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Notes from [vRS].

Introduction

A monotone function is Riemann integrable.
A continuous function is Riemann integrable.
A differentiable function is continuous.
A continuous function has an antiderivative.

Theorem. Every function that has an antiderivative is Darboux continuous.

Mon the set of monotone functions
D the set of differentiable functions
C the set of continuous functions
R the set of Riemann integrable functions
D′ the set of derivative functions (functions with antiderivatives)
DC the set of Darboux continuous functions

1 Monotone functions

1.1 Continuity of monotone functions

1.2 Indefinite integrals of monotone functions (convex func-
tions)

TODO Φ1, Φ2

Theorem. (2.2) Let I ⊂ R be an interval and let f : I → R. The following
conditions are equivalent.
(α) f is convex.
(β) Φ1f is an increasing function in each variable.
(γ) Φ2f ≥ 0.

Drf(x) := lim
y→x+

f(y)− f(x)

y − x

Dlf(x) := lim
y→x−

f(y)− f(x)

y − x
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1.3 Differences of monotone functions

Let P : a = x0 < x1 < · · · < xn = b be a partition of 〈a, b〉. Then we define for
a function f : 〈a, b〉 → R

LP (f) :=

n∑
i=1

√
(xi − xi−1)2 + (f(xi)− f(xi−1))2.

The length of the graph of f is by definition

L(f) := sup{Lp(f) : P is a partition of 〈a, b〉}

((L(f)) may be ∞.)
total variation of f

Var f := sup{
n∑
i=1

|f(xi)−f(xi−1)|; a = x0 < · · · < xn = n is a partition of 〈a, b〉}

Definition. (3.1) TODO bounded variation

First, one defines the integral of a step function in the obvious way. Then
by continuity one defines the integral for functions that are limits of uniformly
convergent sequences of step functions. These functions are said to be Cauchy-
Bourbaki integrable.

Theorem. (3.3) The following conditions on f : 〈a, b〉 → R are equivalent.
(α) f is the uniform limit of a sequence of step functions.
(β) f is the uniform limit of a sequence of functions of bounded variation.
(γ) For each x ∈ 〈a, b〉, f(x+) and f(x−) exist. (It follows that an f satisfying
(γ) is bounded.)

1.4 Differentiability of monotone functions

Definition. (4.1) Let E ⊆ R. We call E a null set (or a negligible set) if
for every ε > 0 there exist intervals I1, I2, . . . covering E and such that the
sum of their lengths is at most ε. To avoid laborious circumlocutions, we call∑∞
i=1 L(Ii) the total length of the intervals I1, I2, . . . , without requiring these

intervals to be pairwise disjoint. (The length of an interval I is denoted by
L(I).)

Theorem. (4.3) Let E ⊂ R be a null set. Then there exists a continuous
increasing function on U that is differentiable at no point of E.

Theorem (Lebesgue). (4.10) A monotone function f : 〈a, b〉 → R is differen-
tiable almost everywhere on 〈a, b〉.
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2 Subsets of R
2.5 Small sets

Theorem (Baire). (5.4) R is not meagre.

Theorem. (5.5) There exist nowhere dense sets that are not null. There exist
null sets that are not meagre. More than that R can be written as the union of
a null set and a meagre set.

The example given here is constructed as a complement of
⋂
Uk, where

Uk := (ri − 2−ki, ri + 2−ki) and Q = {ri; i = 1, 2, . . . } is an enumeration of
rational numbers.1

2.6 Fσ-sets and Gδ-sets

Theorem. (6.2)
(i) Every closed set is an Fσ. A union of countably many Fσ-sets is an Fσ.

If A1, A2 are Fσ-sets, then so is A1 ∩A2.
(ii) Every open set is a Gδ. An intersection of countably many Gδ-sets is a

Gδ. If Bl, B2 are Gδ-sets, then so is B1 ∪B@.
(iii) A set is an Fσ if and only if its complement is a Gδ.
(iv) An interval is both an Fσ and a Gδ. Every open set is an Fσ; every closed

set is a Gδ.
(v) Every countable set is an Fσ.

