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Oxtoby: Measure and Category

Notes from [O].

1 Measure and Category on the Line

Countable sets, sets of first category, nullsets, the theorems of Cantor,

Baire and Borel

Theorem (Cantor). (1.1) For any sequence {an} of real numbers and for any
interval I there exists a point p in I such that p 6= an for every n.

This proof involves infinitely many choices. . . . All choices can be specified,
and we have a well defined function of (I, a1, a2, . . . ) whose value is a point of
I different from all the an.

A is nowhere dense ⇔ A′ contains a dense open set.

Theorem. (1.2) Any subset of a nowhere dense set is nowhere dense. The
union of two (or any finite number) of nowhere dense sets is nowhere dense.
The closure of a nowhere dense set is nowhere dense.

Theorem (Baire). (1.3) The complement of any set of first category on the line
is dense. No interval in R is of first category. The intersection of any sequence
of dense open sets is dense.

Theorem. (1.4) Any subset of a set of first category is of first category. The
union of any countable family of first category sets is of first category.

nullset (or a set of measure zero) ∀ ε > 0 there exists a sequence of intervals
In such that A ⊂

⋃
In and

∑
|In| < ε.

Nullsets form a σ-ideal

Theorem (Borel). (1.5) If a finite or infinite sequence of intervals In covers
an interval I, then

∑
|In| ≥ |I|.

A is of first category 6⇒ A is of first category
A is of first category ⇒ A is nowhere dense
Cantor set C = numbers in [0, 1] that admit a ternary development in which

the digit 1 does not appear. It can be constructed by deleting the open middle
third of the interval

C is closed, nowhere dense, first category set, nullset, uncountable

Theorem. (1.6) The line can be decomposed into two complementary sets A
and B such that A is of first category and B is of measure zero.

Corollary. (1.7) Every subset of the line can be represented as the union of a
nullset and a set of first category.
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2 Liouville Numbers

TODO

3 Lebesgue Measure in r-Space

By an interval I in Euclidean r-space is meant a rectangular parallepiped with
edges parallel to the axes.

outer measure m∗(I) = inf{
∑
|Ii|;A ⊂

⋃
Ii} (infimum over all sequences)

Definition. (3.8) A set A is measurable (in the sense of Lebesgue) if for each
ε > 0 there exists a closed set F and an open set G such that F ⊂ A ⊂ G and
m∗(G− F ) < ε.

ring of subsets = union, difference
σ-ring = countable unions

Theorem. (3.15) A set A is measurable if and only if it can be represented as
an Fσ set plus a nullset (or as a Gδ set minus a nullset).

σ-additivity, translation
A measurable set E ⊂ R is said to have density d at x if

lim
h→0

m(E ∩ 〈x− h, x+ h〉)
2h

= d.

φ(E) = all points of R at which E has density 1

Theorem. (3.20) For any measurable set E ⊆ R, m(E4φ(E)) = 0.

Theorem. (3.21) For any measurable set A, let φ(A) denote the set of points of
R at which E has density 1. Then φ has the following properties, where A ∼ B
means that A4B is a nullset.

(i) φ(A) ∼ A

(ii) A ∼ B implies φ(A) ∼ φ(B)

(iii) φ(∅) = ∅ and φ(R) = R

(iv) φ(A ∩B) = φ(A) ∩ φ(B)

(v) A ⊂ B implies φ(A) ⊂ φ(B)

4 The Property of Baire

5 Non-Measurable Sets

Theorem (Ulam). (5.6) A finite measure µ defined for all subsets of a set X of
power ℵ1 vanishes identically if it is equal to zero for every one-element subset.

2



A limit cardinal is said to be weakly inaccessible if (i) it is greater than ℵ0,
and (ii) it cannot be represented as a sum of fewer smaller cardinals. It is called
inaccessible if, in addition, (iii) it exceeds the number of subsets of any set of
smaller cardinality. By a continuation of the above reasoning, Ulam showed
that in Theorem 5.6 it is sufficient to assume that no cardinal less than or equal
to that of X is weakly inaccessible.

6 The Banach-Mazur Game

Winning strategies, category and local category, indeterminate games

7 Functions of First Class

Oscillation, the limit of a sequence of continuous functions, Riemann

integrability

oscillation

Theorem. (7.1) If f is a real-valued function on R, then the set of points of
discontinuity of f is an Fσ.

Theorem. (7.2) For any Fσ set E there exists a bounded function f having E
for its set of points of discontinuity.

Theorem. (7.3) If f can be represented as the limit of an everywhere convergent
sequence of continuous functions, then f is continuous except at a set of points
of first category.

Theorem. (7.4) Let f be a real-valued function on R. The set of points of
discontinuity of f is of first category if and only if f is continuous at a dense
set of points.

Theorem. (7.5) In order that a function f be Riemann-inteqrable on every
finite intert:al it is necessary and sufficient that f be bounded on every finite
interval and that its set of points of discontinuity be a nullset.

