
Verzia: 20. februára 2004
Tento text nie je zamýšľaný ako jediný materiál, ktorý by sám stačil na prípravu na

štátnice. Skôr by mal pomôcť pri opakovaní otázok.
Keď je nejaká časť zadania otázky uvedená v zátvorkách, znamená to, že hoci sa pôvodne

v otázkach vyskytla, no v poslednej verzii štátnicových otázok už nebola. Do hranatých
zátvoriek som naopak dával tie podotázky, ktoré pribudli oproti pôvodnej verzii. V prípade,
že niektorú vynechanú časť som už mal napísanú v čase aktualizácie otázok (nové znenie
otázok sme dostali na obhajobách), nechal som ju v texte, hoci sa ju netreba učiť. V novej
verzii otázok je vynechaná celá 8. a 10. otázka a tiež veľká časť 9.otázky.
Jedinú výnimku predstavuje časť 14., 15. a 18. (a . . .) otázky, ktorá bola v zadaní uvedená

v zátvorkách. Teda niektoré zátvorky znamenajú skutočné zátvorky.
Určite je tu ešte stále veľa chýb, takže ak sa niekto naučí z týchto otázok tvrdenia, ktoré

v skutočnosti neplatia, vopred sa mu ospravedlňujem.
Chcel by som poďakovať Marekovi Hyčkovi a Ondrovi Vacekovi, ktorý opravením mnohých

chýb prispeli k výslednej podobe týchto otázok (či skôr odpovedí?).
Poznámky sa momentálne nachádzajú na thales.doa.fmph.uniba.sk/sleziak/texty.

Sú tam uverejnené aj zdrojáky - takže v prípade, že sa sylaby zmenia máte možnosť si ich
upraviť, nejaké časti vynechať alebo naopak pridať. Ak by ste našli v texte chyby, budem
rád, keď mi o nich dáte vedieť na sleziak@fmph.uniba.sk a pri najbližšej aktualizácii tam
už bude opravená verzia.

1 Teória čísel

Základná veta aritmetiky, vlastnosti prvočísel, základné vlastnosti kongruencií. Diofantické
rovnice, pytagorovské trojuholníky.
Pri písaní tejto otázky som používal [ATA2] a [KOL].

1.1 Deliteľnosť

Definícia 1. a | b, (a 6= 0) ak existuje q také, že b = aq.

Definícia 2. Prirodzené číslo p > 1 sa nazýva prvočíslom, ak jedinými jeho kladnými deli-
teľmi sú čísla 1 a p. Prirodzené číslo n > 1 sa nazýva zložené číslo, ak n nie je prvočíslo.

Veta 1. Každé číslo n > 1 je súčin prvočísel.

Lema 1. Nech b je celé a a prirodzené číslo. Potom existuje jediná taká dvojica čísel q, r,
že b = a.q + r, 0 ≤ r < a.

Definícia 3. Číslo d sa nazýva spoločným deliteľom čísel a, b, ak d | a, d | b. Najväčší prvok
množiny spoločných deliteľov čísel a a b je najväčší spoločný deliteľ a, b, značíme (a, b). Ak
(a, b) = 1, tak čísla a, b nazývame nesúdeliteľnými.

Lema 2. Ak sa čísla a, b nerovnajú súčasne nule, tak existujú také čísla x0, y0, že (a, b) =
ax0 + by0.

O nasledujúcej leme prof. Šalát hovoril, že sa tiež zvykne volať základná veta aritmetiky.

Lema 3. Ak a | b.c, (a, b) = 1, tak a | c.

Lema 4. Nech p je prvočíslo a p | a.b. Potom buď p | a, alebo p | b.

Veta 2. Každé číslo n > 1 má práve jeden kanonický rozklad.
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Definícia 4. Najmenší spoločný násobok [a, b]

Veta 3. Pre ľubovoľné dve prirodzené čísla a, b platí [a, b] = a.b
(a,b) .

1.2 Vlastnosti prvočísel

Veta 4 (Euklides). Všetkých prvočísel je nekonečne mnoho.

Definícia 5. π(x) je počet prvočísel p, ktoré spĺňajú p ≤ x (nepresahujú x). Funkciu π
nazývame prvočíselná funkcia.

Tvrdenie 1. π(x) ≥ log x
2 log 2

Veta 5 (Prvočíselná veta).

lim
x→∞

π(x)
(

x
lnx

) = 1

Dôkaz prvočíselnej vety je veľmi ťažký, táto veta patrí medzi najvýznamnejšie výsledky
teórie čísel.

Veta 6. Nekonečný rad
∞
∑

k=1

1
pk

prevrátených hodnôt všetkých prvočísel diverguje.

Definícia 6. Nech A ⊆ N, x ∈ N. Označme znakom A(x) počet všetkých tých a ∈ A, pre
ktoré a ≤ x. Ak existuje lim

x→∞

A(x)
x , nazývame toto číslo asymptotickou hustotou množiny A

a označujeme ho h(A).

Veta 7. h(P ) = 0

Dôsledok 1. h(N \ P ) = 1

1.3 Kongruencie

Definícia 7. a ≡ b (mod m) ⇔ m | (a − b)
Hovoríme, že a a b sú kongruentné a zápis a ≡ b (mod m) nazývame kongruenciou.

Relácia ≡ je očividne reláciou ekvivalencie.

Veta 8.

(i) Ak a ≡ b (mod m) a c ≡ d (mod m), tak

(a) a+ c ≡ b+ d (mod m),

(b) a − c ≡ b − d (mod m),

(c) ac ≡ bc (mod m).

(ii) Ak ac ≡ bc (mod m) a (c,m) = 1, tak a ≡ b (mod m).

Veta 9. Množina všetkých zvyškových tried pri definovanom sčítaní tvorí Abelovu grupu.
Jednotkou operácie sčítania je trieda 0 (mod m).

Lema 5. Nech (a,m) = 1, c je ľubovoľné číslo. Potom existuje jediná zvyšková trieda
(mod m), že pre každý jej prvok x platí ax ≡ c (mod m).
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Definícia 8. Nech f(x) = a0x
n + a1x

n−1 + . . .+ an je polynóm n-tého rádu s celočíselnými
koeficientami. Výrokovú funkciu f(x) ≡ 0 (mod m) nazývame kongruenciou n-tého stupňa s
celočíselnými koeficientmi.

Lema 6. Nech x1 ≡ x0 (mod m). Potom platí f(x1) ≡ f(x0) (mod m).

Definícia 9. Zvyškovú triedu (mod m) nazveme redukovanou zvyškovou triedou (mod m),
ak každý jej prvok je nesúdeliteľný s číslom m.

Veta 10. Množina všetkých redukovaných zvyškových tried (mod m) pri zavedenom násobení
tvorí grupu. Jednotka operácie je trieda 1.

Definícia 10. Pre m ≥ 1 nech ϕ(m) označuje počet čísel postupnosti 1, 2, . . . ,m − 1,m
nesúdeliteľných s m. Funkcia ϕ sa nazýva Eulerova funkcia.

Tvrdenie 2. ϕ(1) = 1, ϕ(p) = p − 1
Lema 7. Nech (a,m) = 1, k = ϕ(m). Ak {r1, r2, . . . , rk} je redukovaný zvyškový systém
(mod m), tak aj {ar1, ar2, . . . , ark} je redukovaný zvyškový systém (mod m). (redukovaný
zvyškový systém = z každej redukovanej zvyškovej triedy vezmeme jedného reprezentanta)

Veta 11 (Eulerova). Nech (a,m) = 1. Potom platí aϕ(m) ≡ 1 (mod m)

Pre n = pα1
1 . . . pαk

k platí

ϕ(n) = n

(

1− 1
p1

)

. . .

(

1− 1
pk

)

1.4 Lineárne diofantické rovnice

Všeobecný tvar lineárnej diofantickej rovnice je

a1x1 + a2x2 + . . .+ akxk = c (1.1)

kde aj a c sú dané celé čísla, neznáme sú xi.
Označme d = (a1, a2, . . . , ak).

Veta 12. Rovnica (1.1) má riešenie v celých číslach vtedy a len vtedy, keď d | c.

Uvažujme rovnicu s dvoma neznámymi:

ax+ by = c (1.2)

Veta 13. Ak d | c, tak existujú také x0, y0 ∈ Z, že ax0 + by0 = c a všetky riešenia rovnice
(1.2) v celých číslach sú dané parametrickými rovnosťami

x = x0 +
b

d
t, y = y0 −

a

d
t (t ∈ Z).

1.5 Pytagorovské trojuholníky

Pytagorovské trojuholníky sú pravouhlé trojuholníky s celočíselnými dĺžkami strán.
PT (x, y, z) ⇔ x2 + y2 = z2.
Všetky pytagorovské trojuholníky možno rozdeliť do tried na základe podobnosti. Pri-

mitívny pytagorovský trojuholník je taký, ktorý má spomedzi podobných pytagorovských
trojuholníkov najmenší obsah. Pytagorovský trojuholník x, y, z je primitívny ⇔ (x, y) = 1
⇔ (x, z) = 1 ⇔ (y, z) = 1.
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Lema 8. Ak x, y, z je primitívny pytagorovský trojuholník, tak jedno z čísel x, y je párne a
druhé nepárne.

Veta 14. Ak PT (x, y, z) je primitívny pytagorovský trojuholník, tak existujú m,n ∈ N, m >
n, (m,n) = 1 opačnej parity také, že x = m2 − n2, y = 2mn, z = m2 + n2. Platí to aj
obrátene.

Veta 15. Ak PT (x, y, z) je primitívny pytagorovský trojuholník existujú také k, l ∈ N, k > l,
(k, l) = 1, obe nepárne, že x = kl, y = k2−l2

2 , z = k2+l2

2 . Platí to aj obrátene.

Veta 16. Existuje nekonečne veľa primitívnych pytagorovských trojuholníkov, ktorých pre-
pona je kvadrátom prirodzeného čísla.

Veta 17. Existuje nekonečne veľa primitívnych pytagorovských trojuholníkov, v ktorých jedna
odvesna je kvadrátom prirodzeného čísla.

Veta 18 (Fermat). Neexistuje pytagorovský trojuholník, ktorého dĺžky dvoch strán by boli
kvadráty.

Veta 19. xn + yn = zn−1 má nekonečne veľa riešení.

1.6 Multiplikatívne funkcie

Definícia 11. Funkcia f : N → C sa nazýva aritmetická funkcia. Aritmetická funkcia f sa
nazýva multiplikatívna, ak sa nerovná identicky nule, a ak z podmienky a, b ∈ N, (a, b) = 1
vyplýva

f(a.b) = f(a).f(b)

Aritmetická funkcia f sa nazýva úplne multiplikatívna, ak táto rovnosť platí pre ľubovoľné
a, b ∈ N.

Tvrdenie 3. Ak f je multiplikatívna funkcia, tak f(1) = 1.
Ak f a g sú multiplikatívne funkcie, tak aj f.g je multiplikatívna funkcia.

Veta 20. Nech a = pα1
1 . . . pαk

k je kanonický rozklad čísla a ∈ N a nech f je multiplikatívna
funkcia. Potom platí

∑

d|a

f(d) = (1 + f(p1) + . . .+ f(pα1
1 )) . . . (1 + f(pk) + . . .+ f(pαk

k ))

τ(n)=počet deliteľov čísla n
σ(n)=súčet deliteľov čísla n
Funkcie τ , σ a ϕ sú multiplikatívne.
Funkcia ns je úplne multiplikatívna funkcia.

σ(a) =
pα1+1
1

p1 − 1
. . .

pαk+1
k

pk − 1
τ(a) = (α1 + 1) . . . (αk + 1)

Tvrdenie 4. Pre každé n > 1 platí σ(n) ≥ n+ 1.

Dôsledok 2. lim
n→∞

σ(n) = +∞
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Tvrdenie 5. lim inf
n→∞

τ(n) = 2 a lim sup
n→∞

τ(n) = +∞

Každé prirodzené číslo k ≥ 2 je hromadnou hodnotou postupnosti (τ(n))∞n=1. (τ(pk) =
k + 1)

Tvrdenie 6. Pre každé η > 0 je lim
n→∞

τ(n)
nη = 0.

Tvrdenie 7.
∑

d|n

ϕ(d) = n

Tvrdenie 8. lim
n→∞

ϕ(n) = +∞

Definícia 12. Möbiusova funkcia µ(1) = 1, µ(a) = 0, ak existuje prvočíslo p také, že p2 | a
a µ(a) = (−1)k, ak a = p1 . . . pk (prvočísla pi sú navzájom rôzne).

Veta 21. Nech f je multiplikatívna funkcia a nech a = pα1
1 . . . pαk

k je kanonický rozklad čísla
a ∈ N. Potom platí

∑

d|a

µ(d)f(d) = (1− f(p1)) . . . (1− f(pk))

Pri voľbe f(n) = 1, resp. f(n) = 1
n dostaneme z predchádzajúcej vety:

Dôsledok 3.
∑

d|1

µ(d) = 1,
∑

d|a

µ(d) = 0 (a > 1)

∑

d|1

µ(d)
d
= 1,

∑

d|a

µ(d)
d
=

k
∏

j=1

(

1− 1
pj

)

ϕ(a) = a
∑

d|a

µ(d)
d

Definícia 13. Číslo n ∈ N sa nazýva dokonalé, ak σ(n) = 2n. (Ekvivalentne: n sa rovná
súčtu svojich vlastných deliteľov.)

Veta 22. Párne číslo n ∈ N je dokonalé práve vtedy, keď má tvar a = 2p−1(2p − 1), kde p je
prvočíslo a Mp = 2p − 1 je tiež prvočíslo.

Nie je známe, či existuje dokonalé nepárne číslo, ani či je dokonalých čísel nekonečne veľa.

1.7 Cantorove rozvoje reálnych čísel

Veta 23. Nech (qk)∞k=1 je postupnosť prirodzených čísel väčších ako 1. Potom každé reálne
číslo x možno jednoznačne vyjadriť v tvare

x = c0 +
∞
∑

k=1

ck

q1.q2 . . . qk
, (1.3)

kde ck (k = 0, 1, . . .) sú celé čísla, 0 ≤ ck < qk (k = 1, 2, . . .) a pre nekonečne mnoho k platí
ck < qk − 1.
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Tento rozvoj voláme Cantorovým rozvojom čísla x. Špeciálnymi prípadmi sú g-adické a
faktoriálové rozvoje.

Veta 24. Nech (qk)∞k=1 má rovnaký význam ako v predchádzajúcej vete. Nech ku každému
prvočíslu p existuje nekonečne veľa takých k, že p | qk. Potom číslo x vyjadrené Cantorovým
rozvojom (1.3) je iracionálne vtedy a len vtedy, keď pre nekonečne mnoho k platí ck 6= 0.

To znamená, že ak základná postupnosť (qk)∞k=1 spĺňa predpoklady tejto vety, tak x je
racionálne práve vtedy, keď Cantorov rozvoj je konečný.

Veta 25. Čísla x1 =
∞
∑

n=1

τ(n)
n! a x2 =

∞
∑

n=1

ϕ(n)
n! sú iracionálne.

Veta 26. Číslo x vyjadrené g-adickým rozvojom je racionálne vtedy a len vtedy, keď je tento
rozvoj periodický.

Veta 27. Nech n ∈ N, n ≥ 2. Nech a je prirodzené číslo a a 6= kn pre žiadne prirodzené
číslo k. Potom n

√
a je iracionálne číslo.

Veta 28. Nech r je kladné racionálne číslo a r 6= 10n pre žiadne n ∈ Z. Potom číslo log10 r
je iracionálne.

Teória čísel je užitočná na to, aby sa pomocou nej dalo promovať.

Landau

2 Moduly

Pojem modulu a základné vlastnosti. Voľné moduly, základná veta o tvare konečne gene-
rovaného modulu. Kanonické tvary matíc, podobné matice. Charakteristický a minimálny
polynóm matice, elementárne delitele a invariantné faktory matíc.

2.1 Okruhy, ideály, okruhy s jednoznačným rozkladom

Nejaké úvodné veci, z [ATA].

Faktorové okruhy a ideály

Definícia 1. Neprázdnu podmnožinu I okruhu A nazývame ideálom okruhu A, ak

(i) x, y ∈ I ⇒ x − y ∈ I,

(ii) x ∈ I, a ∈ A ⇒ ax ∈ I, xa ∈ I.

I je vlastný ideál, ak I 6= A.

Veta 1. Ak I je ideál okruhu A, tak množina A/I všetkých tried aditívnej grupy A podľa
podgrupy I s operáciami

(a+ I) + (b+ I) = (a+ b) + I

(a+ I)(b+ I) = ab+ I

tvorí okruh. Tento okruh nazývame faktorový okruh A podľa I. Ak A je komutatívny, resp.
obsahuje jednotku, tak aj A/I je komutatívny, resp. obsahuje jednotku.
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Definícia 2. Ideál I okruhu A nazývame prvoideál, ak

∀a, b ∈ A : ab ∈ I ⇒ a ∈ I ∨ b ∈ I.

Ideál I okruhu A nazývame maximálny, ak I 6= A a ak pre každý ideál J I ⊂ J ⊂ A
implikuje J = I alebo J = A.

Každý maximálny ideál je prvoideál.

Veta 2. Faktorový okruh A/I komutatívneho okruhu A s jednotkou je poľom práve vtedy,
keď I je maximálny ideál.

Faktorový okruh A/I komutatívneho okruhu A s jednotkou je oborom integrity práve vtedy,
keď I je vlastný prvoideál.

Definícia 3. Hovoríme, že prvok x ∈ A generuje ideál I komutatívneho okruhu A s jednot-
kou, ak I = xA = {xa; a ∈ A}.
Ideál I okruhu A nazývame hlavným ideálom, ak je generovaný niektorým prvkom x ∈ A.
Komutatívny okruh A nazývame okruh hlavných ideálov, ak každý ideál okruhu A je

hlavný.

Veta 3. V okruhu hlavných ideálov je každý prvoideál maximálny.

Okruhy s jednoznačným rozkladom

Obor integrity (OI) = komutatívny okruh s jednotkou bez deliteľov nuly.
Euklidovský okruh = taký obor integrity A, v ktorom existuje zobrazenie δ : A \ {0} → Z

také, že platí:
a) δ(a) ≥ 0 pre každé a ∈ A.
b) Pre každé a, b ∈ A, b 6= 0 existujú prvky q, r ∈ A tak, že a = bq + r, pričom alebo r = 0,
alebo r 6= 0 a δ(r) < δ(b).

Okruh s jednoznačným rozkladom (Gaussov okruh), je obor integrity, v ktorom sa každý
prvok dá zapísať v tvare a = up1p2 . . . pn, kde a ∈ U(A) (delitele jednotky v OI A) a pi sú
ireducibilné prvky v A, pričom tento zápis je jednoznačný až na poradie a asociovanosť.

Euklidovské okruhy

V euklidovskom okruhu existuje najväčší spoločný deliteľ dvoch prvkov.
Euklidovský okruh je okruhom hlavných ideálov.

Okruhy hlavných ideálov

V okruhu hlavných ideálov platí
a) a | b ⇔ (a) ⊃ (b)
b) a ∼ b ⇔ (a) = (b)
Ak a, b ∈ A, A je OHI, tak
a) (a) + (b) = {x ∈ A;x = au+ bx, u, v ∈ A} je ideálom v okruhu A,
b) existuje d ∈ A s vlastnosťou (d) = (a) + (b) a platí d = (a, b).

Veta 4. Nech A je OHI. Potom A je okruhom s jednoznačným rozkladom práve vtedy, keď
A je obor integrity.

Vo zvyšku otázky budeme pod OHI rozumieť OI, ktorý je OHI. (Takto to používal Gu-
ričan. V [ATA] je to definované tak, ako som to dal sem.)
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Gaussove okruhy

Nech A je okruh s jednoznačným rozkladom. Nech a = up1p2 . . . pn, b = vq1q2 . . . qr sú
dva kanonické rozklady prvkov a, b ∈ A. Potom a | b práve vtedy, keď existuje injektívne
zobrazenie ϕ : {1 . . . k} → {1 . . . k} tak, že pi ∼ qiϕ pre všetky i = 1, . . . , k.

2.2 Smithov kanonický tvar

Matice nad euklidovským okruhom nazývame riadkovo ekvivalentné/ stĺpcovo ekviva-
lentné/ ekvivalentné, ak sa jedna dá upraviť na druhú konečnou postupnosťou riadkových/
stĺpcových/ ľubovoľných úprav.

Veta 5. Nech A je matica typu m× n nad euklidovským okruhom R. Potom existuje diago-
nálna matica D = diag(d1, d2, . . .) ekvivalentná s A a taká, že platí:

di | dj pre prípustné i, j také, že i ≤ j.

Matica D je jednoznačne určená až na asociovanosť.

Determinanty podmatíc maticeA typu r×r nazývameminory A rádu r. Najväčší spoločný
deliteľ minorov A rádu r označíme ηr(A). Potom platí d1 . . . dr

.
= ηr(A). Prvky na diagonále

Smithovho kanonického tvaru matice A nazývame invariantnými faktormi matice A.
Veta o Smithovom kanonickom tvare platí aj ak R je obor integrity a okruh hlavných

ideálov. (Vo zvyšku otázky vždy budeme pod okruhom hlavných ideálov rozumieť obor in-
tegrity.) Potrebujeme však všeobecnejšiu definíciu ekvivalencie matíc. Matice A a B typu
m × n nazveme ekvivalentnými, ak existujú štvorcové matice P a Q, ktoré sú delitele jed-
notky v príslušných okruhoch matíc a platí A = PBQ.

2.3 Pojem modulu a základné vlastnosti

Definícia 4. Nech R je okruh a (M,+) je komutatívna grupa. Potom dvojicu (R,M) spolu
s „binárnym párovanímÿ ⊙ : R × M → M nazývame ľavostranným modulom nad okruhom
R, ak

(i) pre a ∈ R a x, y ∈ M platí a ⊙ (x+ y) = (a ⊙ x) + (a ⊙ y)

(ii) pre a, b ∈ R a x ∈ M platí (a+ b)⊙ x = (a ⊙ x) + (b ⊙ x)

(iii) pre a ∈ R a x, y ∈ M platí a ⊙ (b ⊙ x) = (ab)⊙ x

⊙ sa zvyčajne nazýva skalárny súčin (skalárne násobenie).
Ak navyše R je komutatívny okruh s jednotkou a platí

pre x ∈ M 1⊙ x = x,

tak ide o unitárny modul. My sa zaoberáme len unitárnymi modulmi.

Príkladmi modulov sú vektorové priestory, každá grupa je Z-modul, ak I je ideál okruhu
R, tak (R, I) je R-modul. Ak V (F ) je konečnorozmerný vektorový priestor nad poľom F a A
je jeho lineárna transformácia, tak definujeme unitárny modul (F [γ], V (F ), A), kde f(γ)⊙x =
xf(A).
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Definícia 5. Nech (R,M) je modul. Nech K je podgrupa grupy (M,+). Potom (R,K)
nazývame podmodulom modulu (R,M), ak pre a ∈ R a x ∈ K je vždy ax ∈ K.
Nech (R,M), (R,K) sú dva moduly nad R. Nech ϕ : M → K je grupový homomorfizmus.

Potom hovoríme, že ϕ je modulový homomorfizmus, ak naviac pre každé a ∈ R a x ∈ M platí
(ax)ϕ = a(xϕ).

Definícia 6. Nech ∅ 6= X ⊆ M , kde (R,M) je modul. Nech [X] značí množinový prienik
všetkých podmodulov modulu (R,M) obsahujúcich množinuX. [X] je tiež podmodul modulu
(R,M). Nazývame ho podmodul generovaný množinou X. Prvky z množiny X sa nazývajú
generátormi (pod)modulu [X]. Ak pre nejakú konečnú podmnožinu X ⊆ M je [X] = M ,
hovoríme, že (R,M) je konečne generovaný modul.

Tvrdenie 1. Nech (R,M) je unitárny modul. Potom (R,K) je podmodul modulu (R,M)
práve vtedy, keď a, b ∈ R a x, y ∈ K implikuje ax+ by ∈ K.

Tvrdenie 2. Nech (R,K) je modul nad komutatívnym okruhom R. Potom

[X] ={z ∈ K; z = n1x1 + . . .+ nrxr + a1y1 + . . .+ asys ∧ r, s ∈ N ∧
∧ n1, . . . , nr ∈ Z ∧ a1, . . . , as ∈ R ∧ x1, . . . , xr, y1, . . . , ys ∈ X}.

Ak (R,K) je unitárny modul, tak

[X] = {z ∈ K; z = a1y1 + . . .+ asys ∧ s ∈ N ∧ a1, . . . , as ∈ R ∧ y1, . . . , ys ∈ X}.

Relácia ekvivalencie Θ na M sa nazýva kongruenciou modulu (R,M), ak Θ je kongruen-
ciou na grupeM a x ∼= y(Θ) implikuje ax ∼= ay(Θ). Podobne ako pri grupách sa dá definovať
faktorový modul podľa danej kongruencie.

2.4 Voľné moduly

Definícia 7. Unitárny modul (R,M) nazývame voľným modulom nad množinou voľných
generátorov S, ak

(i) [S] = (R,M) a

(ii) ak a1x1 + . . . anxn = 0 pre ai ∈ R a po dvoch rôzne x1, . . . , xn ∈ S, tak a1 = a2 =
. . . = an = 0.

V takomto prípade budeme pre (R,M) používať tiež označenie FR(S). Množinu voľných
generátorov S tiež nazývame bázou voľného modulu FR(S). FR(n) znamená voľný modul s
n-prvkovou bázou.

