
Verzia: 25. júna 2002
Zatiaľ som nepísal poznámky z diferenciálnej a algebraickej topológie, ale na stránke sú

poznámky z týchto predmetov, ktoré som používal pri príprave na skúšku.

1 Topológia

Topologické priestory, axiómy oddeliteľnosti (regulárne, úplne regulárne, normálne priestory).
Spojité funkcie. Základné topologické konštrukcie (topologický súčin a súčet, faktorový pries-
tor). Súvislé, lokálne kompaktné a kompaktné priestory. Konvergencia v topologických pries-
toroch (pomocou filtrov a sietí). Metrizovateľné priestory, metrizácia topologických priesto-
rov.

1.1 Topologické priestory

Definícia 1. Nech X je množina. Systém T podmnožín množiny X taký, že

(i) ∅,X ∈ T ,

(ii) ak U, V ∈ T , tak aj U ∩ V ∈ T ,

(iii) ak Ui ∈ T pre každé i ∈ I, tak aj
⋃

i∈I Ui ∈ T .

sa nazýva topológia na množine X. Dvojicu (X, T ) nazývame topologický priestor.
Množiny patriace do T voláme otvorené, ich doplnky sú uzavreté množiny.

Príklad 1. Triviálnymi príkladmi sú diskrétny (každá množina je otvorená) a indiskrétny
topologický priestor (otvorené sú len ∅ a X).
Každý metrický priestor určuje topológiu. (Topológiu danú metrikou d značíme Td.)
Kofinitná topológia = otvorené množiny sú doplnky konečných množín.
(R, Tz), kde Tz = {U ∈ P(R); (∀x ∈ U)(∃ε > 0)(x − ε, x〉 ⊆ U}.
Sierpińského topologický priestor: X = {0, 1}, T = {∅,X, {0}}

Topológiu možno zadať aj tak, že zadáme množinu uzavretých množín.

Definícia 2. Nech X je topologický priestor, A ⊆ X. A = ∩{F : A ⊆ F, F je uzavretá v X}
sa nazýva uzáver množiny A v X.

Tvrdenie 1.

(i) A ⊆ A.

(ii) A je uzavretá množina.

(iii) ∅ = ∅.

(iv) A je uzavretá ⇔ A = A.

(v) A ∪ B = A ∪ B.

(vi) A = A.

Topológiu možno zadať aj tak, že zadáme operátor uzáveru. (Musí spĺňať podmienky (i),
(iii), (v), (vi) z predchádzajúceho tvrdenia.)

Definícia 3. Podmnožina A topologického priestoru (X, T ) sa nazýva hustá, ak A = X.
Priestor sa nazýva separabilný, ak v ňom existuje spočítateľná hustá podmnožina.
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Pre A ⊆ X sa A◦ =
⋃

{U ∈ T ;U ⊆ A} nazýva vnútro množiny A. Platí X◦ = X, A◦ ⊆ A,
(A ∩ B)◦ = A◦ ∩ B◦, (A◦)◦ = A◦. Naopak, ak je daný operátor nt : P(X)→ P(X) spĺňajúci
uvedené vlastnosti, možno pomocou neho definovať topológiu na X tak, aby intA = A◦.

Definícia 4. Nech (X, T ) je topologický priestor, a ∈ X. Okolím bodu A nazývame ľubo-
voľnú podmnožinu U ⊆ X takú, že a ∈ U a existuje V ∈ T taká, že a ∈ V ⊆ U .

Veta 1. Nech (X, T ) je topologický priestor, A ⊆ X, a ∈ X. Potom a ∈ A ⇔ pre každé
okolie V bodu a V ∩ A 6= ∅.

Definícia 5. Nech (X, T ) je topologický priestor, a ∈ X. Potom systém B(a) okolí bodu a
sa nazýva bázou okolí (bázou systému okolí) bodu a, ak pre každé okolie V bodu a existuje
U ∈ B(a) také, že U ⊆ V .

Definícia 6. Hovoríme, že (X, T ) vyhovuje 1. axióme spočítateľnosti, ak pre každý bod
a ∈ X existuje spočítateľná báza okolí.

Definícia 7. Nech (X, T ) je topologický priestor. Systém B ⊆ T sa nazýva bázou topológie
T , ak pre každé U ∈ T existuje S ⊆ B tak, že U =

⋃

S∈S S.
(X, T ) vyhovuje 2. axióme spočítateľnosti, ak existuje spočítateľná báza topológie.

Veta 2. Systém B ⊆ T je bázou topológie T vtedy a len vtedy, ak pre každé U ∈ T a každé
x ∈ U existuje V ∈ B tak, že x ∈ V ⊆ U .

Veta 3. Nech B je báza topológie. Potom platí

(i)
⋃

B∈B

B = X.

(ii) Ak V,W ∈ B, tak pre každý bod x ∈ V ∩ W existuje množina U ∈ B taká, že x ∈ U ⊆
V ∩ W .

Obrátene, ak nejaký systém B spĺňa tieto podmienky, je bázou nejakej topológie.

Tvrdenie 2. Ak priestor X má spočítateľnú bázu topológie, tak vyhovuje prvej axióme spo-
čítateľnosti.
Nech B je báza topologického priestoru X. Potom A ⊆ X je hustá práve vtedy, keď

A ∩ U 6= ∅ pre všetky U ∈ B.

Definícia 8. Nech (X, T ) je topologický priestor. Systém S ⊆ T sa nazýva subbázou topo-
lógie T , ak BS = {V ∈ P(X); (∃W1, . . . ,Wk ∈ S)V =

⋂k
i=1Wi} je bázou topológie T .

S je subbáza nejakej topológie na X práve vtedy, keď
⋃

S∈S S = X.

1.2 Spojité funkcie

Definícia 9. Nech X, Y sú topologické priestory. Zobrazenie f : X → Y sa nazýva spojité,
ak vzor f−1(U) každej otvorenej množiny v Y je otvorená množina v X.

Zloženie spojitých zobrazení je spojité. Zúženie spojitého zobrazenia na podpriestor je
spojité. Ak A je podpriestor X, tak vloženie A do X je spojité zobrazenie. Konštantné
zobrazenie je spojité.
Ekvivalentné podmienky ku spojitosti: Vzor uzavretej množiny je uzavretá. Vzor bázovej

množiny je otvorená. Pre každé A ⊆ X je f [A] ⊆ f [A].

Definícia 10. Bijekcia f : X → Y je homeomorfizmus, ak f aj f−1 sú spojité.
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Definícia 11. Zobrazenie f : X → Y sa nazýva otvorené (uzavreté), ak pre každú otvorenú
(uzavretú) množinu U ⊆ X je f [U ] otvorená (uzavretá) v Y .

Definícia 12. Spojité zobrazenie m : X → Y sa nazýva vnorenie, ak m : X → m[X] je
homeomorfizmus.

1.3 Základné topologické konštrukcie

Definícia 13. Nech (X, T ) je topologický priestor a A ⊆ X. Potom topologický priestor
na množine A s topológiou TA = {U ∩ A;U ∈ T } (tzv. relatívna topológia) je topologický
podpriestor priestoru (X, T ).

Tvrdenie 3. Nech (X, TX) je topologický priestor, Y je množina a f : X → Y je zobrazenie.
Potom Tf = {V ∈ P(Y ); f−1(V ) ∈ TX} je topológia na Y . Tf sa nazýva faktorová topológia.
Platí:

(i) f : (X, TX)→ (Y, Tf ) je spojité.

(ii) Ak f : (X, TX)→ (Y, T ) je spojité, tak T ⊆ Tf .

(iii) Ak g : (Y, Tf ) → (Z, TZ) je zobrazenie a g ◦ f : (X, TX) → (Z, TZ) je spojité, tak g je
spojité.

Definícia 14. Nech (X, T ) je topologický priestor, E je relácia ekvivalencie na X, X/E je
rozklad X na triedy ekvivalencie a p : X → X/E, p(x) = E(x). Potom (X/E, Tp) sa nazýva
faktorovým priestorom priestoru (X, T ), označujeme (X, T )/E.
Spojité zobrazenie f : (X, TX) → (Y, TY ) sa nazýva faktorové, ak je surjektívne a pre

každé V ∈ P(Y ) platí f−1(V ) ∈ TX ⇒ V ∈ TY . (Podmnožina Y je otvorená práve vtedy,
keď jej vzor v zobrazení f je otvorená množina v X.)

