

1 E. van Douwen: Finitely additive measures on \mathbb{N}

1.1 Introduction

$\mu: \mathcal{P}(S) \rightarrow \langle 0, \infty \rangle$ is called a *measure* on S if $\mu(S) = 1$ and $\mu(X \cup Y) = \mu(X) + \mu(Y)$ for every 2 disjoint subsets of S .

A measure μ on S is said to be *shift-invariant* if $\mu(1 + X) = \mu(X)$.

$r * K = \{r * K; k \in K\}$ for $r \in \langle 1, \infty \rangle$, $K \subseteq \mathbb{N}$ and $* \in \{+, \cdot\}$

$[X] = \{[x] : x \in X\}$ for $X \subseteq \langle 1, \infty \rangle$

If $K \subseteq \mathbb{N}$ (the unique strictly increasing surjection $c_K: \mathbb{N} \rightarrow K$ = counting function) and if f is any function from \mathbb{N} to \mathbb{N} , we put

$f \circ K = \{n \in \mathbb{N} : (\exists k \in K)[n \text{ is the } f(k)\text{th member of } \mathbb{N}]\}$ (=range of $f \circ c_K$)

$K \circ f = \{k \in K : (\exists n \in \mathbb{N})[k \text{ is the } f(n)\text{th member of } K]\}$ (=range of $c_K \circ f$)

Finally, for $K \subseteq \mathbb{N}$ and $m \in \mathbb{N}$ we put

$K \cdot m = K \circ f$, where $f: \mathbb{N} \rightarrow \mathbb{N}$ is defined by $f(n) = mn$.

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an injection. We denote

$$\lambda(f) = \lim_{n \rightarrow \infty} \frac{n}{f(n)}$$

if the limit exists. The set of all injections for which $\lambda(f)$ exist will be denote by \mathbb{L} .

For a measure μ on \mathbb{N} and for $A \subseteq \langle 1, \infty \rangle$ we define the following properties of μ .

- (1) μ is *diffuse* if μ vanishes on finite sets;
- (2) μ is *A-scale-invariant* if $\mu([a \cdot K]) = a^{-1} \cdot \mu(K)$ for each $a \in A$ and each $K \subset \mathbb{N}$.
- (3) μ is *A-stretchable* if $\mu([b + a \cdot K]) = a^{-1} \cdot \mu(K)$ for each $a \in A$, each $b \in \langle 0, \infty \rangle$ and each $K \subset \mathbb{N}$.
- (4) μ is *stretchable* if $\mu(f \circ K) = \lambda(f) \cdot \mu(K)$ for each $f \in \mathbb{L}$ and for each $K \subseteq \mathbb{N}$.
- (5) μ is *thinnable* if $\mu(K \circ f) = \lambda(f) \cdot \mu(K)$ for each $f \in \mathbb{L}$ and for each $K \subseteq \mathbb{N}$.
- (6) μ *extends density* if $\mu(K) = d(K)$ for each $K \subseteq \mathbb{N}$ such that $d(K)$ exists.
- (7) μ *extends density r* if $\mu(K) = r$ provided $d(K) = r$.

Proposition. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an injection, and let $K = f \circ \mathbb{N} = \mathbb{N} \circ f$.

- (i) If $\lambda(f)$ exists then $d(K) = \lambda(f)$.

(ii) If f is strictly increasing and if $d(K)$ exists then $f \in \mathbb{L}$ and $\lambda(f) = d(K)$.

Remark. (1.2) Stretchable and thinnable measures extend density. (The converse is false by Example 5.6.)

Theorem. (1.3) \mathbb{N} has a measure which is both stretchable and thinnable.

Theorem. (1.4) There are a $\langle 1, \infty \rangle$ -stretchable measure μ on \mathbb{N} and a $K \subseteq \mathbb{N}$ such that $\mu(K) = 1$ but $d(K) = 0$.

Theorem. (1.5) \mathbb{N} has a thinnable measure which is no stretchable.

Question. (1.6) Is each stretchable measure thinnable?

