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Meyer Jerison: The set of all generalized limits
of bounded sequences

This note basically contains some results and proofs from [J2]. (This was made
in preparation for a talk on a seminar where most of the participants are used to
work with F-limits, therefore it seemed to be suitable to use ultralimits instead
of subnets in some places. I also tried to use more modern notation and I used a
different representation of βN – it is described as the set of all extreme points of
positive normed functionals with the topology induced by the weak∗ topology
in [J2]. Some of the proofs are described in more detail than in the original
paper.)

1 Preliminaries

Let us recall some results which will be needed in the proof of the main result.
(We will formulate them in the form suitable for our situation.)

1.1 F-limits

We will mostly work with limits along ultrafilters, but F-limit can be defined
for any filter F .

Definition 1. A filter on a set M is a non-empty family F ⊆ P(M) such that:

(i) A,B ∈ F ⇒ A ∩B ∈ F ;

(ii) A ∈ F and A ⊆ B ⇒ B ∈ F ;

(iii) ∅ /∈ F .

A filter is called free if
⋂
F = ∅.

A filter can be considered as a criterion saying which sets will be consid-
ered large. A simple example of filter is the set of all subsets of N with finite
complements. This filter is called Fréchet filter.

Definition 2. A filter F on M is an ultrafilter if for any A ⊆M

A ∈ F ∨ M \A ∈ F .

Ultrafilters are precisely maximal filters (with respect to inclusion).
For any m ∈ M the filter Fm = {A ⊆ M ;m ∈ A} is an ultrafilter of M .

(Such ultrafilters are called principal.)
Using Axiom of Choice (or Zorn Lemma) it can be shown that every system

of subsets of M with finite intersection property is contained in an ultrafilter.
This also implies existence of free ultrafilters.
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Definition 3. If (xn) is a sequence of elements of a topological space X and
F is a filter on N, then we say that (xn) is F-convergent to l ∈ X if for every
neighborhood U of l the set

A(U) = {n ∈ N;xn ∈ U}

belongs to F .
Notation: F-limxn = l.

We can notice that if we consider a sequence (xn) as a map x : N→ X, then
A(U) = x−1(U). This suggest how the notion of F-limit can be generalized to
maps on any set.

We will only work with Hausdorff spaces, in these spaces a sequence can
have at most one F-limit.

It is easy to see that for Fréchet filter the F-convergence is precisely the
usual convergence of sequences.

Another simple example: Fm -limx = xm.
We will need the following property of ultralimits.

Theorem 1. Let F be an ultrafilter on N and (xn) be a sequence of points of a
compact space X. Then F-limxn exists.

In particular, F-limxn exists for any bounded sequence in R.

F-limits of real sequences have many properties similar to the usual limit
– e.g. additivity and multiplicativity. For a fixed sequence (xn), all possible
values of F-limxn for free ultrafilters are precisely the cluster points of this
sequence. In particular, if a sequence is convergent to a limit l, then for every
free ultrafilter F also F-limxn = l.

1.2 Stone-Čech compactification of integers

We will briefly remind the notion of the Stone-Čech compactification of a topo-
logical space. (Although we will only need it for the discrete countable space.)

Definition 4. Let X be a topological space. Then a compact Hausdorff space
βX is Stone-Čech compactification of X if there exists embedding i : X ↪→ βX
such that for every continuous map f : X → K to a compact Hausdorff space
K there exists a unique continuous extension f : βX → K fulfilling f ◦ i = f .

X �
� i //

f !!

βX

f

��
K

(1)

Let us note that we would get an equivalent definition if we worked with the
unit interval I = 〈0, 1〉 instead of arbitrary compact Hausdorff space K. We
will usually identify X and i[X], so X is a subspace of βX.

The Stone-Čech compactification of X is obviously determined uniquely up
to a homeomorphism. It is known the βX exists if and only if X is completely
regular.
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1.2.1 Stone-Čech compactification of integers

We will work with the Stone-Čech compactification of N endowed with the
discrete topology. It can be shown that βN can be obtained as the topological
space on the set Uft(N) of all ultrafilters on N with the topology given by the
base {UA;A ⊆ N}, where

UA = {F ∈ Uft(N);A ∈ F}.

The embedding i of N into βN is (for this construction) given by mapping n to
the corresponding principal filter

i : n 7→ Fn = {B ⊆ N;n ∈ B}.