Veta 6. Nech (R,M) je unitárny modul. Potom (R,M) je voľný modul práve vtedy, ak

(i) [S] = (R,M),

(ii) každé zobrazenie f : S → K do (ľubovoľného) unitárneho modulu (R,K) sa dá jediným
spôsobom rozšíriť na homomorfizmus ϕ : M → K, t.j. ϕ|S = f .

Definícia 8. Nech {(R,Mi); i ∈ I} je množina modulov. Potom
∏

(Mi : i ∈ I) = {f : I →
⋃

(Mi : i ∈ I); f(i) ∈ Mi, i ∈ I}

je tzv. karteziánsky súčin množín Mi, i ∈ I. Na tejto množine definujeme operácie ⊕ a ⊙ po
zložkách. Dostaneme tak modul - priamy súčin modulov Mi.
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Veta 7. Modul (R,M) je izomorfný s priamym súčinom n modulov nad R práve vtedy, keď
existujú podmoduly Pi modulu (R,M) tak, že platí:

(i) M = [P1 ∪ . . . ∪ Pn] a

(ii) {0} = Pi ∩ [P1 ∪ . . . ∪ Pi−1] pre všetky i = 2, . . . n.

Ak sú splnené uvedené dve podmienky, tak (R,M) ∼= (R,P1 × P2 × . . . × Pn)

Priamy súčin modulov (R,M1 × . . . × Mn) značíme tiež M1 ⊕ . . . ⊕ Mn.

Veta 8. Nech R je okruh, (R,M) je unitárny modul a M = [e1, . . . , en]. Potom M = [e1]⊕
. . .⊕ [en] práve vtedy, keď z rovnice a1e1+ . . .+ anen = 0 vyplýva, že a1e1 = . . . = anen = 0.

Veta 9. Nech R je okruh s 1. Potom unitárny modul (R,R1×. . .×Rn), n ≥ 1 kde R1 = . . . =
Rn = R je voľný modul nad n-prvkovou množinou voľných generátorov S = {e1, . . . , en}, kde
e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1).

Veta 10. Nech R je OHI. Potom každý podmodul voľného modulu FR(n) je voľný modul s
konečnou bázou o m ≤ n prvkoch (t.j. existuje báza, ktorá má najviac n prvkov).

Veta 11. Nech R je obor integrity s 1, nech (R,M) je konečnogenerovaný voľný modul, nech
α1, . . . , αn a β1, . . . , βm sú dve bázy tohoto modulu. Potom m = n.

Definícia 9. Nech (R,Mi), i ∈ I sú unitárne moduly. Potom priamy súčin týchto modulov
K =

∏

(Mi; i ∈ I) je tiež unitárny modul. Podmnožina L = {f ∈ K; f(i) = 0 pre skoro
všetky (t.j. všetky až na konečný počet) i ∈ I} tvorí podmodul modulu (R,K). Modul L
nazývame priamy súčet modulov (R,Mi), i ∈ I a značíme ho

∑

(Mi; i ∈ I).

2.5 Veta o rozklade modulov

Definícia 10. Nech (R,M) je modul, R je okruh hlavných ideálov. Ak a ∈ M , tak generátor
(hlavného) ideálu {r ∈ R; ra = 0} sa nazýva rád prvku a, značíme rad(a).

Veta 12. Nech (R,M) je konečne generovaný unitárny modul nad okruhom hlavných ideálov
R. Potom existuje rozklad na cyklické podmoduly M = [f1] ⊕ [f2] ⊕ . . . ⊕ [fk], kde rad(fi) |
rad(fj) pre 1 ≤ i ≤ j ≤ k. Ďalej ak rad(f1) ∤ 1, tak tento rozklad je jednoznačný, presnejšie
povedané, ak M = [f ′

1] ⊕ [f ′
2] ⊕ . . . ⊕ [f ′

s] a je splnené, že rad(f ′
1) ∤ 1 a tiež rad(f ′

i) | rad(f ′
j)

pre 1 ≤ i ≤ j ≤ k, tak k = s a rad(fi)
.
= rad(f ′

i).

Dôsledok 1. Nech (R,M) je konečne generovaný unitárny modul nad okruhom hlavných
ideálov. Potom M = M1 ⊕ F , kde M1 je podmodul prvkov konečného rádu a F je voľný
modul nad R.

Dimenzia voľného modulu F je určená jednoznačne a nazýva sa Bettiho číslo modulu
(R,M).

Dôsledok 2. Konečne generovaná komutatívna grupa je priamy súčin komutatívnej peri-
odickej a voľnej komutatívnej grupy.

Dôsledok 3. Konečne generovaná komutatívna grupa je priamy súčin cyklických grúp.
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2.6 Jordanov kanonický tvar

Dve matice A, B typu n × n nad poľom F sú podobné, ak existuje regulárna matica P
taká, že B = PAP−1, alebo, ekvivalentne, ak sú matice A, B maticami toho istého lineárneho
zobrazenia daného vektorového priestoru pri dvoch bázach.
Modul prislúchajúci matici A možno podľa vety o rozklade modulov rozložiť na cyklické

podmoduly. O nich platí:

Lema 1. Každý cyklický podmodul Mi je podpriestor vektorového priestoru V (F ), ktorý je
invariantný vzhľadom na lineárne zobrazenie A.

Z toho vyplýva, že matica A je podobná blokovo diagonálnej matici, kde bloky zodpove-
dajú podpriestorom Mi.

Definícia 11. Minimálny polynóm mA,α(γ) transformácie (matice) A v bode α je normovaný
polynóm, ktorý generuje ideál MA,α = {f ∈ F [γ];αf(A) = 0}. (mA,α(γ)

.
= rad(α))

Minimálny polynóm mA,S(γ) transformácie (matice) A na podpriestore S je normovaný
polynóm, ktorý generuje ideál MA,S = {f ∈ F [γ]; (∀α ∈ S)αf(A) = 0} = ⋂

α∈S

MA,α.

Minimálny polynóm mA,Vn
(γ) transformácie (matice) A (na priestore Vn(F )) je normo-

vaný polynóm, ktorý generuje ideál MA,Vn
= {f ∈ F [γ]; (∀α ∈ Vn)αf(A) = 0} = ⋂

α∈Vn

MA,α.

Mi = [gi] má bázu gi, giA, . . . giA
st(di)−1, kde di = rad(gi) =MA,gi

(x) = xm+am−1x
m−1+

. . .+ a1x+ a0. Transformácia A zúžená na podpriestor Mi má pri tejto báze maticu














0 1 0 . . . 0
0 0 1 . . . 0

. . .
0 0 0 . . . 1

−a0 −a1 . . . −am−1















Maticu, ktorá pozostáva z takýchto blokov na diagonále je Jordanov kanonický tvar matice
A prvého druhu.
Ak (F [γ], V (F ), A) = [g1]⊕ . . .⊕ [gk], tak polynómy rad(g1), . . . , rad(gk) (=mA,g1(γ), . . . ,

mA,gk
(γ)) nazývame invariantné faktory matice A. Sú to diagonálne prvky Smithovho kano-

nického tvaru matice γI − A.
Nech M = (F [γ], V (F ), A) = [g] a nech rad(g) = m1(γ)m2(γ) . . . mn(γ), pričom mi sú

po dvoch nesúdeliteľné. Položme m̂i(γ) =
rad(g)
mi(γ)

. Platí

Veta 13. Existujú e1 . . . el také, že M = [g] = [e1]⊕ . . . ⊕ [el] a rad(ei) = mi.

(Prvky ei sa nájdu ako ei = m̂i(γ)g)
Táto veta umožňuje rozložiť jednotlivé bloky Jordanovej kanonickej matice prvého druhu

nasledovným spôsobom: Nech blok Ci je pridružený ku polynómu (invariantnému faktoru

matice A) di(γ) = pki1
i1 . . . p

kisi

isi
, kde jednotlivé polynómy sú ireducibilné normované a po

dvoch nesúdeliteľné. Potom na základe predošlej vety vieme ešte blok Ci rozložiť na blo-
kovo diagonálnu maticu diag(Bi1, . . . , Bisi

), kde každé Bij je matica pridružená k polynómu

P
kij

ij (γ). Tieto polynómy sa nazývajú elementárne delitele matice A.
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Ak uvažujeme o module M = (F [γ], [g], A), pričom rad(g) = pk(γ), kde p(γ) je ireduci-
bilný polynóm. Potom vektory

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g1 = g g2 = gA . . . gp = gAq−1

gq+1 = gp(A) gq+2 = gp(A)A . . . gq+p = gp(A)Aq−1

g2q+1 = gp2(A) g2q+2 = gp2(A)A . . . g2q+p = gp2(A)Aq−1

...
...

...
g(k−1)q+1 = gpk−1(A) g(k−1)q+2 = gpk−1(A)A . . . g(k−1)q+q = gpk−1(A)Aq−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

tvoria bázu. Vzhľadom na túto bázu dostaneme vyjadrenie A v tvare

B =













P N 0 . . . 0 0
0 P N . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . P N
0 0 0 . . . 0 P













kde

P =













0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1

−c0 −c1 −c2 . . . −cq−2 −cq−1













a

N =













0 0 . . . 0
0 0 . . . 0
. . . . . . . . . . . . .
0 0 . . . 0
1 0 . . . 0













Dostali sme Jordanov kanonický tvar matice A druhého druhu.
Nad algebraicky uzavretým poľom F sú ireducibilné normované polynómy v tvare x− a.

V tom prípade dostaneme

J(x−a)k =













a 1 0 . . . 0 0
0 a 1 . . . 0 0
. . . . . . . . . . . . . . . . . . . .
0 0 0 . . . a 1
0 0 0 . . . 0 a













Veta 14. Nech A, B sú matice n×n nad poľom F . Nasledujúce podmienky sú ekvivalentné:

(i) A a B sú podobné,

(ii) γI − A a γI − B sú ekvivalentné nad F [γ] (t.j. majú „rovnakýÿ Smithov kanonický
tvar),

(iii) A a B majú rovnaké invariantné faktory,

(iv) A a B majú rovnaké systémy elementárnych deliteľov.

Veta 15. Nech A je matica nad poľom F . Nasledujúce podmienky sú ekvivalentné:

(i) A je podobná diagonálnej matici,

12



(ii) elementárne delitele matice A sú polynómy prvého stupňa,

(iii) posledný invariantný faktor má samé jednoduché korene a tie ležia všetky v poli F .

Definícia 12. Charakteristický polynóm matice A je polynóm det(xI − A). Minimálny po-
lynóm matice A je nenulový polynóm p najnižšieho možného stupňa taký, že p(A) = 0.

Veta 16. Charakteristický polynóm matice A je súčin jej invariantných faktorov (a teda aj
všetkých elementárnych deliteľov).

Veta 17. Minimálny polynóm matice A je jej posledný invariantný faktor.

Dôsledok 4. Matica A je podobná diagonálnej matici práve vtedy, keď jej minimálny poly-
nóm má len jednoduché korene a tie všetky patria do poľa F .

Veta 18 (Cayley-Hamilton). Nech chA(γ) ∈ F [γ] je charakteristický polynóm matice A.
Potom chA(A) = 0.

Neistota duše je zlá vlastnosť, ale istota je smiešna.

Voltaire

3 Grupy

Sylowove vety z teórie konečných grúp. Voľná grupa a jej podgrupy. Voľný súčin grúp. Radi-
kály ideálu, prvoideál a maximálny ideál okruhu. Polopriamy súčin okruhov. (Okruhy zlomkov,
primárny rozklad ideálu.)

3.1 Normálne podgrupy a grupy permutácií

Zdalo sa mi, že aj toto by som mal niekde dať. Ak sa vám bude zdať, že sú to príliš ľahké
veci, ktoré dokonale ovládate, stačí to jednoducho preskočiť.

Grupy permutácií

Cyklickou permutáciou (cyklom) dĺžky k prvkov a1, a2, . . . , ak množiny X nazývame per-
mutáciu γ, takú, že aiγ = ai+1 (i = 1, . . . , k − 1) a akγ = a1. Označujeme γ = (a1a2 . . . ak).
Súčin disjunktných cyklov nezávisí od poradia. Každá permutácia je súčin disjunktných

cyklov. Tento rozklad je jednoznačný až na poradie a cykly dĺžky 1. Rád permutácie je
najmenší spoločný násobok dĺžok cyklov vystupujúcich v rozklade.
Transpozícia = cyklus dĺžky 2. Každá permutácia sa dá zapísať ako súčin transpozícií.

Parita permutácie = parita počtu transpozícií = parita počtu inverzií (i < j, iϕ > jϕ).
Sn = symetrická grupa rádu n = permutácie množiny {1, . . . , n}
An = alternujúca grupa = grupa všetkých párnych permutácií množiny {1, . . . , n}
Grupa An je generovaná cyklami dĺžky 3.
Pre n ≥ 5 jediné normálne podgrupy grupy Sn sú 1, An, Sn. (An je jadro homomorfizmu,
ktorý každej permutácii priraďuje jej paritu, teda je to normálna podgrupa.)
Ak ϕ ∈ Sn, tak ϕ−1(a1 . . . ak)ϕ = (a1ϕa2ϕ . . . akϕ). K ľubovoľným dvom cyklom α, β ∈ Sn

rovnakej dĺžky existuje permutácia ϕ ∈ Sn taká, že β = ϕ−1αϕ. Obe tieto vlastnosti sa
prenesú aj na súčin disjunktných cyklov. Teda ϕ1, ϕ2 sú konjugované, ak sú rovnaké dĺžky
cyklov v ich rozkladoch.
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Normálne podgrupy

Definícia 1. Podgrupa H grupy G sa nazýva normálna (alebo invariantná) v G, ak pre
každý prvok a ∈ G platí implikácia: h ∈ H ⇒ a−1ha ∈ H.

Ak H je normálna, tak definujeme faktorovú grupu G/H. Existuje jednojednoznačný
vzťah: normálne podgrupy ↔ kongruencie ↔ jadrá homomorfizmov.

gNg−1 = N ⇔ gN = Ng.
Ak H ⊆ K sú normálne podgrupy grupy G, tak H je normálna podgrupa grupy K a

K/H je normálna podgrupa grupy G/H.
Vnútorné automorfizmy: fa : x 7→ a−1xa.

a 7→ fa je homomorfizmus, jeho jadro je Z(G).

Tvrdenie 1. Ak H, N sú podgrupy G a N je normálna, tak HN je podgrupa G. Ak navyše
H je normálna, tak aj HN je normálna.

Prienik normálnych podgrúp je normálna podgrupa. To znamená, že existuje najmenšia
normálna podgrupa G obsahujúca danú podmnožinu G.

3.2 Sylowove vety

Tvrdenie 2. Nech G je cyklická grupa, |G| = n, d | n. Potom existuje podgrupa H grupy G
taká, že |H| = d.

Nech G je komutatívna grupa, |G| = n, d | n. Potom existuje podgrupa H grupy G taká,
že |H| = d.

Akcia grupy na množine

Definícia 2. Nech M 6= ∅ je množina, (G, ◦) je grupa. Akciou grupy G na množine M
nazveme zobrazenie α : M × G → M také, že
a) (typ 1) 1. (∀m ∈ M)α(m, e) = m

2. (∀m ∈ M)(∀g1, g2 ∈ G)α(α(m, g1), g2) = α(m, g1 ◦ g2)
b) (typ 2) 1. (∀m ∈ M)α(m, e) = m

2. (∀m ∈ M)(∀g1, g2 ∈ G)α(α(m, g1), g2) = α(m, g2 ◦ g1)

Stručnejší zápis: me = m, (mg1)g2 = m(g1g2); (mg1)g2 = m(g2g1).
Príklady: α1(a, g) = gag−1 pre M = G (konjugácia, akcia konjugáciou)
Ak H je podgrupa G, tak αH(X,h) = {hxh−1;x ∈ X} pre h ∈ H je akcia grupy H na
množine M = P(G) \ {∅}.
Definícia 3. Nech M 6= ∅ je množina, G je grupa, α je akcia G na M . Hovoríme, že
Sα(m) = {g ∈ G;α(m, g) = m} je stabilizátor prvku m ∈ M v akcii α.

Tvrdenie 3. Sα(m) je podgrupa G.

Definícia 4. Nech M 6= ∅ je množina, G je grupa, α je akcia G na M . Hovoríme, že
Oα(m) = {n ∈ M ; (∃g ∈ G)α(m, g) = n} je orbita prvku m ∈ M v akcii α.

Veta 1. |Oα(m)| = |G : Sα(m)|
Lema 1. Systém {Oα(m) : m ∈ M} je rozklad M .

Definícia 5. Nech G je grupa, ∅ 6= X ⊂ G. Potom množinu CG(X) = {z ∈ G; (∀x ∈
X)zx = xz} nazývame centralizátor množiny X v grupe G. Špeciálne CG(G) =: Z(G)
nazývame centrum grupy G.
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Definícia 6. Nech G je grupa a H je podgrupa G. Hovoríme, že H je charakteristická, ak
pre každý homomorfizmus ϕ : G → G platí ϕ(H) = H.

Každá charakteristická podgrupa je normálna. Z(G) je charakteristická podgrupa.
Označme gxg−1 =: xg, {xh;x ∈ X} =: Xh.

Definícia 7. Nech H je podgrupa G. Množina NG,H(X) = {h ∈ H : Xh = X} sa nazýva
normalizátor množiny X v grupe H.

NG,G(X) =: NG(X) je normalizátor X v G.
NG,H(X) = SαH

(X) a CG({x}) = Sα1(x) = NG,G({x}), preto NG,H(X) a CG({x}) sú
podgrupy G. CG(X) =

⋂

x∈X

CG({x}), teda aj CG(X) je podgrupa G. (Nemusí byť normálna.)

Definícia 8. Nech G je grupa, a, b ∈ G. Hovoríme, že a a b sú konjugované, ak existuje
g ∈ G také, že b = ag = gag−1 (t.j. b ∈ Oα1(a)). Je to relácia ekvivalencie.

ϕg : a 7→ ag = gag−1 je vnútorný automorfizmus.
g 7→ ϕg je tzv. antihomomorfizmus (obracia operácie).

Sylowove vety

Lema 2. Nech G je grupa, K, H sú podgrupy G. Triedou rozkladu G podľa dvojného modulu
K, H nazývame množinu KgH = {kgh; k ∈ K,h ∈ H} (pre g ∈ G).

Triedy KgH, g ∈ G tvoria rozklad grupy G.

Veta 2. Nech K, H sú podgrupy G. Počet ľavých tried rozkladu podľa podgrupy H v množine
KgH je [K : K ∩ gHg−1] = [g−1Kg : g−1Kg ∩ H]. Počet pravých tried rozkladu podľa
podgrupy K v množine KgH je [gHg−1 : K ∩ gHg−1] = [H : g−1Kg ∩ H].

Lema 3. |Oα1(g)| = 1 ⇔ g ∈ Z(G)

Veta 3 (Cauchy). Nech G je konečná grupa, p je prvočíslo a p | |G|. Potom existuje
podgrupa H grupy G taká, že |H| = p.

Dôsledok 1. Nech G je konečná grupa taká, že existuje prvočíslo p s vlastnosťou p | |G|
a pre každú vlastnú podgrupu H platí p | |[G : H]|. Potom G má netriviálne centrum, t.j.
Z(G) 6= {e}.

Dôsledok 2. Nech G je grupa s p2 prvkami, pričom p je prvočíslo. Potom G je komutatívna.

Veta 4 (1. Sylowova). Nech G je grupa, p je prvočíslo, |G| = pm.s, p ∤ s. Potom

(i) v G existujú podgrupy H1, . . . ,Hm také, že |Hi| = pi,

(ii) ak i < m a H je pi-prvková podgrupa G, tak existuje pi+1-prvková podgrupa G taká,
že H je jej invariantná podgrupa.

Definícia 9. Grupa G sa nazýva p-grupa, ak každý jej prvok má rád tvaru pm. (p-prvočíslo)

Tvrdenie 4. Konečná p-grupa G má pm prvkov pre vhodné m.

Definícia 10. Nech G je konečná grupa, p je prvočíslo, |G| = pm.s, p ∤ s. Podgrupa S grupy
G sa nazýva Sylowova p-podgrupa G, ak |S| = pm. Podgrupa S grupy G sa nazýva Sylowova
podgrupa G, ak existuje prvočíslo p také, že S je Sylowova p-podgrupa G.

Dôsledok 3. Ak p je prvočíslo a p | |G|, tak existuje Sylowova p-podgrupa grupy G. Ak S
je podgrupa G, |S| = pk, tak existuje Sylowova p-podgrupa H grupy G taká, že S ⊆ H.
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Dôsledok 4. Ak G je konečná p-grupa, |G| = pm, tak každá podgrupa S taká, že |S| = pm−1

je invariantná v G.

Veta 5 (2. Sylowova veta). Nech P1, P2 sú dve Sylowove p-podgrupy G. Potom (∃g ∈
G)P1 = gP2g

−1, t.j. P1 a P2 sú konjugované.

Dôsledok 5. Nech G je konečná grupa, S je Sylowova p-podgrupa. Potom S je jediná Sylo-
wova p-podgrupa grupy NG(S).

Veta 6 (3. Sylowova). Nech G je konečná grupa, p | |G|, p je prvočíslo. Potom pre počet
k Sylowových p-podgrúp platí

(i) k | |G|

(ii) k = 1 + lp, l ∈ N0

Veta 7. Nech P ⊆ K ⊆ H ⊆ G sú podgrupy grupy G. Nech P je Sylowova p-podgrupa,
K = NG(P ). Potom NG(H) = H.

Veta 8. Nech A, B sú invariantné podgrupy G také, že A∩B = {e} a A.B = [A∪B] = G.
Potom G ∼= A × B.

Veta 9. Nech G je grupa, x ∈ G je taký, že rad(x) = mn, (m,n) = 1. Potom existuje jediná
dvojica prvkov y, z ∈ G taká, že x = yz = zy, pričom rad(y) = m, rad(z) = n.

Tvrdenie 5. Konečná p-grupa má netriviálne centrum.

Veta 10. Nech G je konečná grupa. Nasledujúce podmienky sú ekvivalentné:

(i) Ak pre prvočíslo p platí p | |G|, tak v G existuje práve jedna Sylowova p-podgrupa (t.j.
pre každé prípustné p má len jednu Sylowovu p-podgrupu).

(ii) G sa dá napísať ako priamy súčin svojich Sylowových p-podgrúp.

(iii) Žiadna vlastná podgrupa grupy G nie je totožná sa svojím normalizátorom.

Veta 11. Nech G je p-grupa a H ⊆ G je invariantná p-prvková podgrupa. Potom H ⊆ Z(G).

Definícia 11. [a, b] = aba−1b−1 = komutant prvkov a, b
[G,G] = [{[a, b]; a, b ∈ G}] = komutátor grupy G

[G,G] je charakteristická podgrupa (teda je normálna).
G/N je komutatívna ⇔ G ⊇ N ⊇ [G,G]
Označme Z1(G) = Z(G) a Zk+1(G) = ψ−1(Z(G/Zk(G))) (ψ je prirodzený homomorfiz-

mus).
1 ⊆ Z1(G) ⊆ Z2(G) ⊆ . . .

Definícia 12. Grupa G je nilpotentná, ak existuje také k, že Zk(G) = G. Najmenšie také k
nazveme stupeň nilpotentnosti grupy G.

Tvrdenie 6. Každá konečná p-grupa je nilpotentná.
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3.3 Voľné grupy a voľné súčiny

Voľná grupa a jej podgrupy

Nech X ′ = {a, a−1, b, b−1, . . .} pre X = {a, b, . . .}. Nech W ′ je množina všetkých slov nad
abecedou X ′. Slovo w ∈ W ′ je v redukovanom tvare ak neobsahuje podslovo tvaru xx−1 alebo
x−1x. Dá sa ukázať, že pre každé slovo existuje jediný redukovaný tvar, bez ohľadu na to, v
akom poradí vykonávame redukcie. Ak vytvoríme reláciu ekvivalenciu naW ′ takú, že 2 slová
budú ekvivalentné ak majú rovnaký redukovaný tvar a definujeme násobenie, dostaneme
grupu FX. FX je voľná grupa na X.

Tvrdenie 7. Pre ľubovoľné zobrazenie f : X → G, kde G je grupa, existuje jediný homo-
morfizmus ϕ : FX → G taký, že ϕ|X = f .

Veta 12 (Nielsen-Schreier). Podgrupa voľnej grupy je voľná.

TODO Možno by sa patrilo stratiť aj pár slov a dôkaze.

Veta 13. Ak U je podgrupa grupy Fr indexu n, tak U má n(r − 1) + 1 generátorov.

U ∼= Fn(r−1)+1

Voľný súčin grúp

Voľný súčin grúp možno reprezentovať ako postupnosti, v ktorých sa striedajú prvky
jednotlivých grúp, ktoré vystupujú v súčine. Opäť sa dá zaviesť ekvivalencia, redukciu bude
teraz predstavovať vynechanie jednotky niektorej grupy z postupnosti a nahradenie dvoch
po sebe idúcich prvkov tej istej grupy ich súčinom.
Písať sem aj voľný súčin s amalgamáciou???

Veta 14 (Kuroš). Nech G =
∏

i∈I Gi je voľný súčin grúp. Nech H 6= 1 je podgrupa grupy
G. Potom H je tiež voľný súčin grúp v tvare

H = F
∏

α−1
j Bjαj ,

kde F je voľná grupa a každá s podgrúp α−1
j Bjαj je podgrupa konjugovaná s podgrupou Bj

niektorej z grúp Gi, i ∈ I.

