
Bhaskara Rao, Bhaskara Rao: Theory of Charges

Notation: IA = χA, L(F) = Def 3.1.1, field on Ω = algebra of sets

1 Preliminaries

Let Ω be a set and F a collection of subsets of Ω.
F is a lattice if A,B ∈ F ⇒ A ∪B,A ∩B ∈ F .
F is a semi-ring if ∅ ∈ F ; A,B ∈ F ⇒ A ∩ B ∈ F and if A,B ∈ F and

A ⊂ B, then there exists a finite number A0, . . . , An of sets in F such that
A = A0 ⊂ . . . ⊂ An = B and Ai \Ai−1 ∈ F .

semi-field = semi-ring and Ω ∈ F
ring = ∅ ∈ F , finite unions, differences
field = ring and Ω ∈ F
additive-class = ∅ ∈ F , disjoint finite unions, complements
If C is a semi-field on Ω then the smallest field containing C consists of all

finite disjoint unions of sets from C (Theorem 1.1.9(3))

Theorem (1.1.19). Let C be a class of subsets of a set Ω, F0 the smallest
additive class on Ω containing C and F1 the smallest field on Ω containing C.
Suppose C has the following properties:

(i) A,B ∈ C ⇒ A ∩B ∈ F0.

(ii) A,B ∈ C ⇒ A \B ∈ F0.

Then F0 = F1.

Theorem (1.4.6, Stone Representation Theorem). Let B be a Boolean
algebra. Then there exists a compact Hausdorff totally disconnected space X
such that B and the field F of all clopen subsets of X are isomorphic.

A Boolean algebra B is said to satisfy the countable chain condition if every
collection of pairwise disjoint elements in B is at most countable.

Theorem (1.4.8). Let B be a Boolean σ-algebra satisfying the c.c.c. Then B
is a complete Boolean algebra.

2 Charges

F - field of subsets of a set Ω. µ : F → 〈−∞,∞〉, finitely additive = charge.
(8) Using Banach limits we can construct shift-invariant charges.
(9) For every S : Ω → Ω such that S−1(A) ∈ F whenever A ∈ F we can

define using Banach limits an S-invariant probability charge µ on F .
(10) Using Banach limits we can construct density charges.
ba(Ω,F) = the space of all bounded charges on F . With the norm ‖µ‖ =

|µ|(Ω) it is a Banach lattice.
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Theorem (2.2.4). Let µ ∈ ba(Ω,F). Then for any F ∈ F

|µ|(F ) = sup
n∑

i=1

|µ(Fi)|,

where the supremum is taken over all finite partitions F1, . . . , Fn of F in F .
Further, |µ|(Ω) ≤ 2 sup{|µ(F );F ∈ F|}.

3 Extensions of charges

3.1 Real valued set functions and induced functionals

Let F be a collection of subsets of a set Ω, let L(F) = {f : Ω → R; f =∑n
i=1 riIAi

for some A1, . . . , An ∈ F and r1, . . . , rn rational numbers }. It is
obviously a linear space over Q. 1

If µ is a real valued function on F then we set T (
∑n

i=1 riIAi) =
∑n

i=1 riµ(Ai).

Proposition (3.1.3). T is well defined if and only if

n∑
i=1

µ(Ai) =
m∑

i=1

µ(Bi)

holds for any two finite sequences A1, . . . , An and B1, . . . , Bm of not necessarily
distinct sets from F satisfying

n∑
i=1

IAi =
m∑

j=1

IBj .

Lemma. (3.1.4)

Theorem. (3.1.9) Let F be any collection of subsects of a set Ω and µ a real
valued function on F . TODO

3.2 Real partial charges and their extensions

Let C be a collection of subsets of Ω. A real valued function µ on C is called a
real partial charge if

∑n
i=1 µ(Ai) =

∑m
j=1 µ(Bj) whenever

∑n
i=1 IAi

=
∑m

j=1 IBj

for A1, . . . , An, B1, . . . , Bm in C, i.e. the functional T defined on L(C) is well
defined.

Let C be a collection of subsets of Ω and µ a positive real valued function
on C. µ is said to be a positive real partial charge if

∑n
i=1 µ(Ai) ≤

∑m
j=1 µ(Bj)

whenever
∑n

i=1 IAi ≤
∑m

j=1 IBj for A1, . . . , An, B1, . . . , Bm in C.
µ is a real partial charge and µ(C) ≥ 0 6⇒ µ is a positive real partial charge
F - a field. Every restriction of a real charge is a real partial charge. Re-

striction of a positive bounded charge is a positive real partial charge.
1My question: What about reals in place of rationals?
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Theorem (3.2.4). Let µ be a real partial charge on a collection C of subsets of
a set Ω. Let A ⊂ Ω be such that A /∈ C. Then there exists a real partial charge
µ on C ∪ {A} which is an extension of µ. (µ(A) can be arbitrary real number)

Theorem (3.2.5). Let µ be a real partial charge on a collection C of subsets of
a set Ω. Let F be any field on Ω containing C. Then there exists a real charge
µ on F which is an extension of µ.

