
What is amenable group?
d = asymptotic density
aut(N) = permutations of N
G = {π ∈ aut(N); lim

N→∞
|{n ≤ N < π(n)}|} = Lévy group

Amenable group

planetmath.org: Let G be a locally compact group and L∞(G) be the space
of all essentially bounded functions G → R with respect to the Haar measure.

A linear functional on L∞(G) is called a mean if it maps the constant func-
tion f(g) = 1 to 1 and non-negative functions to non-negative numbers.

Let Lg be the left action of g ∈ G on f ∈ L∞(G), i.e. (Lgf)(h) = f(g−1h).
Then, a mean µ is said to be left invariant if µ(Lgf) = µ(f) for all g ∈ G and
f ∈ L∞(G). Similarly, right invariant if µ(Rgf) = µ(f), where Rg is the right
action (Rgf)(h) = f(gh).

A locally compact group G is amenable if there is a left (or right) invariant
mean on L∞(G).

All finite groups and all abelian groups are amenable. Compact groups are
amenable as the Haar measure is an (unique) invariant mean.

If a group contains a free (non-abelian) subgroup on two generators then it
is not amenable.

wolfram: If a group contains a (non-abelian) free subgroup on two gen-
erators, then it is not amenable. The converse to this statement is the Von
Neumann conjecture, which was disproved in 1980.

N. Obata: Density of Natural Numbers and Lévy
Group

F = sets with density
Darboux property of asymptotic density is shown here.
G(d) = permutations which preserve density
G0 = {π : d({n : π(n) 6= n}) = 0}
G0 ⊂ G ⊂ G(d)
All inclusions are proper. G0 is a normal subgroup G(d).

Proposition. Let A and B be members of F such that 0 < d(A) = d(B) < 1.
Then there exists a permutation g ∈ G such that g(A) = B.

Theorem. Assume that A ∈ F is almost invariant under the Lévy group, i.e.,

d(A4g(A)) = 0 for all g ∈ G.

Then d(A) = 0 or d(A) = 1.

Finite additivity, invariance with respect to Lévy group and normalization
(d(N) = 1) characterize density. (Theorem 2)
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L+ = lim sup
n→∞

1
N

N∑
n=1

an, L− = lim inf
n→∞

1
N

N∑
n=1

an

Proposition. The Lévy group is the maximal permutation group which keeps
L+ (or L−) invariant.

A sequence (xn), 0 ≤ xn < 1 is uniformly distributed on the interval 〈0, 1) if

lim
N→∞

1
N
|{1 ≤ n ≤ N ; a ≤ xn < b}| = b− a

for every a, b ∈ 〈0, 1〉, a < b.
a = (an) 7→ ga = (ag−1(n))
If x is uniformly distributed then gx is uniformly distributed as well.

Blümlinger: Lévy group action and invariant mea-
sures on βN
Further notes can be found in the file blumlinger.tex

For f ∈ `∞ we put Tf(n) = 1
n

∑n
i=1 f(i).

fg(n) = f(gn)
g ∈ Gδ ⇔ lim

n→∞
Tf(n) − Tfg(n) = lim

n→∞
Tf(n) − Tfg−1(n) = 0 for all f in

the subspace of Cesaro summable sequences in `∞ ⇔ lim
n→∞

dA(n) − dgA(n) =

lim
n→∞

dA(n)− dg−1A(n) = 0 for all subsets A of N which have density.
The following are equivalent:

(i) g ∈ G,

(ii) ∀f ∈ `∞ lim
n→∞

Tf(n)− Tfg(n) = 0,

(iii) ∀A ⊂ N lim
n→∞

dA(n)− dgA(n) = 0.

Lema 3: Let A,B ⊂ N such that A,B,Ac, Bc are infinite sets. Then there
is a g ∈ G with B = gA if and only if lim

n→∞
dA(n)− dB(n) = 0.

There is no nontrivial Gδ-invariant functional on `∞.

Blümlinger, Obata: Permutations preserving Ce-
saro mean, densities of natural numbers and uni-
form distribution of sequences

L = Cesaro mean, D=Cesaro summable bounded sequences
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Theorem. A G-invariant positive functional on the space of all Cesaro summable
bounded real sequences is a constant multiple of Cesaro mean. A G-invariant
positive normalized functional on `∞ is a Banach limit.

Lemma. Let 0 = N0 < N1 < . . . be an increasing sequence such that lim
k→∞

Nk

Nk−1
=

1. Then a permutation g on N which leaves every subset {Nk + 1, . . . , Nk} in-
variant belongs to G.

Let M denote G-invariant continuous functional on D.

