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Logarithms

ln(1+ x) = x − x2
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Harmonic series and logarithms
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Harmonic series and logarithms

Hn = 1+
1

2
+ · · ·+ 1

n − 1
+

1

n

1

n
≤
∫ n

n−1

1

t
dt ≤ 1

n − 1
n∑

k=2

1

k
≤
∫ n

1

1

t
dt ≤

n∑
k=1

1

k − 1

Hn − 1 ≤ ln n ≤ Hn−1

ln(n + 1) < Hn < 1+ ln n
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Integral test

f is monotone and decreasing:

∫ ∞
N

f (t) dt ≤
∞∑

n=N

f (n) ≤ f (N) +

∫ ∞
N

f (t) dt

∫ K+1

N
f (t) dt ≤

K∑
n=N

f (n) ≤ f (N) +

∫ K

N
f (t) dt
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Euler's constant

γ = lim
n→∞

(Hn − ln n) = lim
n→∞

(Hn−1 − ln n)

γ ≈ 0·577,215,665

xn = Hn−1 − ln n = 1+
1

2
+ · · ·+ 1

n − 1
− ln n

yn = Hn − ln n = 1+
1

2
+ · · ·+ 1

n − 1
+

1

n
− ln n = xn +

1

n

xn < xn+1 yn > yn+1
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Inequalities with logarithms

ln x ≤ x − 1

ln
1

x
≤ 1

x
− 1

− ln x ≤ 1

x
− 1

ln x ≥ 1− 1

x

1− 1

x
≤ ln x ≤ x − 1

1− 1

x + 1
≤ ln(1+ x) ≤ x
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Inequalities with logarithms

1

n + 1
≤ ln

(
1+

1

n

)
≤ 1

n

xn+1 − xn =
1

n
− ln(n + 1) + ln n =

1

n
− ln

(
1+

1

n

)
> 0

yn − yn+1 = ln(n + 1)− ln n − 1

n + 1
= ln

(
1+

1

n

)
− 1

n + 1
> 0
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Approximating Hn

Hn ≈ ln n − γ ≈ 10 ⇒ n ≈ e10−γ ≈ 123,669·68
H12366 ≈ 9·999,962
H12367 ≈ 10·000,043

Hn−1 − ln n < γ < Hn − ln n

Hn−1 < γ + ln n < Hn

γ + ln(n − 1) < Hn−1 < γ + ln n < Hn

9·999,921,7 < H12366 < 10·000,025,8 < H12367
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Approximating Hn

1 = ln 2− ln 1 =
1

2
− 1
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+

1
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− 1
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+ . . .
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2
= ln 3− ln 2+

1

2 · 22
− 1

3 · 23
+

1
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− 1
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+ . . .

1

3
= ln 4− ln 3+

1
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− 1
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+

1

4 · 34
− 1
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+ . . .

1

4
= ln 5− ln 4+

1

2 · 42
− 1

3 · 43
+

1

4 · 44
− 1

5 · 45
+ . . .

...

1

n − 1
= ln n − ln(n − 1) +

1

2 · (n − 1)2
− 1

3 · (n − 1)3
+ . . .
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Approximating Hn

Hn−1 =1+
1

2
+ · · ·+ 1
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= ln n
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Approximating Hn

γ = lim
n→∞

(Hn−1 − ln n)

=
1

2

∞∑
m=1

1

m2
− 1

3

∞∑
m=1

1

m3
+

1
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∞∑
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1

m4
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5
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m=1

1

m5
+ . . .

=
ζ(2)

2
− ζ(3)

3
+
ζ(4)

4
− ζ(5)

5
+ . . .

Hn−1 − ln n − γ = −1

2

∞∑
m=n

1

m2
+

1

3

∞∑
m=1

1

m3
− . . .