In fact, the basic sets UA are clopen. (The space βN is zero-dimensional.)
The definition of UA can be rewritten as

F ∈ UA ⇔ A ∈ F .

The continuous extension of a bounded sequence x : N → R to βN is given
by

x(F) = F-limx,

which shows that F-limits and this construction of βN are closely related.

1.2.2 C(βN) and `∞(N)

This part should show why the space βN could be interesting for us when we
are studying `∞.

Proposition 1. Banach spaces `∞ and C(βN) are isometrically isomorphic,
i.e., there exists a norm-preserving linear isomorphism between them.

Proof. We can define map ϕ : `∞ → C(βN)

ϕ(x) = x

which assigns to each bounded sequence x its continuous extension on βN.
In the other way we can use the restriction from βN to N ψ : C(βN)→ `∞

ψ(f) = f ◦ i

where i : N ↪→ βN is the embedding of N into βN. (If we identify N with the
corresponding subspace of βN, this is the same as f 7→ f |N.)

It is easy to show that ϕ and ψ are inverse to each other, linear and norm-
preserving.

Corollary 1. Banach space `∗∞ and C∗(βN) are isometrically isomorphic.
The spaces `∗∞ and C∗(βN) endowed with the weak∗-topologies are isomorphic

(in the sense that there exists linear homeomorphism between the two topological
vector spaces).

3



1.3 Banach-Alaoglu theorem

We will often work with the weak∗-topology on X∗, where X is a linear normed
space. (In fact, we will work with X = `∞.)

For every x ∈ X we have a linear map x∗ : X∗ → R defined by

x∗(f) = f(x).

These maps are continuous with respect to norm-topology on X∗.

Definition 5. The weak∗-topology is the weakest topology on X∗ such that all
maps x∗ are continuous with respect to this topology.

The weak∗ topology is in fact the topology induced on X∗ considered as a
subspace as the topological product RX .

The weak∗-topology can be equivalently described using nets: A net (fd)d∈D
is convergent to f in the weak∗-topology if and only if the net (fd(x))d∈D con-
verges to f(x) for each x ∈ X.

An important property of the weak∗-topology is the following:

Theorem 2 (Banach-Alaoglu). Let B = {f ∈ X∗; ‖f‖ ≤ 1} be the unit ball of
X∗. The set B is compact in the weak∗-topology on X∗.

1.4 Krein-Milman theorem

Krein-Milman theorem describes closed convex subset of a locally convex topo-
logical vector space using its extreme points. We do not want to include details
about locally convex TVS – interested reader can find them in most functional
analytic textbooks or in texts devoted to topological vectors spaces. Let us just
mention that if X is a linear normed space, then X with the norm-topology is
locally convex TVS and X∗ with the weak∗-topology is a locally convex space.

Definition 6. Let C be a subset of a TVS E. Let e ∈ C. The point e is an
extreme point of the set C if for x1,2 ∈ C

x1 + x2
2

= e ⇒ x1 = x2 = e

holds. In the other words: The point e cannot be expressed as a non-trivial
convex combination of points from C.

The notion of extreme point is illustrated in Figure 1 (taken from [WIK]).
We will use the following formulation of Krein-Milman theorem:

Theorem 3 ([J1, Theorem 1]). Let E be a locally convex TVS and C be a
compact convex subset of E. Let S ⊆ C. The following assertions are equivalent:

(i) For every linear continuous function f : E → R the equality

sup
x∈S

f(x) = sup
x∈C

f(x)

holds;

(ii) C = co(S), i.e. C is the closed convex hull S;
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Figure 1: Extreme points of a set

(iii) the closure S of the set S contains all extreme points of C.

From the above result we can get the usual formulation of Krein-Milman
theorem.

Corollary 2 (Krein-Milman). Let E be a locally convex TVS and C be a com-
pact convex subset of E. Then C is the closed convex hull of the set of all
extreme points of C.

C = co(Ext(C))

We will use Theorem 3 in the special case where E is X∗ with the weak∗

topology. It is known that in this case continuous linear functionals on E are
precisely the maps x∗ for x ∈ X (see [FHH+, Proposition 3.22]). Hence in this
case we get:

Proposition 2. Let X be a linear normed space and C be a subset of X∗

which is convex and compact in the weak∗-topology. Let S ⊆ C. The following
conditions are equivalent:

(i)
sup
ϕ∈S

ϕ(x) = sup
ϕ∈C

ϕ(x) (2)

holds for each x ∈ X;

(ii) C = co(S), i.e. C is the closed convex hull S;

(iii) the closure S of the set S contains all extreme points of C.