Tvrdenie 4. (i) Ak f : (X, TX)→ (Y, TY ) je faktorové zobrazenie, tak TY = Tf .

(ii) Ak f : (X, TX) → (Y, TY ) je faktorové zobrazenie a Ef je relácia ekvivalencie ur-
čená zobrazením f (t.j. (x, y) ∈ Ef ⇔ f(x) = f(y)), tak f : (X, TX)/Ef → (Y, TY ),
f(Ef (x)) = f(x), je homeomorfizmus.

Tvrdenie 5. Ak spojité zobrazenie f : X → Y je surjektívne a otvorené (uzavreté), tak je
faktorové.

Definícia 15. Nech (Xα, Tα)α∈I je systém topologických priestorov (I je množina.) Nech
X =

∏

α∈I

Xα, B = {W ∈ P(X); existujú α1, . . . , αk ∈ I a Ui ∈ Tαi
pre i ∈ {1, . . . , k} tak, že

W =
k
⋂

i=1

p−1αi
(Ui)}. Nech T = TB je topológia na X určená bázou B. Potom (X, T ) sa nazýva

topologickým súčinom topologický priestorov (Xα, Tα)α∈I .

Veta 4 (Vlastnosti topologického súčinu). (i) Projekcie pα sú spojité.

(ii) Ak T ′ je topológia na
∏

α∈I Xα taká, že pre každé α ∈ I je pα : (
∏

α∈I Xα, T ′) →
(Xα, Tα) je spojité, tak T ⊆ T ′. (T.j. T je najhrubšia taká topológia, pre ktorú sú
všetky pa spojité.)

Tvrdenie 6. Ak pre každé α ∈ I je Xα Ti-priestor (i = {0, 1, 2}), tak aj
∏

α∈I Xα je
Ti-priestor.
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Tvrdenie 7. Ak f je zobrazenie topologického priestoru Y do topologického súčinu
∏

α∈I Xα,
tak f je spojité práve vtedy, keď pα ◦ f je spojité pre všetky α ∈ I.

Dôsledok 1. Nech Xα, α ∈ I 6= ∅, je systém topologických priestorov a pre každé α ∈ I
je fα : Y → Xα je spojité zobrazenie. Potom existuje práve jedno spojité zobrazenie f : Y →
∏

α∈I Xα také, že pα ◦ f = fα pre každé α ∈ I.

Dôsledok 2. Nech Xα, Yα, α ∈ I 6= ∅, sú systémy topologických priestorov a pre každé
α ∈ I je fα : Xα → Yα spojité zobrazenie. Potom existuje práve jedno spojité zobrazenie
f :

∏

α∈I Xα →
∏

α∈I Yα také, že fα ◦ pα = p′α ◦ f . Označujeme ho f =:
∏

α∈I fα.

Definícia 16. Nech I je neprázdna množina a (Xα, α ∈ I) je systém topologických priesto-
rov. Nech X =

⋃

α∈I Xα × {α} a T = {U ∈ P(X);U ∩ (Xα × {α}) je otvorená v Xα × {α}
pre každé α ∈ I}. Používa sa označenie (X, T ) =

∑

α∈I

(Xα, Tα) =
⊕

α∈I

Xα =
∐

α∈I

Xα. (X, T ) sa

nazýva topologický súčet priestorov Xα.

1.4 Axiómy oddeliteľnosti

Definícia 17. Nech (X, T ) je topologický priestor.

(i) X sa nazýva T0-priestor, ak pre každé a, b ∈ X, a 6= b, existuje otvorená množina U
taká, že a ∈ U , b /∈ U alebo otvorená množina V taká, že b ∈ V , a /∈ V .

(ii) X sa nazýva T1-priestor, ak pre každé a, b ∈ X, a 6= b, existujú otvorené množiny U ,
V také, že a ∈ U , b /∈ U , a /∈ V , b ∈ V .

(iii) X sa nazýva T2-priestor (hausdorffovský priestor), ak pre každé a, b ∈ X, a 6= b,
existujú otvorené množiny U , V také, že a ∈ U , b ∈ V a U ∩ V = ∅.

Tvrdenie 8. X je T1-priestor práve vtedy, keď všetky jednobodové množiny sú v X uzavreté.

Tvrdenie 9. Nech (X, T ) je Ti-priestor (i = 0, 1, 2) a (Y, TY ) je podpriestor (X, T ). Potom
aj (Y, TY ) je Ti-priestor.

Definícia 18. Priestor X sa nazýva regulárny, ak pre každú uzavretú množinu A v X a pre
každé c ∈ X \ A existujú otvorené množiny U , V v X tak, že c ∈ U , A ⊆ V a U ∩ V = ∅.
Regulárny T1-priestor sa nazýva T3-priestor.
Priestor X sa nazýva úplne regulárny, ak pre každú uzavretú množinu A v X a c ∈ X \A

existuje spojité zobrazenie f : X → 〈0, 1〉 také, že f [A] ⊆ {0}, f(c) = 1. Úplne regulárny
T1-priestor sa nazýva T3 1

2
-priestor.

Priestor X sa nazýva normálny, ak pre každé uzavreté disjunktné podmnožiny A, B v
X existujú otvorené množiny U , V v X tak, že A ⊆ U , B ⊆ V a U ∩ V = ∅. Normálny
T1-priestor je T4-priestor.

Tvrdenie 10. Nech X je priestor a pre každé c ∈ X Bc je báza okolí c, ktorej prvky sú
otvorené. Potom X je regulárny ⇔ pre každé c ∈ X a každé U ∈ Bc existuje V ∈ Bc také, že
V ⊆ U .

Tvrdenie 11. Každý T3-priestor je T2-priestor. Ak X je úplne regulárny (T3 1
2
) priestor, tak

X je regulárny (T3) priestor. Každý T4-priestor je T3-priestor.

Veta 5 (Urysohnova lema). Ak X je normálny priestor, A, B sú uzavreté disjunktné
podmnožiny v X, tak existuje spojité zobrazenie f : X → 〈0, 1〉 také, že f [A] ⊆ {0} a f [B] ⊆
{1}.
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Veta 6. Každý T4-priestor je T3 1
2
-priestor.

Tvrdenie 12. Nech X je topologický priestor a S je subbáza topológie v X. Potom X je
úplne regulárny ⇔ pre každé c ∈ X a každé U ∈ S také, že c ∈ U existuje spojité zobrazenie
f : X → [0, 1] tak, že f(c) = 1 a f(X \ U) ⊆ {0}.

Veta 7. Každý podpriestor/topologický súčin regulárnych/úplne regulárnych/T3/T3 1
2
pries-

torov je regulárny/. . .

Veta 8. Priestor X je T3 1
2
-priestor práve vtedy, keď existuje množina A tak, že X je home-

omorfný nejakému podpriestoru [0, 1]A (tzv. Tichonovova kocka).

Regulárny priestor, ktorý nie je T2: dvojprvkový indiskrétny.
Normálny, ktorý nie je úplne regulárny: Sierpińského priestor.
Priestor P2 na množine R × R+0 je daný bázou okolí:
B(A) = {Oε(A), ε > 0}, Oε(A) = {(x, y ∈ R×R+0 ) :

√

(a − x)2 + (b − y)2 < ε} pre A = [a, b],
b 6= 0
B(A) = {Pε(A), ε > 0}, Pε(A) = {(x, y ∈ R × R+) :

√

(a − x)2 + (b − y)2 < ε} ∪ {A} pre
A = [a, 0]
P2 je príklad T2-priestoru, ktorý nie je regulárny.
P3: ako P2, len báza okolí bodu (a, 0) je B(c, 0) = {Tε(c, 0), ε > 0}, Tε(c, 0) = Oε((c, ε)) ∪
{(c, 0)}
P3 je úplne regulárny priestor, ktorý nie je normálny.

1.5 Súvislosť

Definícia 19. Topologický priestor X je súvislý, ak jediné obojaké (t.j. otvorené aj uzavreté)
množiny v X sú ∅ a X. Súvislá množina je množina, ktorá ako topologický podpriestor tvorí
súvislý priestor. (Ekvivalentná definícia súvislého topologického priestoru: nedá sa napísať
ako zjednotenie svojich dvoch neprázdnych disjunktných otvorených podmnožín.)