Theorem. (1.7) There are a $\mathbb{Q}^{\geq 1}$ -stretchable measure μ on \mathbb{N} and a $K \in \mathcal{P}(\mathbb{N})$ so that $\mu(K) = 1$ but $\mu([r \cdot K]) = 0$ for each irrational $r \in \langle 1, \infty \rangle$.

Fact. (1.8) Each \mathbb{N} -scale-invariant shift-invariant measure is $\mathbb{Q}^{\geq 1}$ -stretchable.

Question. (1.9) Is there a $\langle 1, \infty \rangle$ -scale-invariant measure that is not shift-invariant?

Is there an \mathbb{N} -scale-invariant measure that is not $\{r\}$ -scale-invariant for each noninteger $r \in \langle 1, \infty \rangle$.

Theorem. (1.10) For each $q \in \mathbb{Q}^{\geq 1} \setminus \mathbb{N}$ there are an \mathbb{N} -scale-invariant measure μ on \mathbb{N} and a $K \subseteq \mathbb{N}$ such that $\mu(K) = 0$ but $\mu([q \cdot K]) \neq 0$ (and in fact $\mu([q \cdot K]) = n^{-1}$ if $q = n/m$ for relatively prime $n, m \in \mathbb{N}$), hence μ is not shift-invariant.

Theorem. (1.11) The following conditions on a measure μ on \mathbb{N} are equivalent:

- (i) If $f(n) = [q+rn]$ for $n \in \mathbb{N}$, then $\mu(K \circ f) = r^{-1} \cdot \mu(K)$, for each $r \in \langle 1, \infty \rangle$;
- (ii) $\mu(K \cdot 2) = \frac{1}{2} \mu(K)$ for each $K \subseteq \mathbb{N}$;
- (iii) there is $m \in \mathbb{N} \setminus \{1\}$ such that $\mu(K \cdot m) = m^{-1} \mu(K)$ for each infinite $K \subseteq \mathbb{N}$;
- (iv) μ is shift-invariant.

Theorem. (1.12) The following conditions on a measure μ on \mathbb{N} are

- (i) μ extends density;
- (ii) there is $r \in (0, 1)$ such that μ extends density r ;
- (iii) there is $k \in \mathbb{N} \setminus \{1\}$ such that μ extends density k^{-1} ;
- (iv) $\mu(f \circ K) = \mu(K)$ for each injection $f \in \mathbb{L}$ such that $\lambda(f) = 1$ and each $K \subseteq \mathbb{N}$;
- (v) $\mu(f \circ K) = \mu(K)$ for each permutation $f \in \mathbb{L}$ such that $\lambda(f) = 1$ and each $K \subseteq \mathbb{N}$.

Theorem. (1.13) The following conditions on a measure μ on \mathbb{N} are

- (i) μ extends density 0;
- (ii) μ extends density 1;
- (iii) $\mu(K \circ f) = \mu(K)$ for each injection $f \in \mathbb{L}$ such that $\lambda(f) = 1$ and each $K \subset \mathbb{N}$;
- (iv) $\mu(K \circ f) = 0$ for each injection $f \in \mathbb{L}$ such that $\lambda(f) = 0$ and each $K \subset \mathbb{N}$;
- (v) $\mu(f \circ K) = 0$ for each injection $f \in \mathbb{L}$ such that $\lambda(f) = 0$ and each $K \subset \mathbb{N}$.

Theorem. (1.14) Let f be a function from \mathbb{N} to $\langle 0, 1 \rangle$. There is a diffuse measure μ on \mathbb{N} such that $\mu(m \cdot K) = f(m) \cdot \mu(K)$ for all $m \in \mathbb{N}$ and $K \subseteq \mathbb{N}$ if (and, trivially, only if) $f(1) = 1$ and $f(kl) = f(k) \cdot f(l)$ for all $k, l \in \mathbb{N}$. (In fact μ can be chosen to extend density 0.)

Question. (1.15) What are the extreme points in the (closed convex) set of stretchable measures? Or the set of elastic measures (of Section 5)? (Those are the nicest measures I can currently think of.)

1.2 Special notation

We frequently denote the function f with domain D whose value at $d \in D$ is $f(d)$ by $\langle f(d) \rangle_{d \in D}$.

