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Logarithms
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Harmonic series and logarithms
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Harmonic series and logarithms
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Integral test

f is monotone and decreasing:
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Euler's constant
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Inequalities with logarithms
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Inequalities with logarithms
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Approximating H,

H,~Inn—~~10 = n~ %7 ~ 123,669-68
Hi2366 ~ 9-999,962
H12367 ~ 10000,043

Hioi—Inn<~y<H,—Inn
Hp—1 <vy+Inn< H,
v+In(n—1) < Hp-1 <~v+Inn< H,
9-999,921,7 < Hiz366 < 10-000,025,8 < Hi2367
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Approximating H,
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Approximating H,
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Approximating H,
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Approximating H,
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Hizsge <IN 12367 + 7 — 573367 + 550000z < 9:999,962,2
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Problem 2.4.7
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Estimate with the first 1000 terms:

In2
% 4 “7 = 1.131,971,753,677,421

Sigoo = 1130,972,254,176,419
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Problem 2.4.10

Kempner series
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Kempner series

Neither 8 nor 9

7-8 7.8 7
0 Tz T T8 ®
1 -1

No digit 1:
8 8.9 8.9
2ottt =Y

Logarithms and the Harmonic Series



Problem 2.4.13
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Problem 2.4.13

3

1
5, =5 —
o VK
n S 2v/n+1-2 2\/n
10 5-020,998 4.633 6-325
100 18-589,604 18-100 20
1,000 61-801,009 61-277 63-246
10,000 198-544.645 198-010 200
100,000 630-996,759 630-459 632-455
1,000,000 1,998-540,145 1,998.001 2,000
10,000,000 | 6,323-095,123,940 | 6,322-556 | 6,324-555
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Problem 2.4.14
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Problem 2.4.15
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Ant on a rubber rope
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Ant on a rubber rope - example with small length

Table shows: position of ant, length, ratio

0]2]0
All]2]3
Hl 3 [3];
Al 3 [3] ¢
HI 2 4] 2
Al B4 B
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Ant on a rubber rope - discrete case

O(n—1) = e
ct+v  c+2v c+(n—1)yv
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Ant on a rubber rope - continuous case

_ (1)
o) = c+ vt
(1) = 6(t)(c + v)
Y(6) = $(£)(c + ) + (o)
V() = (0)(c + vy + 20
y(e) - 1""1 (e + v
o = d(6)(c + w1
c+ vt qb( )
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Ant on a rubber rope - continuous case
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