1.5 Birkhoff’s ergodic theorem

Definition 7. A quadruple (X,B, µ, T ) is a measure preserving system if B is
a σ-algebra on X, µ is a measure on B and map T : X → X is measurable and
fulfills the condition

µ(T−1A) = µ(A)

for each A ∈ B.

We will use the following result, which is known as Birkhoff’s ergodic theorem
(or pointwise ergodic theorem or individual ergodic theorem).
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Theorem 4 ([EW, Theorem 2.30]). Let (X,B, µ, T ) be a measure-preserving
system. If f ∈ L1(µ), then

lim
n→∞

1

n

n−1∑
j=0

f(T jx) = f∗(x)

converges almost everywhere and in L1(µ) to a T -invariant function f∗ ∈ L1(µ)
and ∫

f∗ dµ =

∫
f dµ.

Birkhoff’s ergodic theorem also claims that f∗ is constant (almost every-
where) if T is ergodic, but we will not need this fact.

For any functions T : X → X and f : X → R we will use the notation

Tn(f) = f+fT+···+fTn−1

n . I.e., Tn(f) : X → R is the function given by

Tn(f)(x) =
f(x) + f(Tx) + · · ·+ f(Tn−1x)

n
(3)

for any x ∈ X.
Hence the Birkhoff’s ergodic theorem says that for every measure preserving

transformation the sequences Tn(f) converges pointwise to some f∗ and that
f∗ and f have the same integral.

1.6 Riesz representation theorem

Regular Borel measure is a measure µ on a topological space with the following
properties:
• µ is defined on the σ-algebra B of all Borel sets;
• µ(K) <∞ for every compact subset;
• µ(B) = sup{µ(K);K ⊆ B;K is compact} for every B ∈ B;
• µ(B) = inf{µ(U);U ⊇ B;U is open} for every B ∈ B such that µ(B) <
∞. (If we assume the validity of the last condition for open sets, we get
an equivalent definition.)

Theorem 5 (Riesz Representation Theorem, [AB, Theorem 38.3]). Let X be a
compact Hausdorff space. For every positive linear functional F on C(X), there
exists a unique regular Borel measure µ on X such that

F (f) =

∫
X

f dµ

holds for every f ∈ C(X).

We will later use this theorem for the compact space βN.

2 Banach limits

We finally arrive to the main point of interest - the notion of Banach limit.
The usual limit can be understood as a linear functional on the space c of

all convergent sequences. We want to find some functionals on a larger spaces,
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which still have some nice properties similar to the usual limit. We will work
with linear functional on the space `∞ of all bounded sequences.

We have already seen one example of such generalizations. If we choose any
free ultrafilter F on N, then f : `∞ → R given by

f : x 7→ F-limxn

is a linear functional on `∞ which extends limit, i.e., f |c = lim.
Another interesting property of this functional is multiplicativity:

f(x.y) = F-limxn.yn = F-limxn.F-lim yn = f(x).f(y).

We would like to study the extensions of limits which fulfill another inter-
esting property – shift-invariance.

Let us define shift-operator T : `∞ → `∞ by

T : (xn) 7→ (xn+1).

A functional f ∈ `∗∞ is said to be shift-invariant if

f(Tx) = f(x).

It is easy to see that an extension of limit cannot be simultaneously shift-
invariant and multiplicative. Just take the sequence x = (1, 0, 1, 0, . . . ) and
notice that x+ Tx = 1, which implies that f(x) + f(Tx) = f(1) = 1

f(x) = f(Tx) =
1

2

for every shift-invariant extension of limit. We also have x.x = x, thus for a
multiplicative extension of limit we get

f(x)2 = f(x),

therefore the only possible values of f(x) for are in this case 0 and 1.

Definition 8. A linear functional f : `∞ → R is called Banach limit, if it is
positive, shift-invariant and extends limit, i.e.,

(i) x ≥ 0 ⇒ f(x) ≥ 0;

(ii) (∀x ∈ `∞)f(Tx) = f(x);

(iii) if x is convergent then f(x) = limx.

