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Overview

We present some results from [J2].

I Proof of existence of Banach limits (using Hahn-Banach
theorem, using ultrafilters).

I Some results on the extreme points of the set of all Banach
limits.

These slides and more detailed notes are available at: http:

//thales.doa.fmph.uniba.sk/sleziak/papers/semtrf.html
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Filters

Definition
A filter on a set M is a non-empty family F ⊆ P(M) such that:

i. A,B ∈ F ⇒ A ∩ B ∈ F ;

ii. A ∈ F and A ⊆ B ⇒ B ∈ F ;

iii. ∅ /∈ F .

A filter is called free if
⋂
F = ∅.

Example: Fréchet filter = cofinite subsets of N
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Ultrafilters

Definition
A filter F on M is an ultrafilter if for any A ⊆ M

A ∈ F ∨ M \ A ∈ F .

Ultrafilters are precisely maximal filters (with respect to inclusion).
AC ⇒ Every system of subsets of M, that has finite intersection
property, is contained in an ultrafilter. ⇒ Free ultrafilters exist.
Fm = {A ⊆ M; m ∈ A} = principal ultrafilter (not free)
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Limit along a filter

Definition
If (xn) is a sequence of elements of a topological space X and F is
a filter on N, then we say that (xn) is F-convergent to l ∈ X if for
every neighborhood U of l the set

x−1(U) = {n ∈ N; xn ∈ U}

belongs to F .
Notation: F-lim xn = l .

Usual limit = F-limit for Fréchet filter
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Limit along a filter

Properties:

I uniqueness in Hausdorff spaces;

I additive, multiplicative;

I If F is ultrafilter and X is compact, then F-limit exists.

I F-limits of a sequence (xn) for free (ultra)filters F are
precisely all cluster points of this sequence.

I F-lim extends the usual limit, if F is free.
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Stone-Čech compactification

Definition
Let X be a topological space. Then a compact Hausdorff space
βX is Stone-Čech compactification of X if there exists embedding
i : X ↪→ βX such that for every continuous map f : X → K to a
compact Hausdorff space K there exists a unique continuous
extension f : βX → K fulfilling f ◦ i = f .

X �
� i //

f   

βX

f
��

K
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βN

I Uderlying set: Uft(N) = all ultrafilters on N
I topology given by the base {UA; A ⊆ N}, where

UA = {F ∈ Uft(N); A ∈ F}
F ∈ UA ⇔ A ∈ F

I Embedding: i : n 7→ Fn = {B ⊆ N; n ∈ B}
I Extension of a bounded sequence x : N→ R:

x(F) = F-lim x ,
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C (βN) and `∞(N)

Proposition

Banach spaces `∞ and C (βN) are isometrically isomorphic, i.e.,
there exists a norm-preserving linear isomorphism between them.

ϕ : `∞ → C (βN) (extension)

ϕ(x) = x

ψ : C (βN)→ `∞ (restriction)

ψ(f ) = f ◦ i
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Weak∗-topology

For every x ∈ X we have a linear map x∗ : X ∗ → R

x∗(f ) = f (x).

Definition
The weak∗-topology is the weakest topology on X ∗ such that all
maps x∗ are continuous with respect to this topology.

It is the topology induced by the product topology on RX .
fd → f in weak∗ topology ⇔ fd(x)→ f (x) for each x ∈ X
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Banach-Alaoglu theorem

Theorem (Banach-Alaoglu)

Let B = {f ∈ X ∗; ‖f ‖ ≤ 1} be the unit ball of X ∗. The set B is
compact in the weak∗-topology on X ∗.
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Extreme points

Definition
Let C be a subset of a topological vector space E . Let e ∈ C . The
point e is an extreme point of the set C if for x1,2 ∈ C

x1 + x2
2

= e ⇒ x1 = x2 = e

holds. In the other words: The point e cannot be expressed as a
non-trivial convex combination of points from C .
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Extreme points

Figure: Extreme points of a set (taken from [WIK])
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Krein-Milman theorem

Theorem ([J1, Theorem1])

Let E be a locally convex TVS and C be a compact convex subset
of E . Let S ⊆ C . The following assertions are equivalent:

i. For every linear continuous function f : E → R the equality

sup
x∈S

f (x) = sup
x∈C

f (x)

holds;

ii. C = co(S), i.e. C is the closed convex hull S;

iii. the closure S of the set S contains all extreme points of C .
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Krein-Milman theorem

Corollary (Krein-Milman)

Let E be a locally convex TVS and C be a compact convex subset
of E . Then C is the closed convex hull of the set of all extreme
points of C .