3.4 Okruhy, radikály, prvoideály

Prvoideály v komutatívnych okruhoch

V tejto časti R bude znamenať komutatívny okruh s jednotkou.

Lema 4. a ∈ R nie je invertibilný ⇔ existuje maximálny ideál I okruhu R taký, že a ∈ I.

Lema 5. Nech I je ideál okruhu R a x ∈ R. Potom najmenší ideál okruhu R, ktorý obsahuje
I aj x je I + (x) = {a+ bx; a ∈ I, b ∈ R}.

Lema 6. I je maximálny ideál R ⇔ (∀r /∈ I)(∃x ∈ R)(1− rx ∈ I).

Veta 15. Ak A je ideál v R, A ⊆ B, B je prvoideál, potom množina {P ;A ⊆ P a P je
prvoideál} má minimálny prvok.
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Definícia 13. Nech R je komutatívny okruh. Radikál R je rad(R) =
⋂{I; I je prvoideál}.

Ak R je obor integrity, tak rad(R) = 0.
Radikál je ideál.

Definícia 14. Prvok a okruhu R sa nazýva nilpotentný, ak existuje n ∈ N také, že an = 0.

Lema 7. Nech T ⊂ R a existuje ideál I taký, že I ∩ T = ∅. Potom existuje maximálny (v
zmysle inklúzie - nie maximálny ideál okruhu) ideál I0 taký, že I0 ∩ T = ∅.

Definícia 15. T ⊆ R je uzavretá na konečné súčiny, ak 1 ∈ T , 0 /∈ T a pre a, b ∈ T aj
ab ∈ T .

Lema 8. Nech T ⊆ R je uzavretá na konečné súčiny, P je maximálny ideál (maximálny
vzhľadom na inklúziu) taký, že P ∩ T = ∅. Potom P je prvoideál.

Tvrdenie 8. rad(R) = {a ∈ R; a je nilpotentný}

Definícia 16. Jacobsonov radikál Rad(R) =
⋂

(I; I je maximálny ideál)

Lema 9. r ∈ Rad(R) ⇔ (∀x)1− rx je invertibilný v R

Definícia 17. Okruh R je polojednoduchý, ak Rad(R) = {0}. R má triviálny radikál, ak
rad(R) = {0}.

Veta 16. (i) R/Rad(R) je polojednoduchý okruh.

(ii) R/rad(R) má triviálny radikál.

Polopriamy súčin

Definícia 18. Okruh R nazývame polopriamy súčin okruhov Si, i ∈ I ak κ : R →֒ ∏

Si a
každé πi ◦ κ je surjektívne.

Veta 17. Okruh R je polopriamy súčin okruhov Si i ∈ I ⇔ Si
∼= R/Ki, Ki je ideál R a

⋂

Ki = {0}.

Dôsledok 6. Komutatívny okruh R je polojednoduchý práve vtedy, keď je polopriamy súčin
polí. Komutatívny okruh má triviálny radikál práve vtedy, keď je polopriamy súčin oborov
integrity.

Dôsledok 7. Komutatívny okruh R má triviálny radikál práve vtedy, keď R je izomorfný
podokruhu súčinu oborov integrity.

Dôsledok 8. Komutatívny okruh R má triviálny radikál práve vtedy, keď R je izomorfný
podokruhu súčinu polí. (Pri dôkaze sa využije, že každý obor integrity vieme vložiť do podie-
lového poľa.)

Definícia 19. Hovoríme, že okruh R je polopriamo nerozložiteľný ak prienik všetkých jeho
nenulových ideálov je nenulový ideál.

Tvrdenie 9. Ak R je polopriamo nerozložiteľný a R je polopriamy súčin Si, tak R = Si pre
niektoré i a pre j 6= i je Sj

∼= {0}.

Veta 18 (Birkhoff). Každý okruh je polopriamy súčin polopriamo nerozložiteľných okruhov.

18



3.5 Okruhy zlomkov

Najprv by som aspoň veľmi stručne spomenul, čo je podielové pole. Jednak preto, že tieto
dve konštrukcie sú podobné a dvak preto, že podielové pole asi patrí k veciam, ktoré by mal
človek končiaci štruktúry vedieť.

Zlomkom nad oborom integrity D nazývame usporiadanú dvojicu (a, b), kde a, b ∈ D,
b 6= 0. Na množine všetkých zlomkov definujeme reláciu ekvivalencie (a, b) ≡ (a′, b′) práve
vtedy, keď ab′ = a′b. Ďalej definujeme súčet a súčin ako (a, b) + (c, d) = (ad + bc, bd),
(a, b)(c, d) = (ac, bd). Triedy ekvivalencie zlomkov s takto definovanými operáciami tvoria
pole, ktoré sa nazýva podielové pole a označuje Q(D). Je to najmenšie pole obsahujúce obor
integrity D v tom zmysle, že ak je D vnorené do nejakého poľa, tak toto vnorenie možno
rozšíriť na celé Q(D).
Toto som odpísal z [ASH].
Okruh zlomkov je podobná konštrukcia ako podielové pole. Pretože nepracujeme s oborom

integrity, ale s ľubovoľným okruhom, treba obmedziť množinu prípustných menovateľov, aby
sme nedostali v menovateli nulu. Ďalej budeme predpokladať, že R je komutatívny okruh.

Definícia 20. Nech S je podmnožina okruhu R. Hovoríme, že S je multiplikatívna, ak 0 /∈ S,
1 ∈ S a a, b ∈ S ⇒ ab ∈ S.

Typické príklady:
S = množina všetkých nenulových prvkov oboru integrity,
S = množina všetkých prvkov komutatívneho okruhu, ktoré nie sú deliteľmi nuly,
S = R \ P , kde P je prvoideál komutatívneho okruhu R.
Ak S je multiplikatívna podmnožina okruhu R, tak definujeme na R × S reláciu ekviva-

lencie
(a, b) ∼ (c, d) práve vtedy, keď pre nejaké s ∈ S je s(ad − bc) = 0.

(Ľahko sa overí, že je to relácia ekvivalencie, keď využijeme komutatívnosť R. Vraj sa okruhy
zlomkov zavádzajú aj v nekomutatívnom prípade, ale je to o dosť obtiažnejšie.)
Zlomok a

b potom definujeme ako triedu ekvivalencie dvojice (a, b). Množinu zlomkov
označíme S−1R. S−1R s prirodzene definovaným sčitovaním a násobením tvorí komutatívny
okruh. Ak R je obor integrity, tak takýmto spôsobom dostaneme podielové pole.

Tvrdenie 10. Nech f : R → S−1R, f(a) = a/1. Potom f je okruhový homomorfizmus. Ak
S neobsahuje delitele nuly, tak f je prosté, čiže R možno vložiť do S−1R.

Lámme si hlavu!

Šalát

4 Polynómy

Rezultant. Vlastnosti polynómov nad poľom reálnych a komplexných čísel. Separácia koreňov,
ohraničenie koreňov, Sturmov systém. Numerický výpočet koreňov.
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4.1 Rezultant

Definícia 1. Nech f, g ∈ F [x], f = a0x
n + a1x

n−1 + . . .+ an, g = b0x
m + . . .+ bm. Potom

rezultant polynómov f a g je

R(f, g) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a0 a1 . . . an 0 . . . 0
0 a0 a1 . . . an . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 a0 a1 . . . an

b0 b1 . . . bm 0 . . . 0
0 b0 b1 . . . bm . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 b0 b1 . . . bm

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(pomocou polynómu f je vytvorených prvých m riadkov a pomocou g zvyšných n riadkov)

Tvrdenie 1.

R(f, g) = am
0

n
∏

i=1

g(αi),

kde korene f sú po rade α1, . . . , αn.

Dôsledok 1. R(f, g) = 0 práve vtedy, keď f a g majú spoločný koreň.

R(f, f ′) sa nazýva diskriminant f . Diskriminant je nulový práve vtedy, keď f má násobný
koreň.

4.2 Vlastnosti polynómov nad poľom reálnych a komplexných čísel

Veta 1 (Gaussova, Základná veta algebry). Pole C je algebraicky uzavreté.

Tvrdenie 2. Polynóm f(x) s reálnymi koeficientmi je ireducibilný nad R práve vtedy, keď
st f(x) = 1 alebo st f(x) = 2 a f(x) nemá reálne korene, t.j. má dva združené imaginárne
korene.

Tvrdenie 3. Majme f(x) = a0+a1x+ . . .+anxn ∈ Z[x] stupňa n ≥ 1. Nech p
q ∈ Q, pričom

(p, q) = 1. Ak p
q je koreňom f(x), tak p | a0 a q | an v okruhu Z.

4.3 Ohraničenie a separácia koreňov

Budeme sa zaoberať rovnicou

f(x) = xn + a1x
n−1 + . . .+ an = 0 (1)

Veta 2. Všetky reálne korene rovnice (1) s reálnymi koeficientmi ležia v intervale 〈−1 −
A, 1 +A〉, kde A = max{|a1|, . . . , |an|}.

Veta 3. Nech (1) je rovnica s reálnymi koeficientmi, pričom aspoň jeden z koeficientov je
záporný. Predpokladajme, že ak je v poradí prvý záporný koeficient. Nech B je najväčšia z
absolútnych hodnôt záporných koeficientov rovnice (1). Potom každý reálny koreň rovnice (1)
je menší ako číslo 1 + k

√
B.

Ak použijeme predchádzajúcu vetu na polynóm f(−x), tak dostaneme ohraničenie zdola.

20



4.4 Sturmov systém

Majme rovnicu (1) s reálnymi koeficientmi. Predpokladajme, že polynóm f(x) má len
jednoduché korene. Sturmov reťazec polynómov f0(x), f1(x), . . . , fm(x) patriacich k polynómu
f(x) sa zostrojí takto: Položme f0(x) = f(x) a f1(x) = Df(x) = f ′(x). Ostatné polynómy
Sturmovho reťazca získame zo vzťahu fi(x) = fi+1(x)qi+1(x)− fi+2(x). (Tento vzťah určuje
až na znamienko polynómy vystupujúce v Euklidovom algoritme. Teda stupne postupne
klesajú.)
Pod znamienkovou zmenou v postupnosti f0(c), f1(c), . . . , fm(c) rozumieme prípad, keď

fi(c).fi+1(c) < 0 alebo fi(c) = 0 a fi−1(c).fi+1(c) < 0. (Viackrát za sebou tam 0 byť nemôže.)

Veta 4 (Sturmova). Majme polynóm f(x) s reálnymi koeficientmi a reálne čísla a < b. Nech
f(a) 6= f(b). Potom počet reálnych koreňov rovnice (1) ležiacich v otvorenom intervale (a, b)
sa rovná číslo Zn(a) − Zn(b). (Zn(c) znamená počet znamienkových zmien v postupnosti
f0(c), . . . , fm(c).)

4.5 Numerické riešenie

Newtonova metóda (metóda dotyčníc) a metóda tetív (regula falsi).
Pri Newtonovej metóde sa v [ATA] spomína táto veta (je tam bez dôkazu).

Veta 5. Majme rovnice (1) s reálnymi koeficientmi a jednoduchými koreňmi. Nech rovnica
(1) má jediný koreň vnútri intervalu 〈a, b〉. Ďalej predpokladáme, že f ′(x) 6= 0 a f ′′(x) 6= 0
na celom intervale 〈a, b〉. Označme znakom c1 to z čísel a, b, v ktorom f(c1).f ′′(c1) > 0.
Znakom d1 označme druhé číslo z čísel a, b, t.j. číslo v ktorom f(d1).f ′′(d1) < 0. Utvorme
postupnosti

c1, c2 = c1 −
f(c1)
f ′(c1)

, c3 = c2 −
f(c2)
f ′(c2)

, . . .

d1, d2 = d1 −
f(d1)
f ′(c1)

, d3 = d2 −
f(d2)
f ′(c2)

, . . .

Potom jedna z postupností je klesajúca, druhá rastúca a obe postupnosti konvergujú ku koreňu
α.

Nikto nekričí: „Už spíme!ÿ

Valková

5 Konečné polia a kódovanie

Polynómy nad konečným poľom, ich rozklad na súčin ireducibilných polynómov. Rozkladové
pole polynómu. Bezpečnostné kódy. Lineárne kódy, Hammingove kódy. Generujúce polynómy
a cyklické kódy.

5.1 Rozklad na súčin ireducibilných polynómov

V tejto a v nasledujúcej časti sú odpísané nejaké veci z [ATA].
Okruhy polynómov - koreň, deliteľnosť, NSD, Euklid, OHI

Veta 1. Majme polynóm f(x) = a0 + . . .+ anxn v neurčitej x nad poľom F . Nech an 6= 0 a
n ≥ 1. Potom existujú polynómy p1(x), . . . , pm(x) normované a ireducibilné nad F a platí

f(x) = anp1(x) . . . pm(x).
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Tento rozklad je jednoznačne určený až na poradie činiteľov.

Veta 2 (Eisensteinovo kritérium). Nech p je prvočíslo a a(x) = anxn+an−1x
n−1+. . .+a0

je polynóm s celočíselnými koeficientami taký, že an 6≡ 0 (mod p) a an−1 ≡ an−2 ≡ . . . a0 ≡
0 (mod p), a0 6≡ 0 (mod p2). Potom a(x) je ireducibilný nad poľom racionálnych čísel.

5.2 Rozkladové pole polynómu

Algebraické a transcendentné rozšírenia

Definícia 1. Nech F , L sú polia, F ⊆ L. Prvok u ∈ L sa nazýva algebraický nad F , ak je
koreňom nejakého polynómu z F [x]. Prvok u ∈ L sa nazýva transcendentný nad F , ak nie je
koreňom žiadneho polynómu z F [x].

Definícia 2. Pole L nazývame jednoduchým algebraickým rozšírením poľa F ⊆ L, ak existuje
prvok u ∈ L, algebraický nad F taký, že pole L = F (u) je generované množinou F ∪ {u}
(hovoríme, že L je generované prvkom u nad F .) Ak u je transcendentný nad F , tak L = F (u)
nazývame jednoduché transcendentné rozšírenie poľa F .

Pole F (u) generované prvkom u má tvar

F (u) =
{

f(u)
g(u)

; g(u) 6= 0
}

.

Z toho vyplýva nasledujúca úplná charakterizácia jednoduchých transcendentných rozšírení.

Veta 3. Jednoduché transcendentné rozšírenie F (u) poľa F je izomorfné s podielovým poľom
Q(F [x]) okruhu F [x] polynómov jednej neurčitej nad F .

Rozkladové polia

Definícia 3. Rozšírenie L poľa F nazývame rozkladovým poľom polynómu f nad F , st f =
n > 0, ak existujú prvky c ∈ F , u1, u2 . . . un ∈ L také, že L = F (u1, . . . , un) a f sa dá nad L
rozložiť na súčin lineárnych činiteľov

f = c(x − u1) . . . (x − un).

Veta 4. Ak p je ireducibilný polynóm nad poľom F , tak existuje jednoduché algebraické
rozšírenie F (u) generované koreňom u polynómu p. (Je izomorfné s F/(p).)

Veta 5. Pre každý polynóm f nad poľom F , st f = n > 0 existuje rozkladové pole f nad F .
Je určené jednoznačne až na izomorfizmus.

Veta 6. Pre každé číslo tvaru q = pn, kde p je prvočíslo, n > 0 prirodzené číslo, existuje
(okrem izomorfizmu) práve jedno q-prvkové pole – je to rozkladové pole polynómu xq −x nad
Zp.

Multiplikatívnu grupu poľa F budeme značiť F ∗.

Veta 7. Nech F je pole. Potom každá podgrupa grupy F ∗ s konečným počtom prvkov je
cyklická.

Veta 8. Nech Fr je konečné rozšírenie konečného poľa Fq. Potom Fr je jednoduché algeb-
raické rozšírenie a každý primitívny prvok z Fr (generátor F ∗

r ) je generátorom rozšírenia Fr

t.j. Fr
∼= Fq(ξ). (ξ je primitívny prvok.)

Dôsledok 1. Pre každé n > 0 existuje ireducibilný polynóm nad Zp stupňa n. (Je to mini-
málny polynóm primitívneho prvku z F ∗

q , q = pn.)
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5.3 Kódovanie

Literatúra ku kódovaniu: hlavne [AD], čosi je aj v [JAB].

Definícia 4. Nech A, B sú konečné množiny, B∗ je množina všetkých slov nad B, t.j.
B∗ = {u = e1 . . . ek; k ∈ N0, ei ∈ B}. Potom injektívne zobrazenie k : A → B∗ sa nazýva kód.
Prvky z k(A) sa nazývajú kódové slová.
Kód k možno rozšíriť na zobrazenie k∗ : A∗ → B∗. Ak k∗ je prosté zobrazenie, hovoríme

o jednoznačne dekódovateľnom kódovaní.
Označme Bn množinu všetkých slov nad B dĺžky n. Kód k : A → Bn sa nazýva blokový

kód dĺžky n.

Veta 9. Nech n = |B| ≥ 2, nech A = {a1, . . . , ar}. Nech d1, . . . , dr sú po rade predpísané
dĺžky kódových slov pre a1, . . . , ar. Nech d1 ≤ . . . ≤ dr. Potom sa dá zostrojiť prefixový kód
práve vtedy, keď platí Kraftova nerovnosť n−d1 + . . .+ n−dr ≤ 1.

Veta 10 (McMilan). Každý jednoznačne dekódovateľný kód spĺňa Kraftovu nerovnosť

n−d1 + . . .+ n−dr ≤ 1,

kde di sú dĺžky všetkých kódových slov a n = |B|.

Bezpečnostné kódy

Definícia 5. Hovoríme, že v slove došlo ku t-násobnej chybe, ak prijaté slovo sa líši od
vyslaného slova na nanajvýš t miestach. Hovoríme, že kód objavuje t-násobné chyby, ak pri
vyslaní kódového slova došlo ku t-násobnej chybe, tak prijmeme nekódové slovo.

Definícia 6. Nech T je abeceda a u, v ∈ Tn. d(u, v) = ‖u − v‖ = |{i : ui 6= vi}| sa nazýva
Hammingova vzdialenosť u a v.
Hammingova vzdialenosť je metrika.
min{d(u, v);u 6= v;u, v ∈ k(A)} sa nazýva minimálna vzdialenosť kódu.

Veta 11. Nech k : A → Tn je blokový kód minimálnej vzdialenosti d. Potom k objavuje
t-násobné chyby pre t < d, k nie je schopný objaviť d-násobné chyby.

Definícia 7. Hovoríme, že kód opravuje t-násobné chyby, ak po vyslaní v ∈ k(A) a prijatí
w ∈ Tn s vlastnosťou d(v, w) ≤ t platí d(v, w) < d(x,w) pre všetky x ∈ k(A), x 6= v.

Veta 12. Blokový kód minimálnej vzdialenosti d opravuje chyby pre t < d
2 .

Definícia 8. Nech k : A → Tn je blokový kód. Ak existuje l < n a bijekcia ϕ : T l →
k(A), hovoríme, že k má l informačných a n − l kontrolných znakov. ϕ sa nazýva kódovanie
informačných symbolov.
Blokový kód k(A) ⊆ Tn je systematický, ak existuje číslo l < n, že každé slovo v1 . . . vl ∈ T l

možno jednoznačne predĺžiť na nejaké kódové slovo.

Veta 13. Nech k : A → Tn je systematický, pričom má l informačných symbolov. Potom
d ≤ n − l + 1.
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Lineárne kódy

Definícia 9. Lineárny kód je podpriestor vektorového priestoru (F, Fn), kde F je konečné
pole. (tzv. lineárny (n, r)-kód, kde r = dim(k(A))).

Generujúca matica lineárneho kódu je matica G, ktorej riadky tvoria bázu podpriestoru
k(A).

Lineárny kód k(A) je systematický, ak má generujúcu maticu G = (IkG′)k×n. Aby sme
zistili, či kód s danou generujúcou maticou je systematický, upravíme ju na redukovaný troju-
holníkový tvar. (Pomocou elementárnych riadkových operácií z generujúcej matice dostaneme
generujúcu maticu toho istého kódu.)

Definícia 10. Kódy k1, k2 ⊆ Fn sú ekvivalentné, ak existuje permutácia stĺpcov G1, ktorou
dostaneme generujúcu maticu G2.

Definícia 11. Nech K je lineárny (n, k)-kód. Matica B nad poľom F sa nazýva kontrolná
matica kódu K, ak

v1 . . . vn ∈ K ⇔ BvT = 0T .

BGT = 0, GBT = 0
Pre u, v ∈ Fn definujme

u ∗ v := u1v1 + . . .+ unvn.

Veta 14. Nech K je lineárny (n, k)-kód nad konečným poľom F . Potom K⊥ = {v ∈ Fn :
u ∗ v = 0 ∀u ∈ K} je podpriestor Fn a dim(K⊥) = n− k, t.j. K⊥ je lineárny (n, n− k)-kód.
K⊥ voláme duálny podpriestor/duálny kód ku K.

Generujúca matica kódu K je kontrolnou maticou kódu K⊥ a obrátene.

Definícia 12. Hammingova váha slova v = v1 . . . vn ∈ Fn je počet nenulových zložiek slova
v. ‖v‖ = |{i : vi 6= 0}|
Lema 1. Nech K ⊆ Fn je lineárny kód a d je jeho minimálna vzdialenosť. Potom d =
min{‖w‖ : w ∈ K − {0}}.

Veta 15. Lineárny kód objavuje t-násobné chyby práve vtedy, keď každých t stĺpcov jeho
kontrolnej matice je lineárne nezávislých.

Veta 16 (o štandardnom dekódovaní). Nech K je (n, k)−lineárny kód nad poľom F .
Nech e′ ∈ e + K je slovo s najmenšou váhou v triede ekvivalencie e + K. e′ budeme volať
reprezentantom triedy e + K. Potom zobrazenie δ : Fn → K definované vzťahom δ(w) =
w−reprezentant triedy (w + K), t.j. δ(w) = w − e′ je dekódovanie. Voláme ho štandardné
dekódovanie.

Štandardné dekódovanie opravuje práve tie chybové slová, ktoré sme zvolili za reprezen-
tantov. Navyše žiadne dekódovanie neopravuje väčšiu množinu slov ako δ.

Veta 17. Nech H je kontrolná matica lineárneho (n, k)−kódu K nad F . Potom e+K = e′+K
⇔ HeT = He′T .

Definícia 13. Nech H je kontrolná matica lineárneho kódu K ⊆ Fn. Nech

H







v1
...

vn






=







s1
...

sn






.

Potom slovo s = s1 . . . sn sa volá syndróm slova v = v1 . . . vn.

Štandardné dekódovanie možno urýchliť pomocou syndrómov, ak vopred vypočítame ta-
buľku popisujúcu, ktorý reprezentant zodpovedá ktorému syndrómu.
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5.4 Hammingove kódy

F = Z2 - ide o binárny kód.
(7,4)-lineárny kód

H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1





Reprezentanti sú e1 až e7, syndróm pre ei je zápis i v dvojkovej sústave. Pre Hammingove
kódy je jednoduchý výpočet syndrómu aj výber reprezentanta.

Veta 18. Binárny lineárny kód opravuje jednoduché chyby práve vtedy, keď stĺpce jeho kon-
trolnej matice sú nenulové a navzájom rôzne.

Definícia 14. Binárny kód sa nazýva Hammingov, ak jeho kontrolná matica má k riadkov,
2k − 1 nenulových stĺpcov a žiadne 2 stĺpce nie sú rovnaké. Je to (2k − 1, 2k − k − 1)-kód.

Rozšírený Hammingov kód vznikne ak pridáme navyše kontrolu parity, t.j. v1 + . . . +
v2m−1 + v2m = 0. (Zodpovedá doplneniu riadku pozostávajúceho zo samých jednotiek do
kontrolnej matice.)

5.5 Perfektné kódy

Definícia 15. Lineárny kód sa nazýva perfektný pre t-násobné opravy, ak jeho reprezen-
tantmi sú všetky slová váhy menšej alebo rovnej t.

Veta 19. Hammingove kódy sú perfektné pre jednoduché opravy.
Ak nejaký kód je perfektný binárny lineárny kód na opravu jednoduchých chýb, tak je to

Hammingov kód.

Veta 20 (Jietävaismen, Van Lint). Jediné netriviálne perfektné kódy (až na ekvivalenciu)
sú tieto:

(i) Hammingove kódy pre jednoduché chyby,

(ii) Golayov kód pre trojnásobné chyby

(iii) opakovacie kódy dĺžky 2t+ 1 pre t-násobné chyby.

5.6 Cyklické kódy

Definícia 16. Lineárny kód K ⊆ Fn je cyklický, ak v0 . . . vn−1 ∈ K ⇒ vn−1v0 . . . vn−2 ∈ K.

v = v0 . . . vn−1 ↔ f(x) = v0 + v1x+ . . .+ vn−1x
n−1

Veta 21. Nech F je konečné pole. Potom lineárny kód K ⊆ Fn je cyklický práve vtedy, keď
K je ideálom okruhu (Fn,+, ∗) ∼= F [x]/(xn − 1). (∗ je násobenie modulo xn − 1, t.j. x ∗ f(x)
predstavuje posun doľava)

Veta 22. Každý netriviálny cyklický (n, k)-kód obsahuje polynóm g(x) stupňa n− k a platí:

(i) K je hlavný ideál v Fn generovaný polynómom g(x).