Theorem. (6.3) A subset of R is meagre if and only if its complement contains
a Gδ-set that is dense in R.

Q is not a Gδ. (Otherwise R \ Q would be meagre and, consequently, R
would be meagre.)

2.7 Behaviour of arbitrary functions

2.7.1 The set of maxima and minima of an arbitrary function

Let f : R → R. We say that s is a local maximum of f if there exist an x ∈ R
and a δ > 0 such that f(x) = s while f(y) ≤ s for x− δ < y < x+ δ. Similarly
one can define local minimum. If s is a local maximum or a local minimum we
say that s is a local extremum of f

Theorem. (7.2) Let f : R→ R be any function. Then

{a ∈ R; a is a local extremum of f}

is a countable set.

1Fat Cantor sets (also called SmithVolterraCantor sets) are other examples of such sets.
http://en.wikipedia.org/wiki/Fat_Cantor_set
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2.7.2 The set of continuity points of an arbitrary function

Cf = {x ∈ R; f is continuous at x}

Theorem. (7.5) Let f : R → R. Then the set of points of continuity of f is a
Gδ.

Corollary. (7.6) There is no function R→ R that is continuous at each rational
point and discontinuous at each irrational point.

Theorem. (7.7) Let f be any function on R. Then there exist only countably
many points x of R for which f is not continuous at x but f(x+) exists.

Corollary. (7.8) If f is any function on R then the set

{x ∈ R; lim
y→x

f(y) =∞}

is countable.

Corollary. (7.9) A left continuous function on R has only countably many
discontinuities.

Theorem. (7.11) Let f : R → R be a continuous function. Then the set of
points where it is differentiable is a countable intersection of Fσ-sets.

Lemma. (7.12) There exist subsets of R that are not Fσδ-sets.

Theorem. (7.14) Let f : R → R be continuous. Then the set {a ∈ R; f is not
increasing at a} is a Gδ without isolated points.

Corollary. (7.15) There is no continuous function f : R → R for which {a ∈
R; f is not increasing at a} = R \Q.
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2.7.3 The set of points where a continuous function is differentiable

2.7.4 The set of points where a continuous function is increasing

3 Continuity

3.8 Continuous functions

Theorem. (8.1) Let I be an interval.
(i) If f, g ∈ C and α, β ∈ R, then αf + βg ∈ C and fg ∈ C. (C is an algebra.)

(ii) If f, g ∈ C, then f ∨ g ∈ C and f ∧ g ∈ C. (C is a lattice.)
(iii) If f1, f2, · · · ∈ C and f = lim

n→∞
fn uniformly, then f ∈ C. (C is uniformly

closed.)
(iv) If f ∈ C and f(x) 6= 0 for all x ∈ I, then 1/f ∈ C.

2TODO Example 7.16
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(v) If f ∈ C and g : f(I)→ R is continuous, then g ◦ f ∈ C.
(vi) If f ∈ C, then f(I) is an interval or, if f is constant, a singleton. More-

over, if f is injective, then f is strictly monotone and f−1 : f(I) → I is
continuous. If I is closed and bounded, then so is f(I). In particular, f
is bounded on I and has a largest and a smallest value.

(vii) If f ∈ C〈a, b〉, then there exist polynomial functions Pn on 〈a, b〉 such that
lim
n→∞

Pn = f uniformly. (Approximation theorem of Weierstrass.)

(viii) If f ∈ C, then f has an antiderivative F , f is Riemann integrable over
〈a, b〉 for every a, b ∈ I with a < b and∫ b

a

f(x) dx = F (b)− F (a).

(Fundamental theorem of calculus.)

A set S ⊆ R2 is called arcwise connected if for every v, w ∈ S there is a
continuous φ : [0, 1]→ S such that φ(0) = v and φ(1) = w. 3

Theorem. (8.2) Let f : [a, b] → R and let Γf := {(x, f(x)) : x ∈ [a, b]} be the
graph of f . Then the following conditions are equivalent.
(α) f is continuous.
(β) Γf is compact.
(γ) Γf is arcwise connected.