C = co(Ext(C ))
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Reformulation for X ∗

Linear functionals on E are precisely the maps x∗ for x ∈ X (see
[FHH+, Proposition 3.22])

Proposition

Let X be a linear normed space and C be a subset of X ∗ which is
convex and compact in the weak∗-topology. Let S ⊆ C . The
following conditions are equivalent:

i.
sup
ϕ∈S

ϕ(x) = sup
ϕ∈C

ϕ(x) (1)

holds for each x ∈ X ;

ii. C = co(S), i.e. C is the closed convex hull S;

iii. the closure S of the set S contains all extreme points of C .
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Measure preserving system

Definition
A quadruple (X ,B, µ,T ) is a measure preserving system if B is a
σ-algebra on X , µ is a measure on B and map T : X → X is
measurable and fulfills the condition

µ(T−1A) = µ(A)

for each A ∈ B.
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Birkhoff’s ergodic theorem

Also known as: pointwise ergodic theorem, individual ergodic
theorem.

Theorem ([EW, Theorem 2.30])

Let (X ,B, µ,T ) be a measure-preserving system. If f ∈ L1(µ),
then

lim
n→∞

1

n

n−1∑
j=0

f (T jx) = f ∗(x)

converges almost everywhere and in L1(µ) to a T -invariant
function f ∗ ∈ L1(µ) and∫

f ∗ dµ =

∫
f dµ.
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Averages

For T : X → X and f : X → R we will use the notation
Tn(f ) = f+fT+···+fT n−1

n . I.e., Tn(f ) : X → R is the function given
by

Tn(f )(x) =
f (x) + f (Tx) + · · ·+ f (T n−1x)

n
(2)

for any x ∈ X .
Hence the Birkhoff’s ergodic theorem says that for every measure
preserving transformation the sequences Tn(f ) converges pointwise
to some f ∗ and that f ∗ and f have the same integral.
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Regular Borel measure

Regular Borel measure is a measure µ on a topological space with
the following properties:

I µ is defined on the σ-algebra B of all Borel sets;

I µ(K ) <∞ for every compact subset;

I µ(B) = sup{µ(K ); K ⊆ B; K is compact} for every B ∈ B;

I µ(B) = inf{µ(U); U ⊇ B; U is open} for every B ∈ B such
that µ(B) <∞. (If we assume the validity of the last
condition for open sets, we get an equivalent definition.)
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Riesz Representation Theorem

Theorem (Riesz Representation Theorem, [AB, Theorem 38.3])

Let X be a compact Hausdorff space. For every positive linear
functional F on C (X ), there exists a unique regular Borel measure
µ on X such that

F (f ) =

∫
X

f dµ

holds for every f ∈ C (X ).
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Extensions of limit

Limit: lim: c → R linear functional.
Looking for: extensions f : `∞ → R which are linear and have
similar properties to the usual limit.
Example: F-lim: `∞ → R (for any free ultrafilter F)
Multiplicative:

f (x .y) = F-lim xn.yn = F-lim xn.F-lim yn = f (x).f (y).
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Shift-invariance

Let us define shift-operator T : `∞ → `∞ by

T : (xn) 7→ (xn+1).

A functional f ∈ `∗∞ is said to be shift-invariant if

f (Tx) = f (x).

A linear functional f ∈ `∗∞, which extends limit, cannot be
simultaneously multiplicative and shift-invariant:
x = (1, 0, 1, 0, . . . )

I shift-invariant: f (x) + f (Tx) = f (1) = 1 ⇒
f (x) = f (Tx) = 1

2

I multiplicative: f (x)2 = f (x) ⇒ f (x) ∈ {0, 1}
Banach limits
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Banach limit

Definition
A linear functional f : `∞ → R is called Banach limit, if it is
positive, shift-invariant and extends limit, i.e.,

i. x ≥ 0 ⇒ f (x) ≥ 0;

ii. (∀x ∈ `∞)f (Tx) = f (x);

iii. if x is convergent then f (x) = lim x .

lim inf xn ≤ f (x) ≤ lim sup xn

f ∈ `∗∞ and ‖f ‖ = 1
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Sequence Tn(x)

For any bounded sequence x we define Tn(x) = x+Tx+···+T n−1x
n .