Tvrdenie 13. Ak A ⊆ B ⊆ A a A je súvislá množina, tak aj B je súvislá.

Definícia 20. Komponent súvislosti priestoru X je súvislá podmnožina X, ktorá je maxi-
málna (vzhľadom na inklúziu).

Ca =
⋃

{A ∈ P(X);A je súvislá a a ∈ A} - komponent súvislosti bodu a.

Tvrdenie 14. Komponenty súvislosti tvoria rozklad topologického priestoru.

Tvrdenie 15. Spojitý obraz súvislého topologického priestoru je súvislý.

Súvislosť sa nezachováva pre topologické súčty a podpriestory. Prenáša sa na topologický
súčin, spojitý obraz a faktorový priestor (lebo to je tiež spojitý obraz).

Definícia 21. Topologický priestor X sa nazýva lineárne súvislý, ak ľubovoľné jeho dva
body možno spojiť cestou. (T.j. pre každé a, b ∈ X existuje spojité zobrazenie f : 〈0, 1〉 → X
také, že f(0) = a a f(1) = b.)

Každý lineárne súvislý priestor je súvislý. Priestor X, kde X = {(x, sin( 1
x
)); x ∈ R}, je

príklad priestoru, ktorý je súvislý, ale nie je lineárne súvislý.

Definícia 22. Priestor sa nazýva lokálne súvislý, ak pre každý bod a ∈ X existuje báza
okolí, ktoré sú všetky súvislé množiny v X.

Nie každý súvislý priestor je lokálne súvislý a nie každý lokálne súvislý priestor je súvislý.
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1.6 Kompaktné priestory

Definícia 23. Priestor X sa nazýva lindelöffovský, ak z každého otvoreného pokrytia X sa
dá vybrať spočítateľné podpokrytie.
Priestor X sa nazýva kompaktný, ak z ľubovoľného otvoreného pokrytia X možno vybrať

konečné podpokrytie X. Podmnožina A priestoru X sa nazýva kompaktná, ak podpriestor
určený A je kompaktný priestor.

Tvrdenie 16. Ak X je regulárny, lindelöffovský, tak X je normálny.

Tvrdenie 17. Ak A je uzavretá podmnožina kompaktného priestoru, tak A je kompaktná.
Ak A je kompaktná podmnožina T2-priestoru, tak A je uzavretá.

Tvrdenie 18. Ak X je T2-priestor, A, B sú kompaktné podmnožiny v X, A ∩ B = ∅, tak
existujú otvorené množiny U , V v X, pre ktoré A ⊆ U , B ⊆ V a U ∩ V = ∅.

Dôsledok 3. Ak X je kompaktný T2-priestor, tak je normálny (T4).
Každý podpriestor kompaktného T2-priestoru je T3 1

2
-priestor.

Tvrdenie 19. Ak f : X → Y je spojité a surjektívne a X je kompaktný, tak aj Y je kom-
paktný.

Definícia 24. Systém S 6= ∅ podmnožín množiny X sa nazýva centrovaný, ak pre ľubovoľný
neprázdny konečný podsystém S ′ systému S platí

⋂

F∈S′ F 6= ∅.

Tvrdenie 20. Nech X je topologický priestor. Potom sú nasledujúce tvrdenia ekvivalentné:

(i) X je kompaktný.

(ii) Pre ľubovoľný centrovaný systém S uzavretých podmnožín X platí, že
⋂

S∈S S 6= ∅.

(iii) Pre ľubovoľný centrovaný systém S ⊆ P(X) platí
⋂

S∈S S 6= ∅.

Veta 9 (Tichonovova). Ak (Xα, α ∈ I) je systém kompaktných priestorov, tak ich topolo-
gický súčin X =

∏

α∈I Xα je kompaktný priestor.

Veta 10. Topologický priestor X je kompaktný priestor ⇔ X je homeomorfný s uzavretým
podpriestorom priestoru [0, 1]A pre vhodné A.

Definícia 25. Priestor X sa nazýva lokálne kompaktný, ak pre každé a ∈ X existuje báza
okolí, ktoré sú všetky kompaktné.

Tvrdenie 21. T2-priestor X je lokálne kompaktný práve vtedy, keď pre každé a ∈ X existuje
kompaktné okolie a.
Každý kompaktný T2-priestor je lokálne kompaktný.
Ak Y je uzavretý (otvorený) podpriestor lokálne kompaktného priestoru X, tak Y je lo-

kálne kompaktný.

R je lokálne kompaktný, ale nie je kompaktný.
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Kompaktifikácie

Definícia 26. NechX je T3 1
2
-priestor. Usporiadanú dvojicu (e, Y ) nazveme kompaktifikáciou

priestoru X, ak platí:

(i) Y je kompaktný T2-priestor,

(ii) e : X →֒ Y je vnorenie,

(iii) e[X] = Y , t.j. e[X] je hustá v Y .

Nech X je T3 1
2
-priestor. Kompaktifikácia (bX , βX) sa nazýva Stone-Čechova kompaktifi-

kácia priestoru X, ak pre každé spojité zobrazenie f : X → [0, 1] existuje práve jedno spojité
zobrazenie f : βX → [0, 1] tak, že f = f ◦ bx, t.j. komutuje diagram

X
Â

Ä bX
//

f
!!C

C

C

C

C

C

C

C

βX

f

²²
Â

Â

Â

[0, 1]

Tvrdenie 22. Pre každý T3 1
2
-priestor existuje Stone-Čechova kompaktifikácia.

Nech X je T3 1
2
-priestor a (bX , βX) je jeho Stone-Čechova kompaktifikácia. Potom pre

ľubovoľný kompaktný T2-priestor K a spojité zobrazenie f : X → K existuje práve jedno
spojité zobrazenie f : βX → K také, že f ◦ bX = f .

Tvrdenie 23. Nech (X, T ) je lokálne kompaktný T2-priestor, a /∈ X. Nech X∗ = X ∪ {a},
T ∗ = {U ∈ P(X∗), a ∈ U,X −U je kompaktná v (X, T )}∪T . Potom (X∗, T ∗) je kompaktný
T2-priestor, (X, T ) je otvorený podpriestor. Ak (X, T ) nie je kompaktný, tak X je hustá v
(X∗, T ∗). Teda je to kompaktifikácia priestoru (X, T ) – tzv. jednobodová (Alexandrovova)
kompaktifikácia.

1.7 Konvergencia v topologických priestoroch

Konvergencia pomocou filtrov

Definícia 27. Neprázdny systém F podmnožín množiny X sa nazýva filter, ak platí

(i) ∅ /∈ F .

(ii) Ak F1, F2 ∈ F , tak F1 ∩ F2 ∈ F .

(iii) Ak F ∈ F a F ⊆ G ⊆ X, tak G ∈ F .

Filter U sa nazýva ultrafilter na X, ak pre ľubovoľný filter F na X platí: Ak U ⊆ F , tak
U = F .
Nech F je filter na X. Potom systém H ⊆ F sa nazýva báza filtra F , ak platí: Pre každé

F ∈ F existuje H ∈ H tak, že H ⊆ F .

Tvrdenie 24. Ak H je báza nejakého filtra F na X, tak platí

(i) ∅ /∈ H

(ii) Ak H1,H2 ∈ H, tak existuje H ∈ H tak, že H ⊆ H1 ∩ H2.
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Systém H ⊆ P(X) sa nazýva báza filtra, ak platí (i) a (ii). Filter určený bázou H je FH =
{U ⊆ P(X); (∃H ∈ H)H ⊆ U}.

Definícia 28. Nech X je topologický priestor, F je filter na X, B je báza filtra na X a
c ∈ X.

(i) Hovoríme, že filter F konverguje k c v X, ak F obsahuje všetky okolia bodu c.

(ii) Hovoríme, že báza filtra B konverguje k c v X, ak FB konverguje k c, t.j. pre každé
okolie U bodu c existuje prvok B ∈ B tak, že B ⊆ U .