Hn−1 < ln n + γ − 1
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Approximating Hn

Hn−1 < ln n + γ − 1

2

∞∑
m=n

1

m2
+

1

3

∞∑
m=1

1

m3

∞∑
m=n

1

m2
>

∫ ∞
n

dt

t2
=

1

n

∞∑
m=n

1

m3
<

1

n3
+

∫ ∞
n

dt

t3
=

1

n3
− 2

n2
=

2+ n

2n3

H12366 < ln 12367+ γ − 1

2·12367 +
12369

2·123692 < 9·999,962,2
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Problem 2.4.7

1

2
− 1
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+
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8
+ . . . =

1

2

(
1− 1

2
+

1

3
− 1

4
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1

2
log 2

1− 1
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1
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7
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π

4

1+
1
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− 1
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− 1

4
+

1

5
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1

6
− 1

7
− 1

8
+ · · · = π

4
+

ln 2

2

Estimate with the �rst 1000 terms:

π

4
+

ln 2

2
= 1·131,971,753,677,421

S1000 = 1·130,972,254,176,419
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Problem 2.4.10

Kempner series

1+
1

2
+ · · ·+ 1

8
≤ 8

1

10
+

1

11
+ · · ·+ 1

88
≤ 8 · 9

10
1

100
+

1

101
+ · · ·+ 1

888
≤ 8 · 92

102

...

S ≤ 8

(
1+

9

10
+

92

102
+ . . .

)
=

8

1− 9

10

= 80
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Kempner series

Neither 8 nor 9

7+
7 · 8
10

+
7 · 82

102
+ · · · = 7

1− 8

10

= 35

No digit 1:
8

2
+

8 · 9
2 · 10

+
8 · 92

2 · 102
+ · · · = 40
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Problem 2.4.13

√
k + 1−

√
k =

1
√
k + 1+

√
k

1√
k + 1

≤ 2
√
k + 1+

√
k
≤ 1√

k
1√
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≤ 2(
√
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√
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k
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√
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√
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√
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3
+ · · ·+ 1√

n
≤ 2
√
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Problem 2.4.13

Sn =
n∑

k=1

1√
k

n Sn 2
√
n + 1− 2 2

√
n

10 5·020,998 4·633 6·325
100 18·589,604 18·100 20

1,000 61·801,009 61·277 63·246
10,000 198·544,645 198·010 200

100,000 630·996,759 630·459 632·455
1,000,000 1,998·540,145 1,998·001 2,000

10,000,000 6,323·095,123,940 6,322·556 6,324·555
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Problem 2.4.14

1− 1
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+ · · ·+ 1
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+ · · ·+ 1

2n − 1
+

1

2n
= ln(2n) + γ

1+
1

3
+

1

5
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n→∞

(
1+

1

3
+

1

5
+ · · ·+ 1

2n − 1
− 1

2
ln n

)
= ln 2+

γ

2

Logarithms and the Harmonic Series



Problem 2.4.15

(
1+

1

3
+

1

5
+ · · ·+ 1

2nr − 1

)
−
(
1

2
+

1

4
+

1

6
+ · · ·+ 1

2ns

)

S ≈
(
ln 2+

γ

2
+

ln(nr)

2

)
− 1

2
(γ + ln(ns))

= ln 2+
1

2
ln(nr)− ln(ns) = ln 2+

1

2
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r

s
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Ant on a rubber rope

1

2000

(
1+

1

2
+

1

3
+ · · ·+ 1

n

)

ln n + γ ≈ 2000

n ≈ e2000−γ
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Ant on a rubber rope - example with small length

Table shows: position of ant, length, ratio

0 2 0

A 1 2 1

2

H 3

2
3 1

2

A 5

2
3 5

6

H 10

3
4 5

6

A 13

3
4 13

12
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Ant on a rubber rope - discrete case

θ(n − 1) =
α

c + v
+

α

c + 2v
+ · · ·+ α

c + (n − 1)v

θ(n − 1) ≥
∫ n

1

α

c + vt
dt =

[α
v
ln(c + vt)

]n
1

θ(n − 1) ≥ α

v
ln

(
c + vn

c + v

)
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Ant on a rubber rope - continuous case

y ′(t) = α+
vy(t)

c + vt

φ(t) =
y(t)

c + vt

y(t) = φ(t)(c + vt)

y ′(t) = φ′(t)(c + vt) + vφ(t)

y ′(t) = φ′(t)(c + vt) +
vy(t)

c + vt

y ′(t)− vy(t)

c + vt
= φ′(t)(c + vt)

α = φ′(t)(c + vt)
α

c + vt
= φ′(t)
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Ant on a rubber rope - continuous case

φ′(t) =
α

c + vt

φ(t) =

∫ t

0

α

c + vx
dx

φ(t) =
α

v
ln

(
c + vt

c

)
α

v
ln

(
c + vT

c

)
= 1 ⇔ T =

c

v

(
ev/α − 1

)
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