3.9 Darboux continuous functions

Definition. (9.1) Let f : [a, b] → R. f is called Darboux continuous if for any
p, q with a ≤ p < q ≤ b and any c ∈ R between f(p) and f(q) there is an s
between p and q such that f(s) = c.

Continuous functions and derivatives are Darboux continuous.
4

Theorem. (9.4) Let f : [a, b]→ R. If the graph Γf of f is connected, then f is
Darboux continuous.

Theorem. (9.5) Every f : R → R is the difference of two Darboux continuous
functions.

Notes to Section 9 For a bibliography, see [BC] and [BCW].

3.10 Semicontinuous functions

Definition. (10.1) Let f : I → R.
f is called lower semicontinuous if for every p ∈ I and every ε > 0 there is

a δ > 0 such that x ∈ I, |x− p| < δ implies −ε < f(x)− f(p).

3TODO arcwise connected vs. path connected
4TODO Theorem 9.2, Corollary 9.3
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f is called upper semicontinuous if for every p ∈ I and every ε > 0 there is
a δ > 0 such that x ∈ I, |x− p| < δ implies f(x)− f(p) < ε.
C+(I) = all lower semicontinuous functions on I
C−(I) = all upper semicontinuous functions on I

Theorem. (10.2) Let f, g : I → R, A ⊆ I. Then
(i) f ∈ C+ if and only if for every s ∈ R the set {x; f(x) > s} is open in I (i.e.
is the intersection of I and an open set).
f ∈ C− if and only if for every s ∈ R the set {x; f(x) < s} is open in I.
(ii) ξA ∈ C+ if and only if A is open in I.
ξA ∈ C− if and only if A is closed in I.
(iii) If f, g ∈ C+ and λ ≥ 0 then f + g ∈ C+ and λf ∈ C+.
If f, g ∈ C− and λ ≥ 0 then f + g ∈ C+ and λf ∈ C−.

Theorem. (10.3) Let S ⊂ C+.
(i) If h(x) := sup{f(x); f ∈ S} exists for all x, then h ∈ C+.
(ii) If f, g ∈ C+ then f ∧ g ∈ C+.
(In other words, C+ is closed under arbitrary suprema and finite infima.)

Definition. (10.4) Let f : I → R be a bounded function. We define

f↑ = sup{g(x); g ≤ f ; g ∈ C+}
f↓ = inf{h(x);h ≥ f ;h ∈ C−}

Theorem. (10.5) Let f and g be bounded functions on an interval I. Then
(i) f↑ ≤ f ≤ f↓, f↑ ∈ C+, f↓ ∈ C−

(ii) If h ≤ f , h ∈ C+, then h ≤ f↑. If j ≥ f , j ∈ C−, then j ≥ f↓.
(iii) If f ≤ g, then f↑ ≤ g↑ and f↓ ≤ g↓.
(iv) infx∈I f

↓(x) ≥ infx∈I f(x) = infx∈I f
↑(x).

supx∈I f
↓(x) = supx∈I f(x) ≥ supx∈I f

↑(x).
(v) f is lower semicontinuous if and only if f = f↑.

f is upper semicontinuous if and only if f = f↓.
f is continuous if and only if f↑ = f↓.

(vi) For every t ∈ I,

f↑(t) = lim
n→∞

inf{f(x) : x ∈ I, |x− t| ≤ 1/n}

f↓(t) = lim
n→∞

sup{f(x) : x ∈ I, |x− t| ≤ 1/n}

Theorem (Baire). (10.6) Let I be an interval. Let f : I → R be bounded below.
Then the following two conditions are equivalent.

a) f is lower semicontinuous.

b) There is an increasing sequence of continuous functions on I, tending to
f pointwise.
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3.11 Functions of the first class of Baire

B1(X) = functions of the first class of Baire = pointwise limits of sequences of
continuous functions.

