Verzia: 20. februara 2004

Tento text nie je zamyslany ako jediny materidl, ktory by sadm stacil na pripravu na
Statnice. Skor by mal pomdct pri opakovani otazok.

Ked je nejaka cast zadania otdzky uvedena v zatvorkach, znamen4 to, Ze hoci sa povodne
v otazkach vyskytla, no v poslednej verzii statnicovych otdzok uz nebola. Do hranatych
zatvoriek som naopak déval tie podotazky, ktoré pribudli oproti pévodnej verzii. V pripade,
Ze niektort vynechand ¢ast som uZ mal napisant v ¢ase aktualizacie otdzok (nové znenie
otazok sme dostali na obhajobéch), nechal som ju v texte, hoci sa ju netreba ucit. V novej
verzii otazok je vynechand celd 8. a 10. otazka a tiez velka cast 9.otazky.

Jedint vynimku predstavuje ¢ast 14., 15. a 18. (a ...) otazky, ktora bola v zadani uvedena
v zatvorkach. Teda niektoré zatvorky znamenaju skutocné zatvorky.

Urcite je tu eSte stéle vela chyb, takze ak sa niekto naudi z tychto otédzok tvrdenia, ktoré
v skutocCnosti neplatia, vopred sa mu ospravedlnujem.

Chcel by som podakovat Marekovi Hyc¢kovi a Ondrovi Vacekovi, ktory opravenim mnohych
chyb prispeli k vyslednej podobe tychto otézok (¢i skor odpovedi?).

Poznamky sa momentalne nachddzaji na thales.doa.fmph.uniba.sk/sleziak/texty.
St tam uverejnené aj zdrojiky - takze v pripade, Ze sa sylaby zmenia méte moznost si ich
upravit, nejaké ¢asti vynechaf alebo naopak pridat. Ak by ste nasli v texte chyby, budem
rad, ked mi o nich ddte vediet na sleziak@fmph.uniba.sk a pri najblizSej aktualizacii tam
uz bude opraven verzia.

1 Tedria ¢isel

Zakladnd veta aritmetiky, vliastnosti prvocisel, zdkladné vlastnosti kongruencii. Diofantické
rovnice, pytagorovske trojuholniky.
Pri pisani tejto otazky som pouzival [ATA2] a [KOLJ.

1.1 Delitelnost

Definicia 1. a | b, (a # 0) ak existuje g také, ze b = aq.

Definicia 2. Prirodzené ¢islo p > 1 sa nazjva prvocislom, ak jedinymi jeho kladnymi deli-
telmi st ¢isla 1 a p. Prirodzené ¢éislo n > 1 sa nazyva zloZen€ ¢islo, ak n nie je prvodislo.

Veta 1. KaZdé cislon > 1 je sucin prvocisel.

Lema 1. Nech b je celé a a prirodzené cislo. Potom existuje jedind takd dvojica cisel q, r,
Zeb=a.q+r,0<r<a.

Definicia 3. Cislo d sa nazyva spolocnym delitelom ¢&isel a, b, ak d | a, d | b. Najvicsi prvok
mnoziny spolo¢nych delitelov ¢isel a a b je najvicsi spoloényg delitel a, b, znacime (a,b). Ak
(a,b) = 1, tak ¢isla a, b nazyvame nesidelitelngmi.

Lema 2. Ak sa ¢isla a, b nerovnaji sucasne nule, tak existuji také cisla xg, yo, Ze (a,b) =
azxg + byg.

O nasledujtcej leme prof. Salat hovoril, Ze sa tiez zvykne volaf zakladn4 veta aritmetiky.
Lema 3. Ak a|b.c, (a,b) =1, tak a | c.
Lema 4. Nech p je prvocislo a p | a.b. Potom bud' p | a, alebo p | b.

Veta 2. KaZdé cislo n > 1 md prdve jeden kanonicky rozklad.



Definicia 4. Najmensi spoloc¢ny ndsobok [a, b]

Veta 3. Pre lubovolné dve prirodzené éisla a, b plati [a,b] = (Z‘g).

1.2 Vlastnosti prvoéisel

Veta 4 (Euklides). Vsetkych prvocisel je nekonecne mnoho.

Definicia 5. 7(x) je pocet prvocisel p, ktoré splitaji p < x (nepresahuji z). Funkciu 7
nazyvame prvociselnd funkcia.

. log z
Tvrdenie 1. 7(z) > 5755

Veta 5 (Prvociselna veta).
m(z)

lim =1

= (57)
Dokaz prvociselnej vety je velmi tazky, tdto veta patri medzi najvyznamnejsie vysledky
tedrie Cisel.

o0
Veta 6. Nekoneény rad > plk prevrdtenych hodnot vsetkych prvocisel diverguje.
k=1

Definicia 6. Nech A C N, z € N. Ozna¢me znakom A(z) pocet vSetkych tych a € A, pre

ktoré a < x. Ak existuje lim #, nazyvame toto ¢islo asymptotickou hustotou mnoziny A
r— 00

a oznacujeme ho h(A).

Veta 7. h(P)=0

Désledok 1. A(N\ P) =1
1.3 Kongruencie

Definicia 7. a =b(mod m) < m | (a—b)
Hovorime, Ze a a b s kongruentné a zapis a = b (mod m) nazyvame kongruenciou.

Relacia = je ocividne relaciou ekvivalencie.
Veta 8.
(i) Ak a =b(mod m) a ¢ =d(mod m), tak
(a) a+c=b+d(modm),
(b) a—c=b-—d(mod m),
(¢) ac = be(mod m).
(i) Ak ac =bc(mod m) a (¢c,m) =1, tak a = b(mod m).

Veta 9. Mnozina véetkych zvyskovich tried pri definovanom séitani tvori Abelovu grupu.
Jednotkou operdcie séitania je trieda 0 (mod m).

Lema 5. Nech (a,m) = 1, ¢ je lubovolné cislo. Potom existuje jedind zvyskovd trieda
(mod m), Ze pre kazdy jej prvok x plati ax = ¢ (mod m).



Definicia 8. Nech f(x) = agz™ + a12" ! +...+ a, je polyném n-tého radu s celo¢iselnymi
koeficientami. Vyrokovt funkciu f(z) = 0 (mod m) nazyvame kongruenciou n-tého stupria s
celociselnymi koeficientmi.

Lema 6. Nech x1 = g (mod m). Potom plati f(x1) = f(xo) (mod m).

Definicia 9. Zvyskovu triedu (mod m) nazveme redukovanou zvyskovou triedou (mod m),
ak kazdy jej prvok je nesudelitelny s éislom m.

Veta 10. MnoZina vietkych redukovangch zvyskovych tried (mod m) pri zavedenom ndsobeni
tvori grupu. Jednotka operdcie je trieda 1.

Definicia 10. Pre m > 1 nech ¢(m) oznacuje pocet ¢isel postupnosti 1,2,...,m — 1,m
nesudelitelnych s m. Funkcia ¢ sa nazyva Fulerova funkcia.

Tvrdenie 2. p(1) =1, p(p)=p—1

Lema 7. Nech (a,m) = 1, k = o(m). Ak {r1,72,...,7} je redukovany zvyskovy systém
(mod m), tak aj {ari,arq,...,ary} je redukovany zvyskovy systém (mod m). (redukovany
zvyskovy systém = z kazdej redukovanej zvyskovej triedy vezmeme jedného reprezentanta)

Veta 11 (Eulerova). Nech (a,m) = 1. Potom plati a?™) = 1 (mod m)

cmn(i- 1) (i- 1)

1.4 Linearne diofantické rovnice

Pre n = p{*...py* plati

Vseobecny tvar linedrnej diofantickej rovnice je
a1x1 + asTo + ... +apTr =cC (1.1)

kde a; a c st dané celé ¢isla, nezname st x;.
Oznaéme d = (a1, az,...,a).

Veta 12. Rovnica (1.1) md riedenie v celych &islach vtedy a len vtedy, ked d | c.

Uvazujme rovnicu s dvoma neznamymi:
ar+by=c (1.2)

Veta 13. Ak d | ¢, tak existuji také xo,yo € Z, Ze axo + byo = ¢ a vsetky rieSenia rovnice
(1.2) v celych cislach si dané parametrickymi rovnostami

b a
x:xo—i—at, yzyo—at (t €Z).

1.5 Pytagorovské trojuholniky

Pytagorovské trojuholniky st pravouhlé trojuholniky s celoéiselnymi dizkami stran.

PT(z,y,2) & 2% +y? = 2%

Vsetky pytagorovské trojuholniky mozno rozdelif do tried na zéklade podobnosti. Pri-
mitivny pytagorovsky trojuholnik je taky, ktory méa spomedzi podobnych pytagorovskych
trojuholnikov najmensi obsah. Pytagorovsky trojuholnik z,y, z je primitivny < (z,y) = 1
S (r,2) =14 (y,2)=1.



Lema 8. Ak x,y, z je primitivny pytagorovsky trojuholnik, tak jedno z c¢isel x, y je pdrne a
druh€ nepdrne.

Veta 14. Ak PT(z,y,z) je primitivny pytagorovsky trojuholnik, tak existuji m,n € N, m >
n, (m,n) = 1 opacnej parity také, Ze x = m? —n?, y = 2mn, z = m? + n%. Plati to aj
obrdtene.

Veta 15. Ak PT(xz,y,z) je primitivny pytagorovsky trojuholnik existuji také k,l € N, k > 1,

(k,1) =1, obe nepdrne, Ze x = kl, y = #, z = # Plati to aj obrdtene.

Veta 16. Ezistuje nekonecne vela primitivnych pytagorovskiych trojuholnikov, ktorgch pre-
pona je kvadrdtom prirodzeného cisla.

Veta 17. Ezistuje nekonecne vela primitivnych pytagorovskijch trojuholnikov, v ktorygch jedna
odvesna je kvadratom prirodzeného cisla.

Veta 18 (Fermat). Neeristuje pytagorovsky trojuholnik, ktorého dizky dvoch strdn by boli
kvadraty.

Veta 19. z™ + y" = 2"~ md nekonecéne vela riesent.
1.6 Multiplikativne funkcie

Definicia 11. Funkcia f: N — C sa nazyva aritmetickd funkcia. Aritmetickd funkcia f sa
nazyva multiplikativna, ak sa nerovna identicky nule, a ak z podmienky a,b € N, (a,b) =1
vyplyva

fla.b) = f(a).f(b)
Aritmetickd funkcia f sa nazyva tuplne multiplikativna, ak tato rovnost plati pre Tubovolné
a,beN.

Tvrdenie 3. Ak f je multiplikativna funkcia, tak f(1) = 1.
Ak f a g su multiplikativne funkcie, tak aj f.g je multiplikativna funkcia.

Veta 20. Nech a = p{*...pp* je kanonicky rozklad ¢isla a € N a nech f je multiplikativna
funkcia. Potom plati

SFAd) =@+ fp) 4 A L)) A+ Fr) + -+ FORF))

dla

7(n)=pocet delitelov ¢isla n

o(n)=sucet delitelov ¢isla n

Funkcie 7, o a ¢ st multiplikativne.
Funkcia n® je Gplne multiplikativna funkcia.

1 +1 a+1
_P Pk

p—1 "p-1
T(a) = (a1 +1)...(ap +1)

o(a)

Tvrdenie 4. Pre kaZdé n > 1 plati o(n) > n + 1.

Déosledok 2. lim o(n) = +o00

n—oo



Tvrdenie 5. liminf 7(n) =2 a limsup 7(n) = +oo

n—o00 — 00

Kazdé prirodzené &islo k > 2 je hromadnou hodnotou postupnosti (7(n))> ;. (7(p*) =
k+1)

Tvrdenie 6. Pre kazdé n > 0 je lim ~& = 0.

Tvrdenie 7. > ¢o(d) =n
d|n

Tvrdenie 8. lim ¢(n) = 400

n—oo

Definicia 12. Mébiusova funkcia p(1) = 1, u(a) = 0, ak existuje prvocislo p také, ze p? | a
a pu(a) = (=1)F, ak a = p; ...py (prvoéisla p; st navzajom rozne).

Veta 21. Nech f je multiplikativna funkcia a nech a = p7* ...pe* je kanonicky rozklad cisla
a € N. Potom plati

> pd)f(d) =1~ f(pr)... (1= fpx)
d

Pri volbe f(n) =1, resp. f(n) = + dostaneme z predchadzajicej vety:

Dosledok 3.

D ould)=1, > u(d) =0 (a>1)

d|1 dla
M) o) L
SEE L SR -TI (-5

Definicia 13. Cislo n € N sa nazyva dokonalé, ak o(n) = 2n. (Ekvivalentne: n sa rovna
suctu svojich vlastnych delitelov.)

Veta 22. Pdrne ¢islon € N je dokonalé prdve vtedy, ked md tvar a = 2P~1(2P — 1), kde p je
prvocislo a M, = 2P — 1 je tieZ prvocislo.

Nie je zname, ¢i existuje dokonalé neparne ¢islo, ani ¢éi je dokonalych é&isel nekonecéne vela.
1.7 Cantorove rozvoje realnych cisel

Veta 23. Nech (qi)72, je postupnost prirodzenych cisel vicsich ako 1. Potom kaZdé redlne
¢islo x moZno jednoznacne vyjadrit v tvare

x:co—i—zcik, (1.3)

— 91-92-- -Gk

kde ci, (k=0,1,...) sd celé ¢isla, 0 < ¢, < q, (k=1,2,...) a pre nekoneéne mnoho k plati
cr < qr — 1.



Tento rozvoj volame Cantorovim rozvojom &isla x. Specidlnymi pripadmi st g-adické a
faktoridlové rozvoje.

Veta 24. Nech (qi)72., md rovnaky vyznam ako v predchddzajicej vete. Nech ku kaZdému
prvoéislu p existuje nekonecne vela takych k, Ze p | qx. Potom éislo x vyjadrené Cantorovgm
rozvojom (1.3) je iraciondlne vtedy a len vtedy, ked pre nekoneéne mnoho k plati cx, # 0.

To znamend, Ze ak zdkladna postupnost (gx)5<, splita predpoklady tejto vety, tak z je
racionélne préve vtedy, ked Cantorov rozvoj je kone¢ny.

[ee] [ee]
Veta 25. Cisla ;= Y. M azxy= >, % su iraciondlne.
n=1 n=1

Veta 26. Cislo x vyjadrené g-adickym rozvojom je raciondlne vtedy a len vtedy, ked je tento
rozvoj periodicky.

Veta 27. Nech n € N, n > 2. Nech a je prirodzené ¢islo a a # k™ pre Ziadne prirodzené
¢islo k. Potom /a je iraciondlne &islo.

Veta 28. Nech r je kladné raciondlne cislo a r # 10" pre Ziadne n € Z. Potom ¢islo logq
je iraciondlne.

Tedria ¢&isel je uzitocna na to, aby sa pomocou nej dalo promovat.
Landau

2 Moduly

Pojem modulu a zdkladné vlastnosti. Volné moduly, zdkladnd veta o tvare konecne gene-
rovaného modulu. Kanonické tvary matic, podobné matice. Charakteristicky a minimdalny
polynom matice, elementdrne delitele a invariantné faktory matic.

2.1 Okruhy, idealy, okruhy s jednoznaénym rozkladom
Nejaké tivodné veci, z [ATA].
Faktorové okruhy a idealy

Definicia 1. Neprazdnu podmnozinu I okruhu A nazyvame idedlom okruhu A, ak
(i) z,yel=>az—-yel,
(i) rel,ac A=azxel,zacl.

1 je vlastny idedl, ak I # A.

Veta 1. Ak I je idedl okruhu A, tak mnoZina A/I vsetkych tried aditivnej grupy A podla
podgrupy I s operdciami
(a+ 1)+ (b+1)=(a+b)+1

(a+I)b+1)=ab+ 1

tvort okruh. Tento okruh nazyvame faktorovy okruh A podla I. Ak A je komutativny, resp.
obsahuje jednotku, tak aj A/I je komutativny, resp. obsahuje jednotku.



Definicia 2. Ideal I okruhu A nazyvame prvoidedl, ak
Va,be A:abel=a€lVbel

Idedl I okruhu A nazyvame mazimdlny, ak I # A a ak pre kazdy idedl J I C J C A
implikuje J = I alebo J = A.

Kazdy maximéalny ideal je prvoideal.

Veta 2. Faktorovy okruh A/I komutativneho okruhu A s jednotkou je polom prdve vtedy,
ked I je mazrimdlny idedl.

Faktorovy okruh A/I komutativneho okruhu A s jednotkou je oborom integrity prdve vtedy,
ked I je vlastny prvoidedl.

Definicia 3. Hovorime, Ze prvok x € A generuje ideal I komutativneho okruhu A s jednot-
kou, ak I = zA = {za;a € A}.
Ideal I okruhu A nazyvame hlavngm idealom, ak je generovany niektorym prvkom z € A.
Komutativny okruh A nazyvame okruh hlavniych idedlov, ak kazdy idedl okruhu A je
hlavny.

Veta 3. V okruhu hlavngch idedlov je kaZdy prvoidedl mazimdlny.
Okruhy s jednoznaénym rozkladom

Obor integrity (OI) = komutativny okruh s jednotkou bez delitelov nuly.

Euklidovsky okruh = taky obor integrity A, v ktorom existuje zobrazenie §: A\ {0} — Z
také, ze plati:
a) 6(a) > 0 pre kazdé a € A.
b) Pre kazdé a,b € A, b # 0 existuju prvky ¢,r € A tak, Zze a = bg + r, pricom alebo r = 0,
alebo r # 0 a §(r) < §(b).

Okruh s jednoznacngm rozkladom (Gaussov okruh), je obor integrity, v ktorom sa kazdy
prvok da zapisat v tvare a = upips...pn, kde a € U(A) (delitele jednotky v OI A) a p; st
ireducibilné prvky v A, pri¢om tento zapis je jednoznacény az na poradie a asociovanost.

Euklidovské okruhy

V euklidovskom okruhu existuje najviiési spoloény delitel dvoch prvkov.
Euklidovsky okruh je okruhom hlavnych idealov.

Okruhy hlavnych idealov

V okruhu hlavnych idedlov plati

a)al|b< (a) D (b)

b)a~b< (a)=(b)

Ak a,b € A, A je OHI, tak

a) (a) + (b) ={z € A;x = au+ bz,u,v € A} je idedlom v okruhu A,
b) existuje d € A s vlastnostou (d) = (a) + (b) a plati d = (a,b).

Veta 4. Nech A je OHI. Potom A je okruhom s jednoznacnym rozkladom prdve vtedy, ked
A je obor integrity.

Vo zvysku otazky budeme pod OHI rozumiet OI, ktory je OHI. (Takto to pouzival Gu-
ri¢an. V [ATA] je to definované tak, ako som to dal sem.)



Gaussove okruhy

Nech A je okruh s jednozna¢nym rozkladom. Nech a = upips...pn, b = vq1g2 - .. g s
dva kanonické rozklady prvkov a,b € A. Potom a | b prave vtedy, ked existuje injektivne
zobrazenie ¢: {1...k} — {1...k} tak, Ze p; ~ q;, pre vietky i = 1,... k.

2.2 Smithov kanonicky tvar

Matice nad euklidovskym okruhom nazjvame riadkovo ekvivalentné/ stipcovo ekviva-
lentné/ ekvivalentné, ak sa jedna d4 upravit na druht koneénou postupnostou riadkovych/
stipcovych/ fubovolngch prav.

Veta 5. Nech A je matica typu m X n nad euklidovskym okruhom R. Potom existuje diago-
ndlna matica D = diag(dy, da, . ..) ekvivalenind s A a takd, Ze plati:

d; | d; pre pripustné i, j také, Ze i < j.
Matica D je jednoznacne uréend aZ na asociovanost.

Determinanty podmatic matice A typu r xr nazyvame minory A radu r. Najvacsi spoloény
delitel minorov A rddu r oznacime 7, (A). Potom plati d; ...d, = n.(A). Prvky na diagonéle
Smithovho kanonického tvaru matice A nazyvame invariantnymi faktormi matice A.

Veta o Smithovom kanonickom tvare plati aj ak R je obor integrity a okruh hlavnych
idedlov. (Vo zvysku otédzky vidy budeme pod okruhom hlavnych idedlov rozumiet obor in-
tegrity.) Potrebujeme vSak vSeobecnejsiu definiciu ekvivalencie matic. Matice A a B typu
m X n nazveme ekvivalentnymi, ak existuju Stvorcové matice P a @, ktoré su delitele jed-
notky v prislusnych okruhoch matic a plati A = PBQ.

2.3 Pojem modulu a zakladné vlastnosti

Definicia 4. Nech R je okruh a (M, +) je komutativna grupa. Potom dvojicu (R, M) spolu
s ,,bindrnym péarovanim* ®: R x M — M nazyvame lavostrannym modulom nad okruhom
R, ak

(i) preac Raz,ye Mplatia @ (x+y)=(a0z)+ (aOy)
(ii) prea,b€ Rax € M plati (a+b) 0x=(a®z)+ (bOx)
(iii) prea € Rax,y€e M platia® (bO ) = (ab) © x

© sa zvyCajne nazyva skaldrny sicin (skaldrne ndsobenie).
Ak navySe R je komutativny okruh s jednotkou a plati
prexeM1ox=uz,

tak ide o unitdrny modul. My sa zaoberame len unitarnymi modulmi.

Prikladmi modulov sii vektorové priestory, kazda grupa je Z-modul, ak I je ideal okruhu
R, tak (R, I) je R-modul. Ak V(F) je konefnorozmerny vektorovy priestor nad polom F a A
je jeho linedrna transformaécia, tak definujeme unitdrny modul (F[v], V(F), A), kde f(y)ox =



Definicia 5. Nech (R, M) je modul. Nech K je podgrupa grupy (M,+). Potom (R, K)
nazyvame podmodulom modulu (R, M), ak pre a € R a z € K je vzdy azx € K.

Nech (R, M), (R, K) st dva moduly nad R. Nech ¢: M — K je grupovy homomorfizmus.
Potom hovorime, ze ¢ je modulovy homomorfizmus, ak naviac pre kazdé a € R a x € M plati

(ax)p = a(xep).

Definicia 6. Nech § # X C M, kde (R, M) je modul. Nech [X] zna¢i mnoZinovy prienik
vSetkych podmodulov modulu (R, M) obsahujicich mnozinu X. [X] je tieZ podmodul modulu
(R, M). Nazyvame ho podmodul generovang mnozinou X. Prvky z mnoziny X sa nazyvaja
generdtormi (pod)modulu [X]. Ak pre nejakt koneéni podmnozinu X C M je [X] = M,
hovorime, ze (R, M) je konecne generovany modul.

Tvrdenie 1. Nech (R, M) je unitdrny modul. Potom (R, K) je podmodul modulu (R, M)
prave vtedy, ked a,b € R a x,y € K implikuje ax + by € K.

Tvrdenie 2. Nech (R, K) je modul nad komutativnym okruhom R. Potom
X]={zeK;z=nz1+ ...+ 2 +a1y1 + ...t asys A, s E N A
Aniy...,n. €LNay,...,as € RAx1,..., 20, 9y1,...,ys € X}.
Ak (R, K) je unitdrny modul, tak
X]={zeK;z=ay1+...+asys N\s€N Aay,...,as E RAy1,...,ys € X}.

Relacia ekvivalencie © na M sa nazyva kongruenciou modulu (R, M), ak © je kongruen-
ciou na grupe M a x = y(0) implikuje az = ay(©). Podobne ako pri grupéch sa da definovat
faktorovy modul podla danej kongruencie.

2.4 Volné moduly

Definicia 7. Unitarny modul (R, M) nazyvame volngm modulom nad mnozinou volnych
generatorov S, ak

(i) [S]= (R, M) a

(i) ak a1z1 + ...apx, = 0 pre a; € R a po dvoch rézne x1,...,2, € S, tak a; = as =
...=ay,=0.