(iii) Bod c sa nazýva hromadným bodom filtra F , ak pre každé okolie U bodu c a každý
F ∈ F U ∩ F 6= ∅. (T.j. c ∈ F pre všetky F ∈ F).

(iv) Podobne sa definuje hromadný bod bázy filtra ako hromadný bod FB.

Tvrdenie 25. Nech X je topologický priestor.

(i) Ak F → c v X, G je filter a G ⊇ F , tak G → c.

(ii) Filter F{c} generovaný bázou filtra {c} konverguje k c.

(iii) Ak F → c, tak c je hromadný bod F .

(iv) Ak c je hromadný bod filtra F , tak existuje filter G ⊇ F tak, že G → c.

Tvrdenie 26. Nech X je topologický priestor, A ⊆ X, c ∈ X. Potom platí:

(i) c ∈ A ⇔ existuje báza filtra F na A tak, že F → c v X.

(ii) A je uzavretá ⇔ pre každú bázu filtra F na A platí limF ⊆ A.

(iii) X je T2-priestor ⇔ každý filter (báza filtra) má najviac jednu limitu.

(iv) Ak F je ultrafilter na X a c je hromadný bod F , tak F → c.

Konvergencia pomocou sietí

Definícia 29. Usporiadaná dvojica (A,≤) sa nazýva usmernená množina, ak A 6= ∅ je
neprázdna množina, ≤ je kváziusporiadanie na A (t.j. relácia ≤ je reflexívna a tranzitívna)
a pre ľubovoľné a, b ∈ A existuje c z A tak, že a ≤ c aj b ≤ c.

Definícia 30. Nech Σ je usmernená množina, X je topologický priestor. Potom zobrazenie
s : Σ→ X, s(σ) = xσ sa nazýva sieťou v priestore X. Označuje sa S = (xσ, σ ∈ Σ).

Definícia 31. Hovoríme, že bod c ∈ X je hromadný bod siete S = (xσ, σ ∈ Σ), ak pre každé
okolie U bodu c a každé σ ∈ Σ existuje σ′ ≥ σ tak, že xσ′ ∈ U . Bod c sa nazýva limitou siete
S = (xσ, σ ∈ Σ), ak pre každé okolie U bodu c existuje σ0 ∈ Σ tak, že pre každé σ ≥ σ0
xσ ∈ U . Označenie: c ∈ limS, limS = c, S → c.

Tvrdenie 27. Nech X je topologický priestor, A ⊆ X, c ∈ X. Potom c ∈ A ⇔ existuje
S = (xσ, σ ∈ Σ) v A tak, že S → c.
Zobrazenie f : X → Y je spojité ⇔ pre každé c ∈ X a každú sieť S = (xσ, σ ∈ Σ) v X,

ktorá konverguje k c, platí (f(xσ), σ ∈ Σ) = f ◦ S → f(c).

Definícia 32. Nech S = (xσ, σ ∈ Σ), S′ = (yσ′ , σ′ ∈ Σ′) sú siete v X. Potom S′ sa nazýva
podsieť (zjemnenie) siete S, ak existuje zobrazenie ϕ : Σ′ → Σ také, že
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(i) pre každé σ0 ∈ Σ existuje σ′
0 ∈ Σ

′ tak, že pre σ′ ≥ σ′
0 platí ϕ(σ

′) ≥ σ0,

(ii) pre každé σ′ ∈ Σ′ yσ′ = xϕ(σ′)

Tvrdenie 28. Ak sieť S = (xσ, σ ∈ Σ) → c v X a S′ = (xϕ(σ′), σ
′ ∈ Σ′) je podsieť siete S,

tak aj S′ → c.
Ak c je hromadný bod siete S = (xσ, σ ∈ Σ), tak existuje podsieť S′ = (xϕ(σ′), σ

′ ∈ Σ′)
siete S tak, že S′ → c.

Súvis medzi sieťami a filtrami

Tvrdenie 29. Nech S = (xσ, σ ∈ Σ) je sieť v X. Položme FS = {A ∈ P(X); (∃σ0 ∈ Σ)(∀σ ≥
σ0)xσ ∈ A}. Potom FS je filter v X a S → c ⇔ FS → c.
Nech F je filter v X, Σ = ({(x,A);A ∈ F ;x ∈ A},≤), (x,A) ≤ (y,B) ⇔ B ⊆ A. Potom

SF = (y(x,A), (x,A) ∈ Σ), kde definujeme y(x,A) = x, je sieť v X a pre každé c ∈ X platí
F → c ⇔ SF → c.

1.8 Metrizácia topologických priestorov

Definícia 33. Priestor (X, T ) sa nazýva metrizovateľný, ak existuje metrika d na X tak, že
Td = T .

Tvrdenie 30. Ak d je metrika na X, tak d′ : X × X → R, d′(x, y) = min{1, d(x, y)} je
metrika na X a Td = Td′ .

Tvrdenie 31. Podpriestor metrizovateľného priestoru je metrizovateľný. Topologický súčet
metrizovateľných priestorov je metrizovateľný.

Faktorový priestor metrizovateľného nemusí byť metrizovateľný: p : R → {Q, R \ Q} -
faktorizáciou dostaneme indiskrétny priestor.

Tvrdenie 32. Ak ((Xn, Tn))n∈N je systém metrizovateľných priestorov, tak
∏

n∈N
(Xn, Tn)

je metrizovateľný priestor.

Dôsledok 4. Priestor [0, 1]N je metrizovateľný.

Veta 11 (Urysohn). Ak X je regulárny T1-priestor so spočítateľnou bázou topológie, tak
X je metrizovateľný.

Definícia 34. Zobrazenie d : X ×X → R sa nazýva pseudometrika, ak spĺňa rovnaké vlast-
nosti ako má metrika s výnimkou tej, že môže platiť d(x, y) = 0 aj pre x 6= y.

Tvrdenie 33. Ak (X, d) je (pseudo)metrický priestor, tak zobrazenie d : (X, Td)× (X, Td)→
R je spojité.

Definícia 35. Pre A 6= ∅ definujeme d(x,A) = inf{d(x, a), a ∈ A}. Ak B 6= ∅, tak d(A,B) =
inf{d(a, b), a ∈ A, b ∈ B}.

Tvrdenie 34. Nech d je pseudometrika na X, (X, T ) je topologický priestor a d : (X, T )×
(X, T ) → R je spojité zobrazenie a ∅ 6= A ⊆ X. Potom zobrazenie fA : (X, T ) → R, fA =
d(x,A) je spojité.

Definícia 36. Nech X je topologický priestor a S je systém podmnožín X. Potom S sa
nazýva lokálne konečný (diskrétny), ak pre každé a ∈ X existuje otvorené okolie Ua bodu a
tak, že {S ∈ S, S ∩Ua 6= ∅} je konečná (jednoprvková alebo prázdna – card{S ∈ S, S ∩Ua 6=
∅} ≤ 1). S sa nazýva σ-lokálne konečný (σ-diskrétny), ak je zjednotením spočítateľného
systému lokálne konečných (diskrétnych) systémov.
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Definícia 37. Nech U je pokrytie priestor X. Potom pokrytie V sa nazýva zjemnením U , ak
pre každé V ∈ V existuje U ∈ U tak, že V ⊆ U . Označujeme V ≺ U .

Veta 12. Ak (X, d) je metrický priestor, tak pre každé otvorené pokrytie U priestoru (X, Td)
existuje σ-diskrétne otvorené pokrytie také, že V ≺ U .

Veta 13. Ak (X, d) je metrický priestor, tak (X, Td) má σ-diskrétnu bázu.

Veta 14. Nech X je metrizovateľný (metrický) priestor. Potom sú ekvivalentné

(i) X má spočítateľnú bázu,

(ii) X je separabilný,

(iii) X je lindelöffovský.

Dôsledok 5. Každý kompaktný metrizovateľný priestor má spočítateľnú bázu.

Dôsledok 6. X je kompaktný, metrizovateľný ⇔ X je homeomorfný s uzavretým podpries-
torom priestoru [0, 1]N.

Veta 15. Nech S je lokálne konečný systém podmnožín priestoru X. Potom platí

(i)
⋃

S∈S

S =
⋃

S∈S

S

(ii) Ak pre každé S ∈ S je S uzavretá v X, tak aj
⋃

S je uzavretá v X.