Theorem. (11.2) Let I be an interval. Let f, g : I → R be of the first class.
Then
• f, g ∈ B1 and λf ∈ B1 for every λ ∈ R. Furthermore fg ∈ B1. (B1 is

an algebra of functions.)
• f ∨ g ∈ B1 and f ∧ g ∈ B1. (B1 is a lattice.)
• If h : R→ R is continuous, then h ◦ f ∈ B1.
• If J is an interval and σ : J → I is continuous, then f ◦ σ ∈ B1(J).

Theorem. (11.3) Let I be an interval and let f ∈ B1(I). Then for every open
set U ⊂ R, f−1(U) is an Fσ (See Theorem 11.12 for the converse.)

Theorem. (11.4) Let I be an interval and let f ∈ B1(I). Then the points of
discontinuity of f form a meagre Fσ. In particular the points of continuity form
a dense set. 5 6 7

Corollary. (11.5) ξQ is not a function of the first class.

Theorem. (11.6) Let X ⊆ R. Then ξX , as a function on R, is of the first class
if and only if X is both an Fσ and a Gδ.

Theorem. (11.7) Let X ⊆ R. Then B1(X) is uniformly closed, i.e. if
f1, f2, · · · ∈ B1(X) and f := lim

n→∞
fn uniformly, then f ∈ B1(X).

Theorem. (11.8) Let I be an interval. Every function I → R that has only
countably many points of discontinuity is of the first class.

(The converse is false, as the example ξD shows.)

Corollary. (11.9) Every left or right continuous function is of the first class of
Baire.

Theorem. (11.10) Let I be an interval. Let f : I → R be such that its graph is
a closed subset of R2. Then f is a difference of two semicontinuous functions
and therefore is of the first class.

Lemma. (11.11) Let A1, A2, . . . , AN be Fσ-sets whose union is R. Then there
exist pairwise disjoint Fσ-sets P1, P2, . . . , PN such that P1 ∪ · · · ∪ PN = R and
Pi ⊂ Ai for each i.

Theorem (Lebesgue). (11.12) Let I be an interval and let f : I → R. Then f
is of the first class if and only if for every open subset U of R, f−1(U) is an Fσ.

5The same is true for a map f : X → Y , where X, Y are metrizable, Y is separable. For the
second part to hold we need additionally that X is completely metrizable. See [K, Theorem
24.14].

6The proof in [vRS] uses f−1(V )\Int f−1(V ) and proof in uses f−1(V )\Int f−1(V ); where
V runs over elements of a countable base of Y . Which of them is correct?

7Wikipedia article on Baire spaces claims that this is true if X is a Baire space.
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Corollary. (11.13) Let f : I → R. Suppose there exist functions g1, g2, . . . ,
h1, h2, . . . of the first class such that g1 ≥ g2 ≥ . . . , lim

n→∞
gn = f , h1 ≤ h2 ≤ . . . ,

lim
n→∞

hn = f . Then f ∈ B1.

Baire has given the following characterization of the elements B1: A function
f : R → R belongs to B1 if and only if for every nonempty closed subset A of
R the restriction of f to A is continuous at some point of A. (We give a proof
in Appendix C.)

3.12 Riemann integrable functions

Theorem. (12.1) Let f : 〈a, b〉 → R be bounded. Then the following conditions
are equivalent

a) f is Riemann integrable.

b) The set of points of discontinuity of f is a nullset. (f is continuous almost
everywhere.)

4 Differentiation

4.13 Differentiable functions

D= all differentiable functions on an interval I

Theorem. (13.1) Let I be an interval.
(i) If f, g ∈ D and λ, µ ∈ R then λf + µg ∈ D and fg ∈ D . (D is an algebra

of functions.) If f ∈ D , then f is continuous.
(ii) If f ∈ D and f(x) 6= 0 for all x ∈ I, then 1/f ∈ D .

(iii) If f ∈ D , if J is an interval such that f(I) ⊂ J and if g : J → R is
differentiable, then g ◦ f ∈ D .