The above properties imply that

lim inf xn ≤ f(x) ≤ lim supxn

holds for each Banach limit. Together with f(1) = 1 we get that ‖f‖ = 1 for
every Banach limit. (In particular, every Banach limit belongs to `∗∞.)

Although we do not know yet whether any Banach limits exist at all, we
might mention the following result at this place.

Lemma 1. The set of all Banach limits is weak∗-closed subset of `∗∞. Conse-
quently, it is compact in weak∗ topology.

The set of all Banach limits is a convex subset of `∗∞.
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Figure 2: The sequences Tn(x)

Proof. Let (fd)d∈D be a net of elements of `∗∞ which converges pointwise to
f ∈ `∗∞.

It is easy to show that:
If each fd is positive, then the limit is positive.
If each fd is shift-invariant then the limit is shift-invariant.
If each fd extends limit then the limit f extends limit.

Together we get that limit of a net of Banach limits is again a Banach limit.
Hence the set of all Banach limits is a weak∗-closed subset of unit ball. Hence
by Banach-Alaoglu theorem it is also compact.

Convexity can be verified similarly – by verifying that all of the properties
from the definition of Banach limit are preserved by convex combinations.

3 Existence of Banach limit and their extreme
values

For any bounded sequence x we define Tn(x) = x+Tx+···+Tn−1x
n . I.e., Tn(x) is the

sequence
(
xk+xk+1+···+xk+n−1

n

)∞
k=1

(in fact, if we define S : N→ N, S : n 7→ n+1

and x : N → R, then Tn(x) is the same thing as Sn(x) using the notation from
(3).)

The sequences Tn(x) are illustrated in Figure 2.
We define

M(x) = lim
n→∞

lim supTn(x)

m(x) = lim
n→∞

lim inf Tn(x)

The existence of the above limits can be proven by showing that the sequence
an = lim supk→∞(xk+xk+1+ · · ·+xk+n−1) is subadditive, i.e. it fulfills am+n ≤
am + an and then use Fekete’s lemma, which say that for every subadditive
sequence (an) the limit lim

n→∞
an
n exists and it is equal to inf ann .

Since for every Banach limit f we have f(x) = f(Tn(x)) ≤ lim supTn(x).
This implies that the inequalities

m(x) ≤ f(x) ≤M(x)

are valid for each Banach limit f .
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3.1 Proof using Hahn-Banach theorem

Using Hahn-Banach theorem for the functional lim: c → R majorized by the
function M(x) we get the existence of a linear functional f : `∞ → R extending
limit and fulfilling

m(x) ≤ f(x) ≤M(x)

for each x ∈ `∞.
The above conditions clearly imply positivity and (using m(x−Tx) = M(x−

Tx) = 0) also shift-invariance.
Moreover, it can be shown using Hahn-Banach theorem, that for all values

from the interval 〈m(x),M(x)〉 there exists an extension with these properties.

Proposition 3. For a given bounded sequence x all possible values of Banach
limits are the values from the interval 〈m(x),M(x)〉.

This implies that all Banach limits have the same value l for a given sequence
if and only if this sequence fulfills m(x) = M(x) = l. This is equivalent to

lim
k→∞

xk + xk+1 + · · ·+ xk+n−1
n

= l

uniformly with respect to k. Such sequences are called almost convergence and
they were characterized by Lorentz [L].

3.2 Proof using ultralimits

Another simple proof of existence of Banach-limits is the following:
Let F be any free ultrafilter. Let us define f : `∞ → R as

f(x) = F-lim
x1 + · · ·+ xn

n
.

Using basic properties of F-limits it can be shown that the function f is linear
and extends limit. It is also shift-invariant, since

f(Tx− x) = F-lim
xn+1 − x1

n
= 0

since xn+1−x1

n ≤ 2‖x‖
n converges to 0 in the usual sense.

However, Banach limits of this form can only attain values between lim inf x1+···+xn

n
and lim sup x1+···+xn

n . We can slightly modify the above proof, e.g. by working
with

f(x) = F-lim
xpn + · · ·+ xpn+n−1

n
,

where (pn) is arbitrary integer sequence. The proof that f is a Banach limit
is almost the same as in the preceding case. But for these functional we can
show that both values m(x) and M(x) can be attained. Using convexity we get
that the values attained for a fixed x ∈ `∞ are precisely the numbers from the
interval 〈m(x),M(x)〉, i.e., using ultralimits we can also prove Proposition 3.