V takomto pripade budeme pre (R, M) pouzivat tieZ oznacenie Fr(S). MnoZinu volnych
generatorov S tiez nazyvame bazou volného modulu Fg(S). Fr(n) znamena volny modul s
n-prvkovou bazou.

Veta 6. Nech (R, M) je unitdrny modul. Potom (R, M) je volng modul prdve vtedy, ak
(i) [S] = (R, M),

(1) kaZdé zobrazenie f: S — K do (lubovolného) unitdrneho modulu (R, K) sa dd jedingm
spdsobom rozsirit na homomorfizmus ¢: M — K, t.j. ¢|S = f.

Definicia 8. Nech {(R, M;);i € I'} je mnozina modulov. Potom
[ ien)={f:1—|JM;:iel);f(i)e M,iel}

je tzv. kartezidnsky sic¢in mnozin M;, i € I. Na tejto mnozine definujeme operacie & a ® po
zlozkéch. Dostaneme tak modul - priamy sucin modulov M;.



Veta 7. Modul (R, M) je izomorfny s priamym sicinom n modulov nad R prave vtedy, ked
existuji podmoduly P; modulu (R, M) tak, Ze plati:

(i) M=[PLU...UP,] a
(i1) {0} = PN [PLU...UP;_1] pre vietky i = 2,...n.
Ak su splnené uvedené dve podmienky, tak (R, M) = (R, Py X Py x ... X P,)
Priamy st¢in modulov (R, M7 X ... x M,,) zna¢ime tiez M1 & ... ® M,.

Veta 8. Nech R je okruh, (R, M) je unitdrny modul a M = [eq,...,ey]. Potom M = [e1] @
... @ [en] prdve vtedy, ked z rovnice aje; + ...+ ane, = 0 vyplyva, Ze a1e; = ... = ane, = 0.

Veta 9. Nech R je okruh s 1. Potom unitarny modul (R, Ry X...xR,),n>1kde Ry = ... =
R, = R je volny modul nad n-prvkovou mnoZinou volngch generdtorov S = {ey,...,en}, kde
er =(1,0,...,0),...,e, =(0,...,0,1).

Veta 10. Nech R je OHI. Potom kaZdy podmodul volného modulu Fr(n) je volng modul s
konecnou bazou o m < n prvkoch (t.j. existuje bdza, ktord md najviac n prvkov).

Veta 11. Nech R je obor integrity s 1, nech (R, M) je konecnogenerovany volny modul, nech
A1y, 0p @ B1,...,0m st dve bdzy tohoto modulu. Potom m = n.

Definicia 9. Nech (R, M;), i € I s unitdrne moduly. Potom priamy stGéin tychto modulov
K = [[(M;;i € I) je tiez unitdrny modul. Podmnozina L = {f € K; f(i) = 0 pre skoro
vietky (t.j. vSetky az na koneény pocet) ¢ € I'} tvori podmodul modulu (R, K). Modul L
nazyvame priamy sicet modulov (R, M;), i € I a zna¢ime ho Y (M;;i € I).

2.5 Veta o rozklade modulov

Definicia 10. Nech (R, M) je modul, R je okruh hlavnych idedlov. Ak a € M, tak generator
(hlavného) idealu {r € R;ra = 0} sa nazyva rdd prvku a, zna¢ime rad(a).

Veta 12. Nech (R, M) je konecne generovany unitdrny modul nad okruhom hlavngch idedlov
R. Potom ezistuje rozklad na cyklické podmoduly M = [f1] ® [fo] ® ... ® [fx], kde rad(f;) |
rad(f;) pre 1 <i < j < k. Dalej ak rad(f1) 1 1, tak tento rozklad je jednoznacny, presnejsie
povedané, ak M = [f{] @ [fs] © ... © [fl] a je splnené, Ze vad(f{) {1 a tieZ rad(f) | rad(f})
pre 1 <i<j <k, tak k=s arad(f;) =rad(f)).

Désledok 1. Nech (R, M) je koneéne generovany unitdrny modul nad okruhom hlavngch
idedlov. Potom M = M; & F, kde M; je podmodul prvkov konecného rddu a F je volny
modul nad R.

Dimenzia volného modulu F je urdend jednoznacéne a nazyva sa Bettiho &islo modulu

(R, M).

Désledok 2. Konecne generovand komutativna grupa je priamy sucin komutativnej peri-
odickej a volnej komutativnej grupy.

Désledok 3. Konecne generovand komutativna grupa je priamy sucin cyklickych grip.
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2.6 Jordanov kanonicky tvar

Dve matice A, B typu n x n nad polom F st podobné, ak existuje reguldrna matica P
taka, 7e B = PAP™!, alebo, ekvivalentne, ak st matice A, B maticami toho istého linedrneho
zobrazenia daného vektorového priestoru pri dvoch bazach.

Modul prislichajici matici A mozno podla vety o rozklade modulov rozlozit na cyklické
podmoduly. O nich plati:

Lema 1. Kazdy cyklicky podmodul M; je podpriestor vektorového priestoru V (F'), ktory je
mvariantny vzhladom na linedrne zobrazenie A.

7 toho vyplyva, Zze matica A je podobné blokovo diagonalnej matici, kde bloky zodpove-
daju podpriestorom M;.

Definicia 11. Minimdlny polynom m 4 () transformécie (matice) A v bode « je normovany
polyndém, ktory generuje idedl M4 o = {f € F[y];af(A) = 0}. (ma,q(y) =rad(a))
Minimdlny polyndm m s(y) transformacie (matice) A na podpriestore S je normovany
polyndém, ktory generuje idedl Ma s = {f € F[y]; Va € S)af(A) =0} = () Ma,a.
es

(03
Minimdlny polynom m4 v, (7y) transformécie (matice) A (na priestore V,,(F)) je normo-
vany polyndm, ktory generuje idedl M4y, = {f € F[y]; Va € V,)af(A) =0} = (| Ma..
O(E‘/n
M; = [g;] m& bazu g;, g: A, . .. g; A5 (4)~1 kde d; = rad(g;) =My 4, () = 2"+ ap_12m 1+
...+ a1z + ag. Transformacia A zGzena na podpriestor M; mé pri tejto baze maticu

0 1 0 0

0 0 1 0

0 0 0 1
—ag —ap cee —Am-—1

Maticu, ktord pozostéva z takychto blokov na diagondle je Jordanov kanonicky tvar matice
A prvého druhu.

Ak (F[y],V(F),A) = [1]®...® [g], tak polynémy rad(g1),...,rad(gr) (=ma,g, (7),-- -,
ma.g, (7)) nazyvame invariantné faktory matice A. S to diagonalne prvky Smithovho kano-
nického tvaru matice v/ — A.

Nech M = (F[v],V(F),A) = [g] a nech rad(g) = m1(y)ma(y) ... mx(7), pricom m; st

po dvoch nesudelitelné. Polozme 7;(y) = :Zd((j)) . Plati

Veta 13. FEzistuji ey ...e; také, Ze M = [g] = [e1] ® ... @ [er] a rad(e;) =m;.

(Prvky e; sa najdu ako e; = 1;(7)g)
Tato veta umoziiuje rozlozit jednotlivé bloky Jordanovej kanonickej matice prvého druhu
nasledovnym sposobom: Nech blok C; je pridruzeny ku polynému (invariantnému faktoru

matice A) d;(y) = pfl“ pkl, kde jednotlivé polynémy sa ireducibilné normované a po
dvoch nestdelitelné. Potom na zdklade predoslej vety vieme eSte blok C; rozlozit na blo-

kovo diagondlnu maticu diag(B;1, ..., Bis,; ), kde kazdé B;; je matica pridruzend k polynému

184

P;;” (7). Tieto polynémy sa nazyvaju elementdrne delitele matice A.
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Ak uvazujeme o module M = (F[y], [g], A), pricom rad(g) = p*(7), kde p(v) je ireduci-
bilny polyném. Potom vektory

g1=9 g2 = gA gp = gAT!
9g+1 = gp(A) Ggt+2 = gp(A)A . Yagtp = gp(A) AT
92¢q+1 = 9P2(A) 92q+2 = gp2(A)A cee 92q+p = QPQ(A)Aqfl
9h—1)g+1 = 90" HA)  gu—1)gr2 = P"THA)A L gem1ygrq = gPFTH(A)ATT!

tvoria bazu. Vzhladom na tato bazu dostaneme vyjadrenie A v tvare

P N 0 0 0
0 P N 0 0
B=|..............000
0 0 O P N
0 0 O 0 P
kde
0 1 0 0 0
0 0 1 0
P= |
0 0 0 0 1
—Cyp —C1 —C9 —Cq—2 —Cq—1
a
0 0 0
0 0 0
N=|.............
0 0 0
1 0 0

Dostali sme Jordanov kanonicky tvar matice A druhého druhu.
Nad algebraicky uzavretym polom F st ireducibilné normované polynémy v tvare x — a.
V tom pripade dostaneme

a 1 0 0 0
0O e 1 ... 00
J(Ifa)k R T I e
0 0 0 a 1
0 0 0 0 a

Veta 14. Nech A, B si matice n X n nad polom F. Nasledujiice podmienky st ekvivalentné:
(i) A a B si podobné,

(i) vI — A a vI — B si ekvivalentné nad F[y] (t.j. maji ,rovnaky® Smithov kanonicky
tvar),

(ii) A a B maji rovnaké invariantné faktory,
(iv) A a B maji rovnaké systémy elementdrnych delitelov.
Veta 15. Nech A je matica nad polom F. Nasledujice podmienky su ekvivalentné:

(i) A je podobnd diagondlnej matici,
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(ii) elementdrne delitele matice A si polyndmy prvého stupria,
(iii) posledny invariantny faktor md samé jednoduché korene a tie leZia vsetky v poli F.

Definicia 12. Charakteristicky polynom matice A je polyném det(zl — A). Minimdlny po-
lyndm matice A je nenulovy polyném p najnizsieho mozného stupiia taky, ze p(A) = 0.

Veta 16. Charakteristicky polynom matice A je sicin jej invariantnich faktorov (a teda aj
vdetkych elementdrnych delitelov).

Veta 17. Minimdlny polynom matice A je jej posledny invariantny faktor.

Dosledok 4. Matica A je podobnd diagondlnej matici prdve vtedy, ked jej minimdiny poly-
ndm md len jednoduché korene a tie vsetky patria do pola F'.

Veta 18 (Cayley-Hamilton). Nech cha(y) € F[y] je charakteristicky polyndm matice A.
Potom cha(A) = 0.

Neistota duse je zld vlastnost, ale istota je smiesna.
Voltaire

3 Grupy

Sylowove vety z tedrie koneénych grip. Volnd grupa a jej podgrupy. Volny sucin grip. Radi-
kdly idedlu, prvoidedl a mazimadlny idedl okruhu. Polopriamy sicin okruhov. (Okruhy zlomkov,
primdrny rozklad idedlu. )

3.1 Normalne podgrupy a grupy permutacii

Zdalo sa mi, Ze aj toto by som mal niekde dat. Ak sa vam bude zdaf, Ze s to prili§ lahké
veci, ktoré dokonale ovladate, staci to jednoducho preskocit.

Grupy permutacii

Cyklickou permutdciou (cyklom) dlzky k prvkov ay,as,...,a; mnoZiny X nazyvame per-
mutéciu v, takd, Ze a;y = a;+1 (i =1,...,k — 1) a agy = a1. Oznacujeme v = (ajaz . ..ax).

Suécin disjunktnych cyklov nezavisi od poradia. Kazda permutéacia je sti¢in disjunktnych
cyklov. Tento rozklad je jednoznaény az na poradie a cykly dizky 1. Rad permutécie je
najmensi spoloény nasobok dlzok cyklov vystupujicich v rozklade.

Transpozicia = cyklus dlzky 2. Kazda permutécia sa da zapisat ako saéin transpozicii.
Parita permutdcie = parita po¢tu transpozicii = parita po¢tu inverzii (i < j, ip > jo).

Sy = symetrickd grupa rddu n = permutécie mnoziny {1,...,n}

A,, = alternujtca grupa = grupa vSetkych parnych permuticii mnoziny {1,...,n}

Grupa A, je generovana cyklami dizky 3.

Pre n > 5 jediné normélne podgrupy grupy S, s 1, A,, S,. (4, je jadro homomorfizmu,
ktory kazdej permutécii priraduje jej paritu, teda je to normélna podgrupa.)

Ak p € S, tak o ay ...ax)p = (a1pazp ... arp). K lubovolnym dvom cyklom a, 3 € S,,
rovnakej dlzky existuje permutécia ¢ € S, taka, ze 3 = ¢ lag. Obe tieto vlastnosti sa
prenesi aj na stéin disjunktnych cyklov. Teda @1, o st konjugované, ak st rovnaké dlzky
cyklov v ich rozkladoch.
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Normalne podgrupy

Definicia 1. Podgrupa H grupy G sa nazyva normdlna (alebo invariantnd) v G, ak pre
kazdy prvok a € G plati implikacia: h € H = a~*ha € H.

Ak H je normaélna, tak definujeme faktorovii grupu G/H. Existuje jednojednoznaény
vztah: normélne podgrupy < kongruencie < jadra homomorfizmov.

gNg~ ' =N & gN = Ng.

Ak H C K st normalne podgrupy grupy G, tak H je normélna podgrupa grupy K a
K/H je normdlna podgrupa grupy G/H.

Vnttorné automorfizmy: f, : z — a~'za.

a — f, je homomorfizmus, jeho jadro je Z(G).

Tvrdenie 1. Ak H, N su podgrupy G a N je normdlna, tak HN je podgrupa G. Ak navyse
H je normdlna, tak aj HN je normdlna.

Prienik norméalnych podgrip je normalna podgrupa. To znamenad, ze existuje najmensia
normélna podgrupa G obsahujica dant podmnozinu G.

3.2 Sylowove vety

Tvrdenie 2. Nech G je cyklickd grupa, |G| = n, d | n. Potom existuje podgrupa H grupy G
takd, Ze |H| = d.

Nech G je komutativna grupa, |G| = n, d | n. Potom existuje podgrupa H grupy G takd,
Ze |H| =d.

Akcia grupy na mnozine

Definicia 2. Nech M # 0 je mnozina, (G,0) je grupa. Akciou grupy G na mnoZine M
nazveme zobrazenie «: M x G — M také, ze
a) (typ 1) 1. (Ym € M)a(m,e) =m
2. (Vm € M)(v917g2 € G)a(a(m7 91)792) = a(m’gl 092)
b) (typ 2) 1. (Ym € M)a(m,e) =m
2. (Vm € M)(v91ag2 € G)a(a(mvgl)ng) = C“(ma g2 0 gl)
Stru¢nejsi zapis: me = m, (mg1)g2 = m(g192); (mg1)g2 = m(gag1).
Priklady: a;(a,g) = gag~! pre M = G (konjugécia, akcia konjugéciou)
Ak H je podgrupa G, tak ay(X,h) = {heh~';z € X} pre h € H je akcia grupy H na
mnozine M = P(G) \ {0}.

Definicia 3. Nech M # () je mnozina, G je grupa, a je akcia G na M. Hovorime, Ze
Sa(m) ={g € G;a(m, g) = m} je stabilizator prvku m € M v akcii a.

Tvrdenie 3. S,(m) je podgrupa G.

Definicia 4. Nech M # ) je mnozZina, G je grupa, « je akcia G na M. Hovorime, Ze
Oq(m) = {n € M;(3g € G)a(m, g) = n} je orbita prvku m € M v akcii a.

Veta 1. |O,(m)| = |G : So(m)]
Lema 1. Systém {O,(m): m € M} je rozklad M.

Definicia 5. Nech G je grupa, § # X C G. Potom mnozinu Cg(X) = {2z € G;(Vz €
X)zxr = w2z} nazgvame centralizdtor mnoziny X v grupe G. Specidlne Cg(G) =: Z(G)
nazyvame centrum grupy G.
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Definicia 6. Nech G je grupa a H je podgrupa G. Hovorime, ze H je charakteristickd, ak
pre kazdy homomorfizmus ¢: G — G plati p(H) = H.

Kazd4 charakteristickd podgrupa je norméalna. Z(G) je charakteristickd podgrupa.
Oznaéme grg~! =: 29, {2";2 € X} = X"

Definicia 7. Nech H je podgrupa G. Mnozina Ng g(X) = {h € H : X" = X} sa nazjva
normalizdtor mnoziny X v grupe H.
Ng.¢(X) =: Ng(X) je normalizitor X v G.

Na,#(X) = Sap (X) a Co({2}) = Sa,(r) = Na,c({z}), preto Ng u(X) a Ca({z}) sa
podgrupy G. Ca(X) = (] Ce({z}), teda aj Cq(X) je podgrupa G. (Nemusi byt normélna.)
reX

Definicia 8. Nech G je grupa, a,b € G. Hovorime, Ze a a b st konjugované, ak existuje
g € G také, ze b= a9 = gag™?' (t.j. b € O,, (a)). Je to relacia ekvivalencie.

g a—a’ =gag~! je vnidtorny automorfizmus.

g+ g je tzv. antihomomorfizmus (obracia operacie).

Sylowove vety

Lema 2. Nech G je grupa, K, H si podgrupy G. Triedou rozkladu G podla dvojného modulu
K, H nazgvame mnoZinu KgH = {kgh;k € K,h € H} (pre g € G).
Triedy KgH, g € G tvoria rozklad grupy G.

Veta 2. Nech K, H st podgrupy G. Pocet lavijch tried rozkladu podla podgrupy H v mnoZine
KgH je [K : KNgHg '] = [g7'Kg : g7'Kg N H|. Pocet pravijch tried rozkladu podla
podgrupy K v mnozine KgH je [gHg ' : KNgHg ' =[H : g *Kgn H].

Lema 3. (O, (9)| =1 < g€ Z(G)

Veta 3 (Cauchy). Nech G je koneénd grupa, p je prvocislo a p | |G|. Potom existuje
podgrupa H grupy G takd, Ze |H| = p.

Dosledok 1. Nech G je koneénd grupa takd, Ze existuje prvocislo p s vlastnostou p | |G|
a pre kaZdi vlastni podgrupu H plati p | |[G : H]|. Potom G md netrividlne centrum, t.j.

2(G) # {e}.
Désledok 2. Nech G je grupa s p? prvkami, pricom p je prvocislo. Potom G je komutativna.
Veta 4 (1. Sylowova). Nech G je grupa, p je prvocislo, |G| = p™.s, pts. Potom

(i) v G existujii podgrupy Hy, ..., H,, také, Ze |H;| = p*,

(ii) ak i < m a H je p'-prvkovd podgrupa G, tak existuje p*l-prvkovd podgrupa G takd,
Ze H je jej invariantnd podgrupa.

Definicia 9. Grupa G sa nazyva p-grupa, ak kazdy jej prvok mé rad tvaru p™. (p-prvoéislo)
Tvrdenie 4. Konecénd p-grupa G md p™ prvkov pre vhodné m.

Definicia 10. Nech G je koneénd grupa, p je prvodcislo, |G| = p™.s, p { s. Podgrupa S grupy
G sa nazyva Sylowova p-podgrupa G, ak |S| = p™. Podgrupa S grupy G sa nazyva Sylowova
podgrupa G, ak existuje prvodislo p také, ze S je Sylowova p-podgrupa G.

Désledok 3. Ak p je prvocislo a p | |G|, tak existuje Sylowova p-podgrupa grupy G. Ak S
je podgrupa G, |S| = p*, tak existuje Sylowova p-podgrupa H grupy G takd, e S C H.
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Doésledok 4. Ak G je koneénd p-grupa, |G| = p™, tak kazdd podgrupa S takd, Ze |S| = p™~!
je invariantnd v G.

Veta 5 (2. Sylowova veta). Nech Py, Py st dve Sylowove p-podgrupy G. Potom (3g €
G)Py = gPyg !, t.j. Pi a Py st konjugované.

Daosledok 5. Nech G je konecnd grupa, S je Sylowova p-podgrupa. Potom S je jedind Sylo-
wova p-podgrupa grupy Nea(S).

Veta 6 (3. Sylowova). Nech G je koneénd grupa, p | |G|, p je prvocislo. Potom pre pocet
k Sylowovych p-podgriup plati

(1) k1G]
(ZZ) k=1+1Ip,l €Ny

Veta 7. Nech P C K C H C G su podgrupy grupy G. Nech P je Sylowova p-podgrupa,
K = Ng(P). Potom Ng(H) = H.

Veta 8. Nech A, B si invariantné podgrupy G také, 2e ANB ={e} a AB=[AUB]=G.
Potom G =2 A x B.

Veta 9. Nech G je grupa, x© € G je taky, Ze rad(x) = mn, (m,n) = 1. Potom ezistuje jedind
dvojica prvkov y,z € G takd, Ze x = yz = zy, pricom rad(y) = m, rad(z) = n.

Tvrdenie 5. Konecénd p-grupa ma netrividlne centrum.
Veta 10. Nech G je konecnd grupa. Nasledujice podmienky su ekvivalentné:

(i) Ak pre prvocislo p plati p | |G|, tak v G ezistuje prave jedna Sylowova p-podgrupa (t.j.
pre kaZdé pripustné p md len jednu Sylowovu p-podgrupu).

(i) G sa dd napisat ako priamy sudin svojich Sylowovych p-podgrip.
(iii) Ziadna vlastnd podgrupa grupy G nie je totoind sa svojim normalizdtorom.
Veta 11. Nech G je p-grupa a H C G je invariantnd p-prvkovd podgrupa. Potom H C Z(G).

Definicia 11. [a,b] = aba=1b~! = komutant prvkov a, b
[G,G] = [{[a,b];a,b € G}] = komutdtor grupy G

[G, G| je charakteristickd podgrupa (teda je normaélna).

G/N je komutativna < G 2 N 2 [G, G]

Oznacme Z,(G) = Z(G) a Zp11(G) = v =1 Z(G/Zr(Q))) (¢ je prirodzeny homomorfiz-
mus).

1C Z1(G) C Z(G) C ...

Definicia 12. Grupa G je nilpotentnd, ak existuje také k, ze Zy(G) = G. Najmensie také k
nazveme stupern nilpotentnosti grupy G.

Tvrdenie 6. KaZdd konecnd p-grupa je nilpotentnd.
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3.3 Volné grupy a volné stiéiny
Volha grupa a jej podgrupy

Nech X’ = {a,a™1,b,b71,...} pre X = {a,b,...}. Nech W’ je mnozina vietkych slov nad
abecedou X’. Slovo w € W' je v redukovanom tvare ak neobsahuje podslovo tvaru zz ! alebo
xtx. D4 sa ukéazaft, Ze pre kazdé slovo existuje jediny redukovany tvar, bez ohladu na to, v
akom poradi vykondvame redukcie. Ak vytvorime reldciu ekvivalenciu na W’ takd, ze 2 slovd
buda ekvivalentné ak maja rovnaky redukovany tvar a definujeme néasobenie, dostaneme
grupu F'X. FX je volnd grupa na X.

Tvrdenie 7. Pre lubovolné zobrazenie f: X — G, kde G je grupa, existuje jeding homo-
morfizmus p: FX — G taky, Ze p|x = f.

Veta 12 (Nielsen-Schreier). Podgrupa volnej grupy je volnd.
TODO Mozno by sa patrilo stratif aj par slov a dokaze.

Veta 13. Ak U je podgrupa grupy F, indexu n, tak U md n(r — 1) + 1 generdtorov.
U= Fn(r71)+l
Volhy sitiéin grip

Volny sucin grup mozno reprezentovat ako postupnosti, v ktorych sa striedaju prvky
jednotlivych grup, ktoré vystupuji v stcéine. Opét sa d4 zaviest ekvivalencia, redukciu bude
teraz predstavovat vynechanie jednotky niektorej grupy z postupnosti a nahradenie dvoch
po sebe idtucich prvkov tej istej grupy ich sti¢inom.

Pisat sem aj volny stc¢in s amalgaméaciou???