Veta 16. Ak X je regulárny a má σ-lokálne konečnú bázu B, tak X je normálny.

Dôsledok 7. Každý metrizovateľný priestor je normálny.

Veta 17. Nech X je T0-priestor a (ρi, i ∈ N) je systém pseudometrík na X, ktorý má
nasledujúce vlastnosti:

(i) ∀i ∈ N∀x, y ∈ X ρi(x, y) ≤ 1

(ii) ∀i ∈ N ρi : (X, T )× (X, T )→ R je spojité zobrazenie.

(iii) Pre každú uzavretú množinu A a každé x /∈ A existuje i ∈ N ρi(x,A) > 0.

Potom zobrazenie d : X × X → R, d(x, y) =
∞
∑

i=1

1
2i ρi(x, y) je metrika na X a Td = T .

Veta 18. Nech X je regulárny T1-priestor. Potom nasledujúce podmienky sú ekvivalentné:

(i) X je metrizovateľný.

(ii) X má σ-diskrétnu bázu. (Bing)

(iii) X má σ-lokálne konečnú bázu. (Nagata)
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2 Topológia II

Takto vyzerala otázka týkajúca sa topológie na malej analýze.
Topologické priestory. Otvorené a uzavreté množiny, okolia, husté množiny a pod. Spojité
zobrazenia, homeomorfné zobrazenia, otvorené a uzavreté zobrazenia. Spojitý obraz kompakt-
ných a súvislých množín.

Definícia 1. Systém podmnožín množiny X T ⊆ P(X) sa nazýva topológia na X, ak

(i) ∅,X ∈ T ,

(ii) Ai ∈ T pre i ∈ I ⇒
⋃

i∈I

Ai ∈ T ,

(iii) A,B ∈ T ⇒ A ∩ B ∈ T .

Dvojicu (X, T ) nazývame topologický priestor ak T je topológia na X.

Príklady topologických priestorov:
(X, {∅,X}) - indiskrétny topologický priestor
(X,P(X)) - diskrétny topologický priestor
(X, T ), kde T = {U ⊆ X : X \ U je konečná} - kofinitná topológia
Každý metrický priestor určuje topológiu.

Definícia 2. Množiny patriace do T nazývame otvorené a ich doplnky uzavreté množiny.

Tvrdenie 1.

(i) ∅ a X sú uzavreté,

(ii) prienik ľubovoľného systému uzavretých množín je uzavretá množina,

(iii) zjednotenie konečného počtu uzavretých množín je uzavretá množina.

Definícia 3. Nech X je topologický priestor, A ⊆ X. A = ∩{F : A ⊆ F, F je uzavretá v X}
sa nazýva uzáver množiny A v X.

Tvrdenie 2.

(i) A je uzavretá ⇔ A = A,

(ii) ∅ = ∅,

(iii) A ⊆ A,

(iv) A = A,

(v) A ∪ B = A ∪ B.

Definícia 4. Ak (X, T ) je topologický priestor a Y ⊆ X, tak T ∗ = {G ∩ Y : G ∈ T } je
topológia na Y a nazýva sa relatívnou topológiou indukovanou na Y topológiou T . (Y, T ∗)
sa nazýva topologický podpriestor priestoru X.

Definícia 5. Nech X je topologický priestor a x ∈ V ⊆ X. V sa nazýva okolie bodu x, ak
existuje otvorená množina U taká, že x ∈ U ⊆ V .

Veta 1. x ∈ A ⇔ každé okolie bodu x má neprázdny prienik s A (pretína množinu A).
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2.1 Typy bodov a množín v topologických priestoroch

Definícia 6. Bod p topologického priestoru X sa nazýva izolovaný bod priestoru X, ak
množina {p} je otvorená v X. Bod p ∈ A ⊆ X je izolovaný bod množiny A, ak je izolovaný
v topologickom podpriestore A priestoru X.

Definícia 7. Bod p ∈ X je hromadný bod množiny A ⊆ X, ak ľubovoľné okolie bodu p
obsahuje bod množiny A rôzny od p. Množina všetkých hromadných bodov množiny A sa
označuje D(A) a nazýva sa derivácia množiny A.

Tvrdenie 3. Nech X je topologický priestor a A ⊆ X. Potom platí:

(i) A = A ∪ D(A),

(ii) množina A je uzavretá práve vtedy, keď D(A) ⊆ A (A obsahuje všetky svoje hromadné
body.)

Definícia 8. Nech (X, T ) je topologický priestor, A ⊆ X. Potom množina IntA = ∪{G : G ⊆
A,G ∈ T } sa nazýva vnútro množiny A a množina H(A) = A∩ (X \ A) hranica množiny A.
Prvky množiny IntA nazývame vnútorné body a prvky množiny H(A) nazývame hraničné
body množiny A.

Tvrdenie 4. (i) A je otvorená ⇔ A = IntA,

(ii) A ⊆ IntA ∪ H(A),

(iii) ak A je uzavreté, tak A = IntA ∪ H(A).

(iv) IntA = X \ X \ A

(v) A = IntA ∪ H(A)

Definícia 9. Množina A ⊆ X sa nazýva hustá (v X), ak A = X.

Tvrdenie 5. Množina A ⊆ X je hustá v X práve vtedy, keď každá neprázdna množina G
otvorená v X má neprázdny prienik s množinou A.

Definícia 10. Množina A ⊆ X sa nazýva perfektná, ak A = D(A).

Veta 2. Množina A ⊆ X je perfektná práve vtedy, keď A je uzavretá a nemá izolované body.

Definícia 11. Množina A ⊆ X sa nazýva riedka (v priestore X), ak IntA = ∅.

Veta 3. Množina A ⊆ X je riedka v X práve vtedy, keď každá neprázdna množina G ⊆ X
obsahuje takú neprázdnu otvorenú podmnožinu H ⊆ G, že H ∩ A = ∅.

2.2 Báza topológie, báza okolí

Definícia 12. Nech (X, T ) je topologický priestor. Systém množín B ⊆ T sa nazýva báza
topológie T , ak každá množina z T je zjednotením množín z B.

Tvrdenie 6. Nutná a postačujúca podmienka na to, aby B ⊆ P(X) bola báza nejakej topo-
lógie na X sú:

(i)
⋃

A∈B

A = X,
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(ii) ak A,B ∈ B a p ∈ A ∩ B, tak existuje taká množina V ∈ B, že p ∈ V ⊆ A ∩ B.

Definícia 13. Topologický priestor (X, T ) sa nazýva priestor so spočítateľnou bázou, ak
existuje spočítateľná báza B pre topológiu T . Hovoríme potom, že X spĺňa druhú axiómu
spočítateľnosti.

Definícia 14. Topologický priestor X sa nazýva separabilný, ak v X existuje hustá spočí-
tateľná podmnožina.

Tvrdenie 7. Ak X je priestor so spočítateľnou bázou, tak X je separabilný.

Pre metrické priestory platí aj obrátená implikácia.

Definícia 15. Hovoríme, že systém S ⊆ T je subbáza topológie T , ak systém pozostávajúci
zo všetkých konečných prienikov množín z S tvorí bázu topológie T .

Definícia 16. Nech X je topologický priestor a p ∈ X. Množina B okolí bodu p sa nazýva
báza okolí bodu p, ak p ∈ B pre všetky B ∈ B a pre každé okolie V bodu p existuje množina
B ∈ B taká, že B ⊆ V .

Definícia 17. Ak (Xi, Ti), i ∈ I sú topologické priestory, tak (
∏

Xi, T ), kde T je určená
subbázou S = {p−1i (Ui) : Ui ∈ Ti, i ∈ I} (pi označujeme projekcie z karteziánskeho súčinu
∏

Xi na množinu Xi) sa nazýva topologický súčin topologických priestorov (Xi, Ti), i ∈ I.
(Teda báza topológie topologického súčinu obsahuje množiny tvaru

∏

i∈I Vi, pričom Vi ∈ Ti

pre všetky i ∈ I a V = Xi pre všetky i ∈ I až na konečný počet.)

