T(d) converges to 0 for each $d \in D$ if and only if it converges to 0 for each $x_n \in A$.

 $L_1(X,\mathbb{R})$ is compact Since in this case F is a closed subset of $\prod_{d\in D} \langle -\|d\|, \|d\| \rangle$, we see that F is compact. The same metric as above can be in this case rewritten as

$$d(x^*, y^*) = \sum_{n=0}^{\infty} 2^{-n-1} |\langle x_n, x^* \rangle - \langle y_n, y^* \rangle|$$

for some dense sequence (x_n) in the unit ball of X.

Note that the fact that $L_1(X,\mathbb{R})$ is compact can be shown without using the separability. This claim is usually called Banach-Alaoglu theorem. It was proved in 1940 by Leonidas Alaoglu. Stefan Banach has proved this theorem in his 1932's book in the separable case. [M]

I think it's worth noting we have in fact proved Theorem 9.19, which will be needed in some of the later chapters:

Theorem (Keller's Theorem). If X is a separable infinite-dimensional Banach space, $B_1(X^*)$ with the weak*-topology is homeomorphic to the Hilbert cube $\mathbb{I}^{\mathbb{N}}$.

1 Zero-dimensional spaces

Zero-dimensional spaces and retracts The following theorem is included in the book without proof

Theorem. Let X be separable metrizable. Then X is zero-dimensional iff every non-empty closed subset of X is a retract of X.

 \Longrightarrow By Proposition 2.8 this is true for the Cantor space $\mathcal{C}=2^{\mathbb{N}}$. Since every separable zero-dimensional space is a subspace of $2^{\mathbb{N}}$ we get this part of theorem. (If F is closed in X and X is embedded in \mathcal{C} , we have a retraction from \mathbb{C} to F. The restriction is a retraction from X to F.)

 \Leftarrow It suffices to show that X is a subspace of 2^{α} for some cardinal α . By diagonal theorem ([E, Theorem 2.3.20]) we only need to find a family of maps from X to 2 which separates points and closed sets. Now if $x \notin F$, where $x \in X$ and F is a closed subset of F, then we have a retraction $r: X \to F \cup \{x\}$ (the set $F \cup \{x\}$ is closed). Now the map $f: F \cup \{x\} \to 2$ given by f(x) = 0 and $f[F] = \{1\}$ is continuous (both $\{x\}$ and F are clopen in the subspace $\{x\} \cup F$). Thus $f \circ r$ is the required map from X to 2 separating the point x and the closed subset F.

References

- [E] R. Engelking. General Topology. PWN, Warsaw, 1977.
- [Ke] A. S. Kechris. *Classical descriptive set theory*. Springer-Verlag, Berlin, 1995. Graduate Texts in Mathematics 156.

¹This book does not include the proof, it refers to [Ku, Ch.II,§6,Cor.2]

- [Ku] K. Kuratowski. Topology, Vol. I. Academic Press, New York, 1966.
- [M] Robert E. Megginson. An Introduction to Banach Space Theory. Springer, New York, 1998. GTM 193.