Veta 14 (Kuro$). Nech G = [],.; G; je volng sicin grip. Nech H # 1 je podgrupa grupy
G. Potom H je tieZ volny sucin grip v tvare

H=F][]o;"'Bjay,

kde F je volnd grupa a kaZdd s podgrip a;lBjozj Jje podgrupa konjugovand s podgrupou B;
niektorej z grip G;, i € 1.

3.4 Okruhy, radikaly, prvoidealy
Prvoidealy v komutativnych okruhoch

V tejto Gasti R bude znamenat komutativny okruh s jednotkou.
Lema 4. a € R nie je invertibilng < existuje mazimdlny idedl I okruhu R taky, Ze a € I.

Lema 5. Nech I je idedl okruhu R a x € R. Potom najmensi ideal okruhu R, ktory obsahuje
Iajzjel+ (z)={a+br;acl,bec R}.

Lema 6. I je mazimdiny idedl R < (¥Vr ¢ I)(3z € R)(1 —rz € I).

Veta 15. Ak A je idedl v R, A C B, B je prvoidedl, potom mnoZina {P;A C P a P je
prvoidedl} md minimdlny prook.
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Definicia 13. Nech R je komutativny okruh. Radikdl R je rad(R) = (\{I; I je prvoideal}.

Ak R je obor integrity, tak rad(R) = 0.
Radikal je ideal.

Definicia 14. Prvok a okruhu R sa nazyva nilpoteniny, ak existuje n € N také, ze a™ = 0.

Lema 7. Nech T C R a existuje idedl I taky, Ze I NT = (). Potom existuje mazimdlny (v
zmysle inklizie - nie mazimdlny idedl okruhu) idedl Iy taky, Ze IoN'T = 0.

Definicia 15. T C R je uzavretd na konecné siliny, ak 1 € T, 0 ¢ T a pre a,b € T aj
abeT.

Lema 8. Nech T C R je uzavretd na konecné suciny, P je mazimdlny idedl (mazimdlny
vzhladom na inkluziu) taky, Ze PNT = (. Potom P je prvoidedl.

Tvrdenie 8. rad(R) = {a € R;a je nilpotentny}
Definicia 16. Jacobsonov radikdl Rad(R) = (\(I;1 je maximAalny ideal)
Lema 9. r € Rad(R) & (Vx)1 — rz je invertibilng v R

Definicia 17. Okruh R je polojednoduchy, ak Rad(R) = {0}. R md trividlny radikdl, ak
rad(R) = {0}.

Veta 16. (i) R/Rad(R) je polojednoduchy okruh.
(1) R/rad(R) md trividlny radikdl.
Polopriamy sucin
Definicia 18. Okruh R nazyvame polopriamy sicin okruhov S;, i € [ ak k: R — [[S; a
kazdé m; o k je surjektivne.

Veta 17. Okruh R je polopriamy siucin okruhov S; i € I & S; &2 R/K;, K; je idedl R a
N K; = {0}.

Désledok 6. Komutativny okruh R je polojednoduchy prdve vtedy, ked je polopriamy sucin
poli. Komutativny okruh md trividlny radikdl prdve vtedy, ked je polopriamy sucin oborov
integrity.

Désledok 7. Komutativny okruh R md trividlny radikdl prdve vtedy, ked R je izomorfniy
podokruhu sucinu oborov integrity.

Doésledok 8. Komutativny okruh R md triwvidlny radikdl prdve vtedy, ked R je izomorfny
podokruhu sicinu poli. (Pri dokaze sa vyuZije, Ze kaZdy obor integrity vieme vloZit do podie-
lového pola.)

Definicia 19. Hovorime, Ze okruh R je polopriamo nerozloZitelny ak prienik vSetkych jeho
nenulovych idealov je nenulovy ideal.

Tvrdenie 9. Ak R je polopriamo nerozloZitelny a R je polopriamy sucin S;, tak R = S; pre
niektoré i a pre j # i je S; = {0}.

Veta 18 (Birkhoff). KaZdy okruh je polopriamy sicin polopriamo nerozloZitelngch okruhov.
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3.5 Okruhy zlomkov

Najprv by som aspoti velmi stru¢ne spomenul, ¢o je podielové pole. Jednak preto, Ze tieto
dve konstrukcie st podobné a dvak preto, ze podielové pole asi patri k veciam, ktoré by mal
¢lovek kondiaci struktury vediet.

Zlomkom nad oborom integrity D nazyvame usporiadani dvojicu (a,b), kde a,b € D,
b # 0. Na mnozine vSetkych zlomkov definujeme reldciu ekvivalencie (a,b) = (a’,b") préave
vtedy, ked ab’ = a’b. Dalej definujeme stcet a suéin ako (a,b) + (c,d) = (ad + be, bd),
(a,b)(¢c,d) = (ac,bd). Triedy ekvivalencie zlomkov s takto definovanymi operdciami tvoria
pole, ktoré sa nazjva podielové pole a oznacuje Q(D). Je to najmensie pole obsahujtice obor
integrity D v tom zmysle, ze ak je D vnorené do nejakého pola, tak toto vnorenie mozno
rozsirit na celé Q(D).

Toto som odpisal z [ASH].

Okruh zlomkov je podobna konstrukcia ako podielové pole. PretoZze nepracujeme s oborom
integrity, ale s lubovolnym okruhom, treba obmedzit mnozinu pripustnych menovatelov, aby
sme nedostali v menovateli nulu. Dalej budeme predpokladat, Ze R je komutativny okruh.

Definicia 20. Nech S je podmnozina okruhu R. Hovorime, ze S je multiplikativna, ak 0 ¢ S,
leSaabeS=abes.

Typické priklady:
S = mnozina vSetkych nenulovych prvkov oboru integrity,
S = mnozina vSetkych prvkov komutativneho okruhu, ktoré nie st delitelmi nuly,
S = R\ P, kde P je prvoideal komutativneho okruhu R.
Ak S je multiplikativna podmnozina okruhu R, tak definujeme na R x S relaciu ekviva-
lencie
(a,b) ~ (c,d) préve vtedy, ked pre nejaké s € S je s(ad — bc) = 0.

(Lahko sa overi, Ze je to relacia ekvivalencie, ked vyuzijeme komutativnost R. Vraj sa okruhy
zlomkov zavadzaju aj v nekomutativnom pripade, ale je to o dost obtiaznejsie.)

Zlomok ¢ potom definujeme ako triedu ekvivalencie dvojice (a,b). Mnozinu zlomkov
ozna¢ime S~'R. ST!R s prirodzene definovanym s¢itovanim a nasobenim tvori komutativny
okruh. Ak R je obor integrity, tak takymto spésobom dostaneme podielové pole.

Tvrdenie 10. Nech f: R — S7'R, f(a) = a/1. Potom f je okruhovy homomorfizmus. Ak
S neobsahuje delitele nuly, tak f je prosté, ¢ize R mozno vioZit do S™'R.

Lamme si hlavu!
Salat

4 Polynémy

Rezultant. Vlastnosti polyndmov nad polom redlnych a komplexnych cisel. Separdcia koreriov,
ohranicenie korenov, Sturmov systém. Numericky vypocet koreriov.
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4.1 Rezultant

Definicia 1. Nech f,g € F[z], f = apz™ + a1z ' + ...+ an, g = box™ + ... + b,,. Potom
rezultant polynémov f a g je

a ai ... ap O 0

0 ay aq an, 0

10 ... 0 a a1 ... an
RED =y b 0 by 0 ... 0
0 by b bm 0

0 0 by b bm

(pomocou polynému f je vytvorenych prvych m riadkov a pomocou g zvysnych n riadkov)

Tvrdenie 1.

R(f.g) = af _Hg(a»,

kde korene f su po rade aq,...,qp.
Désledok 1. R(f,g) =0 prdve vtedy, ked f a g maji spolocny korer.

R(f, f) sa nazyva diskriminant f. Diskriminant je nulovy préve vtedy, ked f mé ndsobny
koren.

4.2 Vlastnosti polynémov nad polom realnych a komplexnych é&isel

Veta 1 (Gaussova, Zikladna veta algebry). Pole C je algebraicky uzavreté.

Tvrdenie 2. Polyndm f(x) s redlnymi koeficientmi je ireducibilng nad R prdve vtedy, ked
st f(z) = 1 alebo st f(x) = 2 a f(x) nemd redlne korene, t.j. md dva zdruZené imagindrne
korene.

Tvrdenie 3. Majme f(x) =ag+a1z+...+a,2™ € Z[z| stuprian > 1. Nech % € Q, pricom
(p.q) = 1. Ak L je koreriom f(z), tak p|ao a q|an v okrubu Z.

4.3 Ohranicéenie a separacia korenov
Budeme sa zaoberat rovnicou

f@)=a"+az" ' +.. . +a, =0 (1)

Veta 2. Vsetky redlne korene rovnice (1) s redlnymi koeficientmi leZia v intervale (—1 —

A1+ A), kde A = max{|a1|,...,|an|}.

Veta 3. Nech (1) je rovnica s redlnymi koeficientmi, pricom aspori jeden z koeficientov je
zaporny. Predpokladajme, Ze ay je v poradi prvy zaporny koeficient. Nech B je najvicsia z
absolitnych hodnot zapornijch koeficientov rovnice (1). Potom kaZdy redlny koren rovnice (1)
je mensi ako ¢islo 1+ ¥/B.

Ak pouzijeme predchddzajicu vetu na polyném f(—z), tak dostaneme ohranicenie zdola.
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4.4 Sturmov systém

Majme rovnicu (1) s redlnymi koeficientmi. Predpokladajme, Ze polyném f(x) mé len
jednoduché korene. Sturmov retazec polynomov fo(z), f1(x), ..., fm(x) patriacich k polynému
f(z) sa zostroji takto: Polozme fo(z) = f(z) a fi(x) = Df(z) = f'(z). Ostatné polynémy
Sturmovho retazca ziskame zo vztahu f;(x) = fir1(2)git1(x) — fire(z). (Tento vztah urcuje
az na znamienko polyndémy vystupujice v Euklidovom algoritme. Teda stupne postupne
klesaju.)

Pod znamienkovou zmenou v postupnosti fo(c), f1(c),. .., fm(c) rozumieme pripad, ked
fi(e).fix1(c) < 0 alebo fi(c) =0a fi_1(c).fix1(c) < 0. (Viackrat za sebou tam 0 byt nemoze.)

Veta 4 (Sturmova). Majme polynom f(x) s redlnymi koeficientmi a redlne ¢isla a < b. Nech
f(a) # f(b). Potom podet redlnych koreriov rovnice (1) leZiacich v otvorenom intervale (a,b)
sa rovnd ¢islo Zn(a) — Zn(b). (Zn(c) znamend pocet znamienkovych zmien v postupnosti

f0(0)7 EERR fm(c)')
4.5 Numerické rieSenie

Newtonova metéda (metéda dotyénic) a metéda tetiv (regula falsi).
Pri Newtonovej metéde sa v [ATA] spomina tato veta (je tam bez dokazu).

Veta 5. Majme rovnice (1) s redlnymi koeficientmi a jednoduchymi korerimi. Nech rovnica
(1) md jedinyg koreri vnitri intervalu {a,b). Dalej predpokladdme, Ze f'(z) # 0 a f"(z) #0
na celom intervale {(a,b). Oznaéme znakom ¢y to z &isel a, b, v ktorom f(c1).f"(c1) > 0.
Znakom dy oznacme druh€ éislo z &isel a, b, t.j. ¢islo v ktorom f(dy).f"(d1) < 0. Utvorme
postupnosti

f(e1) — ¢ f(e2)

ET @) T Pl
g f@) ()
e ey {5

Potom jedna z postupnosti je klesajuca, druhd rastica a obe postupnosti konverguju ku korenu
a.

Nikto nekrici: , Uz spime!“
Valkova

5 Konecné polia a kédovanie
Polynomy nad koneénym polom, ich rozklad na siéin ireducibilngch polyndmov. Rozkladové
pole polyndmu. Bezpecnostné kddy. Linedrne kody, Hammingove kody. Generujice polynomy
a cyklické kody.

5.1 Rozklad na sicin ireducibilnych polynémov

V tejto a v nasledujticej ¢asti st odpisané nejaké veci z [ATA].
Okruhy polynémov - koren, delitelnost, NSD, Euklid, OHI

Veta 1. Majme polynom f(x) = ag+ ...+ a,a™ v neurcitej x nad polom F. Nech a, #0 a
n > 1. Potom existuji polyndmy p1(x), ..., pm(x) normované a ireducibilné nad F a plati

f(l‘) = anpl(x) e 'pm(x)'
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Tento rozklad je jednoznacne uréeny aZ na poradie ¢initelov.

Veta 2 (Eisensteinovo kritérium). Nech p je prvocisio a a(z) = anx™+a, 12" +.. .+ag
je polynom s celociselngmi koeficientami taky, Ze an, Z 0(mod p) a ap—1 = apn—2 =...a9 =
0 (mod p), ag # 0 (mod p?). Potom a(x) je ireducibilng nad polom raciondlnych éisel.

5.2 Rozkladové pole polynému
Algebraické a transcendentné rozsirenia

Definicia 1. Nech F, L st polia, FF C L. Prvok u € L sa nazyva algebraicky nad F, ak je
koreriom nejakého polynému z F[z]. Prvok u € L sa nazyva transcendentny nad F, ak nie je
koreriom ziadneho polynému z F[z].

Definicia 2. Pole L nazyvame jednoduchym algebraickym rozsirenim pola F' C L, ak existuje
prvok u € L, algebraicky nad F taky, ze pole L = F(u) je generované mnozinou F' U {u}
(hovorime, Ze L je generované prvkom u nad F.) Ak u je transcendentny nad F, tak L = F(u)
nazyvame jednoduché transcendentné rozsirenie pola F.

Pole F(u) generované prvkom u ma tvar

F(U)Z{%;Q(U)#O}-

7 toho vyplyva nasledujtiica iplna charakterizicia jednoduchych transcendentnych rozsireni.

Veta 3. Jednoduché transcendentné rozsirenie F(u) pola F je izomorfné s podielovgm polom
Q(F|x]) okruhu F[z] polynomov jednej neurcitej nad F.

Rozkladové polia

Definicia 3. Rozsirenie L pola F' nazjvame rozkladovym polom polyndmu f nad F, st f =
n > 0, ak existuju prvky c € F, uy,us...u, € L také, ze L = F(uy,...,u,) a f sadéd nad L
rozlozif na stéin linedrnych ¢initelov

f=clx—uy)...(x —uy).

Veta 4. Ak p je ireducibilng polyndm nad polom F, tak existuje jednoduché algebraické
rozirenie F(u) generované koreriom u polyndmu p. (Je izomorfné s F/(p).)

Veta 5. Pre kaZdy polyndm f nad polom F, st f = n > 0 existuje rozkladové pole f nad F'.
Je uréené jednoznacne aZ na izomorfizmus.

Veta 6. Pre kazdé cislo tvaru q = p”, kde p je prvocislo, n > 0 prirodzené cislo, existuje

(okrem izomorfizmu) prdve jedno q-prvkové pole — je to rozkladové pole polynomu x% — x nad

Zy.
Multiplikativnu grupu pola F' budeme znadit F*.

Veta 7. Nech F je pole. Potom kaZdd podgrupa grupy F* s konecnym poctom prvkov je

cyklicka.

Veta 8. Nech F, je konecné rozsirenie konecného pola F,. Potom F, je jednoduché algeb-
raické rozsirenie a kaZdy primitivny prvok z F,. (generdtor F) je generdtorom rozsirenia F,
t.g. Fr = F,(€). (€ je primitivny prvok.)

Désledok 1. Pre kazdé n > 0 existuje sreducibilng polyndm nad Z, stupria n. (Je to mini-
madlny polynom primitivneho proku z Fy, ¢ = p™. )
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5.3 Kodovanie

Literatura ku kédovaniu: hlavne [AD], ¢osi je aj v [JAB].

Definicia 4. Nech A, B st koneéné mnoziny, B* je mmnozina vSetkych slov nad B, t.j.
B*={u=ej...ex;k € Ny, e; € B}. Potom injektivne zobrazenie k: A — B* sa nazyva kdd.
Prvky z k(A) sa nazyvaji kédové slova.

Kéd k mozno rozsirit na zobrazenie k*: A* — B*. Ak k* je prosté zobrazenie, hovorime
o jednoznacne dekodovatelnom kédovani.

Ozna¢me B™ mnozinu vetkych slov nad B dlzky n. Kéd k: A — B™ sa nazjva blokovy
kod dizky n.

Veta 9. Nech n = |B| > 2, nech A = {ay,...,a,}. Nech dy,...,d, si po rade predpisané
dlzky kodovyjch slov pre ai,...,a,. Nech dy < ... < d,. Potom sa dd zostrojit prefizovy kdd
prdve vtedy, ked plati Kraftova nerovnost n=% + ... +n~% < 1.

Veta 10 (McMilan). Kazdyj jednoznacne dekodovatelny kod splria Kraftovu nerovnost
nTh 4 <1,

kde d; si dlzky vietksjch kddovych slov a n = |B].

Bezpecénostné kédy

Definicia 5. Hovorime, Ze v slove doSlo ku t-ndsobnej chybe, ak prijaté slovo sa lisi od
vyslaného slova na nanajvys t miestach. Hovorime, Ze koéd objavuje t-ndsobné chyby, ak pri
vyslani kédového slova doslo ku t-nasobnej chybe, tak prijmeme nekédové slovo.

Definicia 6. Nech T je abeceda a u,v € T". d(u,v) = |ju —v|| = [{i : u; # v;}| sa nazyva
Hammingova vzdialenost u a v.

Hammingova vzdialenost je metrika.

min{d(u,v);u # v;u,v € k(A)} sa nazyva minimdlna vzdialenost kddu.

Veta 11. Nech k: A — T™ je blokovy kod minimdlnej vzdialenosti d. Potom k objavuje
t-ndsobné chyby pre t < d, k nie je schopny objavit d-ndsobné chyby.

Definicia 7. Hovorime, ze kéd opravuje t-ndsobné chyby, ak po vyslani v € k(A) a prijati
w € T™ s vlastnostou d(v,w) < t plati d(v,w) < d(x,w) pre vietky x € k(A4), = # v.

, ’ . . ’ . . . . d
Veta 12. Blokovy kdd minimdlnej vzdialenosti d opravuje chyby pre t < 5.

Definicia 8. Nech k: A — T" je blokovy kéd. Ak existuje I < n a bijekcia ¢: T' —
k(A), hovorime, ze k ma | informacngch a n — 1 kontrolngch znakov. ¢ sa nazyva kédovanie
informacnych symbolov.

Blokovy kéd k(A) C T™ je systematicky, ak existuje ¢islo [ < n, ze kazdé slovo vy ... v; € T'
mozno jednoznacéne predlzif na nejaké kédové slovo.

Veta 13. Nech k: A — T™ je systematicky, pricom md | informacnych symbolov. Potom
d<n-1+1.
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Linearne kédy

Definicia 9. Linedrny kod je podpriestor vektorového priestoru (F, F™), kde F' je konec¢né
pole. (tzv. linedrny (n,r)-kéd, kde r = dim(k(A))).

Generujica matica linedrneho kédu je matica G, ktorej riadky tvoria bazu podpriestoru
k(A).

Linedrny kéd k(A) je systematicky, ak ma generujicu maticu G = (IxG')gxn. Aby sme
zistili, ¢i kéd s danou generujtiicou maticou je systematicky, upravime ju na redukovany troju-
holnikovy tvar. (Pomocou elementarnych riadkovych operécii z generujicej matice dostaneme
generujucu maticu toho istého kédu.)

Definicia 10. Kédy ki, ko € F™ st ekvivalentné, ak existuje permutacia stipcov Gy, ktorou
dostaneme generujicu maticu Gs.

Definicia 11. Nech K je linedrny (n, k)-kéd. Matica B nad polom F' sa nazyva kontrolnd
matica kédu K, ak

BGT =0,GBT =0
Pre u,v € F™ definujme
UV :=UIVL+ ...+ UVUp.
Veta 14. Nech K je linedrny (n, k)-kod nad konecngm polom F. Potom K+ = {v € F" :
uxv=0VYu € K} je podpriestor F" a dim(K+) =n —k, t.j. K+ je linedrny (n,n — k)-kdd.
K+ wvoldme dudlny podpriestor/dudiny kod ku K.
Generujiica matica kddu K je kontrolnou maticou kodu K+ a obrdtene.

Definicia 12. Hammingova vdha slova v = vy ...v, € F™ je poet nenulovych zloziek slova
v. |l = [{i : vi # 0}

Lema 1. Nech K C F™ je linedrny kdd a d je jeho minimdlna vzdialenost. Potom d =
min{||w|| : w € K — {0}}.

Veta 15. Linedrny kdd objavuje t-ndsobné chyby prdve vtedy, ked kaZdijch t stlpcov jeho
kontrolnej matice je linedrne nezdvislych.

Veta 16 (o Standardnom dekddovani). Nech K je (n,k)—linedrny kdd nad polom F.
Nech ¢’ € e+ K je slovo s najmensou vdhou v triede ekvivalencie e + K. €' budeme volat
reprezentantom triedy e + K. Potom zobrazenie §: F" — K definované vztahom 6(w) =
w—reprezentant triedy (w + K), t.j. 6(w) = w — €' je dekddovanie. Voldme ho Standardné
dekddovanie.

Standardné dekddovanie opravuje prdve tie chybové slovd, ktoré sme zvolili za reprezen-
tantov. Navyse Ziadne dekddovanie neopravuje vicsiu mnoZinu slov ako §.

Veta 17. Nech H je kontrolnd matica linedrneho (n, k)—kddu K nad F. Potom e+ K = '+ K
& Hel = He'T.

Definicia 13. Nech H je kontrolnd matica linedrneho kédu K C F™. Nech

U1 S1

Potom slovo s = s1 ... s, sa vola syndrom slova v = vy ... v,.

Standardné dekédovanie mozno urychlit pomocou syndrémov, ak vopred vypocitame ta-
bulku popisujicu, ktory reprezentant zodpovedéd ktorému syndrému.
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5.4 Hammingove kody

F =75 - ide o binarny kéd.
(7,4)-linedrny kéd

000 1111
H={0 1 1 0 0 1 1
1 01 01 0 1
Reprezentanti st e; az e7, syndrém pre e; je zapis ¢ v dvojkovej stistave. Pre Hammingove

kédy je jednoduchy vypocet syndrému aj vyber reprezentanta.

Veta 18. Bindrny linedrny kdd opravuje jednoduché chyby prdve vtedy, ked stlpce jeho kon-
trolnej matice su nenulové a navzdjom rozne.

Definicia 14. Binarny kéd sa nazyva Hammingov, ak jeho kontrolnd matica ma k riadkov,
2F — 1 nenulovych stipcov a ziadne 2 stipce nie st rovnaké. Je to (28 — 1,2%F — k — 1)-kéd.

Rozsireny Hammingov kéd vznikne ak priddme navyse kontrolu parity, t.j. v1 + ... +
vom_1 + vam = 0. (Zodpovedad doplneniu riadku pozostavajiceho zo samych jednotiek do
kontrolnej matice.)

5.5 Perfektné kédy

Definicia 15. Linearny kdd sa nazyva perfektny pre t-ndsobné opravy, ak jeho reprezen-
tantmi st vsetky slova vahy mensej alebo rovnej ¢.

Veta 19. Hammingove kody su perfekiné pre jednoduché opravy.
Ak nejaky kod je perfektny bindrny linedrny kdd na opravu jednoduchijch chyb, tak je to
Hammingov kdd.