(iv) If f is a differentiable bijection of I onto an interval J and if f ′(x) 6= 0
for all x ∈ I, then the inverse map f−1 : J → I is differentiable.

(v) If p, q ∈ I, p < q and f ∈ D , then there is a ξ ∈ (p, q) such that f(q) −
f(p) = (q − p)f ′(ξ) (mean value theorem).

(vi) If f ∈ D and f ′(ξ) > 0 for some ξ ∈ I, then f is increasing at ξ.
(vii) If f ∈ D and f ′ ≥ 0, then f is increasing on I.

If f ∈ D and f ′ = 0, then f is constant.
If f ∈ D and f ′ > 0, then f is strictly increasing.

8TODO One implication (Fσ ⇒ B1) is true for f : X → Y , X, Y metric, separable and
Y = R or Y zero-dimensional, [K, Theorem 24.10]

9Counterexample before [K, Theorem 24.10] ???
10TODO This seems to be true for f : X → Y where X, Y are metric spaces, Y separable.

See [K, Thereom 24.3]; although he has this as the definition of B1(X).
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4.14 Derivatives

Example. (14.1) Let j ∈ D′〈0,∞) and j(x + 1) = j(x). Let J be the an-
tiderivative of j and A := J(1)− J(0). Then the function

h(x) =

{
j(x−1) if 0 < x ≤ 1,

A if x = 0,

is differentiable on 〈0, 1〉.

Theorem. (14.2) D′ is uniformly closed, that is, if lim
n→∞

fn = f uniformly and

if each fn has an antiderivative, then so has f .

4.15 The fundamental theorem of calculus

Theorem. (15.1) Let f ∈ D[a, b].
(i) If f ′(x) > 0 for all x ∈ 〈a, b〉, then f is strictly increasing.
(ii) If f ′(x) ≥ 0 for all x ∈ 〈a, b〉, then f is increasing.
(iii) If f ′(x) = 0 for all x ∈ 〈a, b〉, then f is constant.

Corollary. (15.2) Let f ∈ D[a, b]. Let A,B ∈ R be such that A ≤ f ′ ≤ B.
Then A(b− a) ≤ f(b)− f(a) ≤ B(b− a).

Definition. (15.4) Let I be an interval and let f : I → R. For x ∈ I we define
elements D+f(x) and D−f(x) of R ∪ {±∞} by

D+f(x) = lim sup
y→x

f(y)− f(x)

y − x
, D−f(x) = lim inf

y→x

f(y)− f(x)

y − x

Theorem. (15.5) Let g : 〈a, b〉 → R be Riemann integrable. Then the function
Jg : x 7→

∫ x
a
d(t) dt (x ∈ 〈a, b〉) is differentiable almost everywhere on 〈a, b〉 and

(Jg)′ = g a.e. on 〈a, b〉.

5 Borel measurability

5.16 The classes of Baire

C ⊂ B1 ⊂ B2 ⊂ B3 ⊂ . . .
We know that the inclusions C ⊂ B1 and B1 ⊂ B2 are strict.11

For ordinals: Bα+1 = (B)∗ and for limit ordinals Bα =
⋃
β<α Bβ .

Definition. (16.2) A set F of functions R→ R is called an L-set if
(i) C ⊆ F ;
(ii) if f1, f2, · · · ∈ F and f = lim

n→∞
fn, then f ∈ F

11For example ξ{0} is in B1, but it is not continuous. The function ξQ is not a function of
the first class (Corollary 11.5), but it can be obtained as a limit of ξFn , where Fn is a finite
set.
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The collection of all functions R → R is an L-set. By B we denote the inter-
section of all L-sets. This B is itself an L-set and it is contained in every L-set.
The elements of B are called Borel functions or Borel measurable functions.

f, g ∈ B ⇒ f + g, fg, f ∨ g, f ∧ g ∈ B

Theorem. (16.4) B is a vector space and a ring containing C(R),B1,B2, . . . If
f ∈ B and g ∈ B, then f ∨ g ∈ B, f ∧ g ∈ B, f ◦ g ∈ B, |f | ∈ B. If f1, f2, · · · ∈ B
and if lim

n→∞
fn(x) exists for all x, then lim

n→∞
fn ∈ B. If f1, f2, · · · ∈ B and if

supn∈N fn(x) is finite for all x, then supn∈N fn ∈ B. (In fact, supn∈N fn =
lim
n→∞

f1 ∨ f2 ∨ · · · ∨ fn.)