K = {f ∈ Fn : f = g ∗ h, h ∈ Fn} = (g)
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(ii) Polynómy g(x), x ∗ g(x), . . . xk−1 ∗ g(x) tvoria bázu K.

(iii) g(x) | xn − 1 v okruhu F [x].

Takýto polynóm g(x) voláme generujúcim polynómom cyklického kódu.

G =













g0 g1 . . . gn−k 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 . . . 0 g0 g1 . . . gn−k













Definícia 17. Nech xn −1 = g(x).h(x) v F [x] a nech K ⊆ Fn je cyklický kód s generujúcim
polynómom g(x). Potom h(x) voláme kontrolným polynómom kódu K.

H =













0 . . . . . . 0 hk . . . h1 h0
0 . . . 0 hk . . . h1 h0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 hk . . . h1 h0 0 . . . 0
hk . . . h1 h0 0 . . . . . . 0













Bez toho, aby sme veľa museli rozmýšľať. Lebo tam jedná sa o toto.

Katriňák

6 Grafy a ich základné vlastnosti

Grafy a ich základné vlastnosti. Minimálna cesta v grafe, algoritmus na minimálnu kostru.
Fordov-Fulkersonov algoritmus, Hallova veta. Lineárny faktor, zložitosť algoritmov. Problém
obchodného cestujúceho. Problém čínskeho poštára.
Pri príprave tejto otázky sa okrem poznámok z predmetov Teória grafov a Lineárne

programovanie a grafové algoritmy použila aj kniha [PL].

6.1 Grafy a ich základné vlastnosti

Graf - (V,E)
Kyšova terminológia: Graf = neorientovaný, pseudograf = pripúšťajú sa slučky, multigraf =
aj paralelné hrany.
Digraf = aj orientácia hrán (E je množina usporiadaných dvojíc)
orientovaný graf = taký, ktorý získame z obyčajného grafu doplnením orientácie hrán
U Plesníka bola terminológia podobná, ibaže multigraf nemal slučky a v pseudografe boli
povolené. Migraf bol graf, ktorý mal orientované aj neorientované hrany.
izomorfizmus grafov, stupeň vrchola
Podgraf, indukovaný podgraf (indukovaný množinou vrcholov), faktor (podgraf s rovnakou
množinou vrcholov ako má celý graf)
kompletný graf
turnaj = kompletný asymetrický digraf
regulárny graf stupňa k, regulárny digraf stupňa k = vchádzajúci aj vychádzajúci stupeň
každého vrchola je k
sled, ťah (neopakujú sa hrany), cesta (neopakujú sa vrcholy)
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uzavretý sled, uzavretý ťah, kružnica (cyklus)
súvislý graf, komponenty
excentricita, polomer, priemer, centrum
bipartitný graf
Nevedel som, kde dať Mengerovu vetu, ale zdalo sa mi, že je dosť dôležitá, takže niekde

by byť mala. Zatiaľ som ju dal sem. (Separátor som nedefinoval, to sa snáď dá domyslieť z
kontextu.)

Veta 1 (Menger–hranová verzia pre digrafy). Ak u, v sú 2 rôzne vrcholy digrafu D,
tak maximálny počet hranovo disjunktných u–v ciest v D sa rovná počtu hrán minimového
u–v hranového separátora.

Veta 2 (Menger–hranová verzia pre grafy). Ak u, v sú 2 rôzne vrcholy grafu G, tak
maximálny počet hranovo disjunktných u–v ciest v G sa rovná počtu hrán minimového u–v
hranového separátora.

Veta 3 (Menger–vrcholová verzia pre digrafy). Ak u, v sú 2 rôzne vrcholy digrafu
D, uv /∈ E(D), tak maximálny počet vrcholovo disjunktných u–v ciest v D sa rovná počtu
vrcholov minimového u–v vrcholového separátora.

Podobne vyzerá vrcholová verzia pre grafy.

6.2 Hľadanie najkratšej cesty

Úloha: Nájsť cestu z s do t s minimálnym súčtom ohodnotení.

Moorov algoritmus

Moorov algoritmus rieši túto úlohu v prípade, že každá hrana má ohodnotenie cij = 1.
Vždy pridávame vrcholy, do ktorých sa dá dostať z tých, ktoré sme pridávali v poslednom
kroku. Každý vrchol dostane značku len raz, čiže stačí O(m + n) operácií. (tzv. postup do
šírky)

Dijkstrov algoritmus

Dijkstrov algoritmus predpokladá, že cij ≥ 0.
S = vrcholy s trvalou značkou
S = vrcholy s dočasnou značkou
Na začiatku S = {s}, vždy pre vrchol v ∈ S udržiavame v jeho značke dĺžku minimálnej
cesty do v cez vrcholy patriace do S a posledný vrchol tejto cesty. (Na začiatku sa značky
inicializujú tak, že s má značku 0 a ostatné vrcholy ∞.) V každom kroku pridávame vrchol
z S, ktorý má najmenšiu značku.
Zložitosť: O(n2). (Dá sa použitím haldy zmodifikovať na O(m lg n).)

6.3 Algoritmus na minimálnu kostru

Strom = súvislý acyklický graf.
Faktor súvislého grafu, ktorý je stromom, nazveme kostrou.
Ak V1 ⊆ V , tak množinu všetkých hrán, ktorých jeden koncový vrchol patrí do V1 a druhý

do V \ V1 nazveme hranový rez.

Veta 4. Hrana e patrí do minimálnej kostry práve vtedy, keď e je najlacnejšou hranou neja-
kého rezu.
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Všeobecný spájací algoritmus (Tarjanov)

Vždy máme zostrojený les (na začiatku sú všetky stromy jednobodové). Vyberieme nie-
ktorý z doteraz vytvorených stromov a pridáme najlacnejšiu hranu idúcu z tohto stromu do
iného stromu.

Primov algoritmus

Vždy vyberieme najväčší strom (teda vlastne budeme mať len jeden strom) a pridáme
najlacnejšiu hranu, ktorá z neho vychádza. Zložitosť: O(n3). Ak si pre vytvorený strom
pamätáme najlacnejšiu hranu, ktorú môžeme pridať a po každom kroku túto informáciu
aktualizujeme, môžeme získať O(n2) algoritmus.

Kruskalov algoritmus

Usporiadame hrany vzostupne podľa ceny a potom ich v takom poradí postupne pri-
dávame, pri každom pridávaní hrany testujeme, či nevznikne cyklus. Usporiadanie trvá
O(m lgm) a detekcia sa dá robiť v čase O(m lg n) (spolu cez všetky hrany).

6.4 Siete a toky

Sieť = digraf, v ktorom sú vyznačené zdroj s, ústie t a každej hrane je priradené celé číslo
- kapacita hrany.

Tok je funkcia f : E → R taká, že

(i) 0 ≤ f(a) ≤ c(a),

(ii)
∑

y∈N+(x)

f(x, y) =
∑

y∈N−(x)

f(y, x) pre x 6= s, t.

s-t rez je taký rozklad vrcholovej množiny na dve množiny S a T , že s ∈ S, t ∈ T .
Kapacita rezu b(S, T ) = súčet kapacít všetkých hrán, ktoré majú počiatočný vrchol v S a
konečný v T .

Veta 5. Nasledujúce výroky sú ekvivalentné:

(i) f je maximálny s − t tok.

(ii) Neexistuje zväčšujúca s − t polocesta.

(iii) Existuje s − t rez (S, T ) taký, že v(f) = b(S, T ), kde v(f) označuje veľkosť toku f , t.j.
v(f) =

∑

y∈N+(s) f(s, y)−
∑

y∈N−(s) f(y, s).

Dôsledok 1. Nech N je sieť definovaná na digrafe D s ústím t a zdrojom s. Potom veľkosť
maximálneho s − t toku sa rovná kapacite minimálneho s − t rezu.

Nasledujúce vety sa dajú dokazovať aj pomocou tokov.

Veta 6 (Hall). Systém rozličných reprezentantov množín S1, . . . , Sn existuje práve vtedy,
keď zjednotenie ľubovoľných k množín má aspoň k prvkov.

Veta 7 (König, Egerváry). Maximálny počet nezávislých hrán párneho grafu sa rovná
minimálnemu počtu vrcholov, ktoré pokryjú všetky hrany grafu.
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Fordov-Fulkersonov algoritmus

Vlastne len označujeme vrcholy, do ktorých sa dá dostať po rezervných (zväčšujúcich) po-
locestách. Ak sa podarí označkovať vrchol t, zväčšíme tok pomocou rezervnej polocesty a po-
stup opakujeme. V prípade celočíselných kapacít algoritmus musí skončiť. Fordov-Fulkersonov
algoritmus nie je polynomiálny, hoci sa v praxi ukazuje pomerne rýchly.

6.5 Lineárny faktor

Definícia 1. Faktor grafu = podgraf, ktorý obsahuje všetky vrcholy.
r-faktor = faktor, ktorý je regulárny stupňa r.
Nepárny komponent grafu = komponent, ktorý má nepárny počet vrcholov.

Veta 8 (Tutte). Graf G(V,E) má 1–faktor ⇔ ak pre každú podmnožinu S množiny V (G)
je počet nepárnych komponentov grafu G − S najviac |S|.

Párenie

Dve hrany sú nezávislé, ak nemajú spoločný vrchol. Párenie je množina nezávislých hrán
grafu G.
maximálne párenie, najpočetnejšie párenie
kompletné párenie = perfektné párenie – obsahuje všetky vrcholy
Voľný vrchol= nie je koncový vrchol žiadnej hrany párenia.
Alternujúca cesta je cesta, ktorej hrany striedavo patria a nepatria do párenia. Alternujúca
cesta sa nazýva zväčšujúcou cestou, ak koncové vrcholy sú voľné vzhľadom na dané párenie.

Veta 9 (Berge). Párenie M v grafe G je najpočetnejšie ⇔ ak v G nie je zväčšujúca polocesta
vzhľadom na M .

6.6 Zložitosť algoritmov

g = O(f(n)), ak existujú n0 a c také, že pre n > n0 je g(n) ≤ cf(n).
O(n) = lineárna zložitosť
O(lg n) = logaritmická zložitosť
O(nk) = polynomiálna zložitosť
O(an) = exponenciálna zložitosť

6.7 Úloha čínskeho poštára a úloha obchodného cestujúceho

Úloha čínskeho poštára

eulerovský sled = uzavretý sled obsahujúci všetky hrany a vrcholy
Úloha: V danom silne súvislom grafe G, kde každá hrana má reálnu dĺžku cij ≥ 0, treba

nájsť najkratší eulerovský sled. (Poštár má prejsť všetky ulice mesta.)
V eulerovskom grafe je riešením ľubovoľný eulerovský ťah. Inak treba násjť popárovanie

všetkých vrcholov nepárneho stupňa pomocou ciest, tak aby súčet ohodnotení týchto ciest
bol minimálny. (Nech V1 je množina vrcholov nepárneho stupňa. Pre u, v ∈ V1 nájdeme
najkratšiu cestu. Na V1 vytvoríme kompletný graf s ohodnotením duv= minimálna dĺžka
u − v cesty. V takomto grafe sa vytvorí najlacnejšie párovanie - na to existuje algoritmus.
Hrany z tohoto párenia pridáme k pôvodnému grafu. Eulerovský ťah v takto získanom grafe
zodpovedá najlacnejšiemu eulerovskému sledu v pôvodnom grafe.)
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Úloha obchodného cestujúceho

V grafe s nezápornými reálnymi ohodnoteniami hrán nájsť najkratší hamiltonovský cyk-
lus. Je to NP-ťažký problém.

No tak nebudeme si to písať. . ., ale napíšeme si to.
Gliviak

7 Rovinné a hamiltonovské grafy

Rovinné grafy, Eulerova rovnosť. Farbenie grafov, veta o piatich farbách. (Kružnice v grafoch,
hamiltonovské ideály, Chvátalova veta. Stabilita a uzáver grafov. Hamiltonovské kružnice a
zakázané podgrafy. Hamiltonovské kružnice a hranové grafy eulerovských grafov.) [Ramseyho
problém, Hamiltonovské problémy. Oreho veta.]
Po aktualizácii štátnicových otázok bola vynechaná časť v zátvorke a pribudli Ramseyho

problém, Hamiltonovské problémy a Oreho veta. Hamiltonovské problémy a Oreho veta sú v
tejto otázke. Ramseyho som nechal v 9. otázke, kde bol pôvodne.

7.1 Planárne (rovinné) grafy

Definícia 1. Planárne (rovinné) grafy sú grafy, ktoré sa dajú vnoriť do roviny. (Ekvivalentná
podmienka je, že graf možno vnoriť do gule.)

Stena planárneho vnorenia obsahujúca bod x disjunktný s G je množina všetkých bodov
roviny, ktorú je možné spojiť s x krivkou pozostávajúcou len z bodov disjunktných s G.
Hranica steny je množina všetkých bodov x grafu, ktoré je možné spojiť s ľubovoľným bodom
steny krivkou, ktorej všetky body okrem x sú disjunktné s grafom. Dĺžka hranice je počet
hrán hranice danej steny, pričom ak je hrana mostom, tak sa počíta dvakrát.

Veta 1 (Euler). Pre súvislý planárny graf platí

p − q + r = 2,

kde p je počet vrcholov, q je počet hrán a r je počet stien. (Alebo, ak sa vám to tak lepšie
pamätá, v − h+ s = 2.)

Ak je planárny graf G nesúvislý a má k(G) komponentov, tak p − q + r = 1 + k(G).

Eulerova veta sa dokáže indukciou vzhľadom na počet hrán grafu na n vrcholoch.
Existuje práve 5 typov pravidelných mnohostenov (štvorsten, kocka, 8-, 12- a 20-sten.)
Pre počet hrán planárneho grafu platí q ≤ 3p − 6. Ak neobsahuje trojuholník, tak q ≤

2p−4. (Pomocou týchto nerovností môžeme overiť, že K3,3 a K5 nie sú planárne. Tiež z nich
vyplýva, že každý rovinný graf musí obsahovať vrchol stupňa nanajvýš 5.)

Definícia 2. G1 a G2 sú homeomorfné, ak sú izomorfné alebo obidva grafy možno dostať z
toho istého grafu G postupným opakovaním operácie delenia hrán.
Ekvivalentná definícia: Sú izomorfné alebo jeden možno dostať z druhého opakovaním

operácií delenia hrany alebo odstránenia vrchola stupňa 2.

Veta 2 (Kuratowského). Graf je planárny práve vtedy, keď neobsahuje podgraf home-
omorfný s K5 alebo K3,3.

Veta 3 (Wagner, Tutte, Harary - duálna Kuratowského). Graf je planárny práve
vtedy, keď nemá podgraf, ktorý sa dá stiahnuť elementárnou redukciou (t.j. spájaním sused-
ných vrcholov) na K5 alebo K3,3.
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7.2 Farbenie grafu

χ(G) = chromatické číslo = minimálny počet farieb, ktorými sa dá ofarbiť G tak, aby každé
dva susedné vrcholy mali rôznu farbu.
χ(G) ≥ ω(G) (ω(G) =klikové číslo = veľkosť najväčšieho kompletného podgrafu)
χ(G) ≤ 1 + ∆(G)

Tvrdenie 1 (Szekeres, Will). Pre ľubovoľný graf G platí

χ(G) ≤ 1 + max
G′⊆G

δ(G′),

kde maximum sa berie cez všetky indukované podgrafy G′ grafu G.

Veta 4 (Brooks). Nech G je súvislý graf s maximálnym stupňom ∆. Nech G nie je kom-
pletný ani nepárny cyklus (alebo: G nie je kompletný a ∆ ≥ 3). Potom χ(G) ≤ ∆.

Veta 5 (Gallai). χ(G) ≤ 1 +m(G), kde m(G) je dĺžka najdlhšej cesty v G.

Veta 6 (Kelly, Zykov). p
β ≤ χ(G) ≤ p − β + 1, kde β je mohutnosť najväčšej nezávislej

množiny vrcholov.

Tvrdenie 2. Ak G neobsahuje P4 ako indukovaný podgraf, tak χ(G) = ω(G).

Veta 7. Pre ľubovoľné kladné celé n existuje n-chromatický graf bez trojuholníkov.

Veta 8 (4CT). Každý planárny graf možno ofarbiť 4 farbami.

Veta 9 (5CT). Každý rovinný graf je 5-farbiteľný.

Dôkaz. Nech p je najmenšie také, že to neplatí a nech G je rovinný graf na p vrcholoch, ktorý
nie je 5-farbiteľný. V G existuje vrchol stupňa najviac 5 (to vyplýva z odhadu pre počet hrán
rovinného grafu q ≤ 3p− 6). Po vynechaní tohto vrchola v dostaneme 5-farbiteľný graf. H1,3
označíme podgraf indukovaný vrcholmi farieb 1 a 3. Ak v1 a v3 nie sú spojené v H1,3 cestou,
tak môžeme zameniť farby 1 a 3 v komponente obsahujúcom v1. V opačnom prípade nebudú
spojené cestou v2 a v4 v H2,4.

vv1 v2v3v4v5
Farbenie hrán

χ1(G) - chromatický index = najmenší počet farieb, ktorými je možné ofarbiť hrany G
tak, aby susedné hrany nemali rovnakú farbu.

Veta 10 (Vizing). Ak G je neprázdny, tak ∆(G) ≤ χ1(G) ≤ ∆(G) + 1.

Grafy môžeme rozdeliť do 2 tried: χ1(G) = ∆(G) (trieda 1) a χ1(G) = ∆(G) + 1 (trieda
2). Erdös a Wilson ukázali, že P (G ∈ Trieda 1)→ 1, t.j. skoro každý graf je z triedy 1.
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Tvrdenie 3. χ1(Km,n) = ∆ = max(m,n).

Veta 11 (König). Ak G je párny, tak χ1(G) = ∆.

Veta 12. Každá kubická mapa (t.j. planárny graf s deg v = 3 pre všetky v ∈ G) sa dá hranovo
ofarbiť 3 farbami ⇔ platí 4CT.

7.3 Eulerovské a hamiltonovské grafy

Eulerovské grafy

Veta 13. Pre súvislý graf sú nasledovné tvrdenia ekvivalentné:

(i) G je eulerovský (má eulerovský cyklus).

(ii) Každý vrchol G je párneho stupňa.

(iii) G je zjednotením hranovo disjunktných kružníc.

Hamiltonovské grafy

Graf voláme hamiltonovský, ak obsahuje hamiltonovskú kružnicu. Problém nájsť v grafe
hamiltonovskú kružnicu, resp. zistiť, či je daný graf hamiltonovský, je NP-úplný.
Nutná podmienka, aby bol graf hamiltonovský: Pre každú podmnožinu S ⊂ V (G) je počet

komponent G \ S c(G \ S) ≤ |S|. (Ako dôsledok dostaneme, že každý hamiltonovský graf je
2-súvislý.)

Veta 14 (Dirac). Ak minimálny stupeň grafu je p
2 (p je počet vrcholov), tak je to hamilto-

novský graf.

Veta 15 (Ore). Ak G je graf s p vrcholmi (p ≥ 3) taký, že pre každú dvojicu nesusedných
vrcholov u, v platí

deg u+ deg v ≥ p,

tak G je hamiltonovský.

Veta 16 (Bondy-Chvátal). Nech u, v sú dva rôzne nesusedné vrcholy grafu G s p vrcholmi
také, že deg u+ deg v ≥ p. Potom G+ uv je hamiltonovský ⇔ G je hamiltonovský.

Pri dôkaze Bondy-Chvátalovej vety si stačí uvedomiť, že musí existovať modifikujúca
dvojica hrán u v
Uzáver grafu: Ak súčet stupňov dvoch nesusedných vrcholov je väčší alebo rovný p, tak

pridám medzi nimi hranu. G je hamiltonovský ⇔ jeho uzáver c(G) je hamiltonovský.
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7.4 Hamiltonovské ideály

Definícia 3. Nech S = (d1, . . . , dn) je postupnosť celých nezáporných čísel. Postupnosť S
nazveme grafovou, ak existuje graf G taký, že V (G) = {v1, . . . , vn}, di = deg vi pre každé i.

Uvažujme o grafe G, kde |V (G)| = n, S = (d1, . . . , dn), d1 ≤ . . . ≤ dn.

Definícia 4. Grafovú postupnosť S nazveme silne hamiltonovskou, ak každý graf s touto
postupnosťou je hamiltonovský.

deg v ≥ n

2
∀v ∈ V (G) (D)

|{v; deg v ≤ j}| < j pre j <
n − 1
2
, ak n je nepárne |{v; deg v ≤ n − 1

2
}| ≤ n − 1

2
(P)

(j ≤ k, dj ≤ j, dk ≤ k − 1)⇒ dj + dk ≥ n (B)

dj ≤ j <
n

2
⇒ dn−j ≥ n − j (CH)

(D) = Diracova podmienka, (P) = Pósova, (B) = Bondyho, (CH) = Chvátalova
(D) ⇒ (P) ⇒ (B) ⇒ (CH)
Označme Sn = neklesajúce grafové postupnosti dĺžky n, Hn = hamiltonovské postupnosti

dĺžky n.

Definícia 5. Nech S, S∗ sú prvky Sn. Hovoríme, že S∗ dominuje S (označujeme S∗ ≥ S)
ak pre každé i je di ≤ d∗i . (Sn,≤) je čiastočne usporiadaná množina.

P ⊆ Sn nazveme ideálom, ak platí (x ∈ P, x ≤ y)⇒ y ∈ P .

Hn netvoria ideál v Sn.

Veta 17. Ak S nevyhovuje podmienke (CH), tak existuje S∗ taká, že S∗ ≥ S a S∗ nie je
hamiltonovská.

Dôsledok 1. Najväčší ideál P ∗ v množine silne hamiltonovských postupností obsahuje len
také postupnosti, ktoré vyhovujú (CH).

Postupnosti spĺňajúce Oreho podmienku netvoria ideál. Ak graf spĺňa Oreho podmienku,
tak spĺňa aj Chvátalovu.

Veta 18 (Chvátal). Nech G je graf rádu n s postupnosťou stupňov vrcholov d1 ≤ . . . ≤ dn

spĺňajúcou (CH). Potom G je hamiltonovský.

7.5 Hamiltonovské kružnice a zakázané podgrafy

Veta 19 (Tutte). Každý 4-súvislý planárny graf je hamiltonovský.

Definícia 6. Graf nazveme H-voľný, ak neobsahuje indukovaný podgraf izomorfný s H. Graf
G nazveme lokálne súvislý, ak okolie každého vrchola v ∈ V (G) indukuje súvislý graf.

Veta 20 (Oberty, Summer). Nech G je graf rádu n ≥ 3, súvislý a lokálne súvislý, K1,3-
voľný. Potom G je hamiltonovský.
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7.6 Hranové grafy a hamiltonovské kružnice

Definícia 7. Graf G nazveme hranovým grafom grafu H, ak platí V (G) = E(H), E(G) =
{(e, f), e ∩ f 6= ∅ v grafe H, e 6= f}. Označujeme G = L(H).

Tvrdenie 4. G ∼= L(G), G je súvislý ⇔ G = Cn.
Nech G, G′ sú súvislé grafy, L(G) ∼= L(G′). Potom G ∼= G′ okrem prípadu G = C3,

G′ = K1,3.

Veta 21 (Beineke). Graf G je hranovým grafom práve vtedy, keď neobsahuje indukovaný
podgraf izomorfný s K1,3, F2, . . . , F9. (Teda každý hranový graf je K1,3-voľný.)

Veta 22. Graf G je hranovým grafom práve vtedy, keď existuje rozklad E(G) na kompletné
podgrafy tak, že každý v ∈ V (G) patrí do najviac dvoch.

Veta 23. Nech G je súvislý graf. Potom G je hranový graf eulerovského grafu práve vtedy,
keď existuje rozklad E(G) na kompletné podgrafy párneho rádu (každý kompletný podgraf má
párny počet vrcholov) tak, že každý vrchol v ∈ V (G) patrí do práve dvoch.

Tvrdenie 5. Hranový graf eulerovského grafu je hamiltonovský.

Dôsledok 2. Ak súvislý graf má rozklad s vlastnosťami uvedenými vo vete 23, potom G je
hamiltonovský.

A na tom dôkaze uvidíte, čo dokážeme.

Šalát

8 Grupy automorfizmov grafu

(Grupy automorfizmov grafu, vrcholovo a hranovo tranzitívne grafy. Fruchtova veta. Charak-
terizácia vrcholovo tranzitívnych grafov. Cayleyho grafy. Konštrukcia vrcholovo tranzitívnych
grafov, ktoré nie sú Cayleyho grafmi. Cirkulantné grafy a hamiltonovské kružnice.)

Definícia 1. Nech G = (V,E) je graf. Automorfizmom grafu G rozumieme každú bijekciu
ϕ : V → V s vlastnosťou (u, v) ∈ E práve vtedy, keď (ϕ(u), ϕ(v)) ∈ E (t.j. izomorfizmus
grafu na seba).

Veta 1. Všetky automorfizmy grafu G tvoria grupu vzhľadom na operáciu skladania zobra-
zení, označujeme ju Aut(G).

Platí Aut(G) = Aut(G). Pre Petersenov graf je Aut(P ) ∼= S5.

Definícia 2. Na množine vrcholov V definujeme reláciu ekvivalencie ∼ tak, že u ∼ v ⇔
ϕ(u) = v pre nejaké ϕ ∈ Aut(G). Triedy rozkladu θ(u) = {ϕ(u);ϕ ∈ Aut(G)} sa nazývajú
orbity grupy Aut(G).
Ak Aut(G) = {id}, čiže každá orbita je jednoprvková, hovoríme, že G je vrcholovo an-

tisymetrický. Ak existuje jediná orbita, hovoríme, že G je vrcholovo symetrický (vrcholovo
tranzitívny).