2.3 Zobrazenia topologických priestorov

Definícia 18. Nech (X, T ) a (Y,S) sú topologické priestory a f : X → Y je zobrazenie.
Hovoríme, že f je

(i) spojité, ak pre každú otvorenú množinu U ⊆ Y je jej vzor f−1(U) otvorená v X,

(ii) homeomorfizmus, ak f je bijekcia a f aj f−1 sú spojité,

(iii) uzavreté, ak obraz každej uzavretej množiny je uzavretá,

(iv) otvorené , ak obraz každej otvorenej množiny je otvorená.

Tvrdenie 8. Nech X a Y sú topologické priestory, f : X → Y je zobrazenie. Nasledujúce
podmienky sú ekvivalentné:

(i) f je spojité,

(ii) vzor každej uzavretej množiny v zobrazení f je uzavretá množina,

(iii) pre každú podmnožinu A ⊆ X platí f(A) ⊆ f(A).

Tvrdenie 9. Ak X a Y sú topologické priestory a f : X → Y je bijekcia, tak sú ekvivalentné
podmienky:

(i) f je homeomorfizmus,

(ii) f je spojité a otvorené,

(iii) f je spojité a uzavreté.
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2.4 Súvislý topologický priestor

Definícia 19. Topologický priestor X sa nazýva súvislý, ak nie je zjednotením svojich dvoch
neprázdnych uzavretých disjunktných podmnožín.

Veta 4. Ak f : (X, T ) → (Y,S) je spojité, surjektívne a (X, T ) je súvislý, tak aj (Y,S) je
súvislý. (Spojitý obraz súvislého topologického priestoru je súvislý.)

2.5 Kompaktný topologický priestor

Definícia 20. Topologický priestor X sa nazýva kompaktný, ak každé jeho otvorené pokrytie
obsahuje konečné podpokrytie.

Definícia 21. Hovoríme, že systém množín je centrovaný, ak každý jeho konečný podsystém
má neprázdny prienik.

Tvrdenie 10. Topologický priestor X je kompaktný práve vtedy, keď každý centrovaný sys-
tém uzavretých množín má neprázdny prienik.

Tvrdenie 11. Uzavretá podmnožina kompaktného topologického priestoru je kompaktná.

Tvrdenie 12. Kompaktný podpriestor hausdorffovského priestoru je uzavretý.

Veta 5. Spojitý obraz kompaktného topologického priestoru je kompaktný.

Veta 6 (Tichonovova). Ak Xγ , γ ∈ Γ sú kompaktné topologické priestory, tak ich topolo-
gický súčin

∏

γ∈Γ

Xγ je kompaktný.

3 Diferenciálna topológia

Diferencovateľné variety a funkcie. Dotyková varieta. Vloženie kompaktných variet do Rn.
Veta o lokálnej inverzii. Vektorové fibrácie. Veta o transverzalite.

4 Algebraická topológia

Homotopia a homotopické zobrazenia, fundamentálna grupa. Fundamentálna grupa kružnice.
Geometrické a reťazové komplexy. Singulárne a simpliciálne homológie.

4.1 Homotópia

Definícia 1. Nech f, g : X → Y sú spojité zobrazenia. Hovoríme, že f je homotopné s g
(f ≃ g, f sa dá homotopicky zdeformovať na g), ak existuje spojité zobrazenie H : X×I → Y
také, že H(x, 0) = f(x), H(x, 1) = g(x) pre každé x ∈ X.

H je homotópia od f ku g.
Vlastne: ∀t ∈ I H definuje spojité zobrazenie ht : X → Y ; ht(x) = H(x, t).

To, že H je spojité znamená to, že systém zobrazení {ht}t∈I je spojitý.
To, že H je homotópia od f ku g znamená, že h0 = f a h1 = g.

Definícia 2. Ak f, g : X → Y sú spojité zobrazenia, také, že pre dáku podmnožinu A ⊂ X
máme f(a) = g(a) pre ∀a ∈ A, hovoríme, že f a g sú homotopné rel A, ak existuje homotópia
H : X × I → Y taká, že H(x, 0) = f(x), H(x, 1) = g(x) a H(a, t) = f(a) = g(a) pre
∀a ∈ A, t ∈ I.

H=homotópia rel A od f ku g.
Označujeme f ≃ g(relA).
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Tvrdenie 1. Na triede spojitých zobrazení z X do Y (pre dané X, Y ) je relácia ≃ reláciou
ekvivalencie.

Definícia 3. Triedy ekvivalencie ≃ sa nazývajú homotopické triedy zobrazení z X do Y .

Veta 1. Spojité zobrazenie f : Sn → X sa dá rozšíriť na spojité zobrazenie F : Dn+1 → X⇔
f je homotopné s konštantným zobrazením; f ≃ const.

Definícia 4. Zobrazenie, ktoré je homotopné s konštantným zobrazením sa tiež nazýva nula-
homotopné (alebo homotopné s nulou).

Veta 2. Nech f, g : X → Y , nech A ⊂ X a f |A = g|A. Nech h : Y → Z je ľubovoľné spojité
zobrazenie. Ak f ≃ g(relA), tak aj h ◦ f ≃ h ◦ g(relA).
Nech f, g : X → Y , nech A ⊂ X a f |A = g|A. Ak k : W → X a f ≃ g(relA), tak

f ◦ k ≃ g ◦ k(rel k−1(A))

Definícia 5. Zobrazenie f : X → Y sa nazýva homotopická ekvivalencia, ak existuje spojité
zobrazenie g : Y → X také, že g ◦ f ≃ idX , f ◦ g ≃ idY . (g sa tiež zvykne volať ľavé
homotopicky inverzné zobrazenie ku f a naopak, f a g sú navzájom homotopicky inverzné.)
PriestoryX, Y sú homotopicky ekvivalentné (=majú ten istý homotopický typ), ak existuje

homotopická ekvivalencia f : X → Y . Budeme označovať X ∼ Y (v literatúre aj X ∼= Y ).

Platí: Topologicky ekvivalentné topologické priestory sú homotopicky ekvivalentné (ho-
meomorfizmus je homotopická ekvivalencia).

Tvrdenie 2. Relácia homotopickej ekvivalencie je relácia ekvivalencie na triede topologic-
kých priestorov.

Rn ∼ {x}
Rn − {0} ∼ Sn−1

Definícia 6. Ak A je topologický podpriestor X a i : A →֒ X a r : X → A je (spojité)
také, že r ◦ i = idA (t.j. r|A ≡ idA), tak r sa nazýva retrakcia (stiahnutie) priestoru X na
podpriestor A. (A je retrakt X.)
Ak r : X → A je retrakcia taká, že i ◦ r ≃ idX , tak r sa nazýva deformačná retrakcia. (A

je deformačný retrakt priestoru X).
Ak i ◦ r ≃ idX(relA), tak r je silná deformačná retrakcia.

Definícia 7. Priestor X sa nazýva kontraktibilný (stiahnuteľný), ak pre dáke x ∈ X platí,
že {x} je deformačným retraktom priestoru X.

Tvrdenie 3. Priestor X je kontraktibilný ⇔ X je homotopicky ekvivalentný s jednobodovým
priestorom.

Tvrdenie 4. Priestor X je kontraktibilný ⇔ idX ≃ const.

Tvrdenie 5. Nech f : X → Sn , n ≥ 1 je spojité zobrazenie také, že f(X) 6= Sn. Potom
f ≃ const.

Tvrdenie 6. CX = X × I/X × {1} je kontraktibilný.
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4.2 Fundamentálna grupa topologického priestoru

Definícia 8. Ω(X,x0) = množina všetkých ciest v X, ktoré začínajú aj končia v x0. Prvky
z Ω(X,x0) sa nazývajú slučky.

Veta 3. Nech c, d : I → X sú cesty také, že c(1) = d(0) a nech c′, d′ : I → X sú cesty také,
že c′(1) = d′(0). Ak c ≃ c′(rel{0, 1}) a d ≃ d′(rel{0, 1}), tak c ∗ d ≃ c′ ∗ d′(rel{0, 1}).
Okrem toho: c− ≃ c′

−
rel{0, 1}

Dôsledok 1. Na množine homotopických tried rel{0, 1} slučiek priestoru X v bode x0 predpis
[c] · [d] = [c ∗ d] dobre definuje binárnu operáciu.