1.3 Means

$\mathcal{B}(S)$ = vector space of all bounded functions $f: S \rightarrow \mathbb{R}$, supremum norm

A function $\varphi: \mathcal{B}(S) \rightarrow \mathbb{R}$ will be called a *mean* on S if it satisfies the following two equivalent conditions:

1. $\varphi(1) = 1$ and φ is positive,
2. $\inf_{s \in S} x_s \leq \varphi(x) \leq \sup_{s \in S} x_s$

diffuse mean \Leftrightarrow extends limits $\Leftrightarrow \liminf \leq \varphi \leq \limsup \Leftrightarrow \varphi(x) \geq 0$ whenever $x_s \geq 0$ for all but finitely many $s \in S$.

If φ is a diffuse mean, we write sometimes $\varphi - \lim x_n$ instead of $\varphi((x_n))$.

Finally, if S is a multiplicatively written semigroup then a mean φ on S will be called *left-invariant* if $\varphi(\langle x_{ts} \rangle_{s \in S}) = \varphi(x)$ for all $t \in S$ and $\mathcal{B}(S)$.

invariant mean = left and right invariant

There is a natural one-to-one correspondence between means and measures on a set S . Given a mean φ one can define a measure μ on S by

$$\mu(X) = \varphi(\chi_X)$$

and given a measure μ one can find a unique mean on S that satisfies $\mu(X) = \varphi(\chi_X)$ by imitating constructions of the Lebesgue integral, see e.g. [vN, footnote 37].

Proposition. (3.3) If φ and μ are as above, then φ is diffuse iff μ is diffuse.

Proposition. (3.5) Let μ be a measure on a multiplicatively written semigroup S and let φ be the associated mean. Then μ is left-invariant if and only if

$$\mu(t^{-1}X) = \mu(X) \text{ for all } t \in S \text{ and } X \subseteq S,$$

where $t^{-1}X = \{s \in S : ts \in X\}$ (so $t^{-1}X = t^{-1} \cdot X$ if S is a group).

In proof of Theorem 3.7: Shift-invariant measure is invariant on $(\mathbb{N}, +)$.

1.4 Elastic measures

Elastic measure:

- (1) μ is \mathbb{N} -scale invariant,
- (2) $f \leq g \Rightarrow \mu(f \circ \mathbb{N}) \geq \mu(g \circ \mathbb{N})$ (for any $f, g: \mathbb{N} \rightarrow \mathbb{N}$)

Proposition. (5.7) If a measure on \mathbb{N} extends density then it is shift-invariant.

1.5 On G -invariant measures

(Appendix 5A)

G is a group, S is a set. Action $\pi: G \times S \rightarrow S$.

G -invariant measure: $\mu(g * X) = \mu(X)$

1.6 A conjecture of Bumby and Ellentuck and question

\mathcal{A} = measures on \mathbb{N} such that $\varphi(x) \leq \sup n^{-1} \sum_{k=1}^n x_k$ (φ is the associated mean, L is Cesaro mean)

\mathcal{A}' = measures on \mathbb{N} such that $\varphi(x) \leq \limsup n^{-1} \sum_{k=1}^n x_k$

$\mathcal{B} \Leftrightarrow \mu([r \cdot K]) \leq \mu(K)$ for $r \in [1, \infty)$.

It holds $\mathcal{A} \subsetneq \mathcal{B}$.

\mathcal{A}' is precisely the set of diffuse measures in \mathcal{A}

Question. (7A.1) Let \mathcal{C} be the set of all measures μ on \mathbb{N} such that

$$\mu(K) \leq \limsup_{n \rightarrow \infty} \frac{K(n)}{n},$$

and let \mathcal{D} = all density measures. So $\mathcal{A}' \subseteq \mathcal{C} \subseteq \mathcal{D}$. Is $\mathcal{A}' = \mathcal{C}$? Is $\mathcal{C} = \mathcal{D}$?

Asked again in van Mill: Open problems in van Douwen's papers

Is $\mathcal{C} \subseteq \mathcal{B}$? Is $\mathcal{D} \subseteq \mathcal{B}$?

References

[vN] J. von Neumann. Zur allgemeinen Theorie des Maes. *Fund. Math.*, 13:73–116, 1929.