4 Main result

We have already described the extreme values of Banach limits for a fixed se-
quence. Proposition 2 suggests that this could help us to describe Banach limits
as closed convex hulls of some sets.
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4.1 Shift on βN
We have introduced shift operator T : `∞ → `∞. We want to show that this
operator is associated with a continuous function S : βN→ βN in a natural way.

Let us start with the function S : N → N given by S(n) = n + 1. Then
there exists a continuous function S : βN→ βN such that the following diagram
commutes.

N i //

S

��

βN

S

��
N

i
// βN

(4)

(The function S is the unique extension of i◦S from the definition of Stone-Čech
compactification.)

Suppose now that x : N → R is a bounded sequence. Then x ◦ S is the
unique continuous map x ◦ S : βN→ R such that

x ◦ S ◦ i = x ◦ S.

N i //

S

��

βN

x◦S
��

N
x
// R

From the definition of Stone-Čech compactification (more precisely, from the
definition of S and x) we also get

x ◦ S ◦ i = x ◦ i ◦ S = x ◦ S.

So the map x ◦ S fulfills the condition that uniquely determines x ◦ S, which
means

x ◦ S = x ◦ S. (5)

This implies that the map S : βN→ βN fulfills

x ◦ S(F) = x ◦ S(F) = Tx(F) = F-limTx.

(We have used Tx = x ◦ S.) Directly from the last equation

x ◦ S(F) = F-limTx (6)

we get using linearity of F-lim that

Sn(x)(F) =
x+ x ◦ S + · · ·+ x ◦ Sn−1

n
(F) = F-limTn(x). (7)

Note that in the derivation of (7) we did not use the form of the map S.
(The same holds for any map S : N→ N and corresponging T : x 7→ x ◦ S.)

In this specific case it would possible to show that S(F) = {A− 1;A ∈ F},
where A− 1 = {n ∈ N;n+ 1 ∈ A}.

It is useful to notice that (6) means that

SF-limx = F-limTx. (8)
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4.1.1 Categorical viewpoint

This part can be omitted when reading this text, but for a reader with back-
ground in category theory, this might be a useful insight.

Similarly as in (4), for any continuous map f : X → Y we can obtain a map
βf : βX → βY .

X
iX //

f

��

βX

βf

��
Y

iY
// βY

It can be shown that β(g ◦ f) = βg ◦ βf , which means that β is a functor
from the category CReg of completely regular spaces to the category CompT2

of compact Hausdorff spaces. In particular, this implies (5). (x ◦ S = x ◦ S is
just a different notation for β(x ◦ S) = βx ◦ βS.)

The condition (1) from the definition of Stone-Čech compactification means,
that the functor β is left adjoint to the embedding functor E : CompT2 →
CReg. (It says that C(βX, Y ) ∼= C(X,EY ).) In the other words, CompT2

is a reflective subcategory of CReg and the functor β is the corresponding
reflector.

4.2 Expressing M(x)

Let us isolate one result obtained in the proof of [J2, Theorem 3] which might
be of independent interest.

Proposition 4. For every x ∈ `∞ there exists a free ultrafilter G ∈ βN∗ such
that

lim
n→∞

G-limTn(x) = M(x) = sup
ψ∈BL

ψ(x),

where BL denotes the set of all Banach limits.

Proof. Let us fix some x ∈ `∞.
Since the set BL is compact in weak∗ topology and the function x∗ is con-

tinuous with respect to this topology, there exists a Banach limit ψ0 such that
x∗(ψ0) = supψ∈BL x

∗(ψ), i.e.

ψ0(x) = sup
ψ∈BL

ψ(x) = M(x).

As described in Subsection 1.2.2, we can identify `∗∞ and C∗(βN). Thus by
Riesz representation theorem the functional ψ0 can be rewritten as

ψ0(x) =

∫
F∈βN

x(F) dµ =

∫
F∈βN

F-limx dµ

for some regular Borel measure µ on βN.
We now verify that the assumptions of Birkhoff’s ergodic theorem are fulfilled

for the map S : βN → βN. function x : βN → R and the measure µ. We also
show some properties of µ that will be needed in the proof.
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Integrability. We have |x(F)| = |F-limx| = F-lim|x|, thus∫
F∈βN

|x(F)| dµ = ψ0(|x|) < +∞

and x ∈ L1(µ).
Invariance. We should verify that the measure µ is S-invariant, i.e. µ(B) =

µ(S
−1
B) for every Borel set. In fact, it suffices to verify the S-invariance for

set from the base {UA;A ⊆ N} (see [EW, Theorem A.8]).1

We have
µ(UA) = ψ0(χA)

since

F-limχA =

{
1 A ∈ F ⇔ F ∈ UA,
0 A /∈ F ⇔ F /∈ UA.

i.e. F-limχA = χUA
.