Veta 20 (Jietédvaismen, Van Lint). Jediné netrividine perfekiné kddy (aZ na ekvivalenciu)
su tieto:

(i) Hammingove kddy pre jednoduché chyby,
(i) Golayov kdd pre trojndsobné chyby

(iii) opakovacie kddy dizky 2t + 1 pre t-ndsobné chyby.
5.6 Cyklické kédy

Definicia 16. Linedrny kéd K C F" je cyklicky, ak vg ... v,—1 € K = v,_10g ... V2 € K.
V=00... Uy 1 < f(T) =vo+v1T+ .. vyt

Veta 21. Nech F je konecné pole. Potom linedrny kod K C F"™ je cyklicky prdve vtedy, ked
K je idedlom okruhu (F™,+,%) & Flz]/(a™ — 1). (* je ndsobenie modulo ™ — 1, t.j. x x f(x)
predstavuje posun dolava)

Veta 22. KaZdy netrividlny cyklicky (n, k)-kdd obsahuje polynom g(x) stupria n — k a plati:
(i) K je hlavny idedl v F™ generovany polynomom g(x).

K:{fan;f:g*h,hGFn}:(g)
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(ii) Polynomy g(x),z % g(x),...z" !

* g(x) tvoria bazu K.
(iii) g(z) | 2™ — 1 v okruhu F[z].

Takyto polynom g(x) voldme generujucim polynémom cyklického kddu.

go 91 -+ Gn-k O ... 0
G=|"

: . . . 0

0 0 go g1 oo On—k

Definicia 17. Nech 2" —1 = g(x).h(z) v F|z] anech K C F" je cyklicky kdd s generujicim
polynémom g(z). Potom h(x) volame kontrolnym polynémom kédu K.

0 ... ... 0 hy ... hi ho
0 ... 0 hp ... hi ho O
Ho= | o
0 Ty hi ho O 0
Ay, hi ho O 0

Bez toho, aby sme vela museli rozmyslat. Lebo tam jednd sa o toto.
Katrinak

6 Grafy a ich zakladné vlastnosti

Grafy a ich zdkladné vlastnosti. Minimdlna cesta v grafe, algoritmus na minimdlnu kostru.
Fordov-Fulkersonov algoritmus, Hallova veta. Linedrny faktor, zloZitost algoritmov. Problém
obchodného cestujuceho. Problém c¢inskeho postdra.

Pri priprave tejto otazky sa okrem pozndmok z predmetov Tedria grafov a Linedrne
programovanie a grafové algoritmy pouzila aj kniha [PL].

6.1 Grafy a ich zakladné vlastnosti

Graf - (V, E)

Kysova terminoldgia: Graf = neorientovany, pseudograf = pripustaju sa slucky, multigraf =
aj paralelné hrany.

Digraf = aj orientdcia hran (E je mnozina usporiadanych dvojic)

orientovany graf = taky, ktory ziskame z obycajného grafu doplnenim orientacie hran

U Plesnika bola terminolégia podobnd, ibaze multigraf nemal slucky a v pseudografe boli
povolené. Migraf bol graf, ktory mal orientované aj neorientované hrany.

izomorfizmus grafov, stupen vrchola

Podgraf, indukovany podgraf (indukovany mnoZinou vrcholov), faktor (podgraf s rovnakou
mnozinou vrcholov ako mé cely graf)

kompletny graf

turnaj = kompletny asymetricky digraf

regularny graf stupna k, regularny digraf stupnia & = vchadzajuci aj vychadzajiaci stupen
kazdého vrchola je k

sled, tah (neopakuju sa hrany), cesta (neopakuji sa vrcholy)
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uzavrety sled, uzavrety ah, kruznica (cyklus)
suvisly graf, komponenty
excentricita, polomer, priemer, centrum
bipartitny graf

Nevedel som, kde dat Mengerovu vetu, ale zdalo sa mi, Ze je dost dolezité, takze niekde
by byt mala. Zatial som ju dal sem. (Separdtor som nedefinoval, to sa sndd da domysliet z
kontextu.)

Veta 1 (Menger—hranova verzia pre digrafy). Ak u, v si 2 rézne vrcholy digrafu D,
tak mazimdlny pocet hranovo disjunktnych u—v ciest v D sa rovnd poctu hrdn minimového
u—v hranového separdtora.

Veta 2 (Menger—hranova verzia pre grafy). Ak u, v sd 2 rozne vrcholy grafu G, tak
mazimdlny pocet hranovo disjunktngch u—v ciest v G sa rovnd poctu hrdn minimového u—v
hranového separdtora.

Veta 3 (Menger—vrcholova verzia pre digrafy). Ak u, v si 2 rézne vrcholy digrafu
D, w ¢ E(D), tak mazimalny pocet vrcholovo disjunktngch u—v ciest v D sa rovnd pocétu
vrcholov minimového u—v vrcholového separdtora.

Podobne vyzera vrcholova verzia pre grafy.
6.2 Hladanie najkratSej cesty
Uloha: Najst cestu z s do ¢ s minimalnym st¢tom ohodnotent.
Moorov algoritmus

Moorov algoritmus riesi tto tlohu v pripade, ze kazd4 hrana mé ohodnotenie ¢;; = 1.
Vzdy priddvame vrcholy, do ktorych sa dé dostat z tych, ktoré sme pridavali v poslednom
kroku. Kazdy vrchol dostane znacku len raz, ¢ize sta¢i O(m + n) operacii. (tzv. postup do
sirky)

Dijkstrov algoritmus

Dijkstrov algoritmus predpokladé, Ze c;; > 0.
S = vrcholy s trvalou znackou
S = vrcholy s do¢asnou znackou
Na za¢iatku S = {s}, vzdy pre vrchol v € S udrziavame v jeho znacke dlzku minimalnej
cesty do v cez vrcholy patriace do S a posledny vrchol tejto cesty. (Na zac¢iatku sa znacky
inicializuju tak, Ze s ma znacku 0 a ostatné vrcholy co.) V kazdom kroku pridédvame vrchol
z S, ktorj mé najmensiu znacku.

Zlozitost: O(n?). (D4 sa pouzitim haldy zmodifikovat na O(mlgn).)

6.3 Algoritmus na minimalnu kostru

Strom = suvisly acyklicky graf.

Faktor suvislého grafu, ktory je stromom, nazveme kostrou.

Ak V; C V, tak mnozinu vSetkych hran, ktorych jeden koncovy vrchol patri do V; a druhy
do V'\ Vi nazveme hranovy rez.

Veta 4. Hrana e patri do minimdlnej kostry prdve vtedy, ked e je najlacnejSou hranou neja-
kého rezu.
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VSeobecny spajaci algoritmus (Tarjanov)

Vzdy mame zostrojeny les (na za¢iatku st vSetky stromy jednobodové). Vyberieme nie-
ktory z doteraz vytvorenych stromov a pridame najlacnejsiu hranu idicu z tohto stromu do
iného stromu.

Primov algoritmus

Vzdy vyberieme najvicsi strom (teda vlastne budeme mat len jeden strom) a priddme
najlacnej$iu hranu, ktorad z neho vychadza. Zlozitost: O(n3). Ak si pre vytvoreny strom
paméitame najlacnej$iu hranu, ktord mozeme pridat a po kazdom kroku tuto informéciu
aktualizujeme, mozeme ziskat O(n?) algoritmus.

Kruskalov algoritmus

Usporiadame hrany vzostupne podla ceny a potom ich v takom poradi postupne pri-
davame, pri kazdom priddvani hrany testujeme, ¢i nevznikne cyklus. Usporiadanie trva
O(mlgm) a detekcia sa da robit v ¢ase O(mlgn) (spolu cez vetky hrany).

6.4 Siete a toky

Siet = digraf, v ktorom st vyznadené zdroj s, ustie t a kazdej hrane je priradené celé ¢islo
- kapacita hrany.
Tok je funkcia f: F — R taka, Ze

(i) 0 < f(a) < c(a),
i) > flwy)= > fly,z)prex#s,t.

yEN+(x) yeEN~(z)

s-t rez je taky rozklad vrcholovej mnoziny na dve mnoziny S a T, ze s € S, t € T.
Kapacita rezu b(S,T) = stdet kapacit vSetkych hran, ktoré maju pociatoény vrchol v S a
koneény v T

Veta 5. Nasledujice vyroky su ekvivalentné:
(i) f je mazimdlny s —t tok.
(1) Neexistuje zvicsujica s —t polocesta.

(#ii) Existuje s —t rez (S,T) taky, Ze v(f) = b(S,T), kde v(f) oznacuje velkost toku f, t.j.
o(f) = ZyeN+(S) f(s,y) — ZyeN*(s) f(y.s).

Désledok 1. Nech N je siet definovand na digrafe D s ustim t a zdrojom s. Potom velkost
mazimdlneho s — t toku sa rovnd kapacite minimdlneho s — t rezu.

Nasledujtce vety sa daju dokazovat aj pomocou tokov.

Veta 6 (Hall). Systém rozlicngch reprezentantov mnoZin Si,...,S, existuje prdve vtedy,
ked zjednotenie lubovolngch k mnoZin md asponi k prvkov.

Veta 7 (Konig, Egervary). Mazimalny pocet nezdvislych hrdn pdrneho grafu sa rovnd
minimdlnemu poctu vrcholov, ktoré pokryju vsetky hrany grafu.
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Fordov-Fulkersonov algoritmus

Vlastne len ozna¢ujeme vrcholy, do ktorych sa da dostat po rezervnych (zviésujicich) po-
locestach. Ak sa podari oznackovat vrchol ¢, zvii¢sime tok pomocou rezervnej polocesty a po-
stup opakujeme. V pripade celoéiselnych kapacit algoritmus musi skon¢it. Fordov-Fulkersonov
algoritmus nie je polynomidlny, hoci sa v praxi ukazuje pomerne rychly.

6.5 Linearny faktor

Definicia 1. Faktor grafu = podgraf, ktory obsahuje vSetky vrcholy.
r-faktor = faktor, ktory je regularny stupna 7.
Nepdarny komponent grafu = komponent, ktory mé neparny pocet vrcholov.

Veta 8 (Tutte). Graf G(V, E) md 1-faktor < ak pre kaZdi podmnoZinu S mnoZiny V(G)
je poéet nepdrnych komponentov grafu G — S najviac |S]|.

Parenie

Dve hrany st nezdvisle, ak nemaja spolo¢ny vrchol. Pdrenie je mnozina nezévislych hran
grafu G.
maximalne parenie, najpocetnejsSie parenie
kompletné parenie = perfektné parenie — obsahuje vsetky vrcholy
Volny vrchol= nie je koncovy vrchol ziadnej hrany parenia.
Alternugiica cesta je cesta, ktorej hrany striedavo patria a nepatria do parenia. Alternujica
cesta sa nazyva zvdcésujucou cestou, ak koncové vrcholy st volné vzhladom na dané pérenie.

Veta 9 (Berge). Pdrenie M v grafe G je najpocetnejsie < ak v G nie je zvicSujica polocesta
vzhladom na M.

6.6 Zlozitost algoritmov

= O(f(n)), ak existuji ng a c také, ze pre n > ng je g(n) < cf(n).
n) = linedrna zlozitost

lgn) = logaritmicka zlozitost

= polynomidlna zlozitost

= exponencialna zloZitost

6.7 TUloha éinskeho po$tara a tiloha obchodného cestujiiceho
Uloha éinskeho postara

eulerovsky sled = uzavrety sled obsahujuci vSetky hrany a vrcholy

Uloha: V danom silne stvislom grafe G, kde kazda hrana méa realnu dlzku cij > 0, treba
najst najkratsi eulerovsky sled. (Postéar mé prejst vSetky ulice mesta.)

V eulerovskom grafe je rieSenim Iubovolny eulerovsky fah. Inak treba nasjt poparovanie
vSetkych vrcholov neparneho stupna pomocou ciest, tak aby sii¢et ohodnoteni tjchto ciest
bol minimalny. (Nech Vi je mnoZzina vrcholov neparneho stuptia. Pre u,v € V; najdeme
najkratsiu cestu. Na V; vytvorime kompletny graf s ohodnotenim d,,= miniméalna dizka
u — v cesty. V takomto grafe sa vytvori najlacnejsie parovanie - na to existuje algoritmus.
Hrany z tohoto parenia priddme k povodnému grafu. Eulerovsky tah v takto ziskanom grafe
zodpoveda najlacnejsiemu eulerovskému sledu v pévodnom grafe.)
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Uloha obchodného cestujiiceho

V grafe s nezdpornymi redlnymi ohodnoteniami hrén néjst najkratsi hamiltonovsky cyk-
lus. Je to NP-tazky problém.

No tak nebudeme si to pisat. .., ale napiSeme si to.
Gliviak

7 Rovinné a hamiltonovské grafy

Rovinné grafy, Eulerova rovnost. Farbenie grafov, veta o piatich farbdch. (KruZnice v grafoch,
hamiltonovské idedly, Chuvdtalova veta. Stabilita a uzdver grafov. Hamiltonovské kruznice a
zakdzané podgrafy. Hamiltonovské kruZnice a hranové grafy eulerovskiych grafov.) [Ramseyho
problém, Hamiltonovské problémy. Oreho veta.]

Po aktualizicii Statnicovych otdzok bola vynechana cast v zatvorke a pribudli Ramseyho
problém, Hamiltonovské problémy a Oreho veta. Hamiltonovské problémy a Oreho veta st v
tejto otazke. Ramseyho som nechal v 9. otazke, kde bol povodne.

7.1 Plandrne (rovinné) grafy

Definicia 1. Plandrne (rovinné) grafy sa grafy, ktoré sa daju vnorit do roviny. (Ekvivalentnd
podmienka je, ze graf mozno vnorit do gule.)

Stena planarneho vnorenia obsahujica bod z disjunktny s G je mnozina vSetkych bodov
roviny, ktord je mozné spojit s x krivkou pozostdvajicou len z bodov disjunktnych s G.
Hranica steny je mnozina vSetkych bodov = grafu, ktoré je mozné spojit s Tubovolnym bodom
steny krivkou, ktorej vSetky body okrem z st disjunktné s grafom. DiZka hranice je pocet
hran hranice danej steny, pricom ak je hrana mostom, tak sa pocita dvakrat.

Veta 1 (Euler). Pre suvisly plandrny graf plati
p—qtr=2

kde p je pocet vrcholov, q je pocet hrdn a r je pocet stien. (Alebo, ak sa vdm to tak lepsie
pamdtd, v —h+s=2.)
Ak je plandrny graf G nesuvisly a md k(G) komponentov, tak p —q+r =1+ k(G).

Eulerova veta sa dokaze indukciou vzhladom na pocet hran grafu na n vrcholoch.

Existuje prave 5 typov pravidelnych mnohostenov (Stvorsten, kocka, 8-, 12- a 20-sten.)

Pre pocet hran plandrneho grafu plati ¢ < 3p — 6. Ak neobsahuje trojuholnik, tak g <
2p — 4. (Pomocou tychto nerovnosti moézeme overit, ze K5 3 a K5 nie st planarne. Tiez z nich
vyplyva, Ze kazdy rovinny graf musi obsahovat vrchol stupria nanajvys 5.)

Definicia 2. G| a G5 st homeomorfné, ak su izomorfné alebo obidva grafy mozno dostat z
toho istého grafu G postupnym opakovanim operacie delenia hran.

Ekvivalentnéd definicia: St izomorfné alebo jeden mozno dostat z druhého opakovanim
operacii delenia hrany alebo odstranenia vrchola stupna 2.

Veta 2 (Kuratowského). Graf je plandrny prdve vtedy, ked neobsahuje podgraf home-
omorfny s K5 alebo K3 3.

Veta 3 (Wagner, Tutte, Harary - duilna Kuratowského). Graf je plandrny prdve
vtedy, ked nemd podgraf, ktory sa dd stiahnut elementdrnou redukciou (t.j. spdjanim sused-
nych vrcholov) na Ks alebo Ks 3.
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7.2 Farbenie grafu

X(G) = chromatické ¢islo = minimalny pocet farieb, ktorymi sa d4 ofarbit G tak, aby kazdé
dva susedné vrcholy mali r6znu farbu.

X(G) > w(G) (w(G) =klikové ¢islo = velkost najviiésieho kompletného podgrafu)

X(G) <1+ A(G)

Tvrdenie 1 (Szekeres, Will). Pre lubovolny graf G plati

< !
x(G) <1+ g}ggé(G )

kde mazimum sa berie cez vSetky indukované podgrafy G' grafu G.

Veta 4 (Brooks). Nech G je stvisly graf s mazimdlnym stupriom A. Nech G nie je kom-
pletng ani nepdrny cyklus (alebo: G nie je kompletny a A > 3). Potom x(G) < A.

Veta 5 (Gallai). x(G) <1+ m(G), kde m(G) je dizka najdlhsej cesty v G.

Veta 6 (Kelly, Zykov). % < x(G) <p—pB+1, kde B je mohutnost najvidsej nezdvislej
mnoZziny vrcholov.

Tvrdenie 2. Ak G neobsahuje Py ako indukovany podgraf, tak x(G) = w(G).
Veta 7. Pre lubovolné kladné celé n existuje n-chromaticky graf bez trojuholnikov.
Veta 8 (4CT). Kazdy plandrny graf mozno ofarbit 4 farbami.

Veta 9 (5CT). Kazdy rovinng graf je 5-farbitelny.

Dokaz. Nech p je najmensie také, Ze to neplati a nech G je rovinny graf na p vrcholoch, ktory
nie je 5-farbitelny. V G existuje vrchol stupiia najviac 5 (to vyplyva z odhadu pre pocet hran
rovinného grafu q¢ < 3p — 6). Po vynechani tohto vrchola v dostaneme 5-farbitelny graf. Hj 3
oznacime podgraf indukovany vrcholmi farieb 1 a 3. Ak v; a v nie st spojené v H; 3 cestou,
tak moézeme zamenit farby 1 a 3 v komponente obsahujiicom v1. V opaénom pripade nebudu
spojené cestou ve a v4 v Hy 4. O

U1

v
5 (%]

V4 U3

Farbenie hran

X1(G) - chromaticky index = najmensi pocet farieb, ktorymi je mozné ofarbit hrany G
tak, aby susedné hrany nemali rovnaka farbu.

Veta 10 (Vizing). Ak G je neprdzdny, tak A(G) < x1(G) < A(G) + 1.
Grafy moézeme rozdelit do 2 tried: x1(G) = A(G) (trieda 1) a x1(G) = A(G) + 1 (trieda
2). Erdos a Wilson ukézali, ze P(G € Trieda 1) — 1, t.j. skoro kazdy graf je z triedy 1.
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Tvrdenie 3. xi (K ) = A =max(m,n).
Veta 11 (Konig). Ak G je pdrny, tak x1(G) = A.

Veta 12. Kazdd kubickd mapa (t.j. plandrny graf s degv = 3 pre vsetky v € G) sa dd hranovo
ofarbit 3 farbami < plati 4CT.

7.3 Eulerovské a hamiltonovské grafy
Eulerovské grafy

Veta 13. Pre suvisly graf su nasledovné tvrdenia ekvivalentné:
(i) G je eulerovsky (md eulerovsky cyklus).
(1) KaZdy vrchol G je pdrneho stuptia.

(iii) G je zjednotenim hranovo disjunktngch kruZnic.
Hamiltonovské grafy

Graf voldme hamiltonovsky, ak obsahuje hamiltonovsk kruznicu. Problém najst v grafe
hamiltonovskt kruznicu, resp. zistif, ¢i je dany graf hamiltonovsky, je NP-tplny.

Nutnd podmienka, aby bol graf hamiltonovsky: Pre kazdi podmnozinu S C V(G) je pocet
komponent G\ S ¢(G\ S) < |S|. (Ako désledok dostaneme, Ze kazdy hamiltonovsky graf je
2-suvisly.)

Veta 14 (Dirac). Ak minimdiny stuper grafu je & (p je pocet vrcholov), tak je to hamilto-
novsky graf.

Veta 15 (Ore). Ak G je graf s p vrcholmi (p > 3) taky, Ze pre kaZdi dvojicu nesusednijch
vrcholov u, v plati
degu + degv > p,

tak G je hamiltonovsky.

Veta 16 (Bondy-Chvéatal). Nech u, v st dva rézne nesusedné vrcholy grafu G s p vrcholmi
take, Ze degu + degv > p. Potom G + uv je hamiltonovsky < G je hamiltonovsky.

Pri dokaze Bondy-Chvatalovej vety si stacéi uvedomif, ze musi existovat modifikujica
dvojica hran

.....

priddm medzi nimi hranu. G je hamiltonovsky < jeho uzéver ¢(G) je hamiltonovsky.
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7.4 Hamiltonovské idealy

Definicia 3. Nech S = (dy,...,d,) je postupnost celych nezédpornych ¢isel. Postupnost S
nazveme grafovou, ak existuje graf G taky, ze V(G) = {v1,...,v,}, d;i = degv; pre kazdé i.
Uvazujme o grafe G, kde |V(G)| =n, S = (d1,...,dpn), d1 < ... < d,.

Definicia 4. Grafovt postupnost S nazveme silne hamiltonovskou, ak kazdy graf s touto
postupnostou je hamiltonovsky.

degv > L Yo e V(G) (D)
2
-1 -1 -1
H{v;degv < j} < jprej < nT’ ak n je neparne [{v;degv < nT}\ < i 5 (P)
(j<kdj<jdp<k—-1)=d;+d,>n (B)
d;<j<5=duy2n—j (CH)

(D) = Diracova podmienka, (P) = Pdésova, (B) = Bondyho, (CH) = Chvéatalova
(D) = (P) = (B) = (CH)

Oznac¢me S,, = neklesajtce grafové postupnosti dizky n, H,, = hamiltonovské postupnosti
dlzky n.

Definicia 5. Nech S, S* st prvky S,. Hovorime, ze S* dominuje S (oznacujeme S* > S)
ak pre kazdé i je d; < df. (Sp, <) je ¢iastofne usporiadand mnoZina.
P C S,, nazveme idedlom, ak plati (x € P,x <y) =y € P.

H,, netvoria ideal v S,,.

Veta 17. Ak S nevyhovuje podmienke (CH), tak existuje S* takd, Ze S* > S a S* nie je
hamiltonovskd.

Désledok 1. Najvicsi idedl P* v mnoZine silne hamiltonovskych postupnosti obsahuje len
také postupnosti, ktoré vyhovuji (CH).

Postupnosti spliiajice Oreho podmienku netvoria ideal. Ak graf spliia Oreho podmienku,
tak spliia aj Chvatalovu.

Veta 18 (Chvétal). Nech G je graf radu n s postupnostou stupriov vrcholov d; < ... <d,
spliiajicou (CH). Potom G je hamiltonovsky.

7.5 Hamiltonovské kruzZnice a zakdzané podgrafy

Veta 19 (Tutte). Kazdy 4-sivisly plandrny graf je hamiltonovsky.

Definicia 6. Graf nazveme H -volng, ak neobsahuje indukovany podgraf izomorfny s H. Graf
G nazveme lokdlne stvisly, ak okolie kazdého vrchola v € V(G) indukuje stuvisly graf.

Veta 20 (Oberty, Summer). Nech G je graf radu n > 3, stvisly a lokdlne sivisly, K1 3-
volny. Potom G je hamiltonovsky).
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7.6 Hranové grafy a hamiltonovské kruznice

Definicia 7. Graf G nazveme hranovym grafom grafu H, ak plati V(G) = E(H), E(G) =
{(e, f),en f # 0 v grafe H,e # f}. Oznacujeme G = L(H).

Tvrdenie 4. G = L(G), G je suvisly < G = C,,.
Nech G, G’ su suvislé grafy, L(G) = L(G'). Potom G = G’ okrem pripadu G = Cs,
G = K173.

Veta 21 (Beineke). Graf G je hranovym grafom prave vtedy, ked neobsahuje indukovany
podgraf izomorfny s K13, Fs, ..., Fy. (Teda kaZdy hranovy graf je Ki 3-volng.)

Veta 22. Graf G je hranovym grafom prdve vtedy, ked existuje rozklad E(G) na kompletné
podgrafy tak, Ze kaZdy v € V(G) patri do najviac dvoch.