Definícia 3. Každý automorfizmus ϕ ∈ Aut(G) indukuje bijektívne zobrazenie ϕ′ : E → E.
Γ1 = {ϕ′;ϕ′ je indukované automorfizmom ϕ} je hranová grupa automorfizmov G.

Veta 2. Aut(G) ∼= Γ1(G) práve vtedy, keď G neobsahuje K2 ako komponentu súvislosti a má
najviac jeden izolovaný vrchol.
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Definícia 4. Graf G nazveme hranovo tranzitívny, ak pre každé dve hrany e, f ∈ E existuje
ϕ′ ∈ Γ1(G) tak, že ϕ′(e) = f .

Veta 3. Nech G je hranovo tranzitívny graf bez izolovaných vrcholov. Potom G je vrcholovo
tranzitívny alebo G je bipartitný a jeho bipartícia je tvorená dvoma vrcholovými orbitami.

Dôsledok 1. Nech G je hranovo tranzitívny graf, nepárneho rádu, regulárny stupňa d ≥ 1.
Potom G je vrcholovo tranzitívny.

Dôsledok 2. Nech G je hranovo tranzitívny graf, regulárny stupňa d ≥ |G|
2 . Potom G je

vrcholovo tranzitívny.

Veta 4 (Frucht). Pre každú konečnú grupu Γ existuje graf G taký, že Γ ∼= Aut(G).

8.1 Cayleyho grafy

Definícia 5. Nech Γ je grupa, S ⊆ Γ, 1 /∈ S, S = S−1 (S je uzavretá vzhľadom na inverzné
prvky). G = C(Γ, S) je graf s V (G) = Γ a E(G) = {(u, v) : u−1v ∈ S}. Graf G nazývame
Cayleyho graf grupy Γ vzhľadom na S.

Veta 5. Cayleyho graf C(Γ, S) je

(i) kompletný graf ⇔ S = Γ \ {1},

(ii) súvislý graf ⇔ S generuje Γ.

Veta 6. Cayleyho graf C(Γ, S) je vrcholovo tranzitívny.

Petersenov graf nie je Cayleyho graf, ale je vrcholovo tranzitívny.

Sedím, sedím, až vysedím.

Tomanová

9 Extremálne úlohy

(Turánova veta, konečný prípad Ramseyovej vety. Grafové Ramseyove čísla, Chvátalova veta,
R(Km, Tn) = (m − 1)(n − 1) + 1.)

9.1 Turánov problém

α(G) - číslo nezávislosti grafu G - je počet hrán najväčšej nezávislej množiny vrcholov G.
E(n, k) - minimálny počet hrán grafu na n vrcholoch s α(G(n, k)) < k.

Veta 1. Grafy G(n, k) s minimálnym počtom hrán E(n, k), kde 3 ≤ k ≤ n sú tvaru G(n, k) =
G1 ∪G2 ∪ . . .∪Gk−1. Ak n = t(k− 1)+ r, 0 ≤ r < k− 1, tak r z grafov Gi sú Kt+1 a zvyšné
sú Kt.

Veta 2 (Turán). Existuje jediný graf rádu n ≥ 3, ktorý neobsahuje podgraf Kk, 3 ≤ k ≤ n
a má maximálny počet hrán.
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9.2 Ramseyove čísla

Nech p, q ≥ 2 sú celé čísla. Číslo N > 0 nazveme (p, q)-ramseyovské, ak pre ľubovoľný
rozklad množiny všetkých dvojprvkových podmnožín množiny S (S je N -prvková) na dve
časti X, Y existuje p-prvková podmnožina množiny S taká, že všetky jej dvojprvkové pod-
množiny patria do X alebo existuje q-prvková podmnožina S taká, že všetky jej dvojprvkové
podmnožiny patria do Y .

Veta 3 (Ramsey). Nech p, q ≥ 2 sú celé čísla. Potom existuje celé číslo N > 0, ktoré je
(p, q)-ramseyovské.

Najmenšie (p, q)-ramseyovské číslo nazývame Ramseyove číslo R(p, q).

Tvrdenie 1. Číslo N je (p, q)-ramseyovské práve vtedy, keď pre každý graf G rádu N platí,
že G obsahuje Kp alebo G obsahuje Kq. (Ekvivalentne: Pri ľubovoľnom ofarbení hrán grafu
KN modrou a červenou farbou nájdeme modré Kp alebo červené Kq.)

Tvrdenie 2. R(p, 2) = p
R(3, 3) = 6
R(p, q) = R(q, p)

Veta 4 (Erdös, Szekeres). Nech p, q ≥ 3 sú celé čísla. R(p, q) ≤ R(p− 1, q) +R(p, q − 1).

Dôsledok 1. Nech p, q ≥ 2 sú celé. R(p, q) ≤
(

p+q−2
p−1

)

.

Tvrdenie 3. Nech R(p, q − 1) a R(p − 1, q) sú párne čísla. Potom R(p, q) ≤ R(p − 1, q) +
R(p, q − 1)− 1.

Tvrdenie 4 (Erdös). R(k, k) ≥ 2 k
2

Dôsledok 2. Nech m = min{p, q}. Potom R(p, q) ≥ 2m
2 .

9.3 Grafové Ramseyove čísla

Definícia 1. Nech G1, G2 sú grafy, |G1|, |G1| ≥ 2. Celé číslo N ≥ 0 nazveme (G1, G2)-
ramseyovské, ak pri ľubovoľnom rozklade množiny všetkých dvojprvkových podmnožín N -
množiny na dve časti X1, X2 platí G1 ⊆ X1 alebo G2 ⊆ X2.
Najmenšie (G1, G2)-ramseyovské číslo označujeme R(G1, G2).

Ekvivalentné formulácie: cez ofarbenia (modrý G1 alebo červený G2); každý graf rádu N
obsahuje ako svoj podgraf G1 alebo G2.

Veta 5 (Chvátal). Nech Tm je strom rádu m ≥ 2, nech m ≥ 2 je celé číslo. Potom
R(Tm,Kn) = (m − 1)(n − 1) + 1.

Tvrdenie 5. Nech G je graf rádu p, s chromatickým číslom χ(G) číslom nezávislosti α(G).
Potom χ(G).α(G) ≥ p. (Pozri vetu 6 z otázky 7.)

Tvrdenie 6. Nech Tm je ľubovoľný strom rádu m ≥ 1, G je ľubovoľný graf s δ(G) ≥ m − 1
(δ(G) je minimálny stupeň G). Potom G obsahuje Tm ako svoj podgraf.

Definícia 2. Graf G nazveme kritický n-chromatický (n ≥ 2), ak χ(G) = n a χ(G−v) = n−1
pre každé v ∈ G.

Tvrdenie 7. Ak G je kritický n-chromatický graf, tak δ(G) ≥ n − 1.
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Tvrdenie 8. Ak χ(G) = n ≥ 2, potom G obsahuje kritický n-chromatický podgraf. (Stačí
zobrať podgraf najmenšieho rádu s chromatickým číslom n.)

Dôkaz vety 5. Nech G je ľubovoľný pevne zvolený graf rádu (m− 1)(n− 1)+ 1. Ukážeme, že
obsahuje Tm alebo Kn.
Nech G neobsahuje Kn. Potom α(G) ≤ n − 1.

χ(G)α(G) ≥ (m − 1)(n − 1) + 1

χ(G) ≥ (m − 1)(n − 1) + 1
α(G)

≥ (m − 1)(n − 1) + 1
n − 1 > m − 1

k :=χ(G) ≥ m

Potom G obsahuje kritický k-chromatický podgraf F ⇒ δ(F ) ≥ k − 1 ≥ m − 1. Preto
δ(G) ≥ m − 1 a G obsahuje Tm ako svoj podgraf.
Ešte treba ukázať, že existuje graf na (m− 1)(n− 1) vrcholoch, ktorý neobsahuje Tm ani

Kn. Je to graf, ktorý má n − 1 komponent súvislosti tvaru Km−1.

Túto vetu vie skoro každý.

Skoro každý znamená každý až na množinu miery 0.

Do množiny miery 0 sa zmestí každá spočítateľná množina.

Šalát

10 Kombinatorika

(Enumeračné úlohy.) Vytvárajúce funkcie a ich použitie. Stirlingove čísla, rekurentné vzťahy.
(Princíp zapojenia a vypojenia a jeho zovšeobecnenia. Spernerova veta. Chromatický poly-
nóm grafu. Cyklový index grupy, Pólyova veta. Cayleyho veta. Hallova veta, Königova veta.
Algoritmus na nájdenie systému rozličných reprezentantov.)

10.1 Vytvárajúce funkcie a ich použitie

∑

anpn(x) nazveme vytvárajúcou funkciou pre postupnosť an, ak st pn(x) = n, pn(x) ∈ R[x].
Používa sa: pn(x) = xn, pn(x) = xn

n! (–tzv. exponenciálna vytvárajúca funkcia)
(1 + x)n =

∑
(

n
k

)

xk je vytvárajúca funkcia pre kombinácie
(1 + x+ x2 + . . .)n - k-kombinácie s opakovaním z n-množiny
(1 + x)n =

∑

ak
xk

k! - k-variácie bez opakovania z n-množiny
1 + nx+ n2x2 + . . . = 1

1−nx - k-variácie s opakovaním z n-množiny
Vytvárajúce funkcie sa používajú pri riešení rekurentných rovníc.

Rekurentné rovnice určené konvolúciou

Cauchyho súčin radov:
∑

anxn.
∑

bnxn =
∑

cnxn, cn =
∑n

i=0 aibn−i

Túto metódu sme použili na riešenie rekurencie un+1 =
n
∑

k=0

ukun−k, u0 = 1, ktorá udáva

počet binárnych stromov na n vrcholoch. Výsledkom sú Catalanove čísla: un = 1
n+1

(

2n
n

)

.

10.2 Stirlingove čísla

Nech c(n, k) označuje počet permutácií π ∈ Sn, ktoré majú práve k cyklov (počítajú sa aj
cykly dĺžky 1). Ďalej definujeme c(0, 0) = 1 a c(n, k) = 0 ak n ≤ 0 alebo k ≤ 0, (n, k) 6= (0, 0).
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Stirlingove čísla prvého druhu sú definované ako

s(n, k) = (−1)n−kc(n, k)

Pre n ≥ 0 platí:
c(n, k) = (n − 1)c(n − 1, k) + c(n − 1, k − 1)
n

∑

k=0

c(n, k)xk = (x)n = x(x+ 1) . . . (x+ n − 1)

n
∑

k=0

s(n, k)xk = (x)n = x(x − 1) . . . (x − n+ 1)

Stirlingove čísla 2.druhu S(n, k) = počet rozkladov n-prvkovej množiny na k častí.

Tvrdenie 1. S(n,k)=kS(n-1,k)+S(n-1,k-1)

xn =
n

∑

k=0

S(n, k)(x)k (n ≥ 0)

Bellove čísla B(n) =počet všetkých rozkladov (ekvivalencií) n-prvkovej množiny

B(n) =
n
∑

k=0

S(n, k)

B(n+ 1) =
n
∑

k=0

(

n
k

)

B(k)

V [LW] sú uvedené aj vytvárajúce funkcie pre Stirlingove čísla oboch druhov.

10.3 Rekurentné vzťahy

Lineárna homogénna rekurentná rovnica s konštantnými koeficientami:

an = c1an−1 + . . .+ cpan−p, (10.1)

c1, . . . , cp sú konštanty, p ≤ n. Ďalej sú dané a0, . . . , ap−1 – počiatočné podmienky.
Rovnica xp − c1x

p−1 − . . . − cp = 0 je charakteristická rovnica pre (10.1), jej korene
α1, . . . , αp sú charakteristické korene.
Ak máme dve riešenia rovnice (10.1), tak ich lineárna kombinácia je tiež riešenie.
Ku koreňu α násobnosti k prislúchajú riešenia αn, nαn, . . . , nk−1αn.

10.4 Princíp zapojenia a vypojenia

Tvrdenie 2. Nech S je N -množina a E1, . . . , Er podmnožiny S. Pre každú podmnožinu
M množiny {1, . . . , r} definujeme N(M) ako počet prvkov S v

⋂

i∈M Ei a pre 0 ≤ j ≤ r
definujeme Nj :=

∑

|M |=j N(M). Potom počet prvkov S, ktoré nie sú v žiadnej z podmnožín
Ei je N − N1 +N2 − N3 + . . .+ (−1)rNr.

TODO ?Zovšeobecnenia

10.5 Spernerova veta

Tvrdenie 3. Maximálna veľkosť antireťazca v P(N), kde N = {1, 2, . . . n} je
(

n
⌊n/2⌋

)

.

TODO Chromatický polynóm
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10.6 Pólyova teória

Definícia 1. Nech A je množina a G je grupa permutácií na A.
Stab(a) = {π ∈ G;π(a) = a}
Inv(π) = {a ∈ A;π(a) = a}
Pre a, b ∈ A definujeme a ∼ b ⇔ (∃π ∈ G)π(a) = b.
θ(a) = {b ∈ A; a ∼ b} je orbita grupy G.

Lema 1. Ak a ∼ b, tak |Stab(a)| = |Stab(b)|. Pre každé a ∈ A platí |G| = |Stab(a)||θ(a)|.

Veta 1 (Burnsidova lema). Nech G je grupa permutácií na A, N(G) je počet orbít grupy
G. Potom

N(G) =
1
|G|

∑

π∈G

|Inv(π)|

(počet orbít je priemerný počet pevných bodov pre permutácie z G).

D je množina, G je grupa permutácií na D.
C(D,R) = {f : D → R}
π∗(f) = g; f(π(x)) = g(x)
π∗ je permutácia na C(D,R)
f ∼∗ g ⇔ (∃π ∈ G)π∗(f) = g
∼∗ je ekvivalencia na C(D,R)
G∗ = {π∗;π∗ ∈ G}
(G∗, ◦) je grupa, |G∗| = |G|, platí teda

N(G∗) =
1
|G|

∑

π∈G

|Inv(π∗)|

(f ∈ Inv(π∗) ⇔ f je konštantná na každom cykle π)
Každému π ∈ G priradíme polynóm xb1

1 . . . xbn
n , kde bi je počet cyklov dĺžky i v rozklade

π. Cyklový index grupy G je

Z(G) =
1
|G|

∑

π∈G

xb1
1 . . . xbn

n .

Cyklové číslo cyc(π) permutácie π je počet cyklov v rozklade π na disjunktné cykly. (b1 +
. . .+ bn)

Veta 2 (Špeciálny prípad Pólyovej vety). Nech G je grupa permutácií na D, nech R je
množina, |R| = m, C(D,R) = {f ; f : D → R}. Potom

N(G∗) =
1
|G|

∑

π∈G

mcyc(π).

Iný tvar: ak označíme ck(G) počet permutácií z G, ktoré majú v rozklade práve k cyklov,
tak

N(G∗) =
1
|G|

∞
∑

k=1

ck(G)mk.

Vyjadrenie pomocou cyklového indexu:

N(G∗) = Z(m,m, . . . ,m)
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Veta 3 (Ohraničená Burnsidova lema). Nech G je grupa permutácií na A, Y je zjed-
notenie nejakých orbít grupy G. Nech G|Y označuje permutácie zúžené na Y . Potom

N(G|Y ) = 1
|G|

∑

π∈G

|Inv(π|Y )|

???
Ak navyše definujeme váhovú funkciu w : R → N0 a definujeme w(f) =

∑

d∈D w(f(d)),
tak všetky prvky ľubovoľnej orbity majú rovnakú váhu. Ak označíme Ck počet orbít váhy k
a C(x) =

∑∞
k=0 Ckxk a c(x) =

∑∞
k=0 ckxk, kde ck je počet prvkov v R s váhou k, tak

Veta 4 (Pólya). C(x) = Z(G, c(xr)) (do cyklového indexu grupy G dosadíme za každú
premennú c(xr)).

10.7 Cayleyho veta

Veta 5 (Cayley). Počet neizomorfných označených stromov rádu n > 2 je rovný nn−2.

10.8 Systém rozličných reprezentantov

Definícia 2. Nech A1, . . . , An je systém podmnožín množiny X. Potom x1, . . . , xn nazývame
systém rozličných reprezentantov (transverzála), aj xi ∈ Ai pre i = 1, . . . , n a xi 6= xj pre
1 ≤ i < j ≤ n.

Veta 6 (Hall). Systém rozličných reprezentantov pre A1, . . . , An existuje práve vtedy, keď

|Ai1 ∪ . . . ∪ Aik
| ≥ k

pre ľubovoľné 1 ≤ i1 < . . . < ik ≤ n.

Veta 7 (Zovšeobecnenie Hallovej vety). Nech A1, . . . , An je systém podmnožín množiny
X a nech 1 ≤ r ≤ n. V systém A1, A2, . . . , An existuje r-množinový podsystém s transverzálou
práve vtedy, keď pre každé k = 1, 2, . . . , n a pre každý výber i1, i2, . . . , ik taký, že 1 ≤ i1 <
i2 . . . ik ≤ n platí

|Ai1 ∪ Ai2 ∪ . . . ∪ Aik
| ≥ k − (n − r).

Veta 8 (König). Nech A je matica obsahujúca len 0 a 1. Minimálny počet riadkov A, ktoré
obsahujú všetky jednotky je rovný maximálnemu počtu jednotiek v A takých, že žiadne dve
neležia na jednom riadku.

Veta 9 (König). Počet hrán maximového párovania párneho grafu G je rovný minimálnemu
počtu vrcholov vrcholového pokrytia G.

Algoritmus na nájdenie systému rozličných reprezentantov = ?
Použitá literatúra: [LW], [KN].

Je to prirovnanie, ktoré kríva na všetky štyri nohy, pokiaľ ich má.

Korbaš

11 Logika 0. rádu

Výrokový počet, výrokové formy, dokázateľnosť, interpretácie, tautológie, veta o úplnosti.
Boolovské algebry, filtre a ich súvis s výrokovým počtom.
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11.1 Výrokový počet

Definícia 1. Výrokové formy – V F (P ) je najmenšia množina konečných postupností zna-
kov jazyka výrokového počtu (t.j. premenné (prvky P ), logické spojky a pomocné znaky
(zátvorky)) taká, že

(i) P ⊆ V F (P )

(ii) Ak A,B ∈ V F (P ), tak ¬A, (A&B), (A ⇒ B), (A ⇔ B) patria do V F (P ).

Interpretácia je ľubovoľné zobrazenie I : V F (P ) → {0, 1} také, že pre ľubovoľné A,B ∈
V F (P ) platí I(¬A) = ¬I(A), I(A&B) = I(A) & I(B), . . ..

Definícia 2. Nech A ∈ V F (P ). Hovoríme, že

(i) A je tautológia, ak I(A) = 1 pre ľubovoľnú interpretáciu I : V F (P )→ {0, 1}.

(ii) A je splniteľná, ak I(A) = 1 pre aspoň jednu interpretáciu I : V F (P )→ {0, 1}.

(iii) A je nesplniteľná, ak I(A) = 0 pre každú interpretáciu I : V F (P )→ {0, 1}.

(iv) A je vyvrátiteľná, ak I(A) = 0 pre aspoň jednu interpretáciu I : V F (P )→ {0, 1}.

Definícia 3. Teória vo výrokovom počte je ľubovoľná množina T ⊆ V F (P ). Jej prvky sa
nazývajú axiómy teórie T .

Logické axiómy a definíciu dôkazu v teórii T tu nebudeme vypisovať, je rovnaká ako v
ďalšej otázke, s tým rozdielom, že tu nemáme axiómy kvantifikátorov a generalizáciu.

Definícia 4. Hovoríme, žeB ∈ V F (P ) je dokázateľná v teórii T , ak existuje dôkaz A0, . . . , An

v T taký, že An ≡ B. Značíme T ⊢ B.
Hovoríme, že B ∈ V F (P ) je splnená v teórii T (T |= B), ak pre každú interpretáciu teórie

T platí I(B) = 1.

Veta 1 (korektnosť). Ak T ⊢ B, tak T |= B.

Veta 2 (úplnosť). Ak T |= B, tak T ⊢ B.

Veta 3 (slabá verzia vety o úplnosti). Ak A je tautológia, tak ⊢ A.

Veta 4 (o dedukcii). T ∪ {A} ⊢ B práve vtedy, keď T ⊢ (A ⇒ B).

Definícia 5. Teória T sa nazýva sporná (protirečivá, nekonzistentná), ak existuje nejaká
A ∈ V F (P ) taká, že T ⊢ A aj T ⊢ ¬A. V opačnom prípade sa T nazýva bezosporná
(neprotirečivá, konzistentná).

Tvrdenie 1. T je sporná práve vtedy, keď T ⊢ A pre každú výrokovú formu A.

Pre A ∈ V F (P ) definujeme AI =

{

A, ak I(A) = 1

¬A, ak I(A) = 0

Tvrdenie 2 (Lema o interpretácii). Nech A ∈ V F (P ) a p1, . . . , pn sú všetky výrokové
premenné v A. Potom {pI

1, . . . , p
I
n} ⊢ AI .

Definícia 6. Interpretácia teórie T = taká interpretácia, v ktorej má každá axióma teórie
T pravdivostnú hodnotu 1.
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Veta 5 (úplnosť). Ak T je bezosporná, tak T má aspoň jednu interpretáciu.

Definícia 7. Teória T sa nazýva úplná, ak je bezosporná a pre ľubovoľnú výrokovú formu
platí T ⊢ A alebo T ⊢ ¬A.

Úplná teória má práve jednu interpretáciu.

Tvrdenie 3. Ku každej bezospornej teórii T existuje úplná T ⊇ T .

Veta 6 (o kompaktnosti). Ak T ⊢ A, tak existuje konečná T0 ⊆ T taká, že T0 ⊢ A.
T je sporná práve vtedy, keď existuje konečná T0 ⊆ T , ktorá je sporná.
T je bezosporná práve vtedy, keď každá konečná T0 ⊆ T je bezosporná.
T má interpretáciu práve vtedy, keď každá konečná T0 ⊆ T má interpretáciu.

11.2 Boolovské algebry

Definícia 8. Boolovská algebra je množina B s 2 binárnymi operáciami ∧ (priesek), ∨
(spojenie), jednou unárnou operáciou ′ (doplnok) a dvoma význačnými prvkami 0, 1 taká, že
pre všetky x, y, z ∈ B platí:

x ∧ x = x x ∨ x = x idempotentnosť
x ∧ y = y ∧ x x ∨ y = y ∨ x komutatívnosť

x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∨ (y ∨ z) = (x ∨ y) ∨ z asociatívnosť
x ∧ (x ∨ y) = x (x ∧ y) ∨ y = y zákony absorbcie
0 ∧ x = 0 0 ∨ x = x
1 ∧ x = 1 1 ∨ x = 1

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) distributívne zákony
x ∧ x′ = 0 x ∨ x′ = 1 x′′ = x
0′ = 1 1′ = 0

(x ∧ y)′ = x′ ∨ y′ (x ∨ y)′ = x′ ∧ y′

Definícia 9. Ak B je boolovská algebra, tak S ⊆ B je podalgebra B, keď 0, 1 ∈ S a S je
uzavretá na ∧, ∨, ′.
Ak A, B sú boolovské algebry, tak h : A → B je homomorfizmus boolovských algebier, ak

zachováva operácie, doplnok, 0 a 1. Izomorfizmus je bijektívny homomorfizmus boolovských
algebier.

Definícia 10. J ⊆ B sa nazýva ideál, ak J 6= ∅ a

x ∈ J, y ≤ x ⇒ y ∈ J,

x, y ∈ J ⇒ x ∨ y ∈ J.

F ⊆ B sa nazýva filter (duálny ideál), ak F 6= ∅ a

x ∈ F, y ≥ x ⇒ y ∈ F,

x, y ∈ F ⇒ x ∧ y ∈ F.

J je ideál ⇔ {x′, x ∈ J} je filter.
F je filter ⇔ {x′, x ∈ F} je ideál.
Kongruencie na boolovských algebrách a faktorové boolovské algebry sa definujú rovna-

kým spôsobom ako pre ľubovoľné algebry. Je tu korešpondencia medzi filtrami a kongruen-
ciami, definuje sa aj B/F , kde F je filter na B. Kongruencia prislúchajúca filtru F je x ≡F y
pvk x ↔ y ∈ F . (x ↔ y = (x → y) ∧ (y → x))
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Veta 7 (Boolean Prime Ideal Theorem). Nech B je ľubovoľná boolovská algebra, potom
pre každé 0 6= x ∈ B existuje ultrafilter F v B taký, že x ∈ F .

Dôkaz predchádzajúcej vety sa robí pomocou princípu maximality.

Veta 8. Nech B je ľubovoľná boolovská algebra. Označme I množinu všetkých ultrafiltrov v
B. Zobrazenie ϕ : B → P(I), kde

ϕ(x) = {i ∈ I;x ∈ i}

je prostý homomorfizmus boolovských algebier. (Teda každá boolovská algebra je izomorfná s
podalgebrou potenčnej algebry P(I) pre vhodné I.)

Tvrdenie 4. F ⊆ B je filter práve vtedy, keď 1 ∈ F a

(∀x, y ∈ B)(Ak x ∈ F, x → y ∈ F tak y ∈ F ),

kde x → y = x′ ∨ y.