I.e., Tn(x) is the sequence
(
xk+xk+1+···+xk+n−1

n

)∞
k=1

M(x) = lim
n→∞

lim sup Tn(x)

m(x) = lim
n→∞

lim inf Tn(x)

Banach limits



Preliminaries
Banach limits

Main result

Definition of Banach limits
Existence of Banach limit and their extreme values

Sequence Tn(x)

Figure: The sequences Tn(x)
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Extreme values of Banach limits

Proposition

For a given bounded sequence x all possible values of Banach
limits are the values from the interval 〈m(x),M(x)〉.
Proof: Using Hahn-Banach theorem for the functional lim
majorized by M(x).
Another proof: Using ultralimits:

f (x) = F-lim
xpn + · · ·+ xpn+n−1

n
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Hahn-Banach theorem

Theorem (Hahn-Banach theorem)

Let X be a vector space and let p : X → R be any sublinear
function. Let M be a vector subspace of X and let f : M → R be a
linear functional dominated by p on M. Then there is a linear
extension f̂ of f to X that is dominated by p on X .
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Hahn-Banach theorem

Theorem (Hahn-Banach theorem)

Moreover, for given given v ∈ X , there exists an extension such
that the value f̂ (v) = c if and only if

sup
x∈M

[f (x)− p(x − v)] ≤ c ≤ inf
y∈M

[p(y + v)− f (y)].

In case the p and f have the additional property that

(∀x ∈ X )(∀y ∈ M)p(x + y) = p(x) + f (y)

then the above interval can be simplified to

−p(−v) ≤ c ≤ p(v).
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Shift on βN

S : N→ N given by S(n) = n + 1 induces S : βN→ βN:

N i //

S
��

βN

S
��

N
i
// βN
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Shift on βN

x ◦ S = x ◦ S

x ◦ S(F) = x ◦ S(F) = Tx(F) = F-lim Tx

x ◦ S(F) = F-lim Tx

SF-lim x = F-lim Tx

Sn(x)(F) =
x + x ◦ S + · · ·+ x ◦ S

n−1

n
(F) = F-lim Tn(x)
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Expressing M(x)

Proposition

For every x ∈ `∞ there exists a free ultrafilter G ∈ βN∗ such that

lim
n→∞

G-lim Tn(x) = M(x) = sup
ψ∈BL

ψ(x),

where BL denotes the set of all Banach limits.
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Expressing M(x)

Sketch of the proof:
Compactness (Banach-Alaoglu):

ψ0(x) = sup
ψ∈BL

ψ(x) = M(x)

`∗∞ as C ∗(βN) + Riesz representation Theorem:

ψ0(x) =

∫
F∈βN

x(F) dµ =

∫
F∈βN

F-lim x dµ

Banach limits



Preliminaries
Banach limits

Main result

Shift on βN
Expressing M(x)
Extreme Banach limits

Expressing M(x)

µ(N) = 0 and µ fulfills the assumptions of ergodic theorem ⇒
there exists a pointwise limit X :

lim
n→∞

Sn(x)(G) = lim
n→∞

G-lim Tnx = X (G)

∫
G∈βN

X (G) dµ =

∫
G∈βN

x(G) = ψ0(x)

X (G) ≤ ψ0(x) = M(x)

This implies that X (G) = ψ0(x) holds for µ-almost all G’s. For
every such G we get

lim
n→∞

G-lim Tn(x) = X (G) = ψ0(x) = M(x).
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Extreme Banach limits

Lemma
For any free ultrafilters F , G the functional f : `∞ → R defined by

f (x) = F-lim
n
G-lim Tn(x) = F-lim

n
G-lim

k

xk + · · ·+ xk+n−1
n

is a Banach limit.
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Extreme Banach limits

Theorem ([J2, Theorem 3])

Let Q denote the set all linear functionals of the form

f (x) = F-lim
n
G-lim Tn(x) = F-lim

n
G-lim

k

xk + · · ·+ xk+n−1
n

,

where F and G are free ultrafilters on N. Let BL denote the set of
all Banach limits. Then Q ⊆ BL and BL = co(Q).
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