Veta 23. Nech G je suvisly graf. Potom G je hranovy graf eulerovského grafu prdve vtedy,
ked existuje rozklad E(G) na kompletné podgrafy parneho rddu (kazdy kompletng podgraf md
pdrny pocet vrcholov) tak, Ze kazdy vrchol v € V(G) patri do prdve dvoch.

Tvrdenie 5. Hranovy graf eulerovského grafu je hamiltonovsky.

Déosledok 2. Ak sivisly graf md rozklad s vlastnostami uvedengmi vo vete 23, potom G je
hamiltonovsky.

A na tom dokaze uvidite, ¢o dokazeme.
Salat

8 Grupy automorfizmov grafu

(Grupy automorfizmov grafu, vrcholovo a hranovo tranzitivne grafy. Fruchtova veta. Charak-
terizdcia vrcholovo tranzitivnych grafov. Cayleyho grafy. Konstrukcia vrcholovo tranzitivnych
grafov, ktoré nie si Cayleyho grafmi. Cirkulantné grafy a hamiltonovské kruznice.)

Definicia 1. Nech G = (V, E) je graf. Automorfizmom grafu G rozumieme kazdu bijekciu
¢: V. — V s vlastnostou (u,v) € E prave vtedy, ked (¢(u), p(v)) € E (t.j. izomorfizmus
grafu na seba).

Veta 1. Vsetky automorfizmy grafu G tvoria grupu vzhladom na operdciu skladania zobra-
zend, oznacujeme ju Aut(QG).

Plati Aut(G) = Aut(G). Pre Petersenov graf je Aut(P) = Ss.

Definicia 2. Na mnozine vrcholov V definujeme relaciu ekvivalencie ~ tak, Ze u ~ v <
o(u) = v pre nejaké ¢ € Aut(G). Triedy rozkladu 6(u) = {¢o(u); ¢ € Aut(G)} sa nazyvaju
orbity grupy Aut(G).

Ak Aut(G) = {id}, ¢ize kazda orbita je jednoprvkova, hovorime, ze G je vrcholovo an-
tisymetricky. Ak existuje jedind orbita, hovorime, ze G je vrcholovo symetricky (vrcholovo
tranzitivny).

Definicia 3. Kazdy automorfizmus ¢ € Aut(G) indukuje bijektivne zobrazenie ¢': E — E.
Iy = {¢’; ¢ je indukované automorfizmom ¢} je hranovd grupa automorfizmov G.

Veta 2. Aut(G) 2 T'1(G) prdve vtedy, ked G neobsahuje Ko ako komponentu sivislosti a md
najviac jeden izolovany vrchol.
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Definicia 4. Graf G nazveme hranovo tranzitivny, ak pre kazdé dve hrany e, f € E existuje
¢ € T'1(G) tak, ze ¢'(e) = f.

Veta 3. Nech G je hranovo tranzitivny graf bez izolovanych vrcholov. Potom G je vrcholovo
tranzitivny alebo G je bipartitng a jeho biparticia je tvorend dvoma vrcholovymi orbitams.

Dosledok 1. Nech G je hranovo tranzitivny graf, nepdrneho rdadu, requldrny stupria d > 1.
Potom G je vrcholovo tranzitivny.

(€]

Désledok 2. Nech G je hranovo tranzitivny graf, regularny stupria d > .

vrcholovo tranzitivny.

Potom G je

Veta 4 (Frucht). Pre kaZdi konecnid grupu U existuje graf G taky, Ze T =2 Aut(G).
8.1 Cayleyho grafy

Definicia 5. Nech I je grupa, S C T, 1¢ S, S = S~! (S je uzavretd vzhladom na inverzné
prvky). G = C(I,S) je graf s V(G) =T a E(G) = {(u,v) : u='v € S}. Graf G nazyvame
Cayleyho graf grupy I' vzhladom na S.

Veta 5. Cayleyho graf C(T,S) je
(i) kompletny graf < S =T\ {1},
(1) suvisly graf < S generuje T.
Veta 6. Cayleyho graf C(T',S) je vrcholovo tranzitivny.
Petersenov graf nie je Cayleyho graf, ale je vrcholovo tranzitivny.

Sedim, sedim, az vysedim.
Tomanova

9 Extremalne ulohy

(Turdnova veta, koneény pripad Ramseyovej vety. Grafové Ramseyove &isla, Chvdtalova veta,
R(Kp,Tn)=(m—-1)(n—-1)+1.)

9.1 Turanov problém

a(QG) - &islo nezévislosti grafu G - je pocet hran najvidsej nezavislej mnoziny vrcholov G.
E(n, k) - minimalny pocet hran grafu na n vrcholoch s a(G(n, k)) < k.

Veta 1. Grafy G(n, k) s minimdlnym poctom hrdn E(n, k), kde 3 < k < n si tvaru G(n, k) =
G1UGyU...UGk_1. Akn=t(k—=1)+r, 0<r < k-1, tak r z grafov G; si K¢11 a zvysné
st Kt-

Veta 2 (Turan). Ezistuje jeding graf rddu n > 3, ktory neobsahuje podgraf K, 3 <k <mn
a md mazximdlny pocet hrdn.
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9.2 Ramseyove Cisla

Nech p,q > 2 st celé ¢isla. Cislo N > 0 nazveme (p, q)-ramseyovské, ak pre fubovolny
rozklad mnoziny vSetkych dvojprvkovych podmnozin mnoziny S (S je N-prvkovd) na dve
casti X, Y existuje p-prvkovad podmnozina mnoziny S taka, ze vSetky jej dvojprvkové pod-
mnoziny patria do X alebo existuje g-prvkova podmnozina S taka, ze vSetky jej dvojprvkové
podmnoziny patria do Y.

Veta 3 (Ramsey). Nech p,q > 2 st celé ¢isla. Potom ezistuje cel€ ¢islo N > 0, ktoré je
(p, q)-ramseyovské.

Najmensie (p, g)-ramseyovské ¢islo nazyvame Ramseyove ¢islo R(p,q).

Tvrdenie 1. Cislo N je (p,q) -ramseyouvske prave vtedy, ked pre kazdy graf G radu N plati,
Ze G obsahuje K, alebo G obsahuje K,. (Ekvivalentne: Pri lubovolnom ofarbeni hrdn grafu
Kn modrou a cervenou farbou ndjdeme modré K, alebo cervené K,.)

Tvrdenie 2. R(p,2) =p
R(3,3) =6
R(p,q) = R(q,p)

Veta 4 (Erdés, Szekeres). Nech p,q > 3 si celé ¢isla. R(p,q) < R(p—1,9) + R(p,q—1).
Déosledok 1. Nech p,q > 2 st celé. R(p,q) < (p;zf).

Tvrdenie 3. Nech R(p,q—1) a R(p — 1,q) st pdrne &isla. Potom R(p,q) < R(p—1,q) +
R(p,g—1) - 1.

Tvrdenie 4 (Erdss). R(k,k) > 22
Désledok 2. Nech m = min{p, q}. Potom R(p,q) > 2% .

9.3 Grafové Ramseyove disla

Definicia 1. Nech Gy, Gy su grafy, |G|, |G1]| > 2. Celé ¢islo N > 0 nazveme (G1,G2)-
ramseyovské, ak pri lubovolnom rozklade mnoziny vSetkych dvojprvkovych podmnozin N-
mnoziny na dve Casti X1, X5 plati G; C X; alebo Go C Xs.

Najmensie (G1, Ga)-ramseyovské ¢islo oznacujeme R(G1,G2).

Ekvivalentné formulacie: cez ofarbenia (modry G alebo Cerveny G3); kazdy graf radu N
obsahuje ako svoj podgraf G alebo Gs.

Veta 5 (Chvéatal). Nech T,, je strom rddu m > 2, nech m > 2 je celé ¢&islo. Potom
R(Tm,K,)=(m—-1)(n—-1)+1.

Tvrdenie 5. Nech G je graf rddu p, s chromatickym éislom x(G) &islom nezdvislosti a(G).
Potom x(G).a(G) > p. (Pozri vetu 6 z otdzky 7.)

Tvrdenie 6. Nech T, je lubovolng strom ridu m > 1, G je lubovolny graf s 6(G) > m — 1
(0(G) je minimdlny stupert G). Potom G obsahuje T, ako svoj podgraf.

Definicia 2. Graf G nazveme kriticky n-chromaticky (n > 2), ak x(G) =nax(G—v) =n—1
pre kazdé v € G.

Tvrdenie 7. Ak G je kriticky n-chromaticky graf, tak 6(G) > n — 1.
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Tvrdenie 8. Ak x(G) = n > 2, potom G obsahuje kriticky n-chromaticky podgraf. (Stact
zobrat podgraf najmensieho ridu s chromatickym c&islom n.)

Dokaz vety 5. Nech G je Tubovolny pevne zvoleny graf radu (m —1)(n — 1) + 1. Ukdzeme, ze
obsahuje T}, alebo Kn._
Nech G neobsahuje K,,. Potom a(G) <n — 1.

Potom G obsahuje kriticky k-chromaticky podgraf FF = §(F) > k—1 > m — 1. Preto
§(G) > m —1 a G obsahuje T, ako svoj podgraf.

Este treba ukazat, ze existuje graf na (m — 1)(n — 1) vrcholoch, ktory neobsahuje T;,, ani
K,,. Je to graf, ktorj ma n — 1 komponent savislosti tvaru K,,_;. O

Tito vetu vie skoro kazdy.

Skoro kazdy znamena kazdy az na mnozinu miery 0.

Do mnoziny miery 0 sa zmesti kazda spocitatelnd mnozina.
Salat

10 Kombinatorika

(Enumeraéné dlohy.) Vytvdrajuce funkcie a ich pouZitie. Stirlingove éisla, rekurentné vztahy.
(Princip zapojenia a vypojenia a jeho zovseobecnenia. Spernerova veta. Chromaticky poly-
nom grafu. Cyklovy index grupy, Polyova veta. Cayleyho veta. Hallova veta, Konigova veta.
Algoritmus na ndjdenie systému rozlicngch reprezentantov.)

10.1 Vytvarajiace funkcie a ich pouzitie

> anpn(x) nazveme vytvdrajicou funkciou pre postupnost a,, ak st p,(z) = n, p,(z) € R|x].
Pouziva sa: p,(z) = 2™, py(z) = %, (~tzv. exponencidlna vytvarajica funkcia)

(14 2)" =3 (})a" je vytvérajica funkcia pre kombinacie

(1+x+ 2% +...)" - k-kombinécie s opakovanim z n-mnoziny

1+z)"=> ak“”k—’; - k-variécie bez opakovania z n-mnoziny

l+nzx+n22+... = 1_1m - k-variacie s opakovanim z n-mnoziny

Vytvarajtace funkcie sa pouzivaji pri rieSeni rekurentnych rovnic.

Rekurentné rovnice uréené konvoluciou

Cauchyho saéin radov: Y an,z™. Y byz™ =Y cpa™, ¢ = > @ibp—;

n
Tato metédu sme pouzili na rieSenie rekurencie u, 11 = Y, Ugtn_g, uo = 1, ktord udava
k=0

pocet binarnych stromov na n vrcholoch. Vysledkom st Catalanove éisla: w,, = n+r1 (2:)

10.2 Stirlingove ¢isla

Nech ¢(n, k) oznacuje pocet permutacii = € S, ktoré maju prave k cyklov (pocitaja sa aj
cykly dizky 1). Dalej definujeme ¢(0,0) = 1 a c¢(n, k) = 0 ak n < 0 alebo k < 0, (n, k) # (0,0).
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Stirlingove ¢isla prvého druhu st definované ako
s(n, k) = (=1)"Fe(n, k)

Pre n > 0 plati:
c(n,k)=(m—=1)c(n—1,k)+c(n—1,k—1)

c(n,k)a* = (@) =z(@+1)...(x+n—1)

NE

=
Il

0

n

s(n, k)t = (), =x(x—1)...(x —n+1)

o

[=)

Stirlingove ¢isla 2.druhu S(n, k) = pocet rozkladov n-prvkovej mnoziny na k casti.

Tvrdenie 1. S(n,k)=kS(n-1,k)+S(n-1,k-1)

=Y S @ (n20)

k=0

n
Bellove ¢isla B(n) =pocet vSetkych rozkladov (ekvivalencii) n-prvkovej mnoziny

B(n) = éOS(n, k)

Bin+1) =Y (})B(k)

V [LW] st uvedené aj vytvéarajuce funkcie pre Stirlingove ¢isla oboch druhov.
10.3 Rekurentné vzfahy

Linearna homogénna rekurentnd rovnica s konstantnymi koeficientami:

ap = C1ap—1+ ...+ Cpln_p, (10.1)
ci,...,Cp st konstanty, p < n. Dalej st dané ag, . .., ap—1 — pociato¢né podmienky.
Rovnica 2P — cyzP~! — ... — ¢, = 0 je charakteristickd rovnica pre (10.1), jej korene
aq,...,qp st charakteristicke korene.
Ak méme dve rieSenia rovnice (10.1), tak ich linedrna kombinacia je tiez rieSenie.
Ku korefiu o nésobnosti k prislichaju riesenia o™, na”,...,n* " la™.

10.4 Princip zapojenia a vypojenia

Tvrdenie 2. Nech S je N-mnozina a E1,...,E,. podmnozZiny S. Pre kazZdi podmnoZinu
M mnozZiny {1,...,r} definujeme N(M) ako pocet prvkov S v (\,cp Ei a pre 0 < j <r
definujeme Nj := Z\M|=j N(M). Potom pocet prvkov S, ktoré nie si v Ziadnej z podmnoZin
Ei ]6N—N1+N2—N3++(—1)TNT

TODO ?Zovseobecnenia
10.5 Spernerova veta

Tvrdenie 3. Mazimdlna velkost antiretazca v P(N), kde N = {1,2,...n} je (L"72J)'
TODO Chromaticky polyném
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10.6 Pdlyova tedria

Definicia 1. Nech A je mnozZina a G je grupa permutécii na A.
Stab(a) = {m € G;7(a) = a}

Inv(m) ={a € A;m(a) = a}

Pre a,b € A definujeme ¢ ~ b < (37 € G)w(a) = b.

0(a) = {b € A;a ~ b} je orbita grupy G.

Lema 1. Ak a ~ b, tak |Stab(a)| = |Stab(b)|. Pre kazdé a € A plati |G| = |Stab(a)||0(a)|.
Veta 1 (Burnsidova lema). Nech G je grupa permutdcii na A, N(G) je pocet orbit grupy

G. Potom )
N(G) = Gl > |Inw(r)]

TeG
(pocet orbit je priemerny podet pevngch bodov pre permutdcie z G ).
D je mnozina, G je grupa permutacii na D.
C(D,R)={f: D— R}
™ (f) =g; f(r(z)) = g(z
7* je permutacia na C(D, R)
f~ge @red@)r(f) =g
~* je ekvivalencia na C(D, R)
G* = {r*;7* € G}
(G*,0) je grupa, |G*| = |G|, plati teda

N(G") = ﬁ > m(r)

(f € Inv(1*) & f je konstantna na kazdom cykle 7)
Kazdému 7 € G priradime polyném m?l ...abn kde b; je pocet cyklov dlzky i v rozklade
w. Cyklovy index grupy G je

1
Z(G) = @l Zm?l...mfgz.

Cyklové éislo cyc(m) permutacie 7 je pocet cyklov v rozklade m na disjunktné cykly. (b; +
st by)

Veta 2 (Specialny pripad Pélyovej vety). Nech G je grupa permutdcii na D, nech R je
mnoZina, |R| =m, C(D,R) ={f;f: D — R}. Potom

1
N kY cyc(ﬂ')'
@) =g ,%;;m

Iny tvar: ak oznacime c;(G) pocet permutdcii z G, ktoré maju v rozklade prave k cyklov,
tak

1 o0
N(G*) = @l > en(Gym”.
k=1
Vyjadrenie pomocou cyklového indexu:

N(G*) =Z(m,m,...,m)
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Veta 3 (Ohrani¢ena Burnsidova lema). Nech G je grupa permutdcii na A, Y je zjed-
notenie nejakych orbit grupy G. Nech G|Y oznacuje permutdcie ziZené na Y. Potom

N(EY) = 5 3 [Ino(xlY)

TeG
77
Ak navyse definujeme vdhovi funkciu w: R — Ng a definujeme w(f) = >_,cp w(f(d)),

tak vSetky prvky Iubovolnej orbity maji rovnak véhu. Ak oznaéime Cj pocet orbit véhy k
a C(x) = pey Cra® ac(z) = > pe, ckx®, kde ¢ je pocet prvkov v R s vahou k, tak

Veta 4 (Pdlya). C(z) = Z(G,c(z")) (do cyklového indexu grupy G dosadime za kazdi
premennt c(z")).

10.7 Cayleyho veta
Veta 5 (Cayley). Pocet neizomorfnych oznacengch stromov rddu n > 2 je rovng n" 2.

10.8 Systém rozli¢nych reprezentantov

Definicia 2. Nech Ay, ..., A, je systém podmnoZin mnoziny X. Potom z1,...,x, nazyvame
systém rozliénych reprezentantov (transverzdla), aj x; € A; pre i = 1,...,n a x; # x; pre
1<i<j<n.

Veta 6 (Hall). Systém rozlicngch reprezentantov pre Ay, ..., A, existuje prdve vtedy, ked
|A;, U...UA; | >k
pre lubovolné 1 < iy < ... <ip <n.

Veta 7 (ZovSeobecnenie Hallovej vety). Nech Ay, ..., A, je systém podmnoZin mnoZiny
X anechl <r <mn. Vsystém A1, As, ..., A, existuje r-mnozinovy podsystém s transverzdlou
prdve vtedy, ked pre kazdé k = 1,2,...,n a pre kaZdy vijber i1,1a,...,1 taky, Ze 1 < i3 <
o ...1 < n plati

|Ai1 U14i2 U...UAik| Zk—(n—r).

Veta 8 (K6nig). Nech A je matica obsahujica len 0 a 1. Minimdlny pocet riadkov A, ktoré
obsahuju vsetky jednotky je rovny maximdlnemu poctu jednotiek v A takych, Ze Ziadne dve
nelezia na jednom riadku.

Veta 9 (Konig). Podet hran mazimového pdrovania pdrneho grafu G je rovng minimdlnemu
poctu vrcholov vrcholového pokrytia G.

Algoritmus na najdenie systému rozli¢nych reprezentantov = ?
Pouzité literatara: [LW], [KN].

Je to prirovnanie, ktoré kriva na vSetky Styri nohy, pokial ich ma.
Korbas

11 Logika 0. radu

Virokovy pocet, vyrokové formy, dokdzatelnost, interpretdcie, tautoldgie, veta o iuplnosti.
Boolouvské algebry, filtre a ich suvis s vyrokovym poctom.
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11.1 Vyrokovy pocdet

Definicia 1. Vgrokové formy — VF(P) je najmensia mnoZina kone¢nych postupnosti zna-
kov jazyka vyrokového poc¢tu (t.j. premenné (prvky P), logické spojky a pomocné znaky
(zatvorky)) taka, ze

(i) P C VF(P)
(i) Ak A, B € VF(P), tak A, (A& B), (A= B), (A & B) patria do VF(P).

Interpretdcia je Tubovolné zobrazenie I: VF(P) — {0,1} také, ze pre fubovolné A, B €
VF(P) plati I(~A) = ~I(A), (A& B) = I(A) & I(B), ....

Definicia 2. Nech A € VF(P). Hovorime, ze
(i) A je tautologia, ak I(A) = 1 pre lubovolnu interpretaciu I: VF(P) — {0,1}.
(ii) A je splnitelnd, ak I(A) =1 pre aspon jednu interpreticiu /: VF(P) — {0,1}.
(iii) A je nesplnitelnd, ak I(A) = 0 pre kazdt interpretaciu I: VF(P) — {0,1}.
(iv) A je vyvratitelnd, ak I(A) = 0 pre aspoii jednu interpretéciu I: VF(P) — {0,1}.

Definicia 3. Tedria vo vyrokovom pocte je lubovolnd mnozina T C VF(P). Jej prvky sa
nazyvaju ariomy tedrie T'.

Logické axiémy a definiciu dokazu v tedrii T tu nebudeme vypisovat, je rovnaka ako v
dalSej otézke, s tym rozdielom, Ze tu nemame axiémy kvantifikdtorov a generalizaciu.

Definicia 4. Hovorime, ze B € V F(P) je dokdzatelnd v teérii T, ak existuje dokaz Ao, ..., A,
v T taky, ze A, = B. Zna¢ime T + B.

Hovorime, 7e B € VF(P) je splnend v teérii T (T |= B), ak pre kazdu interpretaciu tedrie
T plati I(B) = 1.

Veta 1 (korektnost). Ak T + B, tak T = B.

Veta 2 (Gplnost). Ak T | B, tak T + B.

Veta 3 (slaba verzia vety o uplnosti). Ak A je tautologia, tak - A.
Veta 4 (o dedukcii). T U{A} - B prdve vtedy, ked T + (A = B).

Definicia 5. Tedria T sa nazyva spornd (protire¢iva, nekonzistentnd), ak existuje nejakd
A € VF(P) takd, ze T + A aj T - —A. V opa¢nom pripade sa T nazyva bezospornd
(neprotireéiva, konzistentna).

Tvrdenie 1. T je spornd prdve vtedy, ked T - A pre kazdu vyrokovi formu A.

A, akI(A)=1

Pre A € VF(P) definujeme Al = {ﬁA, ok T(4) = 0

Tvrdenie 2 (Lema o interpretacii). Nech A € VF(P) a p1,...,pn st vietky vyrokové
premenné v A. Potom {pl,... pl}+ AL

Definicia 6. Interpretacia tedrie T' = taka interpretécia, v ktorej ma kazda axiéma tedrie
T pravdivostni hodnotu 1.

41



Veta 5 (Gplnost). Ak T je bezospornd, tak T md aspon jednu interpretdciu.

Definicia 7. Tedria T sa nazyva tplnd, ak je bezosporné a pre Iubovolnti vyrokovi formu
plati T+ A alebo T F —A.

Uplna tedria ma prave jednu interpretaciu.
Tvrdenie 3. Ku kaZdej bezospornej teoris T existuje uplnd T D T.

Veta 6 (o kompaktnosti). Ak T+ A, tak existuje koneénd Ty C T takd, Ze To - A.
T je spornd prdve vtedy, ked existuje konecnd Ty C T, ktord je spornd.
T je bezospornd prdve vtedy, ked kaZdd konecnd Ty C T je bezospornd.
T md interpretdciu prdve vtedy, ked kazdd konecnd Ty C T md interpretdciu.

11.2 Boolovské algebry
Definicia 8. Boolovskd algebra je mnoZina B s 2 bindrnymi operdciami A (priesek), V

(spojenie), jednou unérnou operéciou’ (doplnok) a dvoma vyznaénymi prvkami 0, 1 taka, Ze
pre vsetky x,y, 2z € B plati:

TANx=2x rVr =1z idempotentnost

TANYy=yAzx xVy=yVa komutativnost

cA(YyAz)=(xAy) Az xV(yVz)=(xVy Vz asociativnost

zA(zVy) == (xAy)Vy=y zdkony absorbcie
0Nz =0 OvVe==x
INz=1 1ve=1

zV(yAnz)=(@VyA@xVz) zA(yVz)=(xAy)V(zxAz) distributivne zdkony
xAz' =0 VvV =1 2 =z
0=1 1=0
(ny) =2/ vy (@Vy) =2’ Ay

Definicia 9. Ak B je boolovské algebra, tak S C B je podalgebra B, ked 0,1 € S a S je
uzavretd na A, V, .

Ak A, B st boolovské algebry, tak h: A — B je homomorfizmus boolovskych algebier, ak
zachovava operacie, doplnok, 0 a 1. Izomorfizmus je bijektivny homomorfizmus boolovskych
algebier.