Corollary. (7.7) Any continuous function on a closed interval is integrable.

Theorem. (7.8) 8. The set of points of discontinuity of any monotone function
f is countable. Any countable set is the set of points of discontinuity of some
monotone function.

8 The Theorems of Lusin and Egoroff

Continuity of measurable functions and of functions having the property

of Baire, uniform convergence on subsets
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A real-valued function f on R is called measurable if f−1(U) is measurable
for every open set U in R. f is said to have the property of Baire if f−1(U) has
the property of Baire for every open set U in R. 1

Theorem. (8.1) A real-valued function f on R has the property of Baire if and
only if there exists a set P of first category such that the restriction of f to
R− P is continuous.2

Theorem (Lusin). (8.2) A real-valued function f on R is measurable if and only
if for each ε > 0 there exists a set E with m(E) < ε such that the restriction of
f to R− E is continuous.

Theorem (Egoroff). (8.3) If a sequence of measurable functions fn converges
to f at each point of a set E of finite measure, then for each ε > 0 there is a
set F ⊂ E with m(F ) < ε such that fn converges to f uniformly on E − F .

9 Metric and topological spaces

Definitions, complete and topologically complete spaces, the Baire

category theorem

A metric space (X, ρ) is topologically complete if it is homeomorphic to some
complete space. An important property of such spaces is that the Baire category
theorem still holds.

Theorem. (9.1) If X is a topologically complete metric space, and if A is of
first category in X, then X −A is dense in X.

A topological space X is called a Baire space if every non-empty open set in
X is of second category, or equivalently, if the complement of every set of first
category is dense. In a Baire space, the complement of any set of first category
is called a residual set.

Theorem. (9.2) In a Baire space X, a set E is residual if and only if E contains
a dense Gδ subset of X.

15 The Kuratowski-Ulam Theorem

Sections of plane sets having the property of Baire, product sets,

reducibility to Fubini’s theorem by means of a product transformation

Theorem (Kuratowski-Ulam). (15.1) If E is a plane set of first category, then
Ex is a linear set of first category for all x except a set of first category. If E is
a nowhere dense subset of the plane X × Y , then Ex is a nowhere dense subset
of Y for all x except a set of first category in X.

1Question: Is this related to Baire hierarchy of functions? Answer: Functions belonging
to some Baire class are precisely Borel measurable functions. Every Borel set has property of
Baire, hence every Borel measurable function is Baire function.

2I think that almost the same proof would work for: f is (Lebesgue) measurable ⇔ f |R\P
is Borel measurable for some nullset P
Have a look at [M, 2.H.10]
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16 The Banach Category Theorem

Open sets of first category or measure zero, Montgomery’s lemma, the

theorems of Marczewski and Sikorski, cardinals of measure zero, decomposition

into a nullset and a set of first category

Theorem (Banach Category Theorem). (16.1) In a topological space X, the
union of any family of open sets of first category is of first category.

To discuss the analogue of Theorem 16.1 for open sets of measure zero, we
need the following lemma, which is due to Montgomery [K, §30.10].

Lemma (Montgomery). (16.2) Let {Gα;α ∈ A} be a well-ordered family of
open subsets of a metric spaceX, and for each α ∈ A let Fα be a closed subset
of

Hα = Gα −
⋃
β<α

Gβ .

Then the set E =
⋃
α∈A Fα is an Fσ.

A cardinal is said to have measure zero if every finite measure defined for all
subsets of a set of that cardinality vanishes identically if it is zero for points.

A measure µ defined on the class of Borel subsets of a space X is called a
Borel measure. It is normalized if µ(X) = 1, and nonatomic if it is zero for
points.

Theorem. (16.3) Let µ be a finite Borel measure in a metric space X. If G is
the union of a family G of open sets of measure zero, and if cardG has measure
zero, then µ(G) = 0.

Theorem. (16.4) If X is a metric space with a base whose cardinal has measure
zero, and if µ is a finite Borel measure in X, then the union of any family of
open sets of measure zero has measure zero.

Metrizability cannot be omitted – using example from [KM].
The following theorem is perhaps the ultimate generalization of Theorem

1.6.

Theorem. (16.5) Let X be a metric space with a base whose cardinal has mea-
sure zero. Let µ be a nonatomic Borel measure in X such that

(i) every set of infinite measure has a subset with positive finite measure, and

(ii) every set of measure zero is contained in a Gδ set of measure zero.

Then X can be represented as the union of a Gδ, set of measure zero and a set
of first category.
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17 The Poincaré Recurrence Theorem

18 Transitive Transformations

19 The Sierpinski-Erdös Duality Theorem

20 Examples of Duality

21 The Extended Principle of Duality

22 Category Measure Spaces

Spaces in which measure and category agree, topologies generated by

lower densities, the Lebesgue density topology

TODO

Supplementary notes

In this edition, a set of Supplementary Notes and Remarks has been added at
the end, group according to chapter.

Chapter 3

For an alternative proof of the Lebesgue density theorem (3.20), see [Z].
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