Definition. (16.5) A subset E of R is a Borel set (is Borel measurable) if
ξE ∈ B. We denote the collection of all Borel sets by Ω.

Theorem. (16.6) (i) ∅,R ∈ Ω.
(ii) If A ∈ Ω and B ∈ Ω, then A ∪B ∈ Ω, R \A ∈ Ω, R \B ∈ Ω.
(iii) If A1, A2, · · · ∈ Ω, then

⋃
nAn ∈ Ω and

⋂
nAn ∈ Ω.

(iv) All open sets and all closed sets are elements of Ω (see Theorem 10.2(i)).

Theorem. (16.7) Let f : R→ R. The conditions (α)–(ε) are equivalent.
(α) f ∈ B.
(β) For every a ∈ R, {x; f(x) ≥ a} ∈ Ω.
(γ) For every a ∈ R, {x; f(x) > a} ∈ Ω.
(δ) For every open set U , f−1(U) ∈ Ω.
(ε) For every E ∈ Ω, f−1(E) ∈ Ω.

For a setA of functions on U we denote byA∗ the set of all functions that can
be written as lim

n→∞
fn for certain f1, f2, · · · ∈ A. Thus, C∗ = B1, B1∗ = B2, . . .

Let A be a set of functions on R. A function F : R2 → R is said to be a
catalogue of A if
(i) F is Borel measurable,
(ii) for every f ∈ A there is an s ∈ 〈0, 1〉 such that f(x) = F (x, s) for all x ∈ R.

Lemma. (16.9)

(i) If A1,A2, . . . have catalogues, then so does
⋃
nAn.

(ii) If A has a catalogue, then so does A∗.

(iii) C has a catalogue.

(iv) B does not have a catalogue.

(v) If A ⊇ C and A has a catalogue, then A∗ 6= A.

5.17 Transfinite construction of the Borel functions

Corollary. (17.12.) B has the cardinality of continuum.
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5.18 Analytic sets
12

In this section, equivalence of the following conditions for subsets of R will
be shown:
(α): A is the image of a Borel set E under a Borel measurable function f : R→
R.
(β): A is the image of a Gδ-set E under a Borel measurable function f : R→ R.
(γ): A is the image of a Gδ-set E under a Borel measurable function f : E → R.
(δ): There exists a continuous map of R \Q onto A.
(ε) There exists a continuous map of N onto A.

N = NN with the product topology (=pointwise convergence). 13

Definition. (18.3) We call a subset A of R analytic if either A = ∅ or there
exists a continuous surjection N → A.

Examples: (0, 1〉, 〈a, b〉, R, N and any countable subset of R

Theorem. (18.6) Let A1, A2, . . . be analytic subsets of R. Then their union
and intersection are analytic.

Lemma. (18.7) Let S be a nonempty closed subset of N . Then there exists a
continuous surjection F : N → S with f(a) = a for all a ∈ N .

Theorem. (18.8) All Borel subset of R are analytic (and have analytic complements).

Lemma (Separation lemma). (18.9) If A and B are disjoint analytic sets, then
there exists a Borel set E with A ⊂ E, B ⊂ R \ E.

Theorem. (18.10) A subset A of R is Borel if and only if both A and its
complement are analytic.

Theorem (Sierpiński). (18.12) A function R → R is Borel measurable if and
only if its graph is a Borel subset of R2.

Corollary. (18.13) If f : R → R is bijective and Borel measurable, then the
inverse map f−1 is also Borel measurable.