Definícia 11. a ∈ B je atóm, ak 0 < a&¬(∃x ∈ B)(0 < x < a) (teda 0 −< a).
B je atomická, ak pre každé x ∈ B existuje a také, že a ≤ x a a je atóm. B je bezatomická,

ak neobsahuje žiaden atóm.

Veta 9. Ak B je atomická boolovská algebra a I je množina atómov v B, tak h(x) = {i ∈
I : i ≤ x} je prostý homomorfizmus boolovských algebier h : B → P(I). (Každá atomická
boolovská algebra je izomorfná s podalgebrou nejakej P(I).)

Ultrafilter je maximálny vlastný filter.

Veta 10. Nech F je filter v B. Nasledujúce podmienky sú ekvivalentné:

(i) F je ultrafilter.

(ii) 0 /∈ F a (∀x, y ∈ B)(x ∨ y ∈ F ⇒ x ∈ F alebo y ∈ F ).

(iii) Pre každé x ∈ B F obsahuje práve jeden z prvkov x a x′.

(iv) B/F ∼= {0, 1}.

Súvis filtrov s výrokovým počtom

Ak na V F (P ) definujeme reláciu ekvivalencie A ≡ B pvk ⊢ (A ⇔ B) a prirodzeným
spôsobom definujeme operácie, dostaneme boolovskú algebru B(P ).
Pre T ⊆ V F (P ) definujeme A ≡T B pvk T ⊢ (A ⇔ B).

V F (P )/ ≡T=: B(T )
Dokázateľné formuly v T tvoria filter (obsahuje 1 a je uzavretý na modus ponens), označujeme
ho F(T ).
Tvrdenie 5. T je sporná práve vtedy, keď F(T ) je nevlastný.
T je bezosporná práve vtedy, keď F(T ) je vlastný.
T je úplná práve vtedy, keď F(T ) je ultrafilter.
T je sporná práve vtedy, keď B(T ) ∼= B(P )/F(T ) je jednoprvková.
T je úplná práve vtedy, keď B(T ) ∼= B(P )/F(T ) je dvojprvková.

Súčet = sčítanec + sčítanec, konjunkcia = konjuganec ∧ konjuganec.
Zlatoš
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12 Jazyky

Jazyky a štruktúry prvého rádu, (prenexný tvar formúl). [Termy, formuly a teórie prvého
rádu.] Spĺňanie formúl, modely teórií. Dokázateľnosť a veta o dedukcii. Bezosporné, úplné a
henkinovské teórie. Gödelova veta o úplnosti. Veta o kompaktnosti a jej dôsledky. Príklady
teórií.

12.1 Jazyky a teórie prvého rádu

Definícia 1. Jazyk prvého rádu je trojica L = (F,R, τ), F ∪R = ∅, τ : F ∪R → N, τ(r) > 0
pre r ∈ R. Prvky F sú funkcionálne (operačné) symboly, prvky R sú relačné (predikátové)
symboly. τ sa nazýva árnosť. Prvky F ∪ R nazývame špecifické symboly.

Logické symboly sú
a) logické spojky: &, ∨, ⇒, ⇔, ¬
b) premenné: x, y, z, x1, x2, y0, z

′, . . .
c) kvantifikátory ∃, ∀
d) pomocné symboly (,).

Štruktúra jazyka L (model jazyka L) je usporiadaná dvojica A = (A, I), kde A 6= ∅, I
je zobrazenie s definičným oborom F ∪ R také, že pre f ∈ Fn I(f) : An → A a pre r ∈ Rn

I(r) ⊆ An. I(f), I(r) je interpretácia symbolu f resp. r. A sa nazýva základná množina
(nosič).

Termy jazyka L Term(L)= najmenšia množina slov zostavená zo znakov L taká, že
(1) ak x je premenná, tak x ∈ Term(L)
(2) ak f ∈ Fn, t1, . . . , tn ∈ Term(L), tak f(t1, . . . , tn) ∈ Term(L).

Interpretácia termov: Ak A = (A, I) je štruktúra na L, definujeme I(t) = tA = t pre
všetky t ∈ Term(L). Nech t(x1, . . . , xn) je term. Potom I(t) : An → A je zobrazenie také, že
pre ľubovoľné a1, . . . , an ∈ A platí:
1) ak t = xi, tak I(t)(a1, . . . , an) = ai

2) ak t = f(t1, . . . , tn), f ∈ Fn, tj(x1, . . . , xn) sú termy, tak
I(t)(a1, . . . , an) = I(f)(I(t1)(a1, . . . , an), . . . , I(tn)(a1, . . . , an)).

Formuly jazyka L: Form(L) = najmenšia množina taká, že
1) obsahuje tzv. atomické formuly t1 = t2 (t1, t2 ∈ Term(L)), r(t1, . . . , tn) (r ∈ Rn, ti ∈
Term(L))
2) Ak ϕ1, ϕ2 ∈ Form(L), tak aj ¬ϕ1, (ϕ1&ϕ2), (ϕ1 ∨ ϕ2), (ϕ1 ⇒ ϕ2), (ϕ1 ⇔ ϕ2) ∈ Form(L)
3) Ak ϕ je formula a x premenná, tak (∀x)ϕ, (∃x)ϕ sú formuly.

Mohutnosť jazyka L = ‖L‖ = |Form(L)| = max(|F |, |R|,ℵ0).
Ak ϕ(x1, . . . , xn) je formula jazyka L, A je štruktúra jazyka L a a1, . . . , an ∈ A, tak

A |= ϕ(a1, . . . , an), čiže ϕ(a1, . . . , an) je splnená v A:
1) Ak ϕ je atomická formula tvaru t1 = t2 (ti sú termy), tak A |= ϕ(a1, . . . , an) práve vtedy,
keď tA1 (a1, . . . , an) = tA2 (a1, . . . , an).
2) Ak ϕ je atomická formula tvaru r(t1, . . . , tn), tak A |= ϕ(a1, . . . , an) práve vtedy, keď
(tA1 (a1, . . . , an), . . . , tAn (a1, . . . , an)) ∈ rA.
3) Ak ϕ je tvaru ¬ψ, tak A |= ϕ(a1, . . . , an) práve vtedy, keď nie je pravda, že A |=
ψ(a1, . . . , an).
Ak ϕ je tvaru ψ1&ψ2, tak A |= ϕ(a1, . . . , an) práve vtedy, keď A |= ψ1(a1, . . . , an) a zároveň
A |= ψ2(a1, . . . , an). Podobne pre ostatné logické spojky.
4) Ak ϕ je tvaru (∃x)ψ(x, x1, . . . , xn), tak A |= ϕ(a1, . . . , an) práve vtedy, keď existuje a ∈ A
také, že A |= ψ(a, a1, . . . , an).
Ak ϕ je tvaru (∀x)ψ(x, x1, . . . , xn), tak A |= ϕ(a1, . . . , an) práve vtedy, keď pre každé a ∈ A
také, že A |= ψ(a, a1, . . . , an).
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Definícia 2. Teória prvého rádu v jazyku L je ľubovoľná podmnožina T ⊆ Form(L). Prvky
množiny T sú špecifické axiómy.
Štruktúra A jazyka L je modelom teórie T (spĺňa teóriu T ), ak A |= ϕ pre každé ϕ ∈ T ,

označujeme A |= T .
Mod(T ) = trieda všetkých modelov teórie T .
Mod(L) = trieda všetkých modelov jazyka L.
Formula ϕ je splnená v T (je nevyhnutným dôsledkom axióm teórie T ), ak A |= ϕ pre

každé A ∈ Mod(T ), t.j. pre všetky A platí A |= T ⇒ A |= ϕ.

Logické axiómy
Axiómy výrokového počtu

ϕ ⇒ (ψ ⇒ ϕ)

(ϕ ⇒ (ψ ⇒ χ))⇒ ((ϕ ⇒ ψ)⇒ (ϕ ⇒ χ))

(¬ψ ⇒ ¬ϕ)⇒ ((¬ψ ⇒ ϕ)⇒ ψ)

Axiómy rovnosti
x = x

x = y ⇒ y = x

(x = y&y = z)⇒ x = z

(x1 = y1& . . .&xn = yn&r(x1, . . . , xn))⇒ r(y1, . . . , yn), r ∈ Rn

(x1 = y1& . . .&xn = yn)⇒ f(x1, . . . , xn) = f(y1, . . . , yn), f ∈ Fn

Axiómy kvantifikátorov
ϕ(t|x)⇒ (∃x)ϕ

(∀x)ϕ ⇒ ϕ(t|x)
ϕ(t|x) znamená dosadenie termu t za každý voľný výskyt premennej x. Substitúcia ϕ(t|x) je
prípustná, ak žiadna premenná termu t nie je viazaná v mieste voľného výskytu x.

¬(∀x)ϕ ⇔ (∃x)¬ϕ

¬(∃x)ϕ ⇔ (∀x)¬ϕ

(∀x)(ϕ ⇒ ψ)⇒ (ϕ ⇒ (∀x)ψ),

ak x nie je voľná vo ϕ
Odvodzovacie pravidlá

ϕ,ϕ ⇒ ψ

ψ
(MP)

ϕ

(∀x)ϕ
(Gen)

Prenexný tvar formúl

Formula je v prenexnej normálnej forme, ak žiadna premenná vo ϕ nevystupuje súčasne
ako voľná aj viazaná, žiadna premenná sa nevyskytuje pri viacerých kvantifikátoroch a vý-
skyty kvantifikátorov predchádzajú výskyty všetkých spojok. Ku každej formule ϕ existuje
formula ϕ′ v prenexnom normálnom tvare, ktorá je s ňou logicky ekvivalentná (t.j. |= ϕ ⇔ ϕ′).
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12.2 Dokázateľnosť a veta o dedukcii

Definícia 3. Dôkaz v teórii T je postupnosť ϕ0, . . . , ϕn formúl jazyka L taká, že každé ϕi

je:
1) logická axióma,
2) ϕi ∈ T ,
3) vyplýva z predošlých na základe odvodzovacích pravidiel, teda existujú j, k < i také, že
ϕk ≡ ϕj ⇒ ϕi (modus ponens), alebo existujú j < i a premenná x také, že ϕi ≡ (∀x)ϕj

(generalizácia).
Formula ϕ je dokázateľná v T , ak existuje jej dôkaz v T , t.j. dôkaz, ktorého posledným

členom je ϕ. Označujeme T ⊢ ϕ.

T |= ϕ sa týka sémantiky, zatiaľ čo T ⊢ ϕ hovorí o dokázateľnosti, teda o syntaxi.

Veta 1 (o korektnosti). Ak T ⊢ ϕ, tak T |= ϕ.

Veta 2 (o dedukcii). T ∪ {ϕ} ⊢ ψ práve vtedy, keď T ⊢ (ϕ ⇒ ψ), ak ϕ je uzavretá formula
(t.j. ϕ nemá voľné premenné).

Veta 3 (o dedukcii). Nech ϕ je uzavretá. Potom T ⊢ ϕ práve vtedy, keď T ∪{¬ϕ} je sporná.

Definícia 4. Teória T sa nazýva sporná, ak existuje formula ϕ taká, že T ⊢ ϕ a T ⊢ ¬ϕ,
bezosporná (konzistentná) inak.
Teória T sa nazýva úplná, ak je bezosporná a pre každú uzavretú formulu ϕ platí T ⊢ ϕ

alebo T ⊢ ¬ϕ. (Teda úplná teória je taká, ktorá je maximálna bezosporná).

Veta 4 (o úplnosti Gödelova). Ak T |= ϕ, tak T ⊢ ϕ.

Veta 5 (o úplnosti Gödelova). T je bezosporná práve vtedy, keď má model.

Definícia 5. Nech ϕ(x) je formula jazyka L a c je konštanta v L. Hovoríme, že c dosvedčuje
tvrdenie (∃x)ϕ(x) v T , ak T ⊢ (∃x)ϕ(x) ⇒ ϕ(c). Množina konštánt jazyka L sa nazýva
množina svedkov teórie T , ak pre ľubovoľné tvrdenie (∃x)ϕ(x) v nej existuje konštanta, ktorá
ho dosvedčuje. Teória sa nazýva henkinovská, ak má nejakú množinu svedkov.

Veta 6. Nech T je bezosporná teória v jazyku L. Potom existuje obohatenie LH jazyka L o
nové konštanty a úplná henkinovská teória TH v jazyku LH taká, že T ⊆ TH .

Veta 7. Každá úplná henkinovská teória má model.

Veta 8. Každá bezosporná teória v jazyku L má model mohutnosti nanajvýš ‖L‖.

Dôsledok 1. Každá bezosporná teória v spočítateľnom jazyku má spočítateľný model.

Skolemov paradox

Teória množín je teória v spočítateľnom jazyku. (F = {∅}, R = {∈}) Má teda spočítateľný
modelM. V modeliM vieme zostrojiť NM, RM. Obe tieto množiny sú spočítateľné, preto
existuje medzi nimi bijekcia. Ale nebude to bijekcia v modeli M. (Mohutnosť množiny je
relatívny pojem.)
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Veta o kompaktnosti

Veta 9 (o kompaktnosti). T ⊢ ϕ práve vtedy, keď existuje konečná T0 ⊆ T taká, že T0 ⊢ ϕ.
T |= ϕ práve vtedy, keď existuje konečná T0 ⊆ T taká, že T0 |= ϕ.
T je bezosporná práve vtedy, keď každá konečná podteória je bezosporná.
T má model práve vtedy, keď každá konečná podteória má model.

Tvrdenie 1. Peanova aritmetika má neštandardné modely.

12.3 Príklady teórií

Reálne uzavreté polia

Usporiadané polia: F = {+, ., 0, 1}, R = {≤}
Axiómy poľa, lineárne usporiadaná množina a navyše

x ≤ y ⇒ x+ z ≤ y + z

x ≤ y & 0 ≤ z ⇒ x.z ≤ y.z

Reálne uzavreté polia (RCF - real closed field) - navyše platí veta o supréme:
Pre každú formulu ϕ(x) je axióma:

(∃y)(∀x)(ϕ(x)⇒ x ≤ y)⇒ (∃z)((∀x)(ϕ(x)⇒ x ≤ z)&(∀y)((∀x)(ϕ(x)⇒ x ≤ y)⇒ z ≤ y))

t.j. ak je množina určená formulou ϕ(x) zhora ohraničená, tak má suprémum.
RCF je bezosporná, lebo jej modelom je R. Keďže je to bezosporná teória v spočítateľnom

jazyku, má spočítateľný model.
V matematickej analýze sa ukazuje, že ak niečo spĺňa axiómy RCF (pričom veta o supréme

platí pre ľubovoľnú podmnožinu), tak je to izomorfné s R. P(R) = 22ℵ0 > 2ℵ0 > ℵ0. My však
máme vetu o supréme len pre množiny tvaru {x, ϕ(x)}, ktorých je ℵ0, teda to nie je spor.
Reálne algebraické čísla sú reálne uzavreté pole.
RCF je úplná teória.

Peanova aritmetika

Jazyk: +, ., 0, 1
Axiómy:

0 + 1 = 1

x+ 1 = y + 1⇒ x = y

x+ 0 = x

(x+ y) + 1 = x+ (y + 1)

x.0 = 0

x.(y + 1) = x.y + x

Schéma indukcie: Pre ľubovoľnú formulu ϕ(x, . . .) nasledujúca formula je axióma:

(ϕ(0)) & (∀x)(ϕ(x)⇒ ϕ(x+ 1))⇒ (∀x)ϕ(x)
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Teória grúp

V jazyku TG(·):
(xy)z = x(yz)

(∃u)(∀x)(xu = x = ux)

(∀x)(∃y)(∀z)((xy)z = z = z(xy) = (yx)z = z(yx))

V jazyku TG(·, e)
(xy)z = x(yz)

ex = x(= xe)

(∀x)(∃y)(yx = e)

V jazyku TG(·, e,−1)
(xy)z = x(yz)

ex = x

x−1x = e

Ak chápeme grupu ako štruktúru v jazyku TG(·) alebo TG(·, e), tak jej podštruktúra
nemusí byť grupa. (Napríklad (N,+) ⊆ (Z,+).) To znamená, že teóriu grúp v týchto jazykoch
nemožno axiomatizovať pomocou univerzálnych axióm.
Neexistuje teória konečných grúp (v zmysle teórie 1. rádu). (Dôsledok vety o kompakt-

nosti.)

Teória polí

(+, ., 0, 1)

x+ y = y + x xy = yx
x+ (y + z) = (x+ y) + z (xy)z = x(yz)

x+ 0 = 0 1.x = x
∀x∃y(x+ y = 0) ∀x∃y(x 6= 0⇒ xy = 1)

x(y + z) = xy + xz
Axiómy sú univerzálno-existenčné.
Neexistuje teória T (1.rádu) v jazyku polí taká, že Mod(T ) by boli všetky polia konečnej

charakteristiky. (Dôsledok vety o kompaktnosti.)

Máme reťazcový komplex, ktorý vyzerá neškodný, a škodný vcelku nie je, ale je užitočný.

Korbaš

13 Podštruktúry a homomorfizmy

Podštruktúry, homomorfizmy a reťazce štruktúr. Elementárna ekvivalencia, elementárne pod-
štruktúry a elementárne reťazce. Tarského kritérium. Diagramy. Axiomatické a konečne axi-
omatizovateľné triedy. Univerzálne, existenčné, univerálno-existenčné a pozitívne formuly.
Zachovávanie teórií pri algebraických konštrukciách.

13.1 Podštruktúry a homomorfizmy

Definícia 1. Štruktúra B = (B, . . .) jazyka L sa nazýva podštruktúrou štruktúry A (značíme
B ⊆ A), ak B ⊆ A a pre ľubovoľné n, f ∈ Fn, r ∈ Rn a prvky a1, . . . , an ∈ B platí:

fB(a1, . . . , an) = fA(a1, . . . , an)
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(a1, . . . , an) ∈ rA práve vtedy, keď(a1, . . . , an) ∈ rB

Platnosť univerzálnych formúl sa prenáša na podštruktúry. Existenčné vlastnosti sa na-
opak prenášajú na nadštruktúry. Takisto sa samozrejme prenášajú univerzálne a existenčné
teórie.

Definícia 2. Nech A, B sú štruktúry, h : A → B. Hovoríme, že h je homomorfizmus, ak pre
ľubovoľné a1, . . . , an ∈ A, f ∈ Fn, r ∈ Rn platí

hfA(a1, . . . , an) = fB(ha1, . . . , han)

(a1, . . . , an) ∈ rA ⇒ (ha1, . . . , han) ∈ rB

Hovoríme, že B je homomorfný obraz A, ak existuje surjektívny homomorfizmus h : A → B.

Definícia 3. A, B sú štruktúry jazyka L, h : A → B. Hovoríme, že h je vnorenie A do B
(h : A →֒ B), ak je injektívne a pre ľubovoľné a1, . . . , an ∈ A, f ∈ Fn, r ∈ Rn platí:

hfA(a1, . . . , an) = fB(ha1, . . . , han)

(a1, . . . , an) ∈ rA práve vtedy, keď (ha1, . . . , han) ∈ rB

Izomorfizmus je surjektívne vnorenie. Je to ekvivalentné s tým, že je to bijekcia a aj
inverzné zobrazenie je homomorfizmus.

Pozitívne formuly (t.j. tie, ktoré sú vytvorené len pomocou ∨, ∧, ∃ a ∀) sa prenášajú na
homomorfné obrazy. Existenčno-pozitívne formuly (tie nesmú obsahovať všeobecný kvantifi-
kátor) sa prenesú z A na B, ak existuje homomorfizmus h : A → B.

Tvrdenie 1. A ⊆ B práve vtedy, keď idA : A →֒ B.
h : A → B je vnorenie práve vtedy, keď h je izomorfizmus A na h(A).

Definícia 4. Nech A,B ∈ Mod(L) a h : A → B. Hovoríme, že h je elementárne vnorenie A
do B, ak pre ľubovoľnú formulu ϕ(x1, . . . , xn) a prvky a1, . . . , an ∈ A platí (A |= ϕ(~a)) ⇒
(B |= ϕ(h~a)).

Elementárne vnorenie je vnorenie (zachovávajú sa atomické aj negatomické formuly).
Ekvivalentná definícia elementárneho vnorenia je (A |= ϕ(~a))⇔ (B |= ϕ(h~a)).

Definícia 5. Ak A ⊆ B, hovoríme, že A je elementárna podštruktúra B (označujeme A ≺ B),
keď pre ľubovoľnú formulu ϕ(~x) a1, . . . , an ∈ A platí (A |= ϕ(~a))⇒ (B |= ϕ(~a)).

Elementárna ekvivalencia: A ≡ B (A,B ∈ Mod(L)) práve vtedy, keď pre ľubovoľnú uzav-
retú formulu ϕ platí A |= ϕ ⇔ B |= ϕ.

Tvrdenie 2. Ak A ≺ B, tak A ≡ B.
Ak h : A ≺−→ B, tak A ≡ B.

Príklad 1. Q ⊀ R ⊀ C (ako polia). Dá sa ukázať, že pre pole algebraických čísel (A,+, ., 0, 1)
platí A ≺ C, A ∩ R ≺ R.

Tvrdenie 3. Ak A ≺ B a B ≺ C, tak A ≺ C.

Tvrdenie 4. Ak A ≺ B a B je konečné, tak A = B.

Tvrdenie 5. Ak A ≺ C, B ≺ C a A ⊆ B, tak A ≺ B.
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Definícia 6. Th(A) = {ϕ;ϕ je uzavretá a A |= ϕ} je teória štruktúry A.
Th(AA) je elementárny diagram štruktúry A.
D+(A) = {ϕ;ϕ je uzavretá atomická formula LA taká, že A |= ϕ} je pozitívny atomický

diagram štruktúry A.
Diagram (atomický diagram) štruktúry A je D(A) = {ϕ;ϕ je uzavretá atomická alebo

negatomická formula jazyka LA taká, že A |= ϕ}.

Th(A) je úplná teória. Štruktúra A je jednoznačne daná pomocou D+(A). Z Gödelovej
vety vyplýva, že každá úplná teória má tvar Th(A).

Tvrdenie 6. Nech h : A → B. Potom h je elementárne vnorenie A do B práve vtedy, keď
(B, h(a))a∈A |= Th(AA).

Tvrdenie 7. Nech A,B ∈ Mod(L). Potom A možno elementárne vnoriť do B práve vtedy,
keď existuje rozšírenie (B, ba)a∈A štruktúry B do štruktúry jazyka LA taká, že (B, ba) |=
Th(AA).

Tvrdenie 8. Nech A,B ∈ Mod(L), h : A → B práve vtedy, keď (B, h(a))a∈A |= D+(A).

Tvrdenie 9. Nech A,B ∈ Mod(L). Potom A ⊆ B práve vtedy, keď A ⊆ B a BA |= D(A).

Tvrdenie 10. Nech A,B ∈ Mod(L), h : A → B. Potom h : A →֒ B je vnorenie práve vtedy,
keď (B, h(a))a∈A |= D(A).

Nech A,B ∈ Mod(L). Potom A možno vnoriť do B práve vtedy, keď existuje rozšírenie
(B, ba)a∈A štruktúry B do jazyka LA také, že (B, ba) |= D(A).

Veta 1 (Tarského kritérium pre elementárne podštruktúry). Nech A ⊂ B. Potom
A ≺ B práve vtedy, keď pre ľubovoľnú formulu ϕ(x) jazyka LA platí: Ak B |= (∃x)ϕ(x), tak
existuje a ∈ A také, že B |= ϕ(a).

Veta 2 (Löwenheim-Skolem-Tarski↑). Nech A je nekonečná, A ∈ Mod(L), β je kardi-
nálne číslo také, že ‖L‖ ≤ β, |A| ≤ β. Potom existuje elementárne rozšírenie B štruktúry A
(B ≻ A) také, že |B| ≥ β (|B| = β).

Veta 3 (Löwenheim-Skolem-Tarski↓). Nech A ∈ Mod(L). Potom pre každé kardinálne
číslo β také, že ‖L‖ ≤ β ≤ |A| existuje B ≺ A také, že |B| = β. Dokonca pre ľubovoľnú
X ⊆ A takú, že |X| ≤ β existuje B ≺ A taká, že |B| = β, X ⊆ B.

Dôsledok 1. Každá nekonečná štruktúra spočítateľného jazyka má spočítateľnú elementárnu
podštruktúru.

Lema 1 (o vzájomnej bezospornosti). Teória T ∪ S je sporná práve vtedy, keď existujú
ϕ1(~x), . . . , ϕn(~x) ∈ S také, že T ⊢ (∃~x)(¬ϕ1(~x) ∨ . . . ∨ ¬ϕn(~x)).

Γ je množina axióm pre teóriu T , ak Mod(Γ) = Mod(T ).

Lema 2 (axiomatizačná lema). Nech T je bezosporná teória v jazyku L a △ je množina
uzavretých formúl jazyka L uzavretá na konečné disjunkcie. Potom nasledovné podmienky sú
ekvivalentné.

(i) T má množinu axióm Γ ⊆ △.

(ii) Pre ľubovoľné A,B ∈ Mod(L) platí: A |= T , B |= Th(A) ∩△ ⇒ B |= T .

Veta 4. Nech T je bezosporná teória. Potom T sa prenáša na podštruktúry práve vtedy, keď
T má množinu univerzálnych axióm.
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Veta 5. Nech T je bezosporná teória. Potom trieda Mod(T ) je uzavretá vzhľadom na nad-
štruktúry, práve vtedy, keď T má množinu existenčných axióm.