Lemma. Assume that a = (an) ∈ D satisfies an ∈ {0, 1}, 0 < L(a) < 1 and
L(a) ∈ Q. Them M(a) = L(a).M(1).

I think, that the proof of the above lemma can be applied to show the same
claim about measures on P(N): If A ∈ N has d(A) ∈ Q, then µ(A) = d(A) for
any G-invariant measure on N.

Lemma. M(a) = M(1).L(a) for all a ∈ D

Theorem. There exists a positive continuous linear functional on `∞ which is
invariant under the Lévy group.

Rao: Theory of Charges

Notation: IA = χA, L(F) = Def 3.1.1, field on Ω = algebra of sets

Blass, Frankiewicz, Plebanek, Ryll-Nardzewski:
A Note on Extensions of Asymptotic density

F is σ-algebra on a set X, ν is finitely additive measure on F . Say that ν has
the property AP(null) if for every increasing sequence (Ai) ⊂ F there exists a
set B ∈ F such that:
(i) ν(Ai \B) = 0 for every i,
(ii) ν(B) = lim ν(Ai).

Given an infinite set X ⊆ ω we write

IX
n = [max(X ∩ n), n) ∩ ω,

whenever n ∈ X. Say that a set X is thin if

lim
n∈X

|IX
n |
n

= 1.

In other words, a set X is thin if enumerating X as (nk)k in increasing order,
we have lim

k→∞
nk

nk+1
= 0.

If an ultrafilter U contains a thin set then νU is a density having the property
AP(null).
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Pólya: Untersuchungen über Lücken und Singu-
laritäten von Potenzreihen

Untere und Obere Dichte zur Basis ξ, 1

Eine Folge (λn) mit λ1 ≥ 0 und λn+1 − λn ≥ p > 0.
Wenn der Grenzwert

lim
r→∞

N(r)
r

existier, wird er als Dichte der Folge (λn) gennant. meßbare Folge

lim inf
r→∞

N(r)−N(rξ)
r − rξ

= d(ξ), lim sup
r→∞

N(r)−N(rξ)
r − rξ

= D(ξ)

bei festem 0 ≤ ξ < 1

Minimaldichte und Maximaldichte

Theorem (Satz III). Es existieren die Grenzwerte

lim
ξ→1−0

d(ξ) = d(1), lim
ξ→1−0

D(ξ) = D(1)

die Minimaldichte und die Maximaldichte

Additive Eigenschaften

Theorem (Satz VIII). Die Minimaldichte einer Folge (λn) ist die Dichte
der dichtesten meßbaren Folge, die in (λn) als Teilfolge enthalten ist, und die
Maximaldichte von (λn) ist die Dichte der dünnsten meßbaren Folge die (λn)
als Teilfolge enthält.

Other

R.C.Buck: Generalized Asymptotic Density In connection with this
paper Atila had a talk on our seminar about Caratheodory-like construction
for finitely additive measures. Unfortunately, I didn’t noted reference in my
notes.

A⊂̇B iff B −A is bounded
p.571–572:
We can define outer density ω(S) as inf D(A) taken over all sets A in D

which contain S. Pólya has proved that this outer density can be analytically
expressed, and is in fact the Pólya maximum density; that is,

ω(S) = D1(S) = lim
θ→1−

lim sup
n→∞

S(n)− S(θn)
n− θn

.

4



More precisely, Pólya proved that if D1(S) = d, then there exists a set B of D
having density d and containing S. [?, 562]

D1(S) + D1(S) = 1
Dω = sets with ω(S) + ω(S′) = 1.

Theorem. Dω = D

(For Pólya maximum density see also:
Koosis: The Logarithmic Integral, Young: An Introduction to Nonharmonic
Fourier Series and Wavelet Expansions)

Let A1⊂̇A2⊂̇ . . . and let lim d(An) = ∆ and lim d(An) = δ. Then, there
exists a set A with d(A) = ∆ and d(A) = δ, such that An⊂̇A for all n.

If the sets An have density and A1⊂̇A2⊂̇ . . . then there is a set A, unique up
to set of zero density, such that An⊂̇A for all n and d(A) = lim d(An).

If C1, C2, . . . are disjoint sets having density, there is a set C, unique up to
set of zero density, such that C⊃̇

⋃n
k=1 Ck for all n and with d(C) =

∑
d(Ck).

R.C.Buck: The measure theoretic approach to density
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