Definicia 10. J C B sa nazyva idedl, ak J # 0 a

reJy<r=yeJ
z,yeJ=xVyel

F C B sa nazyva filter (dudlny idedl), ak F # () a

zeFy>x=yck,
zr,ye F=xNyekF.

J jeidedl & {a',x € J} je filter.
F je filter & {2/, z € F} je ideal.

Kongruencie na boolovskych algebrach a faktorové boolovské algebry sa definuja rovna-
kym sposobom ako pre lubovolné algebry. Je tu korespondencia medzi filtrami a kongruen-
ciami, definuje sa aj B/F, kde F je filter na B. Kongruencia prislichajica filtru F je x =p y
pvkz oy el (zoy=(z -y Ay —2)
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Veta 7 (Boolean Prime Ideal Theorem). Nech B je lubovolnd boolovskd algebra, potom
pre kazZdé 0 # x € B existuje ultrafilter F' v B taky, Ze x € F.

Dékaz predchadzajtcej vety sa robi pomocou principu maximality.

Veta 8. Nech B je lubovolnd boolovskd algebra. Oznaéme I mnoZinu vsetkijch ultrafiltrov v
B. Zobrazenie ¢: B — P(I), kde
olx)={i e,z €i}

je prosty homomorfizmus boolovskych algebier. (Teda kaZdd boolovskd algebra je izomorfnd s
podalgebrou potencnej algebry P(I) pre vhodné I.)

Tvrdenie 4. F C B je filter prdve vtedy, ked1 € F a
(Vx,y € B)(Akx € F,ox -y € F taky € F),
kdex - y=12'Vy.

Definicia 11. a € B je atom, ak 0 < a & —(3z € B)(0 < z < a) (teda 0 < a).
B je atomickd, ak pre kazdé x € B existuje a také, ze a < z a a je atém. B je bezatomickd,
ak neobsahuje ziaden atém.

Veta 9. Ak B je atomickd boolovskd algebra a I je mnoZina atémov v B, tak h(z) = {i €
I :i < a} je prosty homomorfizmus boolovskych algebier h: B — P(I). (KaZdd atomickd
boolovska algebra je izomorfnd s podalgebrou nejakej P(I).)

Ultrafilter je maximalny vlastny filter.
Veta 10. Nech F je filter v B. Nasledujiuce podmienky su ekvivalentné:
(i) F je ultrafilter.
(i) 0¢ F a (Ve,y € B)(aVye F =z € F aleboy € F).
(iii) Pre kazdé x € B F obsahuje prdve jeden z prvkov x a .

(iv) B/F = {0,1}.
Suvis filtrov s vyrokovym poétom

Ak na VF(P) definujeme relaciu ekvivalencie A = B pvk F (A < B) a prirodzenym
sposobom definujeme operacie, dostaneme boolovski algebru B(P).

Pre T C VF(P) definujeme A =7 B pvk TF (A < B).
VF(P)/ =r=: B(T)
Dokazatelné formuly v T tvoria filter (obsahuje 1 a je uzavrety na modus ponens), oznacujeme
ho F(T).

Tvrdenie 5. T je spornd prdve vtedy, ked F(T) je nevlastny.

T je bezospornd prdve vtedy, ked F(T) je vlastny.

T je dplnd prave vtedy, ked F(T) je ultrafilter.

T je spornd prdve vtedy, ked B(T) = B(P)/F(T) je jednoprvkovd.
T je dplnd prave vtedy, ked B(T) = B(P)/F(T) je dvojprvkovd.

Stcet = sc¢itanec + scitanec, konjunkcia = konjuganec A konjuganec.
Zlatos
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12 Jazyky

Jazyky a Struktiry prvého rddu, (prenexny tvar formal). [Termy, formuly a tedrie prvého
radu.] Spliianie formail, modely tedrii. Dokdzatelnost a veta o dedukcii. Bezosporné, iplné a
henkinovské teorie. Godelova veta o uplnosti. Veta o kompaktnosti a jej dosledky. Priklady
teorii.

12.1 Jazyky a tedrie prvého radu

Definicia 1. Jazyk prvého rddu je trojica L = (F,R,7), FUR=0,7: FUR - N, 7(r) >0
pre r € R. Prvky F sa funkciondlne (operacéné) symboly, prvky R su relacné (predikdtové)
symboly. T sa nazyva drnost. Prvky F'U R nazyvame $pecifické symboly.
Logicke symboly st
a) logické spojky: &, V, =, <, -
b) premenné: x,y, z, X1, T2, Yo, 2, - - -
¢) kvantifikdtory 3, V
d) pomocné symboly (,).

Struktira jazyka L (model jazyka L) je usporiadana dvojica A = (A, I), kde A # 0, I
je zobrazenie s definiénym oborom F U R také, ze pre f € F,, I(f): A — Aaprer € R,
I(r) C A™. I(f), I(r) je interpretdcia symbolu f resp. r. A sa nazyva zdkladnd mnoZina
(nosic).

Termy jazyka L Term(L)= najmensia mnozina slov zostavend zo znakov L taka, Ze
(1) ak x je premennd, tak x € Term(L)

(2) ak f € F,, t1,...,t, € Term(L), tak f(t1,...,t,) € Term(L).

Interpretdcia termov: Ak A = (A,I) je struktira na L, definujeme I(t) = t* = t pre
v8etky t € Term(L). Nech t(z1,...,x,) je term. Potom I(¢): A™ — A je zobrazenie také, ze
pre lubovolné ay,...,a, € A plati:

1) ak t = x,, tak I(t)(a1,...,an) = a;
2) ak t = f(t1,...,tn), f € Fn, tj(z1,...,2,) st termy, tak
I(t)(a1,...,an) = I(f)T (1) (a1, san), - L(tn) (a1, ..., an)).

Formuly jazyka L: Form(L) = najmensia mnozina taka, Ze
1) obsahuje tzv. atomické formuly t; = to (t1,ta € Term(L)), r(t1,...,tn) (r € Ry, t; €
Term(L))

2) Ak 1,2 € Form(L), tak aj —p1, (p1&¢2), (91 V ¢2), (91 = ¢2), (p1 < ¢2) € Form(L)
3) Ak ¢ je formula a z premennd, tak (Va)y, (3z)p st formuly.

Mohutnost jazyka L = ||L|| = |[Form(L)| = max(|F|, |R|, o).

Ak o(x1,...,2,) je formula jazyka L, A je Struktara jazyka L a ay,...,a, € A, tak
AE ¢(ay,...,a,), éize p(al,...,ay,) je splnend v A:

1) Ak ¢ je atomickd formula tvaru ¢t; = to (¢; si termy), tak A = o(ay, ..., a,) prave vtedy,
ked t{(a1,...,a,) = t5'(ay, . .., ay).

2) Ak ¢ je atomickd formula tvaru r(t1,...,t,), tak A = @(a1,...,a,) prave vtedy, ked
(tMa1,. .. an), ..., t2 a1, ..., a,)) € rh.

3) Ak ¢ je tvaru —, tak A = ¢(ay,...,a,) prave vtedy, ked nie je pravda, ze A =
w(alv' . 'aa’n)'

Ak ¢ je tvaru ¢y &), tak A = p(ay, ..., a,) prave vtedy, ked A E ¥1(aq, ..., a,) a zdroveil
A= a(ay, ..., a,). Podobne pre ostatné logické spojky.

4) Ak ¢ je tvaru (3x)Y(z, z1,...,2,), tak A = (a1, ..., ay,) prave vtedy, ked existuje a € A
také, ze A = ¢(a,aq,...,a,).

Ak ¢ je tvaru (V) (z,x1,...,2,), tak A = p(as,...,a,) prave vtedy, ked pre kazdé a € A
také, ze A = ¢(a,ay,...,a,).
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Definicia 2. Tedria prvého rddu v jazyku L je Tubovolnd podmnozina T' C Form(L). Prvky
mnoziny T sa Specifické axiomy.
Struktira A jazyka L je modelom teérie T (spliia teériu T), ak A |= ¢ pre kazdé p € T,
oznacujeme A = T.
Mod(T') = trieda vSetkych modelov teérie T'.
Mod(L) = trieda vSetkych modelov jazyka L.
Formula ¢ je splnend v T (je nevyhnutnym dosledkom axiém teérie T'), ak A = ¢ pre
kazdé A € Mod(T), t.j. pre vietky Aplati A =T = A = .
Logické axiémy
Axiomy vyrokového poctu
o= (=)
(p=(W=x)=(e=17v)=(¢=Xx)
(=t = =) = (¢ = ¢) = ¢)
Axiomy rovnosti
xT=zx
rT=y=>y==x
(x=y&ky=2)=>2x=2
(r1 =n&... &zy = yp&r(zy, ..., 20)) = r(y1,. .- Yn),r € Ry

(r1 =n&... &z, =yn) = f(@1,.. . 20) = flyr,- - yn), f € Fn

Axiomy kvantifikatorov
o(tlr) = (3x)p

(V) = o(t|r)

©(t|x) znamend dosadenie termu ¢ za kazdy volny vyskyt premennej x. Substiticia ¢(t|z) je
pripustné, ak ziadna premennd termu ¢ nie je viazand v mieste volného vyskytu x.

—(Vz)p & (Fz)-p
~(3r)p & (Vr)-p
(Vo) (e = ¢) = (¢ = (Va)y),

ak x nie je volné vo ¢
Odvodzovacie pravidld

®, 90¢=> Y (MP)
©
Vo)p (Gen)

Prenexny tvar formiil

Formula je v prenexnej normalnej forme, ak ziadna premennd vo ¢ nevystupuje sti¢asne
ako volné aj viazand, ziadna premennd sa nevyskytuje pri viacerych kvantifikdtoroch a vy-
skyty kvantifikatorov predchadzaju vyskyty vSetkych spojok. Ku kazdej formule ¢ existuje
formula ¢’ v prenexnom normélnom tvare, ktord je s fiou logicky ekvivalentna (t.j. |E ¢ < ¢').
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12.2 Dokazatelhost a veta o dedukcii

Definicia 3. Dokaz v tedrii T je postupnost ¢q, ..., @, formul jazyka L takd, ze kazdé o;
je:
1) logickd axiéma,
2) pi € Ta
3) vyplyva z predoslych na zéklade odvodzovacich pravidiel, teda existuju j, k < i také, ze
Yr = ¢; = @; (modus ponens), alebo existuju j < ¢ a premennd x také, ze ¢; = (Va)p;
(generalizécia).

Formula ¢ je dokdzatelnd v T, ak existuje jej dokaz v T, t.j. dokaz, ktorého poslednym
Clenom je ¢. Oznacujeme 1"+ .

T E ¢ sa tyka sémantiky, zatial ¢o T F ¢ hovori o dokdzatelnosti, teda o syntaxi.
Veta 1 (o korektnosti). Ak T+ ¢, tak T |= .

Veta 2 (o dedukcii). TU{p} ¢ prive vtedy, ked T + (¢ = ), ak ¢ je uzavretd formula
(t.3. ¢ nemd volné premenné).

Veta 3 (o dedukcii). Nech ¢ je uzavretda. Potom T & ¢ prdve vtedy, ked TU{—p} je spornd.

Definicia 4. Teéria T sa nazyva spornd, ak existuje formula ¢ taka, ze T+ ¢ a T F -,
bezospornd (konzistentnd) inak.

Tedria T sa nazyva uplnd, ak je bezosporna a pre kazda uzavretu formulu ¢ plati T+ ¢
alebo T'F —¢. (Teda tplna tedria je taka, ktord je maximalna bezospornd).

Veta 4 (o tplnosti Gédelova). Ak T = ¢, tak T+ .
Veta 5 (o tplnosti Gédelova). T je bezospornd prdve vtedy, ked md model.

Definicia 5. Nech ¢(x) je formula jazyka L a c je konstanta v L. Hovorime, Ze ¢ dosvedcuje
tvrdenie (3z)p(z) v T, ak T + (3z)p(z) = ¢(c). Mnozina konstant jazyka L sa nazyva
mnoZina svedkov teérie T, ak pre Tubovolné tvrdenie (Ix)¢(x) v nej existuje konstanta, ktora
ho dosvedcuje. Tedria sa nazyva henkinovskd, ak mé nejaki mnozinu svedkov.

Veta 6. Nech T je bezospornd teoria v jazyku L. Potom existuje obohatenie Ly jazyka L o
novée konstanty a uplnd henkinovskd teoria Ty v jazyku Ly takd, Ze T C Ty .

Veta 7. KaZdd uplnd henkinovskd teoria md model.
Veta 8. Kazdd bezospornd tedria v jazyku L md model mohutnosti nanajvys || L||.

Dosledok 1. Kazdd bezospornd tedria v spocitatelnom jazyku md spoéitatelny model.
Skolemov paradox

Tedria mnozin je tedria v spocitatelnom jazyku. (F = {0}, R = {€}) M4 teda spocitatelny
model M. V modeli M vieme zostrojit NM, RM. Obe tieto mnoziny st spocitatelné, preto

existuje medzi nimi bijekcia. Ale nebude to bijekcia v modeli M. (Mohutnost mnoziny je
relativny pojem.)
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Veta o kompaktnosti

Veta 9 (o kompaktnosti). T F ¢ prdve vtedy, ked existuje konecéna Ty C T takd, Ze To - .
T = ¢ prdve vtedy, ked existuje koneénd Ty C T takd, Ze Ty = .
T je bezospornd prdve vtedy, ked kaZdd konecnd podtedria je bezospornd.
T md model prdve vtedy, ked kaZdd konecnd podtedria md model.

Tvrdenie 1. Peanova aritmetika md nestandardné modely.
12.3 Priklady tedrii
Realne uzavreté polia

Usporiadané polia: F' = {+,.,0,1}, R = {<}
Axiémy pola, linedrne usporiadand mnozina a navySe

r<y=zcz+z<y+z
r<y&0<z=zxz<yz

Redlne uzavreté polia (RCF - real closed field) - navysSe plati veta o supréme:
Pre kazda formulu ¢(z) je axiéma:

(3y) (V) (p(a) = & < y) = (32)(V2) (p(2) = & < 2)&(7y)((Va)(p(2) = & <) = = < y)

t.j. ak je mnozina uréend formulou ¢(x) zhora ohranicend, tak ma suprémum.

RCF je bezosporna, lebo jej modelom je R. KedZe je to bezosporné tedria v spoéitatelnom
jazyku, mé spocitatelny model.

V matematickej analyze sa ukazuje, Ze ak nieco splia axiémy RCF (pri¢om veta o supréme
plati pre lubovolni podmnozinu), tak je to izomorfné s R. P(R) = 22%0 5 9N > No. My vsak
mame vetu o supréme len pre mnoziny tvaru {z, p(x)}, ktorych je Ry, teda to nie je spor.

Redlne algebraické ¢isla st redlne uzavreté pole.

RCF je uplna tedria.

Peanova aritmetika

Jazyk: +,.,0,1
Axiémy:
0+1=1
r+l=y+l=z=y
r+0=2z
(x+y)+l=a+(y+1)
2.0=0

z(y+l)=zy+uz

Schéma indukcie: Pre Tubovolnt formulu ¢(z, . ..) nasledujtica formula je axiéma:

(#(0) & (Vo) (p(2) = ¢(z + 1)) = (V)p(z)
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Tedria grup

V jazyku TG(-):

V jazyku TG(-, e)

V jazyku TG(-,e, 1)

(zy)z = z(yz)
ex =1
T lr=e
Ak chépeme grupu ako Struktiru v jazyku T'G(-) alebo TG(-,e), tak jej podstruktira
nemusi byt grupa. (Napriklad (N, +) C (Z,+).) To znamen, Ze tedriu grup v tychto jazykoch
nemozno axiomatizovat pomocou univerzalnych axiém.
Neexistuje tedria koneénych griap (v zmysle teérie 1. rddu). (Dosledok vety o kompakt-
nosti.)

Tedria poli

Tty=y+z Ty = yx
z+y+z)=(@+y += (zy)z = x(y2)
(+,.,0,1) z+0=0 lz=z
Vedy(x +y = 0) Vedy(x #0 = zy = 1)

z(y+2)=zy+az
Axiémy s univerzalno-existencné.
Neexistuje tedria T (1.rddu) v jazyku poli takd, ze Mod(T') by boli vSetky polia koneénej
charakteristiky. (Dosledok vety o kompaktnosti.)
Ma&me retazcovy komplex, ktory vyzerd neskodny, a skodny vcelku nie je, ale je uzitocny.
Korbas

13 Podstruktary a homomorfizmy
Podstruktiry, homomorfizmy a retazce Struktir. Elementdrna ekvivalencia, elementdrne pod-
Struktiry a elementdrne retazce. Tarského kritérium. Diagramy. Aziomatické a konecéne axi-
omatizovatelné triedy. Univerzdlne, existencné, univerdlno-existencné a pozitivne formuly.
Zachovdvanie teorii pri algebraickych konstrukcidach.

13.1 Podstruktiary a homomorfizmy

Definicia 1. Struktira B = (B, ...) jazyka L sa nazyva podstruktirou truktiry A (zna¢ime
B C A), ak B C A a pre lubovolné n, f € F,,, r € R, a prvky aq,...,a, € B plati:

fB(al,...7an) = fA(al,...,an)
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(ay,...,a,) € r* prave vtedy, ked(ay, ..., a,) € rP

Platnost univerzalnych formul sa prendsa na podstruktiry. Existenéné vlastnosti sa na-
opak prenasaji na nadstruktary. Takisto sa samozrejme prendsaju univerzalne a existenéné
tedrie.

Definicia 2. Nech A, B st struktary, h: A — B. Hovorime, Ze h je homomorfizmus, ak pre
lubovolné as,...,a, € A, f € F,, r € R, plati

hfA(ay,... an) = fB(has,. .. hay)

(a1,...,a,) €74 = (hay,..., ha,) €78
Hovorime, ze B je homomorfny obraz A, ak existuje surjektivny homomorfizmus h: A4 — B.

Definicia 3. A, B st Struktary jazyka L, h: A — B. Hovorime, Zze h je vnorenie A do B
(h: A — B), ak je injektivne a pre Iubovolné ay,...,a, € A, f € F,,, r € R, plati:

th(a’lv s 7an) = fB(hala c 'ahan)

(a1,...,an) € r* prave vtedy, ked (hay, ..., ha,) € r®

Izomorfizmus je surjektivne vnorenie. Je to ekvivalentné s tym, zZe je to bijekcia a aj
inverzné zobrazenie je homomorfizmus.

Pozitivne formuly (t.j. tie, ktoré st vytvorené len pomocou V, A, 3 a V) sa prenasaji na
homomorfné obrazy. Existen¢no-pozitivne formuly (tie nesmi obsahovat vSeobecny kvantifi-
kator) sa prenesu z A na B, ak existuje homomorfizmus h: A — B.

Tvrdenie 1. A C B prdve vtedy, ked idy: A — B.
h: A — B je vnorenie prdve vtedy, ked h je izomorfizmus A na h(A).

Definicia 4. Nech A,B € Mod(L) a h: A — B. Hovorime, Ze h je elementdrne vnorenie A
do B, ak pre Iubovolnt formulu ¢(z1,...,7,) a prvky ai,...,a, € A plati (4 | ¢(a@)) =

(B |= ¢ (ha)).

Elementarne vnorenie je vnorenie (zachovivaji sa atomické aj negatomické formuly).
Ekvivalentna definicia elementarneho vnorenia je (A = ¢(@)) < (B E ¢(had)).

Definicia 5. Ak A C B, hovorime, ze A je elementdrna podstruktira B (oznacujeme A < B),
ked pre Iubovolnt formulu ¢(%) ay,...,a, € A plati (4 E ¢(@)) = (B E ¢(@)).

Elementdrna ekvivalencia: A = B (A, B € Mod(L)) préve vtedy, ked pre lubovolni uzav-
ret formulu ¢ plati A = ¢ & B E .

Tvrdenie 2. Ak A< B, tak A= 5.
Ak h: A =5 B, tak A= B.

Priklad 1. Q £ R A C (ako polia). D4 sa ukézat, Ze pre pole algebraickych éisel (A, +,.,0,1)
plati A < C, ANR < R.

Tvrdenie 3. Ak A<B aB<C, tak A<C.
Tvrdenie 4. Ak A < B a B je konecné, tak A = B.
Tvrdenie 5. Ak A<C,B<CaACB, tak A<B.
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Definicia 6. Th(A) = {p; ¢ je uzavretd a A |= ¢} je tedria Struktiry A.

Th(AA) je elementdrny diagram Struktiry A.

DT (A) = {¢; ¢ je uzavretd atomicka formula L4 takd, Ze A |= ¢} je pozitivny atomicky
diagram struktary A.

Diagram (atomicky diagram) struktary A je D(A) = {p;p je uzavretd atomickd alebo
negatomické formula jazyka L4 takd, ze A = ¢}.

Th(A) je tplna tedria. Struktira A je jednoznaéne dani pomocou DV (A). Z Godelovej
vety vyplyva, Ze kazd4 Gplna tedria ma tvar Th(A).

Tvrdenie 6. Nech h: A — B. Potom h je elementdrne vnorenie A do B prdve vtedy, ked
(B,h(a))aca = Th(A4).

Tvrdenie 7. Nech A,B € Mod(L). Potom A mozno elementdrne vnorit do B prdve vtedy,
ked existuje rozsirenie (B,bg)aca Struktiry B do Struktiry jazyka La takd, Ze (B,b,) E
Th(Au).

Tvrdenie 8. Nech A,B € Mod(L), h: A — B prdve vtedy, ked (B, h(a)).ca = DT (A).
Tvrdenie 9. Nech A,B € Mod(L). Potom A C B prdve vtedy, ked A C B a Ba = D(A).

Tvrdenie 10. Nech A, B € Mod(L), h: A — B. Potom h: A< B je vnorenie prave vtedy,
ked (B, h(a))aca | D(A).

Nech A,B € Mod(L). Potom A mozno vnorit do B prdve vtedy, ked existuje rozirenie
(B, ba)aca Struktiry B do jazyka La také, Ze (B,b,) = D(A).

Veta 1 (Tarského kritérium pre elementirne podsStruktary). Nech A C B. Potom
A < B prdve vtedy, ked pre lubovolni formulu ¢(x) jazyka La plati: Ak B | (Jx)p(z), tak
existuje a € A také, Ze B = ¢(a).

Veta 2 (Lowenheim-Skolem-Tarskil). Nech A je nekonecnd, A € Mod(L), B je kardi-
ndlne ¢islo také, ze ||L|| < 8, |A| < 3. Potom existuje elementdrne rozsirenie B §truktiry A

(B~ A) také, z¢ |B| > 5 (1B| = B).

Veta 3 (Lowenheim-Skolem-Tarski|). Nech A € Mod(L). Potom pre kaZdé kardindine
cislo B také, Ze ||L|| < 0 < |A| existuje B < A také, Ze |B| = . Dokonca pre lubovolni
X C A taku, Ze |X| < B existuje B < A takd, Ze |B| =3, X C B.

Désledok 1. Kazdd nekoneénd Struktira spocitatelného jazyka md spocitatelni elementdrnu
podstruktiru.

Lema 1 (o vzajomnej bezospornosti). Tedria T U S je spornd prdave vtedy, ked existuji
01(Z), ..., on(Z) € S také, Ze T + () (—p1(Z) V ...V —pn(T)).

I je mnozina axiém pre tedriu T', ak Mod(T") = Mod(T).

Lema 2 (axiomatizaéna lema). Nech T je bezospornd tedria v jazyku L a /\ je mnoZina
uzavretych formul jazyka L uzavretd na konecné disjunkcie. Potom nasledovné podmienky si
ekvivalentné.

(i) T mad mnoZinu aziom I' C A.
(i) Pre lubovolné A, B € Mod(L) plati: AET, BETh(A)NA=BET.

Veta 4. Nech T je bezospornd tedria. Potom T sa prendSa na podstruktiry prdve vtedy, ked
T mad mnozinu univerzdlnych azxiom.
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Veta 5. Nech T je bezospornd tedria. Potom trieda Mod(T') je uzavretd vzhladom na nad-
Struktiry, prdve vtedy, ked T md mnoZinu existencényjch axidm.