Definícia 7. Univerzálno-existenčná formula: ∀~x∃~yϕ(~x, ~y, ~z), kde ϕ je bez kvantifikátorov.
Existenčno-univerzálna formula: ∃~x∀~yϕ(~x, ~y, ~z), kde ϕ je bez kvantifikátorov.

Π01= uzavreté formuly logicky ekvivalentné s univerzálnymi
Σ01= uzavreté formuly logicky ekvivalentné s existenčnými
Π02= uzavreté formuly logicky ekvivalentné s univerzálno-existenčnými
Σ02= uzavreté formuly logicky ekvivalentné s existenčno-univerzálnymi

Definícia 8. Reťazec štruktúr jazyka L nad lineárne usporiadanou množinou (I,≤) je systém
štruktúr v jazyku L (Ai, i ∈ I) taký, že pre i ≤ j je Ai ⊆ Aj .

Zjednotenie reťazca (Ai, i ∈ I) je štruktúra A = ⋃

i∈I

Ai = (
⋃

i∈I

Ai, . . .),

fA(a1, . . . , an) = fAi(a1, . . . , an)

(a1, . . . , an) ∈ rA práve vtedy, keď (a1, . . . , an) ∈ rAi

Elementárny reťazec je taký, ktorý spĺňa aj Ai ≺ Aj .

Ak Ai tvoria reťazec, tak každé Ai je podštruktúrou
⋃

i∈I Ai. Ak ide o elementárny
reťazec, tak je to elementárna podštruktúra.

Tvrdenie 11. Nech ϕ je uzavretá univerzálno-existenčná formula a (Ai)i∈I je reťazec štruk-
túr jazyka L. Ak Ai |= ϕ pre každé i ∈ I, tak

⋃

i∈I

Ai |= ϕ (t.j. univerzálno-existenčné formuly

sa zachovávajú pri zjednotení reťazca).

Veta 6. Každé pole F má algebraický uzáver (algebraicky uzavreté nadpole), algebraicky
uzavreté algebraické rozšírenie F .

Veta 7. Nech T je bezosporná teória v jazyku L. Potom nasledovné podmienky sú ekviva-
lentné.

(i) T má množinu univerzálno-existenčných axióm.

(ii) Mod(T ) je uzavretá na zjednotenie ľubovoľných reťazcov.

(iii) Mod(T ) je uzavretá na zjednotenie reťazcov nad (N,≤).

Veta 8. Nech T je bezosporná teória v jazyku L, potom trieda Mod(T ) je uzavretá na ho-
momorfné obrazy práve vtedy, keď T má množinu pozitívnych axióm.

Flaša, z ktorej sa nič nevyleje. Ibaže sa tam ani nič nedá naliať.

Korbaš - o Kleinovej flaši

14 Modely

Filtrovaný súčin, ultrasúčin a ultramocnina.  Losova veta. Veta o kompaktnosti v jazyku
ultraproduktov. Charakterizácia elementárnej ekvivalencie a (konečne) axiomatizovateľných
tried. (Charakterizácia elementárnych tried. Peanova aritmetika, formalizácia dokázateľnosti.
Gödelove vety o neúplnosti, Gödelova-Rosserova veta. Tarského veta o nedefinovateľnosti re-
lácie spĺňania.)
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14.1 Priamy a filtrovaný súčin

Definícia 1.
∏

i∈I

Ai - priamy súčin systému (Ai, i ∈ I) = (
∏

Ai, . . .),
∏

i∈I Ai = {α : I →

∪Ai;∀i α(i) ∈ Ai}, f
∏

Ai(α1, . . . , αn)(i) = fAi(α1(i), . . . , αn(i)), (α1, . . . , αn)(i) ∈ r
∏

Ai

práve vtedy, keď (α1(i), . . . , αn(i)) ∈ rAi .
Ak Ai = A pre všetky i ∈ I, tak

∏Ai sa nazýva priama mocnina a označuje sa AI .
Diagonálne vnorenie d : A → AI , a 7→ d(a), d(a) : I → A, d(a)(i) = a.

14.2 Ultraprodukt a  Losova veta

Definícia 2. Zovšeobecnená pravdivostná hodnota

[ϕ(α1, . . . , αn)] = {i ∈ I;Ai |= ϕ(α1(i), . . . , αn(i))}
Tvrdenie 1. [ϕ&ψ(~α)] = [ϕ(~α)] ∩ [ψ(~α)]
[ϕ ∨ ψ(~α)] = [ϕ(~α)] ∪ [ψ(~α)]
[¬ϕ(~α)] = [ϕ(~α)]C = I \ [ϕ(~α)]
[(∃x)ϕ(x, ~α)] =

⋃

β∈
∏

Ai

[ϕ(β, ~α)] = [ϕ(~α0, ~α)] pre nejaké α0 ∈
∏

Ai – princíp maxima

[(∀x)ϕ(x, ~α)] =
⋂

β∈
∏

Ai

[ϕ(β, ~α)] = [ϕ(~α0, ~α)] pre nejaké α0 ∈
∏

Ai – princíp minima

Definícia 3. Ak D je filter na I, tak definujeme α ≡D β práve vtedy, keď [α = β] ∈ D.
Filtrovaný súčin

∏

i∈I

Ai/D = (
∏

Ai/D, . . .),

f(αD
1 , . . . , αD

n ) = f(α1, . . . , αn)D,

(αD
1 , . . . , αD

n ) ∈ r práve vtedy, keď [r(α1, . . . , αn)] ∈ D.

AI/D sa nazýva filtrovaná (redukovaná) mocnina.
V prípade, že D je ultrafilter na I, nazývame filtrovaný súčin ultraprodukt a filtrovaná

mocnina je ultramocnina.

Veta 1 ( Losova). Nech B je ultrasúčin AI/D, a nech I je indexová množina. Potom pre
ľubovoľnú formulu ϕ(x1, . . . , xn) a α1, . . . , αn ∈ ∏

Ai platí

B |= ϕ(αD
1 , . . . , αD

n ) vtedy a len vtedy, keď [ϕ(α1, . . . , αn)] ∈ D.

Tvrdenie 2. Ak D je ultrafilter, tak d : A ≺−→ AI/D.

Veta o kompaktnosti v jazyku ultraproduktov

Definícia 4. C ⊆ P (I) je centrovaný systém, ak prienik jeho ľubovoľného konečného pod-
systému je neprázdny. (Zrejme každý filter je centrovaný systém.)

Veta 2 (o kompaktnosti). Nech Σ je množina uzavretých formúl jazyka L uzavretá vzhľa-
dom na konečné konjunkcie a pre každé σ ∈ Σ nech Aσ je štruktúra jazyka L taká, že Aσ |= σ.
Potom existuje ultrafilter D nad Σ taký, že

∏

σ∈Σ

Aσ/D |= Σ.

Veta 3 (Keisler-Shelah). Ak A ≡ B, tak existuje množina I a ultrafilter D na I taký, že
AI/D ∼= BI/D.

Veta 4. Nech A,B ∈ Mod(L). Potom A ≡ B práve vtedy, keď existuje množina I a ultrafilter

D na I tak, že h : B ≺−→ AI/D.
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14.3 Triedy štruktúr

Definícia 5. Nech K ⊆ Mod(L). Teória triedy K je Th(K) = {ϕ;ϕ je uzavretá a K |= ϕ} =
⋂

A∈K

Th(A).

K = ModThK
T = ThMod(T ) = {ϕ je uzavretá;T ⊢ ϕ}. (deduktívny uzáver)

Tvrdenie 3. T1 ⊆ T2 ⇒ Mod(T1) ⊇ Mod(T2)
K1 ⊆ K2 ⇒ Th(K1) ⊇ Th(K2)
Mod(Th(Mod(T ))) = Mod(T )

Definícia 6. K ⊆ Mod(L) sa nazýva axiomatická trieda, ak existuje teória T v jazyku L
taká, že K = Mod(T ).

Veta 5. Nech K ⊆ Mod(L) je ľubovoľná trieda štruktúr. Potom sú ekvivalentné:

(i) K je axiomatická trieda.

(ii) K je uzavretá vzhľadom na izomorfizmy, elementárne podštruktúry a ultraprodukty.

(iii) K je uzavretá na elementárne ekvivalencie a ultraprodukty.

Definícia 7. K ⊆ Mod(L) je varieta, ak existuje množina atomických formúl T taká, že
K = Mod(T ).

Veta 6. K je varieta práve vtedy, keď K je uzavretá na podštruktúry, homomorfné obrazy a
priame súčiny.

Definícia 8. Bázické Hornove formuly sú formuly tvaru ϕ1 ∨ . . . ∨ ϕn, kde ϕi sú atomické
alebo negatomické, ale najviac jedna z nich je atomická.

Hornove formuly sú vyrobené z bázických Hornových formúl pomocou &, ∃, ∀.
Bázické Hornove formuly môžu byť:

1. žiadna atomická: ¬ψ1 ∨ . . . ∨ ¬ψn ≡ ¬(ψ1& . . .&ψn) (ψi sú atomické)
2. žiadne negatomické: ϕ – atomická
3. nejaká atomická a nejaké negatomické: ¬ψ1 ∨ . . . ∨ ¬ψn ∨ ϕ ≡ (ψ1& . . .&ψn)⇒ ϕ
Ak I je vlastný filter, hovoríme o vlastnom filtrovanom súčine.

Veta 7. T sa prenáša na vlastné filtrované súčiny práve vtedy, keď T má množinu Hornových
axióm.

Veta 8. Ak T je univerzálna teória, tak

(i) T sa prenáša na priame súčiny práve vtedy, keď

(ii) sa prenáša na konečné priame súčiny práve vtedy, keď

(iii) má univerzálne Hornove axiómy.

Definícia 9. Trieda K ⊆ Mod(L) (resp. teória T ) sa nazýva konečne axiomatizovateľná, ak
existuje konečná množina formúl S taká, že K = Mod(S) (resp. Mod(T ) = Mod(S)).

Veta 9. Trieda K ⊆ Mod(L) je konečne axiomatizovateľná práve vtedy, keď K aj Mod(L)\K
sú axiomatické triedy.

Predpoklad, že táto teória je sporná, vedie k sporu.

Zlatoš
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15 Teória množín

Základné pojmy teórie množín (Boolovská algebra množín, relácie a zobrazenia, ekvivalen-
cia a rozklad, usporiadanie). Konštrukcie usporiadaných množín, Hasseovej diagramy, zväzy,
úplnosť. Naivná teória množín a jej paradoxy, axiomatizácia teórie množín, systém ZF. (Axi-
óma výberu a všeobecný karteziánsky súčin.) Množinová ekvivalencia a subvalencia. Mohut-
nosť množiny, aritmetika kardinálnych čísel. Cantorova-Bernsteinova veta. Diagonalizácia,
Cantorova veta, mohutnosti ℵ0 a c, mohutnosti niektorých dôležitých množín.
Pri príprave tejto otázky boli okrem poznámok použité [BŠ], [H], [ŠS] a [Z].

15.1 Základné pojmy teórie množín

Tu sú len také samé ľahké veci, ktoré je možno až škoda písať.

X ∪ Y = {x : x ∈ X ∨ x ∈ Y }
X ∩ Y = {x : x ∈ X ∧ x ∈ Y }
X \ Y = {x : x ∈ X ∧ x /∈ Y }

X × Y = {(x, y) : x ∈ X ∧ x ∈ Y }

Usporiadaná dvojica (a, b) = {{a}, {a, b}}

Relácie

Definícia 1. Reláciou medzi prvkami množín A, B nazývame akúkoľvek podmnožinu kar-
teziánskeho súčinu A × B. Ak A = B, tak hovoríme o relácii na množine A.

Definícia 2. Ak R ⊆ X × Y , S ⊆ Y × Z sú relácie, tak kompozíciou (zložením) relácií R a
S nazývame reláciu S ◦ R ⊆ X × Z takú, že (x, z) ∈ S ◦ R ⇔ ∃y; (x, y) ∈ R ∧ (y, z) ∈ S.

(S ◦ R)−1 = R−1 ◦ S−1

R[A] = {b ∈ Y ; (∃a ∈ A)(a, b) ∈ R}
R−1[A] = {a ∈ X; (∃b ∈ B)(a, b) ∈ R}

R[A ∪ B] = R[A] ∪ R[B]

R[A ∩ B] ⊆ R[A] ∩ R[B]

f [A ∪ B] = f [A] ∪ f [B]

f [A ∩ B] ⊆ f [A] ∩ f [B]

Ak f je bijekcia:

f−1[A ∪ B] = f−1[A] ∪ f−1[B]

f−1[A ∩ B] = f−1[A] ∩ f−1[B]

Definícia 3. Nech D je relácia na množine A.
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D je reflexívna (∀x ∈ A)(x, x) ∈ D
D je symetrická (x, y) ∈ D ⇒ (y, x) ∈ D
D je asymetrická (x, y) ∈ D ⇒ (y, x) /∈ D
D je tranzitívna (x, y) ∈ D ∧ (y, z) ∈ D ⇒ (x, y) ∈ D
D je trichotomická x 6= y ⇒ ((x, y) ∈ D ∨ (y, x) ∈ D)
D je antisymetrická ((x, y) ∈ D ∧ (y, x) ∈ D)⇒ x = y

Asymetrická relácia sa tiež zvykne volať silne antisymetrická, antisymetrická sa tiež volá
slabo antisymetrická.

Ekvivalencia

Definícia 4. Relácia D na množine A sa nazýva relácia ekvivalencie na A, ak je reflexívna,
symetrická a tranzitívna.

Veta 1. Nech D je relácia ekvivalencie na množine A 6= ∅. Pre x ∈ A označme A(x) = {y ∈
A : (y, x) ∈ D}. Potom systém množín {A(x) : x ∈ A} tvorí rozklad množiny A. (Nazýva sa
rozklad indukovaný ekvivalenciou D. A(x) sa nazýva trieda ekvivalencie prvku x.)

Nech A je neprázdna množina a S je jej rozklad. Definujme na množine A reláciu D ako
D = {(x, y) ∈ A × A : (∃M ∈ S)(x ∈ M ∧ y ∈ M)}. Potom D je relácia ekvivalencie na A a
S je ňou indukovaný rozklad.

Usporiadanie

Definícia 5. Relácia ≤ na množine X sa nazýva čiastočné usporiadanie, ak je reflexívna,
antisymetrická a tranzitívna. (Alternatívna definícia: relácia <, ktorá je antireflexívna, silne
antisymetrická a tranzitívna.) Dvojicu (X,≤) potom voláme čiastočne usporiadaná množina.
Nech (X,≤) je čiastočne usporiadaná množina. Ak platí

(∀x, y ∈ X)(x ≤ y ∨ y ≤ x),

tak (X,≤) sa nazýva lineárne (totálne) usporiadaná množina.

Definícia 6. Nech (X,≤) je čiastočne usporiadaná množina. Hovoríme, že prvok x je pokrytý
prvkom y, ak (x < y) ∧ (∄z)x < z < y. Značíme x −< y.

Hasseovej diagram: x je spojené s y stúpajúcou hranou, ak x −< y.

Definícia 7. a je najväčší prvok čiastočne usporiadanej množiny A, ak (∀x ∈ A)x ≤ a.
a je najmenší prvok čiastočne usporiadanej množiny A, ak (∀x ∈ A)x ≥ a.
a je maximálny prvok A, ak (∄x ∈ A)a < x, minimálny, ak (∄x ∈ A)x < a.
a je horné (dolné) ohraničenie podmnožiny B ⊆ A, ak (∀b ∈ B)a ≥ b (a ≤ b).
Infimum je najväčší prvok množiny dolných ohraničení a suprémum je najmenší prvok

množiny horných ohraničení.
Čiastočne usporiadaná množina sa nazýva úplná, ak každá jej ohraničená podmnožina

má suprémum a infimum.

Definícia 8. Nech (A,≤), (B,≤) sú čiastočne usporiadané množiny. Zobrazenie f : A → B je
izotónne, ak x ≤ y ⇒ f(x) ≤ f(y). f je antitónne, ak x ≤ y ⇒ f(x) ≥ f(y). f je monotónne,
ak je izotónne alebo antitónne.

Izomorfizmus čiastočne usporiadaných množín je zobrazenie f : A → B, ktoré je bijektívne
a platí x ≤ y ⇔ f(x) ≤ f(y). (Ekvivalentne: bijekcia taká, že f aj f−1 sú izotónne.)
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15.2 Naivná teória množín a jej paradoxy

Cantorova definícia množiny bola intuitívna. „Množina je súhrn objektov rozlíšiteľných
našou intuíciou.ÿ
Cantorov (vymedzovací) princíp: ak ϕ(x) je nejaká dosť presne definovaná vlastnosť, tak

{x;ϕ(x)} je množina.
Russelov paradox: {x;x /∈ x}
Berryho paradox: B = {x ∈ N : x možno jednoznačne popísať slovným spojením najviac

20 slov slovenského jazyka} (Keďm definujeme ako najmenšie prirodzené číslo, ktoré nemožno
jednoznačne . . ., dostali by sme m ∈ B aj m /∈ B.)

15.3 Zermelov-Fraenkelov axiomatický systém teórie množín

Axióma extenzionality (∀A,B)(A = B ⇔ ∀x(x ∈ A ⇔ x ∈ B))
Axióma dvojice (∀x, y)(∃Z)(∀z)(z ∈ Z ⇔ (z = x ∨ z = y))
Axióma zjednotenia (∀S)(∃X)(∀x)(x ∈ X ⇔ (∃s ∈ S)(x ∈ s))
Axióma potencie (∀X)(∃P )(∀C)(C ∈ P ⇔ C ⊆ X)
Schéma axióm vymedzenia: Nech ϕ(x) je výroková formula

jednej voľnej premennej x
(∀A)(∃X)(∀x)(x ∈ X ⇔ (x ∈ A ∧ ϕ(x)))

Schéma axióm obrazu (substitúcie): Nech F je zobrazenie
(∀A)(∃B)(∀y)(y ∈ B ⇔ (∃x)(x ∈ A ∧ F (x) = y))

Inak: Nech ψ(u, v) je formula neobsahujúca voľné premenné w, z
(∀u)(∀v)(∀w)((ψ(u, v) ∧ ψ(u,w))⇒ v = w)⇒
(∀a)(∃z)(∀v)(v ∈ z ⇔ (∃u)(u ∈ a ∧ ψ(u, v)))

Axióma regularity (fundovanosti) (∀A)(A 6= ∅ ⇒ (∃x ∈ A)x ∩ A = ∅)
Axióma existencie: (∃x)(x = x)
Axióma nekonečnej množiny: (∃A)(∅ ∈ A ∧ (∀x)(x ∈ A ⇒ x ∪ {x} ∈ A)

Nasleduje vysvetlenie, aký je význam jednotlivých axióm (pozri [Z] alebo [H].) Axióma
extenzionality udáva, že dve množiny sa rovnajú práve vtedy, keď majú rovnaké prvky. (Prvky
sa na množine podieľajú len svojou prítomnosťou.) Axióma dvojice, zjednotenia a potencie
nám umožňuje vytvárať z daných množín nové množiny. (Axióma dvojice sa tiež použije pri
definícii usporiadanej dvojice.) Axióma nekonečna postuluje existenciu nekonečnej množiny.
Schéma axióm vymedzenia upresňuje Cantorov vymedzovací princíp. Schéma axióm obrazu
rozširuje schému axióm vydelenia. Axióma regularity zakazuje nekonečné klesajúce reťazce
. . . ∈ x2 ∈ x1 ∈ x0 a zaručuje, že celé univerzum množín možno získať pomocou iterácií
operácii potenčnej množiny, t.j. V0 = ∅, Vα+1 = P(Vα) a Vλ =

⋃

α<λ

Vα pre limitný ordinál λ.

15.4 Axióma výberu

Princíp výberu: Pre každý rozklad r množiny X existuje výberová množina, to znamená
množina v ⊆ X, pre ktorú platí (∀u ∈ r)(∃x)(v ∩ u = {x}).

Definícia 9. Funkcia f definovaná na množineX, pre ktorú platí (y ∈ X∧y 6= ∅)⇒ f(y) ∈ y,
sa nazýva selektor na množine X.

Axióma výberu (AC): Na každej množine existuje selektor.

Definícia 10. Nech J je množina. Karteziánsky súčin systému množín {Fj : j ∈ J} definu-
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jeme ako
∏

j∈J

Fj = {f : f : J →
⋃

Fj ∧ (∀j ∈ J)(f(j) ∈ Fj)}.

Tvrdenie 1. Nasledujúce tvrdenia sú ekvivalentné:

(i) axióma výberu,

(ii) princíp výberu,

(iii) pre každú množinovú reláciu s existuje funkcia f taká, že f ⊆ s a Dom(f) = Dom(s).

(iv) Karteziánsky súčin neprázdneho súčinu neprázdnych množín je neprázdny.

ZFC = ZF + AC

15.5 Množinová ekvivalencia, kardinálne čísla

Definícia 11. Hovoríme, že množiny A, B sú ekvivalentné (A ≈ B), ak existuje bijekcia
f : A → B.
Hovoríme, že A je subvalentná B, A ¹ B, ak existuje injekcia f : A → B.
A je ostro subvalentná B, A ≺ B, ak A ¹ B a A 6≈ B.

Veta 2 (Cantor-Bernstein). Ak A ¹ B a B ¹ A, tak A ≈ B.

Bez AC nemusí platiť, že každé dve množiny sú porovnateľné v relácii ¹.
Kardinálne číslo možno chápať ako najmenšie ordinálne číslo s danou kardinalitou. Can-

torova definícia bola taká, že to boli vlastne typy (triedy) mohutnosti množín.
Existuje funkcia ℵ, ktorá zobrazuje triedu všetkých ordinálnych čísel na triedu všetkých

nekonečných kardinálnych čísel. Je hodnoty označujeme ℵ(α) =: ℵα. Funkcia ℵ je monotónna
a spojitá (t.j. zachováva usporiadanie a supréma).

Kardinálna aritmetika

Definícia 12. Ak κ, λ sú kardinálne čísla, tak definujeme kardinálny súčet, súčin a kardi-
nálnu mocninu:

κ + λ = |({0} × κ) ∪ ({1} × λ)|
κ.λ = |λ × κ|

κλ = |{f : λ → κ}|

ℵα + ℵβ = ℵα.ℵβ = max{ℵα,ℵβ}

αβ+γ = αβ .αγ

αβ.γ = (αβ)γ

(α.β)γ = αγ .βγ

Veta 3 (Cantorova). 2κ > κ
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Diagonalizačná metóda, ktorou sa dokazuje Cantorova veta, má veľmi široké uplatnenie.

2ℵα = ℵℵα
α

Hypotéza kontinua: 2ℵ0 = ℵ1.
Zovšeobecnená hypotéza kontinua (GCH): Pre každé nekonečné kardinálne číslo ℵα platí

2ℵα = ℵα+1 (t.j. medzi ℵα a 2ℵα už nie sú žiadne iné kardinálne čísla).
Gödel dokázal, že zovšeobecnená hypotéza kontinua je bezosporná vzhľadom k axiómam

ZF. Cohen (a nezávisle od neho Vopěnka) ukázal, že hypotéza kontinua je nezávislá na axió-
mach teórie množín (t.j. nevyplýva z nich).

ℵ0 = |N|, c = |P(N)|.
Množina A je spočítateľná, ak A ¹ N. Ekvivalentná podmienka: A = ∅ alebo existuje

surjekcia g : N → A.
Spočítateľné množiny: Množina všetkých prirodzených čísel, konečné postupnosti priro-

dzených čísel, algebraické čísla. Spočítateľné zjednotenie spočítateľných množín je spočíta-
teľná množina. (Na dôkaz treba axiómu výberu.)
Nespočítateľné: R, postupnosti prirodzených čísel, transcendentné čísla, Cantorovo dis-

kontinuum.
Princíp matematickej indukcie je ekvivalentný s tým, že množina prirodzených čísel N je

dobre usporiadaná.

Zbytočné a najvonkajšejšie zátvorky vynechávame.

Zlatoš

16 Ordinálne čísla

Izomorfizmus čiastočne usporiadaných množín, ordinálny typ. Dobre usporiadané množiny,
ordinálne čísla a ich aritmetika. Ordinály ω0 a ω1.

Dobré usporiadanie

Definícia 1. Usporiadaná trieda sa nazýva dobre usporiadaná, ak každá jej neprázdna pod-
množina má najmenší prvok.

Dobre usporiadaná trieda je lineárne usporiadaná.

Veta 1. Každá podtrieda dobre usporiadanej triedy je dobre usporiadaná.

Veta 2. Nech (A,<) je dobre usporiadaná množina a nech f je izotónne zobrazenie množiny
A do A. Potom pre žiadne a ∈ A neplatí f(a) < a.

Definícia 2. Množina I ⊂ A je úsek usporiadanej množiny (A,<), ak existuje také a ∈ A,
že I = {x ∈ A;x < a}; označujeme I = Aa.

Veta 3 (Základná veta o ordinálnych číslach). Nech (A,<A), (B,<B) sú dobre uspo-
riadané množiny. Potom alebo A a B sú izomorfné množiny, alebo jedna z nich je izomorfná
úseku druhej.

Ordinálne čísla

Ordinálne čísla sú typy dobre usporiadaných množín, to znamená, že všetkým navzájom
izomorfným dobre usporiadaným množinám zodpovedá to isté ordinálne číslo.