µi(A) = sup

∑n
i=1 µ(Ai)−

∑m
j=1 µ(Bj)

k
.

The supremum is taken over all finite collections A1, A2, . . . , An, B1, B2, . . . Bm

of sets from C and positive integers k such that

kχA +
m∑

j=1

χBj
≥

n∑
i=1

χAi
.

Similarly,

µe(A) = inf

∑n
i=1 µ(Ai)−

∑m
j=1 µ(Bj)

k
.

The infimum is taken over all finite collections A1, A2, . . . , An, B1, B2, . . . Bm

and positive integers k such that

kχA +
m∑

j=1

χBj
≤

n∑
i=1

χAi

Proposition (3.2.7). Let C be a collection of subsets of a set Ω with Ω ∈ C.
Let µ be a positive real partial charge on C. Let A be any subset of Ω. If µ is a
positive real partial charge on C ∪ {A} which is an extension of µ then,

µi(A) ≤ µ(A) ≤ µe(A).

Proposition (3.2.8). Let C be a collection of subsets of a set Ω with Ω ∈ C.
Let µ be a positive real partial charge on C. Then the following statements are
true:

(i) 0 ≤ µi(A) ≤ µe(A) ≤ µ(Ω)

(ii) If A ∈ C or IA ∈ L(C) then µi(A) = µe(A) = T (IA), where T is the linear
functional on L(C) induced by µ.

(iii) If A,B ⊂ Ω and A ∩B = ∅, then

µi(A)+µi(B) ≤ µi(A∪B) ≤ µi(A)+µe(B) ≤ µe(A∪B) ≤ µe(A)+µe(B).

(iv) If A ∈ C, B ∈ Ω and A ∩ B = ∅ then µi(A ∪ B) = µ(A) + µi(B) and
µe(A ∪B) = µ(A) + µe(B).
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(v) If A ∩B = ∅ and A ∪B ∈ C, then

µ(A ∪B) = µi(A) + µe(B).

Theorem (3.2.9). Let C be any collection of subsets of Ω with Ω ∈ C. Let µ
be a positive real partial charge on C. Let A ⊂ Ω, A /∈ C. Then there exists a
positive real partial charge on C ∪ {A} which is an extension of µ. (µ(A) = d,
µi(A) ≤ d ≤ µe(A) - arbitrary)

Theorem (3.2.10). Let C be any collection of subsets of Ω with Ω ∈ C. Let
µ be a positive real partial charge on C. Let F be any field on Ω containing C.
Then there is a positive charge µ on F which is an extension of µ.

3.3 Extension procedure of Los and Marczewski

Proposition (3.3.1). Let C be a field of subsets of a set Ω. Let µ be a positive
bounded charge on C. Then for any subset A of Ω: µi(A) = sup{µ(B);B ⊂
A,B ∈ C}; µe(A) = inf{µ(C);A ⊂ C,C ∈ C}.

Proposition (3.3.2). Let C be a field of subsets of a set Ω. Let µ be a positive
bounded charge on C. If A and B are two subsets of Ω satisfying the conditions
A ⊂ C, B ⊂ D, C ∩D = ∅ and C,D ∈ C, then

µi(A ∪B) = µi(A) + µi(B),
µe(A ∪B) = µe(A) + µe(B).

Theorem 3.3.3 = extension from the field C to the smallest field containing
C and A; µ(A) can be chosen between µi and µe.

Corollary (3.3.4). Let C be a field of subsets of a set Ω. Let µ be a positive
bounded charge on C. Let F be a field on Ω containing C. Then there exists a
positive bounded charge µ on F such that µ is an extension of µ from C to F
and that the range of µ is a subset of the closure of the range of µ on C.

Corollary (3.3.6). Let C be a field of subsets of a set Ω and µ a positive
bounded charge on C. Let F be a field on Ω containing C. Then there exists a
bounded charge µ on F which is an extension of µ.

3.4 Extension of partial charges in the general case

In this section we examine the situation when Ω /∈ C and also the extension of
partial charges on C taking infinite values.

3.5 Miscellaneous extensions

Theorem 3.5.1 - existence of extension for semi-ring, semi-field. . .
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3.6 Common extensions

Necessary and sufficient conditions for extension of two measures on two sub-
fields.

4 Integration

4.7 ba(Ω,F) as a dual space

TODO

Appendix 1: Notes and comments

Chapter 3

The results of Sections 3.1 and 3.2 are due to Tarski (1938) and Horn and Tarski
(1948). Our treatment is slightly different from the one given in Horn and Tarski
(1948).

5