Definicia 7. Univerzdlno-ezistencnd formula: YZ35p(Z, 7, Z), kde ¢ je bez kvantifikdtorov.
Ezistencno-univerzdlna formula: 32Vyp(Z, ¥, Z), kde ¢ je bez kvantifikitorov.

9= uzavreté formuly logicky ekvivalentné s univerzalnymi

¥9= uzavreté formuly logicky ekvivalentné s existenénymi

9= uzavreté formuly logicky ekvivalentné s univerzalno-existenénymi
Y9= uzavreté formuly logicky ekvivalentné s existenéno-univerzalnymi

Definicia 8. Retazec Struktir jazyka L nad linedrne usporiadanou mnozinou (1, <) je systém
struktiar v jazyku L (A;, ¢ € I) taky, ze pre i < j je A; C A;.
Zjednotenie retazca (A;,i € I) je Struktira A= J A, = (U 4, .. .),

i€l i€l
fAay, ... an) = fA(ay,. .., an)
(ay,...,a,) € r* prave vtedy, ked (a1,. .., a,) € r

Elementdrny retazec je taky, ktory splia aj A; < Aj.

Ak A; tvoria refazec, tak kazdé A; je podstruktirou (J,.;A;. Ak ide o elementarny
retazec, tak je to elementdrna podstruktura.

Tvrdenie 11. Nech ¢ je uzavretd univerzdlno-existenénd formula a (A;)ier je retazec struk-
tur jazyka L. Ak A; |= ¢ pre kazdé i € I, tak |J A; |E ¢ (t.j. univerzdlno-existenéné formuly
i€l

sa zachovavaji pri zjednoteni retazca).

Veta 6. KaZdé pole ' md algebraicky uzdver (algebraicky uzavreté nadpole), algebraicky
uzavreté algebraické rozsirenie F'.

Veta 7. Nech T je bezospornd teoria v jazyku L. Potom nasledovné podmienky su ekviva-
lentné.

(i) T md mnoZinu univerzdlno-existencnych axiom.
(i1) Mod(T) je uzavretd na zjednotenie lubovolngjch retazcov.
(#ii) Mod(T) je uzavretd na zjednotenie retazcov nad (N, <).

Veta 8. Nech T je bezospornd tedria v jazyku L, potom trieda Mod(T) je uzavretd na ho-
momorfné obrazy prdave vtedy, ked T md mnoZinu pozitivnych aziom.

Flasa, z ktorej sa ni¢ nevyleje. Ibaze sa tam ani ni¢ nedd naliat.
Korbas - o Kleinovej flasi

14 Modely

Filtrovany sucin, ultrasucin a ultramocnina. Losova veta. Veta o kompaktnosti v jazyku
ultraproduktov. Charakterizdcia elementdrnej ekvivalencie a (koneéne) aziomatizovatelngch
tried. (Charakterizdcia elementarnych tried. Peanova aritmetika, formalizdcia dokdzatelnosti.
Gadelove vety o neiplnosti, Gédelova-Rosserova veta. Tarského veta o nedefinovatelnosti re-
ldcie spliiania.)
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14.1 Priamy a filtrovany sucin

Definicia 1. [] A; - priamy sicin systému (A;,i € I) = ([[ A, ...), [Lic; Ai = {a: I —
iel
UA;Yi ai) € Ay, flTA (s an) (@) = fA(aa(i), - an(i), (.. a0)(i) € rITA
préave vtedy, ked (v (i), ..., (1)) € ri.
Ak A; = A pre vietky i € I, tak [] A; sa nazyva priama mocnina a oznacuje sa A’.
Diagondine vnorenie d: A — AL, a v+ d(a), d(a): I — A, d(a)(i) = a.

14.2 Ultraprodukt a Losova veta

Definicia 2. Zovseobecnend pravdivostnd hodnota

[@(ah e 7an)] = {Z eLA E @(al(i)v . 70‘”(2))}

Tvrdenie 1. [p&(@)] = [p(a)] N [$(@)

oV (@) = [p(@)] U [$(@)

(@) = [p(@)]€ = I\ [p(@)]

(Gedela. @) = U (6(5:)] = [o(do @) pre nejaké o € [[4; - princip masima
(¥2)e@, @] = N [e( )] = [o(do, @) pre nejaké ap € [T A; - princip minima

Definicia 3. Ak D je filter na I, tak definujeme o =p 3 préave vtedy, ked [« = 3] € D.
Filtrovany sucin ] A;/D = ([[A4:/D,...),
il

f(OélD,...,OéE) :f(ala"'van)D7
(a?, . ,af) € r prave vtedy, ked [r(ay,...,a,)] € D.

Al/D sa nazjva filtrovand (redukovand) mocnina.
V pripade, ze D je ultrafilter na I, nazyvame filtrovany saéin ultraprodukt a filtrovana
mocnina je ultramocnina.

Veta 1 (Losova). Nech B je ultrasicin A'/D, a nech I je indexovd mnoZina. Potom pre
lubovolni formulu ¢(x1,...,x,) a a1,...,an € [[ A; platd

BEeal,...,ab) vtedy a len vtedy, ked [p(a,. .., a,)] € D.

Tvrdenie 2. Ak D je ultrafilter, tak d: A —> AT/D.
Veta o kompaktnosti v jazyku ultraproduktov

Definicia 4. C C P(I) je centrovany systém, ak prienik jeho Tubovolného koneéného pod-
systému je neprazdny. (Zrejme kazdy filter je centrovany systém.)
Veta 2 (o kompaktnosti). Nech X je mnoZina uzavretych formail jazyka L uzavretd vzhla-

dom na konecné konjunkcie a pre kazdé o € ¥ nech A, je Struktira jazyka L takd, Ze A, = o.

Potom ezistuje ultrafilter D nad ¥ taky, Ze || A,/D E 2.
cED

Veta 3 (Keisler-Shelah). Ak A = B, tak existuje mnoZina I a ultrafilter D na I taky, Ze
Al/D = BY/D.

Veta 4. Nech A,B € Mod(L). Potom A = B prave vtedy, ked existuje mnoZina I a ultrafilter
D na I tak, ze h: B —» AT/D.
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14.3 Triedy Struktar

Definicia 5. Nech K C Mod(L). Tedria triedy K je Th(K) = {p; ¢ je uzavretd a K | ¢} =
N Th(A).

AeK
K = Mod ThK
T = ThMod(T) = { je uzavretd; T + ¢}. (deduktivny uzaver)

Tvrdenie 3. T} C T5 = Mod(T1) 2 Mod(T3)
Mod(Th(Mod(T))) = Mod(T)

Definicia 6. K C Mod(L) sa nazyva aziomatickd trieda, ak existuje teéria T v jazyku L
taka, ze K = Mod(T).

Veta 5. Nech K C Mod(L) je lubovolnd trieda Struktir. Potom st ekvivalentné:

(i) K je aziomatickd trieda.

(1) K je uzavretd vzhladom na izomorfizmy, elementdrne podstruktiry a ultraprodukty.
(ii) K je uzavretd na elementdrne ekvivalencie a ultraprodukty.

Definicia 7. K C Mod(L) je varieta, ak existuje mnoZina atomickych formul T takd, Ze
K = Mod(T).

Veta 6. K je varieta prdve vtedy, ked K je uzavretd na podstruktiry, homomorfné obrazy a
priame suciny.

Definicia 8. Bdzické Hornove formuly su formuly tvaru o1 V...V ¢,, kde ¢; st atomické
alebo negatomické, ale najviac jedna z nich je atomicka.
Hornove formuly st vyrobené z bazickych Hornovych formtl pomocou &, 3, V.

Bézické Hornove formuly mozu byt:

1. ziadna atomickd: =1 V...V =, = =(v1& . .. &,) (¢; st atomické)

2. ziadne negatomické: ¢ — atomicka

3. nejakd atomicka a nejaké negatomické: —hy V...V b, Vo = (01 &... &i,) = ¢
Ak T je vlastny filter, hovorime o vlastnom filtrovanom stcine.

Veta 7. T sa prendia na vlastné filtrované suciny prave vtedy, ked T md mnoZinu Hornoviyjch
axiom.

Veta 8. Ak T je univerzdlna tedria, tak
(i) T sa prend$a na priame suciny prdve vtedy, ked
.. /v v ’ . /v e o
(i) sa prendSa na koneéné priame sucdiny prdve vtedy, ked
(#ii) md univerzdlne Hornove axidmy.

Definicia 9. Trieda K C Mod(L) (resp. tedria T') sa nazyva koneéne aziomatizovatelnd, ak
existuje koneénd mnozina formul S taka, ze K = Mod(S) (resp. Mod(T') = Mod(S)).

Veta 9. Trieda K C Mod(L) je konecéne aziomatizovatelnd prdve vtedy, ked K aj Mod(L)\K
st axitomatické triedy.

Predpoklad, ze tato tedria je sporna, vedie k sporu.
Zlatos
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15 Teoria mnozZin

Zdkladné pojmy tedrie mnoZin (Boolovskd algebra mnoZin, reldcie a zobrazenia, ekvivalen-
cia a rozklad, usporiadanie). Konstrukcie usporiadangch mnoZin, Hasseovej diagramy, zvizy,
dplnost. Naivnd tedria mnoZin a jej paradoxy, axiomatizdcia tedrie mnozin, systém ZF. (Awi-
oma vgberu a vseobecny kartezidnsky sucin.) MnoZinovd ekvivalencia a subvalencia. Mohut-
nost mnoZiny, aritmetika kardindlnych ¢isel. Cantorova-Bernsteinova veta. Diagonalizdcia,
Cantorova veta, mohutnosti Ry a ¢, mohutnosti niektorych doleZitjch mnozin.

Pri priprave tejto otézky boli okrem poznadmok pouzité [BS], [H], [SS] a [Z].

15.1 Zakladné pojmy tedrie mnozin

Tu st len také samé lahké veci, ktoré je mozno az Skoda pisat.

XUY={zr:zeXVzeY}

XNY={z:zeXANzeY}

X\Y={z:2eXANx¢Y}
XxY={(z,y):z€e XNz eY}

Usporiadana dvojica (a,b) = {{a}, {a,b}}
Relacie

Definicia 1. Reldciou medzi prvkami mnozin A, B nazyvame akikolvek podmnozinu kar-
tezianskeho sucinu A x B. Ak A = B, tak hovorime o relacii na mnozine A.

Definicia 2. Ak RC X x Y, S CY x Z su relacie, tak kompoziciou (zloZenim) relacii R a
S nazyvame relaciu So R C X x Z takq, ze (x,z) € So R & Jy; (z,y) € RA (y,2) € S.

(SoR)™'=R 108!
R[A]={beY;(Ja € A)(a,b) € R}
R7'A] = {a € X;(3b€ B)(a,b) € R}
R[AU B] = R[A] U R[B]
R[AN B] C RIA]N R[B]
fIAUB] = fIA]U f[B]
fIANB] C f[AIN f[B]

Ak f je bijekcia:
fHAUB] = AU fYB]
fHANB] = fH AN f7[B]

Definicia 3. Nech D je relacia na mnozine A.
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D je reflexivna (Vx € A)(x,z) € D

D je symetrickd (z,y) € D= (y,z) € D
D je asymetrickd (z,y) € D= (y,x) ¢ D
D je tranzitivna (x,y) e DN (y,2) € D = (z,y) € D

D je trichotomickd z#y= ((z,y) € DV (y,z) € D)
D je antisymetrickd  ((x,y) € DA (y,z) € D)=z =y

Asymetricka relacia sa tiez zvykne volat silne antisymetrickd, antisymetrickd sa tiez vold
slabo antisymetricka.

Ekvivalencia

Definicia 4. Reldcia D na mnozine A sa nazyva reldcia ekvivalencie na A, ak je reflexivna,
symetricka a tranzitivna.

Veta 1. Nech D je reldcia ekvivalencie na mnozine A # (). Pre x € A oznacme A(z) = {y €
A (y,x) € D}. Potom systém mnozin {A(x) : x € A} tvori rozklad mnoZiny A. (Nazjva sa
rozklad indukovany ekvivalenciou D. A(x) sa nazyva trieda ekvivalencie prvku x.)

Nech A je neprdazdna mnoZina a S je jej rozklad. Definujme na mnozine A reliciu D ako
D={(z,y) e AxA:(3M e S)(x € M ANy e M)}. Potom D je reldcia ekvivalencie na A a
S je nou indukovany rozklad.

Usporiadanie

Definicia 5. Reldcia < na mnozine X sa nazyva diastoéné usporiadanie, ak je reflexivna,

antisymetrickd a tranzitivna. (Alternativna definicia: relacia <, ktora je antireflexivna, silne

antisymetrickd a tranzitivna.) Dvojicu (X, <) potom voldme c¢iastoéne usporiadand mnoZina.
Nech (X, <) je ¢iasto¢ne usporiadand mnozina. Ak plati

(Va,y € X)(z <yVy<w),
tak (X, <) sa nazyva linedrne (totdlne) usporiadand mnoZina.

Definicia 6. Nech (X, <) je ¢lastoéne usporiadand mnozina. Hovorime, Ze prvok x je pokryty
prvkom y, ak (z < y) A (P2)z < 2 < y. Znadéime z —< y.

Hasseovej diagram: x je spojené s y stiipajiicou hranou, ak x —< y.

Definicia 7. a je najvicdsi prvok Giastocne usporiadanej mnoziny A, ak (Vo € A)z < a.

a je nagmensi prvok &iasto¢ne usporiadanej mnoziny A, ak (Vo € A)xz > a.

a je mazimdlny prvok A, ak (Az € A)a < x, minimdlny, ak (Fz € A)z < a.

a je horné (dolné) ohranicenie podmnoziny B C A, ak (Vb € B)a > b (a < b).

Infimum je najvicsi prvok mnoziny dolnych ohranifeni a suprémum je najmens$i prvok
mnoziny hornych ohraniceni.

Ciasto¢ne usporiadand mnoZina sa nazjva uplnd, ak kazd4 jej ohranidena podmnozina
ma suprémum a infimum.

Definicia 8. Nech (4, <), (B, <) st ¢iasto¢ne usporiadané mnoziny. Zobrazenie f: A — B je
izotdnne, ak x <y = f(x) < f(y). [ je antitonne, ak x < y = f(x) > f(y). [ je monotdnne,
ak je izoténne alebo antiténne.

Izomorfizmus ¢iastoCne usporiadanych mnozin je zobrazenie f: A — B, ktoré je bijektivne
aplati z <y < f(z) < f(y). (Ekvivalentne: bijekcia taka, Ze f aj f~! st izoténne.)
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15.2 Naivna tedria mnozZin a jej paradoxy

Cantorova definicia mnoziny bola intuitivna. ,,Mnozina je sihrn objektov rozliSitelnych
nasou intuiciou.“

Cantorov (vymedzovaci) princip: ak ¢(x) je nejaké dost presne definovand vlastnost, tak
{z; p(z)} je mnoZina.

Russelov paradox: {z;z ¢ z}

Berryho paradox: B = { € N :  moZno jednoznacne popisat slovnym spojenim najviac
20 slov slovenského jazyka} (Ked m definujeme ako najmensie prirodzené éislo, ktoré nemozno
jednoznacne ..., dostali by sme m € B aj m ¢ B.)

15.3 Zermelov-Fraenkelov axiomaticky systém tedrie mnoZin

Axiéma extenzionality (VA,B)(A=B & Vz(zr € A< x € B))
Axiéma dvojice (Ve,y)(3Z2)V2)(z € Z & (z=xVz=1y))
Axiéma zjednotenia (VS)(3EX)(Va)(z € X & (Fs € S)(z € 5))
Axidéma potencie (VX)3P)(VC)(Ce P& C CX)
Schéma axiém vymedzenia: Nech ¢(x) je vyrokova formula

jednej volnej premennej x
VAEX)(Vz)(z € X & (x € AN p(x)))

Schéma axiém obrazu (substittcie): Nech F' je zobrazenie
(VA)(3B)(vy)(y € B & (Fz)(z € ANF(x) =y))
Inak: Nech 9 (u,v) je formula neobsahujica volné premenné w, z

(V) (Vo) (Vw) (¢ (u, v) A (u,w)) = v =w) =
(Va)(3z)(Vo)(v € z & (Fu)(u € a Ap(u,v)))

Axiéma regularity (fundovanosti) VA (A#£D= Tz e AznNnA=0)
Axiéma existencie: (Fz)(x = x)
Axiéma nekoneénej mnoziny: (FA) D e ANNVz)(z e A=z U{z} € A)

Nasleduje vysvetlenie, aky je vyznam jednotlivych axiém (pozri [Z] alebo [H].) Axiéma
extenzionality udava, Zze dve mnoZiny sa rovnaju prave vtedy, ked maja rovnaké prvky. (Prvky
sa na mnozine podielaji len svojou pritomnostou.) Axiéma dvojice, zjednotenia a potencie
nam umoziuje vytvarat z danych mnozin nové mnoziny. (Axiéma dvojice sa tiez pouzije pri
definicii usporiadanej dvojice.) Axiéma nekonecna postuluje existenciu nekoneénej mnoziny.
Schéma axiém vymedzenia uprestiuje Cantorov vymedzovaci princip. Schéma axiém obrazu
rozsiruje schému axiém vydelenia. Axiéma regularity zakazuje nekonecné klesajice refazce

. € o € 1 € x9 a zarufuje, Ze celé univerzum mmnozin mozno ziskat pomocou iteracii

operacii poten¢nej mnoziny, t.j. Vo =0, Voy1 =P(V,) a Vi = |J V, pre limitny ordinal A.
a<A

15.4 Axioma vyberu

Princip vyberu: Pre kazdy rozklad r mnoziny X existuje vgberovd mnoZina, to znamené
mnozina v C X, pre ktort plati (Vu € r)(3z)(v Nu = {z}).

Definicia 9. Funkcia f definovana na mnozine X, pre ktort plati (y € XAy # 0) = f(y) € v,
sa nazyva selektor na mnozine X.

Axiéma vyberu (AC): Na kazdej mnozine existuje selektor.

Definicia 10. Nech J je mnozina. Kartezidnsky stucin systému mnozin {F} : j € J} definu-
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jeme ako

[[E={f:f:7->JE A€ DfG) € By}

jeJ
Tvrdenie 1. Nasledujice tvrdenia su ekvivalentné:
(i) azidma vyberu,
(i) princip viberu,
(#ii) pre kaZdi mnoZinovi reldciu s existuje funkcia f takd, Ze f C s a Dom(f) = Dom(s).
(iv) Karteziansky sicin neprdzdneho sicinu neprazdnych mnoZin je neprdzdny.

ZFC = 7ZF + AC
15.5 Mnozinova ekvivalencia, kardinalne ¢éisla

Definicia 11. Hovorime, Ze mnoziny A, B st ekvivalentné (A = B), ak existuje bijekcia
f:A— B.

Hovorime, Ze A je subvalentnd B, A < B, ak existuje injekcia f: A — B.

A je ostro subvalentnd B, A < B,ak A< B a A#% B.

Veta 2 (Cantor-Bernstein). Ak A < B a B <X A, tak A~ B.

Bez AC nemusi platit, Ze kazdé dve mnoziny st porovnatelné v reldcii <.

Kardindlne ¢islo mozno chépaf ako najmensie ordinélne ¢islo s danou kardinalitou. Can-
torova definicia bola takd, Ze to boli vlastne typy (triedy) mohutnosti mnozin.

Existuje funkcia N, ktora zobrazuje triedu vSetkych ordinalnych ¢isel na triedu vsetkych
nekoneénych kardinalnych ¢isel. Je hodnoty oznac¢ujeme R(a) =: R,,. Funkcia X je monoténna
a spojita (t.j. zachovava usporiadanie a supréma).

Kardinalna aritmetika

Definicia 12. Ak s, A st kardinélne éisla, tak definujeme kardindlny sucet, sucin a kardi-
nalnu mocninu:

7+ A= ({0} x 5) U ({1} x A
A= |\ X x|
7= [{f: A= s

N, + N[j = Na.Ng = max{Nm Nﬁ}

Pt = aB.a”
P = (aP)7
(@.8)" = 7.5

Veta 3 (Cantorova). 2% > s
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Diagonaliza¢nd metdda, ktorou sa dokazuje Cantorova veta, mé velmi $iroké uplatnenie.

NOL— N(X
R — N

Hypotéza kontinua: 280 = X,

ZovSeobecnend hypotéza kontinua (GCH): Pre kazdé nekoneéné kardindlne ¢islo R, plati
28a =N, (t.j. medzi X, a 2% uZ nie st ziadne iné kardinélne ¢isla).

Godel dokéazal, Ze zovSeobecnend hypotéza kontinua je bezosporné vzhladom k axiémam
ZF. Cohen (a nezavisle od neho Vopénka) ukazal, Ze hypotéza kontinua je nezdvisla na axid-
mach tedrie mnozin (t.j. nevyplyva z nich).

Ro = |N|, ¢ = [P(N)]

Mnozina A je spocitatelnd, ak A < N. Ekvivalentnid podmienka: A = () alebo existuje
surjekcia g: N — A.

Spocitatelné mnoziny: MnoZina vSetkych prirodzenych ¢isel, koneéné postupnosti priro-
dzenych disel, algebraické ¢isla. Spocitatelné zjednotenie spocitatelnych mnozin je spodita-
telnd mnozina. (Na dokaz treba axiému vyberu.)

Nespoditatelné: R, postupnosti prirodzenych &isel, transcendentné ¢&isla, Cantorovo dis-
kontinuum.

Princip matematickej indukcie je ekvivalentny s tym, Ze mnozina prirodzenych cisel N je
dobre usporiadana.

Zlatos
16 Ordinalne éisla

Izomorfizmus ciastocne usporiadangch mnozin, ordindlny typ. Dobre usporiadané mnoziny,
ordindlne ¢isla a ich aritmetika. Ordindly wy a wy.

Dobré usporiadanie

Definicia 1. Usporiadana trieda sa nazyva dobre usporiadand, ak kazda jej neprazdna pod-
mnozina ma najmensi prvok.

Dobre usporiadana trieda je linedrne usporiadana.
Veta 1. Kazdd podtrieda dobre usporiadanej triedy je dobre usporiadand.

Veta 2. Nech (A, <) je dobre usporiadand mnoZina a nech f je izotdnne zobrazenie mnoZiny
A do A. Potom pre Ziadne a € A neplati f(a) < a.

Definicia 2. Mnozina I C A je usek usporiadanej mnoziny (A, <), ak existuje také a € A,
ze I = {z € A;x < a}; oznacujeme I = A,.

Veta 3 (Zakladna veta o ordinalnych é&islach). Nech (A, <4), (B,<pg) st dobre uspo-
riadan€ mnoziny. Potom alebo A a B siu izomorfné mnoZiny, alebo jedna z nich je izomorfna
useku druhej.
Ordinalne ¢isla

Ordinalne ¢isla st typy dobre usporiadanych mnozin, to znamena, ze vSetkym navzajom

izomorfnym dobre usporiadanym mnozinam zodpoved4 to isté ordinélne ¢islo.
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Ordinélne éisla mozno zaviest viacerymi ekvivalentnymi spésobmi.

Usporiadand mnozina A sa nazjva ordindlne ¢islo, ak a = A, pre kazdé a € A. (Salat,
Smital; Hart) MnoZina A je ordindlne ¢islo, ak je tranzitivna (t.j. x € X = 2 C X) a € je
dobré ostré usporiadanie na X. (Balcar, Stépanek)

Veta 4. Ku kaZdej dobre usporiadanej mnozine A existuje ordindl Ord(A) s tymito vlast-
nostami:

(i) A= O0rd(A)

(i) Ak (A, <), (A*,<*) su dobre usporiadané mnoZiny, tak A = A* plati prive vtedy, ked
Ord(A) = Ord(A*).