Lema 1. Nech c : I → X je cesta. Nech α : I → I je spojité zobrazenie také, že α(0) =
0, α(1) = 1. Potom c ◦ α ≃ c(rel{0, 1}).

Definícia 9. Nech c, d : I → X sú 2 cesty v X také, že c(1) = d(0). Nech q ∈ (0, 1). Potom
definujeme novú cestu c ∗q d.

c ∗q d(t) =

{

c( t
q
) t ∈< 0, q >

d( t−q
1−q
) t ∈< q, 1 >

Veta 4. Nech c, d : I → X sú 2 cesty v X také, že c(1) = d(0). Nech q ∈ (0, 1). Potom
(c ∗q d) ◦ α = c ∗ d pre vhodné α : I → I; α(0) = 0, α(1) = 1. Čiže c ∗q d ≃ c ∗ d(rel{0, 1}).

Veta 5. Nech c, d, f sú také cesty v X, že sa dajú skladať. Potom: (c∗d)∗f ≃ c∗(d∗f)rel{0, 1}.

Dôsledok 2. Operácia · na množine homotopických tried rel{0,1} slučiek v x0 ∈ X defino-
vaná pomocou spájania ciest je asociatívna.
([c] · [d]) · [f ] = [c] · ([d] · [f ]) pre ľubovoľné c, d, f ∈ Ω(X,x0).

Veta 6. Nech c : I → X je cesta v X a nech c(0) resp. c(1) sú konštantné cesty v c(0) resp.
c(1). Potom
c(0) ∗ c ≃ c rel{0, 1},
c ∗ c(1) ≃ c rel{0, 1}.

Dôsledok 3. Konštantná slučka v x0 ∈ X je neutrálnym prvkom operácie · na množine
homotopických tried rel{0,1} slučiek v x0 ∈ X.

Veta 7. Pre ľubovoľnú cestu c : I → X.
c ∗ c− ≃ c(0) rel{0, 1}
c− ∗ c ≃ c(1) rel{0, 1}

Dôsledok 4. Pre c ∈ Ω(X,x0) máme, že [c−] = [c]−1.

Veta 8. Nech X je topologický priestor, pevne zvoľme x0 ∈ X. Ak na množine homotopických
tried rel{0,1} slučiek priestoru X v bode x0 definujeme operáciu · predpisom [c] · [d] = [c ∗ d],
tak dostaneme z tejto množiny grupu; označme ju π(X,x0).

Definícia 10. Grupa π(X,x0) sa nazýva fundamentálna grupa priestoru X v bode x0 (s
referenčným (bázovým) bodom x0).
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4.3 Závislosť π(X,x0) od x0

Definícia 11. Ak r : I → X je cesta v X, r(0) = x1, r(1) = x0, definujeme αr : Ω(X,x0)→
Ω(X,x1), αr(c) = r ∗ c ∗ r−. Toto zobrazenie indukuje zobrazenie fundamentálnych grúp:
αr : π(X,x0)→ π(X,x1)
αr[c] = [r ∗ c ∗ r−]

Tvrdenie 7. αr : π(X,x0)→ π(X,x1)
1. je homomorfizmus grúp
2. je izomorfizmus grúp
3. αr závisí od homotopickej triedy rel{0, 1} cesty r.
4. Ak s : I → X je cesta z x1 do x0, tak αr a αs sa líšia o vnútorný automorfizmus grupy
π(X,x1) (Teda ak π(X,x1) je komutatívna, tak máme αr = αs, t.j. izomorfizmus π(X,x0) ∼=
π(X,x1) nezávisí od výberu cesty z x0 do x1 (ak taká cesta existuje).)

Dôsledok 5. Ak priestor X je lineárne súvislý, tak pre ľubovoľné x0, x1 ∈ X máme π(X,x0) ∼=
π(X,x1). (vo všeobecnosti tento izomorfizmus nie je kanonický - závisí od homotopickej triedy
rel{0,1}) Potom π(X,x0) označujeme π(X).

Lema 2. Nech c, d : I → X sú uzavreté cesty a nech H : I × I → X je homotópia od c
ku d taká, že H(0, s) = H(1, s) ∀s ∈ I (=t.j. cez uzavreté cesty). Nech h : I → X je cesta
definovaná ako h(s) = H(0, s) pre s ∈ I. Potom αh([d]) = [c].

Definícia 12. Pre spojité zobrazenie f : X → Y , definujeme π(f) : π(X,x0)→ π(Y, f(x0)),
π(f)([c]) = [f ◦ c].

Tvrdenie 8. π(f) : π(X,x0) → π(Y, f(x0)) je homomorfizmus grúp. Ak g : Y → Z je spo-

jité, tak π(g ◦ f) = π(g) ◦ π(f). T.j. ak diagram X
f

//___

g◦f
ÃÃ@

@

@

@

@

@

@

Y

g

²²

Z

komutuje, tak komutuje aj

π(X,x0)
π(f)

//___

π(g◦f)
''N

N

N

N

N

N

N

N

N

N

N

π(Y, f(x0))

π(g)

²²

π(Z, gf(x0))

. Okrem toho π(idX) = idπ(X,x0).

Veta 9. Nech f : X → Y , g : X → Y sú spojité zobrazenia, nech x0 ∈ X. Nech f ≃ g a
H : X × I → Y je homotópia od f ku g. Definujme cestu h : I → Y , h(s) = H(x0, s). (cesta
z f(x0) do g(x0)) Potom αh ◦ π(g) = π(f) a αh je izomorfizmus.

π(X,x0)
π(g)

//___

π(f)
&&M

M

M

M

M

M

M

M

M

M

M

π(Y, g(x0))

αh
∼=

²²

π(Y, f(x0))

Dôsledok 6. π(g) je izomorfizmus ⇔ π(f) je izomorfizmus.

Veta 10. Nech X,Y majú ten istý homotopický typ. Potom ich fundamentálne grupy sú
izomorfné.

Dôsledok 7. Fundamentálna grupa ľubovoľného kontraktibilného priestoru je triviálna.
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Tvrdenie 9. Nech X, Y sú topologické priestory, nech x0 ∈ X, y0 ∈ Y . Potom π(X ×
Y, (x0, y0)) ∼= π(X,x0)× π(Y, y0).

4.4 Fundamentálna grupa kružnice

Veta 11. π(S1, 1) ∼= Z.

Lema 3. Označme Φ: R → S1, Φ(t) = e2πit Nech c : I → S1 je ľubovoľná slučka v bode
1 ∈ S1. Potom existuje jediná cesta c̃ : I → R taká, že: c̃(0) = 0 a Φ ◦ c̃ = c. (c̃ sa nazýva
zdvih cesty c do R.)

Tvrdenie 10. V situácii z predchádzajúcej lemy je c̃(1) ∈ Z.

Veta 12. Nech c, d ∈ Ω(S1, 1) sú homotopné rel{0, 1}. Nech H : I × I → S1 je homotópia
rel{0, 1} od c ku d. Potom existuje jediná homotópia rel{0, 1} H̃ : I × I → R od c̃ ku d̃ taká,
že Φ ◦ H̃ = H.

Dôsledok 8. Ak [c] = [d] ∈ π(S1, 1), tak c̃ ≃ d̃(rel{0, 1}), a preto c̃(1) = d̃(1). Teda predpis
[c] 7→ c̃(1) dobre definuje zobrazenie χ : π(S1)→ Z.

Tvrdenie 11. χ je izomorfizmus grúp.

Tvrdenie 12. S1 nie je retraktom gule D2.

Tvrdenie 13. Torus T má fundamentálnu grupu π(T ) ∼= Z2.

4.5 Reťazcové komplexy

Definícia 13. Postupnosť G′ α
−−−−→ G

β
−−−−→ G′′ abelovských grúp a homomorfizmov

medzi nimi je exaktná v G, ak Ker(β) = Im(α).
Postupnosť . . . G−1

α−1

−−−−→ G0
α0−−−−→ G1

α1−−−−→ G2 . . . abelovských grúp a homomor-
fizmov medzi nimi je exaktná, ak každá postupnosť Gn

αn−−−−→ Gn+1
αn+1

−−−−→ Gn+2 je exakt-
ná v Gn+1. (∀n ∈ Z).
Exaktná postupnosť 0→ G′ α

−−−−→ G
β

−−−−→ G′′ → 0 abelovských grúp a homomorfiz-
mov medzi nimi sa nazýva krátka exaktná postupnosť.