Theorem. (18.14) Let A be an analytic subset of R and let f : R→ R be Borel
measurable. Then f [A] is analytic.

Theorem. (18.15) (i) Let π2 be the second coordinate map R2 → R. A subset
X of R is analytic if and only if there is a Gδ-subset A of R2 with X = π2[A].
(ii) There exists a continuous function g : R→ R such that the analytic subsets
of R are just the sets g[B] where B runs through the Gδ-subsets of R.

Theorem (Sierpiński). (18.16) Not all analytic sets are Borel.

12TODO I should find corresponding results for Polish spaces; maybe in [K], and mention
them in footnotes.

13This space is usually called Baire space. It is first countable, completely metrizable; i.e.,
it is a Polish space.
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Lemma. (18.18) There exists a subset W of N 3 such that
(i) for every continuous F : N → N there exists an s ∈ N such that the graph
of F is just {(x, y) ∈ N 2; (x, y, s) ∈W}.
(ii) W is closed

Corollary. (18.21) The image f [X] of a Borel subset X of R under a Borel
measurable function f need not be a Borel set.

6 Integration

6.19 The Lebesgue integral
14

Definition. A function f : R → R is said to be Lebesgue integrable if there
exist φ1, φ2 · · · ∈ Cc such that

∑∞
i=1

∫
|φi| is finite while

∑n
i=1 φi = f almost

everywhere. Clearly, the Lebesgue integrable functions form a vector space
which contains Cc. We denote this vector space by L .

Theorem. (19.9) If f ∈ L , then |f | ∈ L and |
∫
f | ≤

∫
|f |. If f, g ∈ L , then

f ∧ g ∈ L and f ∨ g ∈ L .

Lemma. (19.10) Let f ∈ L and ε > 0. Then there exists a Φ ∈ Cc such that∫
|f −Φ| < ε. In fact, there exist Φ, φ1, φ2, · · · ∈ Cc with f = Φ +

∞∑
i=1

φi a.e. and∫
|f − Φ| ≤

∞∑
i=1

∫
|φi| ≤ ε.

Theorem. (19.11) Let f1, f2, · · · ∈ L be such that
∞∑
n=1
|fn| < ∞. Then the

series
∞∑
n=1

fn converges a.e. If f : R→ R and f =
∞∑
n=1

fn a.e., then f ∈ L and∫
f =

∑∞
n=1

∫
fn.

Corollary. (19.12) (i) If f : R → R and f = 0 a.e., then f ∈ L and
∫
f = 0.

Conversely, if f ∈ L , f ≥ 0 and
∫
f = 0, then f = 0 a.e.

(ii) Let X ⊆ R. Then X is a null set if and only if ξX ∈ L ,
∫
ξX = 0.

Theorem (Monotone convergence, Levi’s theorem). (19.13) Let f1, f2, · · · ∈ L
be such that either f1 ≤ f2 ≤ . . . a.e. or f1 ≥ f2 ≥ . . . a.e. and such that the
sequence

∫
f1,
∫
f2, . . . is bounded. Then the sequence f1, f2, . . . converges a.e.

If f : R→ R and if f = lim
n→∞

fn a.e., then f ∈ L and
∫
f = lim

n→∞

∫
fn.

Theorem (Fatou). (19.14) Let f1, f2, · · · ∈ L , fn ≥ 0 a.e. for every n. Sup-
pose that the sequence

∫
f1,
∫
f2, . . . is bounded. Let f : R → R be such that

f = lim inf
n→∞

fn a.e. Then f ∈ L and∫
f ≤ lim inf

n→∞

∫
fn.

14TODO 19.1, 19.2
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(To see that not always
∫
f = lim

n→∞

∫
fn, choose g ∈ Cc, g ≥ 0 and set fn(x) :=

g(x+ n).) 15

Theorem (Dominated convergence, Lebesgue’s theorem). (19.15) Let g ∈ L ,
g ≥ 0 a.e. Let f1, f2, · · · ∈ L be such that |fn| ≤ g a.e for all n. Let f : R→ R,
f = lim

n→∞
fn a.e. Then f ∈ L and

∫
f = lim

n→∞

∫
fn.