Ord(A) sa nazyva ordindlne ¢islo mnoziny A.
Veta 5. KaZdd dobre usporiadand mnoZina je izomorfnd prdve s jednym ordindlnym cislom.

Definicia 3. Ordinélne ¢islo « je mensie ako ordindlne ¢islo 3, ak a je podobné nejakému
tseku mnoziny §. Namiesto o = 3, potom piSeme o < 3.

Veta 6. Pre lubovolné dve ordindlne ¢isla o, 3 st nasledujice vyroky ekvivalentné:
(i) a<p
(ii) o C B
(i) a€f
Aritmetika ordinalnych ¢isel
Lema 1. Nech (A, <4), (B,<p) st disjunktné dobre usporiadané mnoZiny. Potom mnoZina
C = AU B je dobre usporiadand reldciou <c= (<4) U (<p)U A x B.

Definicia 4. Nech (4, <4), (B, <p) st disjunktné dobre usporiadané mnoziny. Nech C =
A U B je mnozina usporiadand reldciou z predchadzajtcej definicie. Potom ordinalne ¢islo
v = Ord(C) sa nazyva sucet ordinalnych ¢isel o = Ord(A) a f = Ord(B). Piseme v = a+ 5.

Veta 7. Ak «,f3 st ordindlne éisla, 3 # 0, tak o < a + (3.

wt+lfw=14w

Definicia 5. Nech (A,<4) a (B,<p) su usporiadané mnoziny. Potom usporiadanie <¢
kartezianskeho stéinu C' = A x B dané vztahom

[z1,91] <c [T2,92] & (Y1 <B Y2) V (y1 = y2 A 71 <a T2)
sa nazyva lerikografické usporiadanie mnoziny A x B.

Lema 2. Ak (A,<4) a (B,<p) st dobre usporiadané mnoZiny, tak lexikografické usporia-
danie sucinu A x B je tieZ dobré usporiadanie.

Definicia 6. Nech A, B st dobre usporiadané mnoziny. Nech C je kartezidnsky stcin A x B
s lexikografickym usporiadanim. Potom v = Ord(C) sa nazyva sucin ordindlnych éisel o =
Ord(A) a = Ord(B). Piseme v = a.0 alebo len v = af.

w2=w4w#2dw=w
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Ordinaly w a Q)

Ordinalne ¢islo mnoziny N s obvyklym usporiadanim sa oznacuje w. Je to najmensie
nekonecné ordinalne ¢islo.

Mnozina ordinalnych ¢isel vSetkych dobrych usporiadani mnoziny N, ¢ize mnozina vSet-
kych spocitatelnych ordindlnych &isel, je tiez ordinélne éislo, ktoré sa zvykne oznacdovat )
alebo w;. Je to najmensie nespocitatelné ordindlne éislo.

Literattira k ordinalnym ¢islam: [BS], [H], [SS].

...Co je nesporne Spor.
Cincura

17 Axiéma vyberu

Transfinitnd indukcia. Princip dobrého usporiadania, axioma vyberu, Zornova lema a ich
dalsie ekvivalenty a dosledky.

Této ¢ast je podla [Z2]. Tu sa dolnym rezom (pociatoénym tsekom) rozumie to, ¢o bol v
predchadzajtcej Casti tisek, ale moze to byt navyse aj celd mnozina. Dalej sa pouziva znadenie
X@ ={reX:x<al.

17.1 Transfinitna indukcia a rekurzia

Veta 1 (o transfinitnej indukcii). Nech (X, <) je dobre usporiadand mnoZina. Nech
A C X je mnoZina taka, Ze

(Vae X)(X@W CA=ac A.
Potom A= X.

Veta 2 (o transfinitnej rekurzii). Nech (X, <) je dobre usporiadand mnozina, Z je lubo-
volnd mnoZina a g je funkcia takd, Ze

domg = U 7X“.
acX

Potom existuje jedind funkcia f: X — Z takd, Ze pre kaZdé a € X plati
fla) = g(f 1 X).

Triedu vSetkych ordindlnych ¢isel budeme znacit @ . Tranzitivna trieda je taka trieda X,
7e z € y&y € X = z € X. Transfinitnd indukcia a rekurzia sa najcastejSie pouzivaja pre
ordinalne ¢isla, ¢ize v nasledovnej formulécii.

Veta 3 (o transfinitnej indukcii). Nech X C € je tranzitivna trieda, A C X je trieda
takd, Ze
MaeX)(alA=acA).

Potom A = X.
Veta 4 (o transfinitnej rekurzii). Nech X C Q je tranzitivna trieda, Z je lubovolnd trieda
a G je triedovd funkcia takd, Ze
dom G = | ] z°.
aeX
Potom existuje jedind funkcia ¥F: X — Z takd, Ze pre kazdé o € X plati

F(a)=G(F | a).
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Dokaz transfinitnou indukciou aj kon$trukcia transfinitnou rekurziou sa obvykle deli na
dva kroky: pre limitné a pre nelimitné ordinaly.

17.2 Ekvivalentné formy axiémy vyberu

Definicia 1. Podmnozina A Giasto¢ne usporiadanej mnoziny (X, <) sa nazyva retazec, ak
je linedrne usporiadand. Hovorime, Ze podmnozina A Giasto¢ne usporiadanej mnoziny (X, <)
je usmernend, ak pre fubovolné x,y € A existuje z € A také, Ze x < zay < 2.

Veta 5. Azxioma vijberu je ekvivalentnd s kaZdym z nasledujicich tvrdeni:

(i) Nech E je ekvivalencia na mnoZine X. Potom existuje mnozina Y C X takd, Ze (Vx €
X)3ly €Y)(zEy).

(1) Na kaZdej mnozine X (ktorej prvkami si mnoZiny) existuje selektor, t.j. zobrazenie
h: X — |JX také, ze (Vz € X)(z # 0 = h(z) € z).

(i4i) Pre kazdi reldciu R existuje funkcia f takd, Ze dom f =dom R a f C R.

(iv) Ku kaZdej surjekcii f: X — Y existuje pravé inverzné zobrazenie, t.j. zobrazenie g: Y —
X také, Ze fog=1idy.

(v) Kartezidnsky sucin systému neprazdnych mnoZin je neprdzdny.

Axiéma vyberu sa pouziva napriklad aj v dékaze ekvivalencie Heineho a Cauchyho defini-
cie spojitosti a tiez v dokaze tvrdenia, Zze zjednotenie spocitatelného systému spodcitatelnych
mnozin je spocitatelnd mnozina. (V oboch pripadoch sta¢i tzv. slaba axiéma vyberu, ktord
postuluje existenciu selektora pre spocitatelné systémy mnozin nanajvys mohutnosti konti-
nua.)

Princip dobrého usporiadania (WO). KaZdi mnoZinu mozno dobre usporiadat.

Veta 6. Princip dobrého usporiadania je ekvivalentny s kazZdym z nasledujicich tvrdeni:
(i) Pre kazdd mnozinu X plati | X| € Q.
(ii) Pre kaZdi nekoneéni mnoZinu X ezistuje o € Q2 také, Ze | X| = R,.
(#ii) Pre lubovolné mnoZiny X, Y plati X XY alebo Y < X.
(i) Pre lubovolné kardindlne éisla «, § plati o < 3 alebo § < a.

Principy maximality st najcastejSie oznacované nazvom Zornova lema. Vsetky nasledu-
jace formulécie principu maximality st ekvivalentné.

Princip maximality (MPO0). Nech (X, <) je ciastoéne usporiadand mnoZina, v ktorej
je kazdy retazec zhora ohraniceny. Potom pre kazdé x € X ewistuje mazimdlny prvok m € X
taky, Ze x < m.

Princip maximality (MP1). Nech X je lubovolnd mnoZina a S C P(X) je systém jej
podmnozin taky, Ze pre kaZdy usmerneny podsystém D v (S,C) plati | JD € S. Potom S
obsahuje mazximdlny prvok.

Princip maximality (MPO0’). Nech (X, <) je ¢iastocne usporiadand mnozina, v ktorej
kazdd usmernend podmnoZina md suprémum. Potom v (X, <) existuje mazimdlny pruok.

Princip maximality (MP1’) Nech X je lubovolnd mnoZina a S C P(X) je systém
jej podmnoZin taky, Ze kaZdy retazec v (S, C) je zhora ohraniceny. Potom pre kaZdé A € S
existuje maximalna mnozina M € S takd, e A C M.

Pouzitim principu maximality mozno napriklad dokdzat, Ze pre kazdy centrovany systém
existuje ultrafilter, ktory ho obsahuje.
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Veta 7. Azioma vgberu (AC), princip dobrého usporiadania (WO) a princip mazimality si
ekvivalentné.

Dolezité je uvedomjt’ si medze toho, ¢o moézeme vediet’ o nasom vedeni.
’
Zlatos

18 TUniverzalne algebry a zvizy

Univerzdlne algebry, zdkladné algebraické konstrukcie (faktorovd algebra, priamy a polo-
priamy sucin), zviz kongruencii algebry, variety algebier, Birkhoffova veta. Distributivne a
moduldrne zvdzy. Boolovské algebry a ich reprezentdcia.

18.1 Univerzalne algebry

Definicia 1. Typom algebier rozumieme mnozinu F', ktorej prvky nazyvame operacné sym-
boly. Kazdému prvku f € F patri nezdporné celé ¢islo o(f), nazjvané jeho drnostou. Ak
o(f) = n, hovorime, Ze f je n-drny opera¢ny symbol. Nuldrne opera¢né symboly sa nazyvaji
konstanty. F,, budeme oznacovat mnozinu vSetkych n-arnych operacnych symbolov typu F.

Definicia 2. Nech F je typ algebier. Algebrou typu F nazyvame dvojicu A = (A; F), kde A
je neprazdna mnozina a kazdému opera¢nému symbolu f € F je priradend n-arna operacia
f# na mnozine A, pricom n = o(f).

Homomorfizmy a kongruencie

Definicia 3. Nech A, B st algebry typu F. Zobrazenie ¢: A — B sa nazyva homomorfizmus
(tiez homomorfné zobrazenie), ak pre kazdé f € F (nech o(f) = n) a kazdé ai,...,a, € A4
je o(flay,...,an)) = flpay,...,oa,).

Homomorfizmy st uzavreté na skladanie, obraz a vzor algebry v homomorfizme st po-
dalgebry danej algebry. Obraz podalgebry generovanej nejakou mnozinou je podalgebra ge-
nerovana obrazom tej mnoziny.

Lema 1. Nech ¢: A — B je bijektivny homomorfizmus algebier. Potom ¢~ ': B — A je tieZ
homomorfizmus.

Definicia 4. Bijektivny homomorfizmus algebier sa nazyva izomorfizmus. Hovorime, Ze al-
gebry A, B st izomorfné (A = B), ak existuje izomorfizmus A — B.

Definicia 5. Ekvivalencia 6 na algebre A, pre ktort plati
a;0b; i=1,...,n) = f(a1,...,an)0f(b1,...,by)

pre vietky f € F (t.j. 6 je kompatibilna s operdciami algebry A), sa nazyva kongruencia.
Mnozinu vSetkych kongruencii na A budeme oznacovat Con A.

Na kazdej algebre existuju dve trividlne kongruencie w (najmensia) a ¢ (plnd).
Jadro homomorfizmu je kongruenciou, naopak kazda kongruencia je jadrom prirodzeného
homomorfizmu:

Definicia 6. Nech 6 je lubovolna kongruencia algebry A = (A4;F). Na faktorovej mno-
Zine A/ definujeme operacie pre vSetky f € F takto: f([a1]0,...,[an]0) = [f(a1,...,a,)]0.
Dostaneme tak algebru .A/6, ktort nazyvame faktorovou algebrou.

@: a — [a]f je homomorfizmus algebry A na algebru 4/ a Kerp = 6. ¢ nazyvame
prirodzeny homomorfizmus.
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Priame a polopriame saéiny

Definicia 7. Nech (A;;i € I) je systém algebier typu F', A = [[(A;;¢ € I). Definujme algebru
[1(A;;i € I) takto: Ak f € F je n-drny operaény symbol, al, ..., a" € A, je f(al,..., a") taky
prvok kartezidnskeho stéinu A, Ze pre kazdé i € I je f(al,...,a™)(i) = f(a'(i),...,a"(4)).
Algebra (A; F') sa nazyva priamy sicin algebier A;. Siéin koneéného poétu algebier sa ozna-
Cuje Ag X Ay X ... X A,.

Definicia 8. Izomorfizmus ¢: B — [[(4;;¢ € I) algebry B na priamy stéin algebier A;
nazveme priamym rozkladom algebry B. Hovorime, Ze B sa da rozlozit na priamy sudéin
algebier A;, ak taky izomorfizmus existuje. A; nazveme faktormi priameho rozkladu.

Definicia 9. Podalgebru A priameho stéinu [ (A;;¢ € I) nazgvame polopriamy sidin tych
algebier, ak pre kazdé i € I je projekcia ;| 4: A — A; surjektivna. Injektivny homomorfizmus
p: B — [](4y;1 € 1), pre ktory ¢[B] tvori polopriamy sGéin algebier nazyvame polopriamym
rozkladom algebry B, algebry A; nazyvame jeho faktormi. Ak taky homomorfizmus ¢ existuje,
hovorime tiez, ze B sa da rozlozit na polopriamy sacin algebier A; (i € I).

Polopriamy rozklad nazveme vlastngm, ak pre ziadne i € I nie je (m;|p[B]) o p: B —
A; izomorfizmus. Algebra, ktord nemé vlastny polopriamy rozklad sa nazyva polopriamo
nerozloZitelnd.

Veta 1. Ak ¢: B — [[(Ai;i € I) je polopriamy rozklad algebry B, 0; = Ker(wo ) (i € I).
Potom | J(0; :i€I)=w a A; = B;/0; pre kazdé i € 1.

Veta 2. Nech A je algebra. Nasledujice podmienky si ekvivalentné.
(i) A je polopriamo nerozloZitelnd.
(i) N0 :0 € ConANO #w) #w.

Okruh Z celych ¢isel je priamo nerozlozitelny, ale je polopriamo rozlozitelny.
18.2 Zv#zy a aplné zvizy

Zavedieme oznacenie a V b pre sup{a, b} a a A'b pre inf{a,b}.

Definicia 10. Usporiadand mnozina P, v ktorej pre kazdé a,b € P existuje a Vb (a A b) sa
nazyva V-polozviz (A-polozviz) alebo horng (dolng) polozviz. P sa nazyva zviz, ak pre kazdé
a,b € P existuje a Vb aj a Ab. P sa nazyva dplng zviz, ak pre kazdi podmnozinu A C P
existuje sup A aj inf A.

Veta 3. Usporiadand mnoZina P je prdve vtedy uplnym zvizom, ked kaZdd jej podmnoZina
md infimum. (Ekvivalentne: ked P md najvicsi prvok a kaZdd neprdzdna podmnoZina P md
infimum.)

Veta 4 (Tarski). Ak P je uplny zviz, tak kaZdé izotonne zobrazenie f: P — P md pevny
bod.

Tarskiho vetu mozno pouzit na dokaz Cantor-Bernsteinovej vety. Mame injekcie f: A —
B ag: B— A ahladdme pevny bod funkcie F': P(A) — P(A), F(X) = A\ g(B\ f(X)).
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Lema 2. Nech P je zviz. Operdcie A a V' spliaji identity (idempotentnost, komutativnost,

asociativnost, absorpcia)

TANx
T Ay
(xAy) Nz
(xANy)Va
Vo
TzVy
(xVy)Vz
(xVy)Azx

=z
=yAx

=z A(YyAz)
=z

=z
=yVux
=xV(yVz)

=X

=

1

L2
3’

L4

=

Veta 5. FEzistuje navzdjom jednojednoznacénd korespondencia medzi zvizmi (L; <) a algeb-
rami (L; A\, V) spliiajicimi identity (L1) a (L4) a (L1’) a# (L4"). Algebra patriaca zvizu L
md operdcie x Ay = inf{x,y} a xVy = sup{z, y}, usporiadanie zvizu prislichajiceho algebre
(L; A, V) je dané vztahom z <y <z Ay=z(&axVy =y).

Vo zvize plati:
a<b=cNhNa<cAbcVa<cVbd

a1 <bi,as <by=ai; Nag <by Aba,a1 Vas <by Vb

a<ca<db<cb<d=aVb<cAd
(anb)V(anc)<an(bVc)
aV((bAe)<(aVD)A(aVe)
a<c=aV(bArc)<(aVb)Ac

(anb)V (bAc)V(cAha)<(aVD)A(DVe)A
a; <b; = tlay,...,an) <t(by,...,b,) pre kazdy termu typu {A, V}
Ak t je term, tak t¢ je term, ktory vznikne z ¢ zdAmenou V a A.

(cVa)

Tvrdenie 1 (Princip duality). Ak I =t; = t5 je identita platiaca vo zvize, tak aj I? =
t4 = td (tzv. dudina identita) je identita platiaca vo zvize.

Ak I = I%, tak I sa nazyva samodudlina.

18.3 Distributivne a modularne zvizy

Lema 3. Nasledujiice identity su vo zvize ekvivalentné.

xA(yVz)=
xV(yAz)=

(x Ay)V
(V)

~—
—~

xAz)

(xVz)

>

(L5)
(L57)

Definicia 11. Zviiz, ktory spliia niektort z identit (L5), (L5’) sa nazyva distributivny.
Zviiz sa nazyva moduldrny, ak spliia podmienku

r<z=zVyAz)=(xVy Az

Oba tieto pojmy st samodualne. Kazdy distributivny zvéz je modularny.
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Veta 6. Zviz je moduldrny prdve vtedy, ked neobsahuje podzviz izomorfny s Nj.
Zviz je distributivny prdve vtedy, ked meobsahuje podzviz izomorfny s Ms alebo Ns.

Veta 7. Zviz je distributivny prdve vtedy, ked
@AY VyAz)V(zAz)=(@xVYy) AlyVz)A(zVaz).

Veta 8. Zviz je moduldrny prdve vtedy, keda N\b=aNc,aVb=aVe, b<c=b=c.
Zviz je distributivny prdve vtedy, keda Ab=aAc,aVb=aVec=b=c.

Veta 9 (Dedekindov princip transponovania). Ak a, b si prvky moduldrneho zvizu,
potom @ :p—bVp a:qr— alq st navzdjom inverzné izomorfizmy [a Ab,a] a [b,a V b].

7
N

Operacie uzaveru

Definicia 12. Operdciou uzdveru v triede A sa nazyva také zobrazenie ~: P(A4) — P(A4),
Ze pre kazdé X,Y C A plati

(i) X c X~
i) XCY=X CY~
(iil) X~ =X~

Trieda X C A sa nazyva uzavretd , ak X~ = X.
Nech A je trieda. Triedu U C P(A), ktord mé vlastnosti

(i) AeU
(ii) Ak X; € U prekazdé i € I, tak (((X;:9€ )€ U.

nazyvame uzdverovym systémom v A.
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Veta 10. Existuje jednojednoznacénd korespondencia medzi operdatormi uzdveru v triede A a
uzdverovymi systémami v A.

Uzdverovy systém v mnoZine, usporiadany mnoZinovou inkluziou, je uplny zviz. V tomto
zvdze su prieseky mnoZinové prieniky, spojenie systému mnozin je uzdver ich mnoZinového
zjednotenia.

Ak A je algebra, tak Con A je uzéverovy systém v mnozine A x A. Je to teda uplny zviz.
Ak L je zviz, tak zviz Con L je distributivny.

18.4 Boolovské algebry

Definicia 13. Nech L je zviz s najmensim prvkom 0 a najvi¢sim prvkom I. Prvok b € L je
komplement prvku a € A, ak aAb=0,aVb=1.

Zviz s najmensim a najvacsim prvkom nazveme komplementdrnym, ak kazdy jeho prvok
ma komplement.

Definicia 14. Komplementarny distributivny zviiz sa nazyva boolovsky zviz. Ak (L; A, V) je
boolovsky zviiz, algebra (L; A, V,”,0,I) sa nazyva boolovskd algebra.

Podalgebry algebier P(M), kde M je nejakd mnozina sa nazyvaji mnozinové boolovské
algebry.

Veta 11. Atomdrna boolovskd algebra je izomorfnd s mnoZinovou boolovskou algebrou. Bo-
olovskd algebra je izomorfnd s mnoZinovou algebrou P(M) prdve vtedy, ked je atomdrna a
uplnd.

Boolovskl algebru mozeme teda chépat ako algebru s operdciami V, A, ’, 0, 1. Podalgebra
boolovskej algebry je podmnozina, ktoréd je uzavretd na tieto operacie.

18.5 Variety

Definicia 15. Triedu V algebier rovnakého typu nazveme warietou, ak existuje mnozina [
identit taka, ze A je prvkom triedy V prave vtedy, ked spliia kazdu identitu z I.

Veta 12 (Birkhoff). Trieda algebier rovnakého typu je varietou prdve vtedy, ked je uzavretd
na homomorfizmy, podalgebry a priame suciny.

Kazdy rozmysla, samozrejme.
Tomanova

Téato bibliografia mé sluzit nie len ako zoznam literatiry pouzitej pri priprave otazok, ale
aj ako zoznam literattry, ktord sa da4 u nas zohnat alebo stiahnuf. (Samozrejme, ¢asom uz
niektoré linky asi nebudi platit, ale néjst tie veci na webe urcite nebude problém.)
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Okrem Legéna ostatni napisali otdzky na papieriky a ¢lovek si vytiahol jeden.

Salat skusal veci z tedrie ¢isel. (Cize tiplne kazdy dostal jednu otézku z tedrie ¢isel. Skisal aj
veci, ktoré neboli napisané v sylaboch na Stétnice!!!)

1. Divergencia > 1, > %.

Ak d | m.n, musi platit, ze d | m alebo d | m.

2. Vztah medzi (a,b) a [a,b].

MozZe mat rieSenie rovnica x™ + y™ = z"; x,y, z st prvodcisla, n > 2.

(Ako dopliiujtce otazky: prvoéisla — pocet, ohranicenia, prvoéiselna veta.)
3. Dokonalé ¢isla 1. druhu.

Ak 2™ — 1 aj 2™ 4 1 su prvodisla, ¢o z toho vyplyva pre n.

4. Cantorove rozvoje.

Vlastnosti funkcii o(n) a 7(n) pre n — oo.

5. Pocet prvodisel, dolny odhad (), sucet delitelov 100.

Zlatos skusal vsetko, ¢o neskusali ostatni.
1. Rovinné grafy, Eulerova formula.
Konec¢ne generované moduly nad OHI.

2. Oreho veta.

Reprezentacia Boolovskych algebier.

3. Linedrne a Hammingove kody.
Godelova veta o tplnosti.

4. Sylowove vety.

Zachovavanie vlastnosti pri teoreticko-modelovych konstrukciach.
5. Ramseyho veta.

Axiéma vyberu a ekvivalentné formulacie.

Cinc¢ura skuisal vSeobecnti topoldgiu.

1. Metrizovatelné priestory a ich vlastnosti. Vety o metrizacii topologickych priestorov.

2. Normalne priestory — vlastnosti, zachovavanie na topologické konstrukcie. Urysohnova
lema.

3. Uplne reguldrne priestory. Veta o reprezentécii.

4. Regularne a tplne regularne priestory. Zachovanie pri topologickych konstrukciach. Savis
s normalnymi priestormi.

5. Suvislé a linearne stvislé priestory a ich savis, vlastnosti, ...

Legén skusal algebraicka a diferencialnu topoldgiu.

1. Singularne homologické grupy topologickych priestorov. (Dopliiujiica otézka: Ci pomocou
homologickych grap vieme dokézat, ze R™ a R™ st nehomeomorfné ak m # n.)

2. Vnéranie variet do R™.

3. Fundamentalna grupa.

4. Diferencovatelné variety a diferencovatelné zobrazenia.

5. Homotopia, retrakcie.
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