From

SF ∈ UA ⇔ SF-limχA = 1
(8)⇔ F-limTχA = F-limχS−1A = 1⇔ S−1A ∈ F

we get S
−1
UA = US−1A and

µ(S
−1
UA) = µ(US−1A) = ψ0(χS−1A) = ψ0(TχA) = ψ0(χA) = µ(UA).

µ vanishes on N. In the proof, we will also use the fact that µ(N) = 0. It
suffices to note that µ({n}) = ψ0(χ{n}) = 0 and then use the σ-additivity of
measure.

From ergodic theorem we get that Sn(x) converges almost everywhere to
some function X : βN→ R, i.e., there exists ∆ ⊆ βN∗ such that µ(∆) = 1 and

lim
n→∞

Sn(x)(G) = lim
n→∞

G-limTnx = X(G)

for each G ∈ ∆. (Since µ(N) = 0, we can assume that ∆ ⊆ βN∗.) We can
assume that X(G) = 0 for G /∈ ∆. (We are changing X only on a set of measure
zero.)

For every G ∈ ∆ we have2

G-limTn(x) ≤ lim supTn(x),

X(G) = lim
n→∞

G-limTn(x) ≤ lim
n→∞

lim supTn(x) = M(x) = ψ0(x).

From ergodic theorem we also have∫
G∈βN

X(G) dµ =

∫
G∈βN

x(G) = ψ0(x).

1To use [EW, Theorem A.8], we should verify that S = {UA;A ⊆ N} is a semi-algebra.
We have ∅ = UN ∈ S. It is closed under finite intersections: UA∩B = UA ∩ UB . Complement
of set from S is from S since UN\A = βN \ UA.

2A different possibility to show X(G) ≤ M(x) would be using the fact that
F-limn G-limTn(x) is a Banach limit for every free ultrafilter F . In this approach we do
not need to now the explicit form of M(x) beforehand.
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If we combine this fact with the the inequality X(G) ≤ ψ0(x) we get that the
equality

X(G) = ψ0(x)

holds for µ-almost all G’s in ∆. For every such G we get

lim
n→∞

G-limTn(x) = X(G) = ψ0(x) = M(x).

4.3 Extreme Banach limits

Lemma 2. For any free ultrafilters F , G the functional f : `∞ → R defined by

f(x) = F-lim
n
G-limTn(x) = F-lim

n
G-lim
k

xk + · · ·+ xk+n−1
n

is a Banach limit.

Proof. Linearity and positivity are obvious.
If can be shown that if (xn) converges to l, then xk+···+xk+n−1

n converges to
l uniformly in k. This implies that also G-limTn(x) converges to l and that
f(x) = l. Thus f extends limit.

The functional f is also shift-invariant since

f(Tx− x) = F-lim
n
G-lim
k

xk+n − xk
n

= 0.

(We are using again the fact that the sequence x is bounded: we have xk+n−xk

n ≤
‖x‖
n for each k, which implies G-limk

xk+n−xk

n ≤ ‖x‖n .)

Combining the above results we get

Theorem 6 ([J2, Theorem 3]). Let Q denote the set all linear functionals of
the form

f(x) = F-lim
n
G-limTn(x) = F-lim

n
G-lim
k

xk + · · ·+ xk+n−1
n

,

where F and G are free ultrafilters on N. Let BL denote the set of all Banach
limits. Then Q ⊆ BL and BL = co(Q).

Proof. We have Q ⊆ BL from Lemma 2. By Lemma 1, the set BL is convex
compact subset of `∗∞ (with the weak∗-topology). Now by Proposition 2 it
suffices to show

(∀x ∈ `∞) sup
f∈Q

f(x) = sup
f∈BL

f(x) = M(x).

This follows from Proposition 4.

Let us note that some other sets fulfilling co(A) = BL or even containing all
extreme points of BL are described in [J2] and [Š]. (Several such sets can be
obtained relatively easily from various expressions of M(x).)
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