Definícia 14. ∆q = q-rozmerný štandardný simplex = konvexný obal koncových bodov

bázových vektorov e0, . . . eq v Rq+1 = {(t0, . . . , tq); ti ≥ 0,
q
∑

i=0

ti = 1}.

Body e0, . . . , eq sa volajú vrcholy ∆q.
Množina {(t0, . . . , tq) ∈ ∆q; ti = 0} pre dáke i sa nazýva i-ta stena simplexu ∆q, leží

oproti vrcholu ei.
Definujeme zobrazenie di

q : ∆q−1 → ∆q di
q(t0, . . . , tq−1) = (t0, . . . , ti−1, 0, ti+1, . . . , tq−1)

pre každé i = 0, . . . , q. (tzv. stenové zobrazenie)

Lema 4. i, j ∈ {0, 1, . . . , q} také, že j < i máme di
q ◦ dj

q−1 = dj
q ◦ di−1

q−1.

Definícia 15. Singulárny q-rozmerný simplex topologického priestoru X je spojité zobraze-
nie f : ∆q → X.
Sq(X):= voľná abelovská grupa generovaná množinou všetkých q-simplexov priestoru X pre
q ≥ 0 a Sq(X) := 0 pre q < 0.
Definujme homomorfizmus ∂i

q : Sq(X)→ Sq−1(X), ∂i
q(f) = f ◦ di

q pre i = 0, . . . , q.

Definujeme hraničný operátor : ∂q : Sq(X) → Sq−1(X), ∂q =
q
∑

i=0

(−1)i∂i
q, ak q ≥ 0, inak

∂q = 0.
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Veta 13. ∂q ◦ ∂q+1 ≡ 0 pre všetky q ∈ Z.

Definícia 16. Prvky z Sq(X) sa volajú q-rozmerné singulárne reťazce priestoru X.

Definícia 17. Postupnosť S(X) = (Sq(X), ∂q)q∈Z sa nazýva singulárny reťazcový komplex
topologického priestoru X.
Pre spojité zobrazenie f : X → Y definujeme Sq(f) : Sq(X) → Sq(Y ), Sq(f)(T ) = f ◦ T

pre q ≥ 0, pre q < 0 je Sq(f) nulové zobrazenie.

Veta 14. Ak f : X → Y je spojité, tak diagram

// Sq(X)

Sq(f)

²²

∂q
// Sq−1(X)

Sq−1(f)

²²

∂q−1
// Sq−2(X)

Sq−2(f)

²²

//

// Sq(Y )
∂q

// Sq−1(Y )
∂q−1

// Sq−2(Y ) //

komutuje, t.j. ∀q ∈ Z máme Sq−1(f) ◦ ∂q = ∂q ◦ Sq(f).

Tvrdenie 14. Ak f : X → Y , g : Y → Z sú spojité, tak Sq(g ◦ f) = Sq(g) ◦ Sq(f) a
Sq(idX) = idSq(X).

Definícia 18. Reťazcový komplex je postupnosťK = (Kq, ∂q)q∈Z, kdeKq sú abelovské grupy
a ∂q : Kq → Kq−1 je homomorfizmus grúp (pre všetky q ∈ Z) taký, že ∂q−1 ◦ ∂q = 0.
Ak K = (Kq, ∂q)q∈Z, L = (Lq, ∂q)q∈Z sú dva reťazcové komplexy, tak homomorfiz-

mom reťazcových komplexov z K do L rozumieme postupnosť f = (fq)q∈Z homomorfizmov
fq : Kq → Lq takých, že ∂q ◦ fq = fq−1 ◦ ∂q pre ∀q ∈ Z.
Stručne hovoríme o homomorfizme reťazcových komplexov f : K → L. (∂q sa aj tu volá

hraničný operátor).

Tvrdenie 15. Je jasné, že ak f : K → L, g : L → M sú homomorfizmy reťazcových kom-
plexov, tak aj g ◦ f : K → M je homomorfizmus reťazcových komplexov, idK : K → K je tiež
homomorfizmus reťazcových komplexov.

Definícia 19. K=kategória všetkých reťazcových komplexov a homomorfizmov medzi nimi.

Definícia 20. Reťazcový komplex E taký, že E0 = Z a Eq = 0 pre q 6= 0 sa nazýva
augmentačný komplex.

Definícia 21. Nech K = (Kq, ∂q)q∈Z je reťazcový komplex. Potom označme Zq(K) :=
Ker(∂q), Bq(K) := Im(∂q+1).

Tvrdenie 16. Bq(K) je podgrupa grupy Zq(K).

Definícia 22. Zq(K)=grupa q-cyklov reťazcového komplexu K. Bq(K)=grupa q-hraníc re-
ťazcového komplexu K.

Definícia 23. Ak K = (Kq, ∂q) je reťazcový komplex, tak faktorová grupa Hq(K) =
Zq(K)/Bq(K) sa nazýva q-ta grupa homológií (q-ta homologická grupa) komplexu K. Jej
prvky označujeme [c] ∈ Hq(K).

Definícia 24. Relácia ekvivalencie na grupe Zq(K) určená podrupou Bq(K) sa nazýva
homológia.
c, d ∈ Zq(K) : c ≃ d ⇔ c − d ∈ Bq(K) ⇔ c − d = ∂q+1(a) pre dáke a ∈ Kq+1. Hovorí sa
vtedy, že c a d sú homologické.
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Tvrdenie 17. Nech K = (Kq, ∂q)q∈Z , L = (Lq, ∂q)q∈Z sú reťazcové komplexy, nech f : K →
L je homomorfizmus reťazcových komplexov. Potom:
fq(Zq(K)) ⊆ Zq(L)
fq(Bq(K)) ⊆ Bq(L)

Veta 15. Ak f : K → L je homomorfizmus reťazcových komplexov, tak predpis [c] 7→ [fq(c)]
dobre definuje homomorfizmus grúp Hq(f) : Hq(K)→ Hq(L).

Definícia 25. Homomorfizmus Hq(f) : Hq(K) → Hq(L) z predchádzajúcej vety sa na-
zýva homomorfizmus homologických grúp indukovaný homomorfizmom reťazcových komple-
xov f : K → L.

Tvrdenie 18. Ak f : K → L, g : L → M sú homomorfizmy reťazcových komplexov, tak pre
každé q ∈ Z máme:
Hq(g ◦ f) = Hq(g) ◦ Hq(f)
Hq(idK) = idHq(K)

Máme teda kovariantný funktor H : K → GradAb.

4.6 Singulárne homologické grupy topologických priestorov

Definícia 26. Nech X je topologický priestor. Potom q-ta singulárna grupa homológií pries-
toru X sa definuje ako Hq(X) := Hq(S(X)) pre ∀q ∈ Z. Ak f : X → Y je spojité zobrazenie,
tak máme homomorfizmus singulárnych reťazcových komplexov S(f) : S(X)→ S(Y ); definu-
jeme homomorfizmus singulárnych grúp homológií akoHq(f) := Hq(S(f)) : Hq(X)→ Hq(Y ).
Hq(f) sa nazýva homomorfizmus singulárnych grúp homológií indukovaný spojitým zobra-
zením f : X → Y .
Samozrejme Hq(f ◦g) = Hq(f)◦Hq(g), Hq(idX) = idHq(X), teda Hq : Top → Ab a H : Top →
GradAb.

Tvrdenie 19. Ak P je jednobodový priestor, tak

Hq(P ) =

{

Z , ak q = 0

0 , ak q 6= 0

Veta 16. Nech X je lineárne súvislý priestor. Potom H0(X) ∼= Z.

Dôsledok 9. Nech {Xα}α∈A je systém komponentov lineárnej súvislosti priestoru X. Potom
Hq(X) ∼=

∏

α∈A

Hq(Xα).

Dôsledok 10. H0(X) ∼=
⊕

α∈A

Z

Dôsledok 11. X je lineárne súvislý ⇔ H0(X) ∼= Z

Tu by mal byť prehľad nejakej literatúry z topológie (všeobecnej, diferenciálnej, algeb-
raickej).
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