58



Ordinálne čísla možno zaviesť viacerými ekvivalentnými spôsobmi.
Usporiadaná množina A sa nazýva ordinálne číslo, ak a = Aa pre každé a ∈ A. (Šalát,

Smítal; Hart) Množina A je ordinálne číslo, ak je tranzitívna (t.j. x ∈ X ⇒ x ⊆ X) a ∈ je
dobré ostré usporiadanie na X. (Balcar, Štěpánek)

Veta 4. Ku každej dobre usporiadanej množine A existuje ordinál Ord(A) s týmito vlast-
nosťami:

(i) A ∼= Ord(A)

(ii) Ak (A,<), (A∗, <∗) sú dobre usporiadané množiny, tak A ∼= A∗ platí práve vtedy, keď
Ord(A) = Ord(A∗).

Ord(A) sa nazýva ordinálne číslo množiny A.

Veta 5. Každá dobre usporiadaná množina je izomorfná práve s jedným ordinálnym číslom.

Definícia 3. Ordinálne číslo α je menšie ako ordinálne číslo β, ak α je podobné nejakému
úseku množiny β. Namiesto α ∼= βb potom píšeme α < β.

Veta 6. Pre ľubovoľné dve ordinálne čísla α, β sú nasledujúce výroky ekvivalentné:

(i) α < β

(ii) α ⊂ β

(iii) α ∈ β

Aritmetika ordinálnych čísel

Lema 1. Nech (A,<A), (B,<B) sú disjunktné dobre usporiadané množiny. Potom množina
C = A ∪ B je dobre usporiadaná reláciou <C= (<A) ∪ (<B) ∪ A × B.

Definícia 4. Nech (A,<A), (B,<B) sú disjunktné dobre usporiadané množiny. Nech C =
A ∪ B je množina usporiadaná reláciou z predchádzajúcej definície. Potom ordinálne číslo
γ = Ord(C) sa nazýva súčet ordinálnych čísel α = Ord(A) a β = Ord(B). Píšeme γ = α+β.

Veta 7. Ak α, β sú ordinálne čísla, β 6= 0, tak α < α+ β.

ω + 1 6= ω = 1 + ω

Definícia 5. Nech (A,<A) a (B,<B) sú usporiadané množiny. Potom usporiadanie <C

karteziánskeho súčinu C = A × B dané vzťahom

[x1, y1] <C [x2, y2]⇔ (y1 <B y2) ∨ (y1 = y2 ∧ x1 <A x2)

sa nazýva lexikografické usporiadanie množiny A × B.

Lema 2. Ak (A,<A) a (B,<B) sú dobre usporiadané množiny, tak lexikografické usporia-
danie súčinu A × B je tiež dobré usporiadanie.

Definícia 6. Nech A, B sú dobre usporiadané množiny. Nech C je karteziánsky súčin A×B
s lexikografickým usporiadaním. Potom γ = Ord(C) sa nazýva súčin ordinálnych čísel α =
Ord(A) a β = Ord(B). Píšeme γ = α.β alebo len γ = αβ.

ω.2 = ω + ω 6= 2.ω = ω
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Ordinály ω a Ω

Ordinálne číslo množiny N s obvyklým usporiadaním sa označuje ω. Je to najmenšie
nekonečné ordinálne číslo.
Množina ordinálnych čísel všetkých dobrých usporiadaní množiny N, čiže množina všet-

kých spočítateľných ordinálnych čísel, je tiež ordinálne číslo, ktoré sa zvykne označovať Ω
alebo ω1. Je to najmenšie nespočítateľné ordinálne číslo.
Literatúra k ordinálnym číslam: [BŠ], [H], [ŠS].

. . .čo je nesporne spor.
Činčura

17 Axióma výberu

Transfinitná indukcia. Princíp dobrého usporiadania, axióma výberu, Zornova lema a ich
ďalšie ekvivalenty a dôsledky.
Táto časť je podľa [Z2]. Tu sa dolným rezom (počiatočným úsekom) rozumie to, čo bol v

predchádzajúcej časti úsek, ale môže to byť navyše aj celá množina. Ďalej sa používa značenie
X(a) = {x ∈ X : x < a}.

17.1 Transfinitná indukcia a rekurzia

Veta 1 (o transfinitnej indukcii). Nech (X,<) je dobre usporiadaná množina. Nech
A ⊆ X je množina taká, že

(∀a ∈ X)(X(a) ⊆ A ⇒ a ∈ A).

Potom A = X.

Veta 2 (o transfinitnej rekurzii). Nech (X,<) je dobre usporiadaná množina, Z je ľubo-
voľná množina a g je funkcia taká, že

dom g =
⋃

a∈X

ZX(a)

.

Potom existuje jediná funkcia f : X → Z taká, že pre každé a ∈ X platí

f(a) = g(f ↾ X(a)).

Triedu všetkých ordinálnych čísel budeme značiť Ω . Tranzitívna trieda je taká trieda X,
že z ∈ y & y ∈ X ⇒ z ∈ X. Transfinitná indukcia a rekurzia sa najčastejšie používajú pre
ordinálne čísla, čiže v nasledovnej formulácii.

Veta 3 (o transfinitnej indukcii). Nech X ⊆ Ω je tranzitívna trieda, A ⊆ X je trieda
taká, že

(∀α ∈ X)(α ⊆ A ⇒ α ∈ A).

Potom A = X.

Veta 4 (o transfinitnej rekurzii). Nech X ⊆ Ω je tranzitívna trieda, Z je ľubovoľná trieda
a G je triedová funkcia taká, že

domG =
⋃

α∈X

Zα.

Potom existuje jediná funkcia F : X → Z taká, že pre každé α ∈ X platí

F(α) = G(F ↾ α).
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Dôkaz transfinitnou indukciou aj konštrukcia transfinitnou rekurziou sa obvykle delí na
dva kroky: pre limitné a pre nelimitné ordinály.

17.2 Ekvivalentné formy axiómy výberu

Definícia 1. Podmnožina A čiastočne usporiadanej množiny (X,<) sa nazýva reťazec, ak
je lineárne usporiadaná. Hovoríme, že podmnožina A čiastočne usporiadanej množiny (X,<)
je usmernená, ak pre ľubovoľné x, y ∈ A existuje z ∈ A také, že x ≤ z a y ≤ z.

Veta 5. Axióma výberu je ekvivalentná s každým z nasledujúcich tvrdení:

(i) Nech E je ekvivalencia na množine X. Potom existuje množina Y ⊆ X taká, že (∀x ∈
X)(∃!y ∈ Y )(xEy).

(ii) Na každej množine X (ktorej prvkami sú množiny) existuje selektor, t.j. zobrazenie
h : X → ⋃

X také, že (∀x ∈ X)(x 6= ∅ ⇒ h(x) ∈ x).

(iii) Pre každú reláciu R existuje funkcia f taká, že dom f = domR a f ⊆ R.

(iv) Ku každej surjekcii f : X → Y existuje pravé inverzné zobrazenie, t.j. zobrazenie g : Y →
X také, že f ◦ g = idY .

(v) Karteziánsky súčin systému neprázdnych množín je neprázdny.

Axióma výberu sa používa napríklad aj v dôkaze ekvivalencie Heineho a Cauchyho definí-
cie spojitosti a tiež v dôkaze tvrdenia, že zjednotenie spočítateľného systému spočítateľných
množín je spočítateľná množina. (V oboch prípadoch stačí tzv. slabá axióma výberu, ktorá
postuluje existenciu selektora pre spočítateľné systémy množín nanajvýš mohutnosti konti-
nua.)
Princíp dobrého usporiadania (WO). Každú množinu možno dobre usporiadať.

Veta 6. Princíp dobrého usporiadania je ekvivalentný s každým z nasledujúcich tvrdení:

(i) Pre každú množinu X platí |X| ∈ Ω.

(ii) Pre každú nekonečnú množinu X existuje α ∈ Ω také, že |X| = ℵα.

(iii) Pre ľubovoľné množiny X, Y platí X ¹ Y alebo Y ¹ X.

(iv) Pre ľubovoľné kardinálne čísla α, β platí α ¹ β alebo β ¹ α.

Princípy maximality sú najčastejšie označované názvom Zornova lema. Všetky nasledu-
júce formulácie princípu maximality sú ekvivalentné.

Princíp maximality (MP0). Nech (X,<) je čiastočne usporiadaná množina, v ktorej
je každý reťazec zhora ohraničený. Potom pre každé x ∈ X existuje maximálny prvok m ∈ X
taký, že x ≤ m.

Princíp maximality (MP1). Nech X je ľubovoľná množina a S ⊆ P(X) je systém jej
podmnožín taký, že pre každý usmernený podsystém D v (S,⊆) platí

⋃D ∈ S. Potom S
obsahuje maximálny prvok.

Princíp maximality (MP0’). Nech (X,<) je čiastočne usporiadaná množina, v ktorej
každá usmernená podmnožina má suprémum. Potom v (X,<) existuje maximálny prvok.

Princíp maximality (MP1’) Nech X je ľubovoľná množina a S ⊆ P(X) je systém
jej podmnožín taký, že každý reťazec v (S,⊆) je zhora ohraničený. Potom pre každé A ∈ S
existuje maximálna množina M ∈ S taká, že A ⊆ M .
Použitím princípu maximality možno napríklad dokázať, že pre každý centrovaný systém

existuje ultrafilter, ktorý ho obsahuje.
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Veta 7. Axióma výberu (AC), princíp dobrého usporiadania (WO) a princíp maximality sú
ekvivalentné.

Dôležité je uvedomiť si medze toho, čo môžeme vedieť o našom vedení.

Zlatoš

18 Univerzálne algebry a zväzy

Univerzálne algebry, základné algebraické konštrukcie (faktorová algebra, priamy a polo-
priamy súčin), zväz kongruencií algebry, variety algebier, Birkhoffova veta. Distributívne a
modulárne zväzy. Boolovské algebry a ich reprezentácia.

18.1 Univerzálne algebry

Definícia 1. Typom algebier rozumieme množinu F , ktorej prvky nazývame operačné sym-
boly. Každému prvku f ∈ F patrí nezáporné celé číslo o(f), nazývané jeho árnosťou. Ak
o(f) = n, hovoríme, že f je n-árny operačný symbol. Nulárne operačné symboly sa nazývajú
konštanty. Fn budeme označovať množinu všetkých n-árnych operačných symbolov typu F .

Definícia 2. Nech F je typ algebier. Algebrou typu F nazývame dvojicu A = (A;F ), kde A
je neprázdna množina a každému operačnému symbolu f ∈ F je priradená n-árna operácia
fA na množine A, pričom n = o(f).

Homomorfizmy a kongruencie

Definícia 3. Nech A, B sú algebry typu F . Zobrazenie ϕ : A → B sa nazýva homomorfizmus
(tiež homomorfné zobrazenie), ak pre každé f ∈ F (nech o(f) = n) a každé a1, . . . , an ∈ A
je ϕ(f(a1, . . . , an)) = f(ϕa1, . . . , ϕan).

Homomorfizmy sú uzavreté na skladanie, obraz a vzor algebry v homomorfizme sú po-
dalgebry danej algebry. Obraz podalgebry generovanej nejakou množinou je podalgebra ge-
nerovaná obrazom tej množiny.

Lema 1. Nech ϕ : A → B je bijektívny homomorfizmus algebier. Potom ϕ−1 : B → A je tiež
homomorfizmus.

Definícia 4. Bijektívny homomorfizmus algebier sa nazýva izomorfizmus. Hovoríme, že al-
gebry A, B sú izomorfné (A ∼= B), ak existuje izomorfizmus A → B.

Definícia 5. Ekvivalencia θ na algebre A, pre ktorú platí

aiθbi (i = 1, . . . , n) ⇒ f(a1, . . . , an)θf(b1, . . . , bn)

pre všetky f ∈ F (t.j. θ je kompatibilná s operáciami algebry A), sa nazýva kongruencia.
Množinu všetkých kongruencií na A budeme označovať ConA.

Na každej algebre existujú dve triviálne kongruencie ω (najmenšia) a ι (plná).
Jadro homomorfizmu je kongruenciou, naopak každá kongruencia je jadrom prirodzeného

homomorfizmu:

Definícia 6. Nech θ je ľubovoľná kongruencia algebry A = (A;F ). Na faktorovej mno-
žine A/θ definujeme operácie pre všetky f ∈ F takto: f([a1]θ, . . . , [an]θ) = [f(a1, . . . , an)]θ.
Dostaneme tak algebru A/θ, ktorú nazývame faktorovou algebrou.

ϕ : a 7→ [a]θ je homomorfizmus algebry A na algebru A/θ a Kerϕ = θ. ϕ nazývame
prirodzený homomorfizmus.
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Priame a polopriame súčiny

Definícia 7. Nech (Ai; i ∈ I) je systém algebier typu F , A =
∏

(Ai; i ∈ I). Definujme algebru
∏

(Ai; i ∈ I) takto: Ak f ∈ F je n-árny operačný symbol, a1, . . . , an ∈ A, je f(a1, . . . , an) taký
prvok karteziánskeho súčinu A, že pre každé i ∈ I je f(a1, . . . , an)(i) = f(a1(i), . . . , an(i)).
Algebra (A;F ) sa nazýva priamy súčin algebier Ai. Súčin konečného počtu algebier sa ozna-
čuje A0 × A1 × . . . × An.

Definícia 8. Izomorfizmus ϕ : B → ∏

(Ai; i ∈ I) algebry B na priamy súčin algebier Ai

nazveme priamym rozkladom algebry B. Hovoríme, že B sa dá rozložiť na priamy súčin
algebier Ai, ak taký izomorfizmus existuje. Ai nazveme faktormi priameho rozkladu.

Definícia 9. Podalgebru A priameho súčinu
∏

(Ai; i ∈ I) nazývame polopriamy súčin tých
algebier, ak pre každé i ∈ I je projekcia πi|A : A → Ai surjektívna. Injektívny homomorfizmus
ϕ : B → ∏

(Ai; i ∈ I), pre ktorý ϕ[B] tvorí polopriamy súčin algebier nazývame polopriamym
rozkladom algebry B, algebry Ai nazývame jeho faktormi. Ak taký homomorfizmus ϕ existuje,
hovoríme tiež, že B sa dá rozložiť na polopriamy súčin algebier Ai (i ∈ I).
Polopriamy rozklad nazveme vlastným, ak pre žiadne i ∈ I nie je (πi|ϕ[B]) ◦ ϕ : B →

Ai izomorfizmus. Algebra, ktorá nemá vlastný polopriamy rozklad sa nazýva polopriamo
nerozložiteľná.

Veta 1. Ak ϕ : B → ∏

(Ai; i ∈ I) je polopriamy rozklad algebry B, θi = Ker(π ◦ ϕ) (i ∈ I).
Potom

⋃

(θi : i ∈ I) = ω a Ai
∼= Bi/θi pre každé i ∈ I.

Veta 2. Nech A je algebra. Nasledujúce podmienky sú ekvivalentné.

(i) A je polopriamo nerozložiteľná.

(ii) ∩(θ : θ ∈ ConA ∧ θ 6= ω) 6= ω.

Okruh Z celých čísel je priamo nerozložiteľný, ale je polopriamo rozložiteľný.

18.2 Zväzy a úplné zväzy

Zavedieme označenie a ∨ b pre sup{a, b} a a ∧ b pre inf{a, b}.

Definícia 10. Usporiadaná množina P , v ktorej pre každé a, b ∈ P existuje a ∨ b (a ∧ b) sa
nazýva ∨-polozväz (∧-polozväz ) alebo horný (dolný) polozväz. P sa nazýva zväz, ak pre každé
a, b ∈ P existuje a ∨ b aj a ∧ b. P sa nazýva úplný zväz, ak pre každú podmnožinu A ⊂ P
existuje supA aj inf A.

Veta 3. Usporiadaná množina P je práve vtedy úplným zväzom, keď každá jej podmnožina
má infimum. (Ekvivalentne: keď P má najväčší prvok a každá neprázdna podmnožina P má
infimum.)

Veta 4 (Tarski). Ak P je úplný zväz, tak každé izotónne zobrazenie f : P → P má pevný
bod.

Tarskiho vetu možno použiť na dôkaz Cantor–Bernsteinovej vety. Máme injekcie f : A →
B a g : B → A a hľadáme pevný bod funkcie F : P(A)→ P(A), F (X) = A \ g(B \ f(X)).
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Lema 2. Nech P je zväz. Operácie ∧ a ∨ spĺňajú identity (idempotentnosť, komutatívnosť,
asociatívnosť, absorpcia)

x ∧ x = x (L1)

x ∧ y = y ∧ x (L2)

(x ∧ y) ∧ z = x ∧ (y ∧ z) (L3)

(x ∧ y) ∨ x = x (L4)

x ∨ x = x (L1’)

x ∨ y = y ∨ x (L2’)

(x ∨ y) ∨ z = x ∨ (y ∨ z) (L3’)

(x ∨ y) ∧ x = x (L4’)

Veta 5. Existuje navzájom jednojednoznačná korešpondencia medzi zväzmi (L;≤) a algeb-
rami (L;∧,∨) spĺňajúcimi identity (L1) až (L4) a (L1’) až (L4’). Algebra patriaca zväzu L
má operácie x∧y = inf{x, y} a x∨y = sup{x, y}, usporiadanie zväzu prislúchajúceho algebre
(L;∧,∨) je dané vzťahom x ≤ y ⇔ x ∧ y = x(⇔ x ∨ y = y).

Vo zväze platí:
a ≤ b ⇒ c ∧ a ≤ c ∧ b, c ∨ a ≤ c ∨ b
a1 ≤ b1, a2 ≤ b2 ⇒ a1 ∧ a2 ≤ b1 ∧ b2, a1 ∨ a2 ≤ b1 ∨ b2
a ≤ c, a ≤ d, b ≤ c, b ≤ d ⇒ a ∨ b ≤ c ∧ d
(a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c)
a ∨ (b ∧ c) ≤ (a ∨ b) ∧ (a ∨ c)
a ≤ c ⇒ a ∨ (b ∧ c) ≤ (a ∨ b) ∧ c
(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a)
ai ≤ bi ⇒ t(a1, . . . , an) ≤ t(b1, . . . , bn) pre každý termu typu {∧,∨}
Ak t je term, tak td je term, ktorý vznikne z t zámenou ∨ a ∧.

Tvrdenie 1 (Princíp duality). Ak I ≡ t1 = t2 je identita platiaca vo zväze, tak aj Id ≡
td1 = td2 (tzv. duálna identita) je identita platiaca vo zväze.

Ak I = Id, tak I sa nazýva samoduálna.

18.3 Distributívne a modulárne zväzy

Lema 3. Nasledujúce identity sú vo zväze ekvivalentné.

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (L5)

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (L5’)

Definícia 11. Zväz, ktorý spĺňa niektorú z identít (L5), (L5’) sa nazýva distributívny.
Zväz sa nazýva modulárny, ak spĺňa podmienku

x ≤ z ⇒ x ∨ (y ∧ z) = (x ∨ y) ∧ z (18.1)

Oba tieto pojmy sú samoduálne. Každý distributívny zväz je modulárny.
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M3 N5
Veta 6. Zväz je modulárny práve vtedy, keď neobsahuje podzväz izomorfný s N5.

Zväz je distributívny práve vtedy, keď neobsahuje podzväz izomorfný s M3 alebo N5.

Veta 7. Zväz je distributívny práve vtedy, keď

(x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x).

Veta 8. Zväz je modulárny práve vtedy, keď a ∧ b = a ∧ c, a ∨ b = a ∨ c, b ≤ c ⇒ b = c.
Zväz je distributívny práve vtedy, keď a ∧ b = a ∧ c, a ∨ b = a ∨ c ⇒ b = c.

Veta 9 (Dedekindov princíp transponovania). Ak a, b sú prvky modulárneho zväzu,
potom ϕ : p 7→ b ∨ p a ψ : q 7→ a ∧ q sú navzájom inverzné izomorfizmy [a ∧ b, a] a [b, a ∨ b].

a ∨ b

a

{{{{{{{{

=={{{{{{{{

DD
DD

DD
DD
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CCCCCCCC

{{
{{

{{
{{

}}{{
{{

{{
{{

a ∧ b

Operácie uzáveru

Definícia 12. Operáciou uzáveru v triede A sa nazýva také zobrazenie − : P(A) → P(A),
že pre každé X,Y ⊂ A platí

(i) X ⊂ X−

(ii) X ⊂ Y ⇒ X− ⊂ Y −

(iii) X−− = X−

Trieda X ⊂ A sa nazýva uzavretá , ak X− = X.
Nech A je trieda. Triedu U ⊂ P(A), ktorá má vlastnosti

(i) A ∈ U

(ii) Ak Xi ∈ U pre každé i ∈ I, tak
⋂

(Xi : i ∈ I) ∈ U .

nazývame uzáverovým systémom v A.
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Veta 10. Existuje jednojednoznačná korešpondencia medzi operátormi uzáveru v triede A a
uzáverovými systémami v A.

Uzáverový systém v množine, usporiadaný množinovou inklúziou, je úplný zväz. V tomto
zväze sú prieseky množinové prieniky, spojenie systému množín je uzáver ich množinového
zjednotenia.

Ak A je algebra, tak ConA je uzáverový systém v množine A×A. Je to teda úplný zväz.
Ak L je zväz, tak zväz ConL je distributívny.

18.4 Boolovské algebry

Definícia 13. Nech L je zväz s najmenším prvkom 0 a najväčším prvkom I. Prvok b ∈ L je
komplement prvku a ∈ A, ak a ∧ b = 0, a ∨ b = I.
Zväz s najmenším a najväčším prvkom nazveme komplementárnym, ak každý jeho prvok

má komplement.

Definícia 14. Komplementárny distributívny zväz sa nazýva boolovský zväz. Ak (L;∧,∨) je
boolovský zväz, algebra (L;∧,∨,′ , 0, I) sa nazýva boolovská algebra.
Podalgebry algebier P (M), kde M je nejaká množina sa nazývajú množinové boolovské

algebry.

Veta 11. Atomárna boolovská algebra je izomorfná s množinovou boolovskou algebrou. Bo-
olovská algebra je izomorfná s množinovou algebrou P (M) práve vtedy, keď je atomárna a
úplná.

Boolovskú algebru môžeme teda chápať ako algebru s operáciami ∨, ∧, ′, 0, 1. Podalgebra
boolovskej algebry je podmnožina, ktorá je uzavretá na tieto operácie.

18.5 Variety

Definícia 15. Triedu V algebier rovnakého typu nazveme varietou, ak existuje množina I
identít taká, že A je prvkom triedy V práve vtedy, keď spĺňa každú identitu z I.

Veta 12 (Birkhoff). Trieda algebier rovnakého typu je varietou práve vtedy, keď je uzavretá
na homomorfizmy, podalgebry a priame súčiny.

Každý rozmýšľa, samozrejme.

Tomanová

Táto bibliografia má slúžiť nie len ako zoznam literatúry použitej pri príprave otázok, ale
aj ako zoznam literatúry, ktorá sa dá u nás zohnať alebo stiahnuť. (Samozrejme, časom už
niektoré linky asi nebudú platiť, ale nájsť tie veci na webe určite nebude problém.)
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Okrem Legéňa ostatní napísali otázky na papieriky a človek si vytiahol jeden.

Šalát skúšal veci z teórie čísel. (Čiže úplne každý dostal jednu otázku z teórie čísel. Skúšal aj
veci, ktoré neboli napísané v sylaboch na štátnice!!!)
1. Divergencia

∑

1
n ,

∑

1
p .

Ak d | m.n, musí platiť, že d | m alebo d | m.
2. Vzťah medzi (a, b) a [a, b].
Môže mať riešenie rovnica xn + yn = zn; x, y, z sú prvočísla, n ≥ 2.
(Ako doplňujúce otázky: prvočísla – počet, ohraničenia, prvočíselná veta.)
3. Dokonalé čísla 1. druhu.
Ak 2n − 1 aj 2n + 1 sú prvočísla, čo z toho vyplýva pre n.
4. Cantorove rozvoje.
Vlastnosti funkcií σ(n) a τ(n) pre n → ∞.
5. Počet prvočísel, dolný odhad π(x), súčet deliteľov 100.

Zlatoš skúšal všetko, čo neskúšali ostatní.
1. Rovinné grafy, Eulerova formula.
Konečne generované moduly nad OHI.
2. Oreho veta.
Reprezentácia Boolovských algebier.
3. Lineárne a Hammingove kódy.
Gödelova veta o úplnosti.
4. Sylowove vety.
Zachovávanie vlastností pri teoreticko–modelových konštrukciách.
5. Ramseyho veta.
Axióma výberu a ekvivalentné formulácie.

Činčura skúšal všeobecnú topológiu.
1. Metrizovateľné priestory a ich vlastnosti. Vety o metrizácii topologických priestorov.
2. Normálne priestory – vlastnosti, zachovávanie na topologické konštrukcie. Urysohnova
lema.
3. Úplne regulárne priestory. Veta o reprezentácii.
4. Regulárne a úplne regulárne priestory. Zachovanie pri topologických konštrukciách. Súvis
s normálnymi priestormi.
5. Súvislé a lineárne súvislé priestory a ich súvis, vlastnosti, . . .

Legéň skúšal algebraickú a diferenciálnu topológiu.
1. Singulárne homologické grupy topologických priestorov. (Doplňujúca otázka: Či pomocou
homologických grúp vieme dokázať, že Rm a Rn sú nehomeomorfné ak m 6= n.)
2. Vnáranie variet do Rn.
3. Fundamentálna grupa.
4. Diferencovateľné variety a diferencovateľné zobrazenia.
5. Homotópia, retrakcie.
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