Corollary. (19.16) If f : R → R is a Borel function, if g ∈ L and if |f | ≤ g,
then f ∈ L

6.20 Lebesgue measurability

Theorem. (20.9) For E ⊆ R the following statements are equivalent. 16

6.21 Absolute continuity

Definition (Lusin). (21.8) A function f : 〈a, b〉 → R is said to have the property
(N) if for every nullset N ⊆ 〈a, b〉 its image set f [X] is a null set.

Theorem. (21.9) Every differentiable function on 〈a, b〉 has the property (N).

Theorem. (21.10) Let f : 〈a, b〉 → R be continuous. Suppose that f ′(x) > 0
(or f ′(x) ≥ 0, f ′(x) = 0) for almost every x ∈ 〈a, b〉and that f has the property
(N). Then f is strictly increasing (or increasing, constant).

Corollary. (21.11) Let f : 〈a, b〉 → R be differentiable and let f ′(x) > 0 (or
f ′(x) ≥ 0, f ′(x) = 0) for almost every x ∈ 〈a, b〉. Then f is strictly increasing
(or increasing, constant).

Theorem (Vitali-Banach). (21.21) Let f : 〈a, b〉 → R.

(i) The following conditions are equivalent:
(α) f is absolutely continuous.
(β) f is continuous and of bounded variation and f has the property (N).
(γ) f is an indefinite integral of a Lebesgue integrable function.

(ii) If f satisfies these conditions, then it is differentiable a.e. on 〈a, b〉, f ′ is
Lebesgue integrable and f is an indefinite integral of f ′.

15My note: I had problems remembering the direction of the inequality in the Fatou’s
lemma. A mnemonic which helps me to remember it is that integral behaves similarly as sum
and we have

lim inf xn + lim inf yn ≤ lim inf(xn + yn)

and
n∑
k=1

lim inf x(k) ≤ lim inf

n∑
k=1

x(k),

where each x(k) is a sequence. (The whole inequality is lim inf xn + lim inf yn ≤ lim inf(xn +
yn) ≤ lim inf xn + lim sup yn ≤ lim sup(xn + yn) ≤ lim supxn + lim sup yn.)
Some other tricks to remember the direction of the inequality can be found here: http:

//math.stackexchange.com/questions/242920/tricks-to-remember-fatous-lemma
16TODO regularity of Lebesgue measure

13

http://math.stackexchange.com/questions/242920/tricks-to-remember-fatous-lemma
http://math.stackexchange.com/questions/242920/tricks-to-remember-fatous-lemma


6.22 The Perron integral

If u : 〈a, b〉 → R and x, y ∈ 〈a, b〉 we define∣∣b
au = u(y)− u(x).

Let f : 〈a, b〉 → R. A continuous function u on 〈a, b〉 is called an upper
function of f if D−u ≥ f . A continuous function v on 〈a, b〉 is called a lower
function of f if D+v ≤ f .

Definition. (22.1) f is said Perron integrable over 〈a, b〉 if for every ε > 0 there
exists an upper function u and a lower function v for which |aub ≤ |avb + ε. For
such Perron integrable f ,

sup
{∣∣b
av ; v is a lower function of f

}
= inf

{∣∣b
au ;u is an upper function of f

}
This number is then called the Perron integral of f over 〈a, b〉 we denote it by

P
∫ b
a
f . 17

Corollary. (22.8) If f : 〈a, b〉 → R is Perron integrable and ≥ 0, then f is also
Lebesgue integrable.

6.23 The Stieltjes integral

Appendixes

A. The real number system

B. Cardinalities

C. An uncountable well-ordered set: a characterization of
the functions of the first class of Baire

Theorem (Baire). Let f : R → R. Then f belongs to first Baire class if and
only if, for every non-empty closed subset C of R, the restriction of f to R has
a continuity point.

D. An elementary proof of Lebesgue’s density theorem
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