Verzia: 25. juna 2002
Zatial som nepisal poznamky z diferencidlnej a algebraickej topoldgie, ale na stranke s
poznamky z tychto predmetov, ktoré som pouzival pri priprave na skusku.

1 Topolédgia

Topologické priestory, aziomy oddelitelnosti (requldrne, tuplne requldrne, normdlne priestory).
Spojité funkcie. Zdkladné topologické konstrukcie (topologicky sicin a sicet, faktorovy pries-
tor). Sivislé, lokdlne kompaktné a kompaktné priestory. Konvergencia v topologickych pries-
toroch (pomocou filtrov a sieti). Metrizovatelné priestory, metrizacia topologickych priesto-
TOV.

1.1 Topologické priestory

Definicia 1. Nech X je mnozina. Systém 7 podmnoZin mnoziny X taky, ze
(i) 0,X €T,
(ii) ak U,V € T, tak aj U NV €T,

(i) ak U; € T pre kazdé i € I, tak aj J,.;U; € 7.

il
sa nazyva topoldgia na mnozine X. Dvojicu (X, T) nazyvame topologicky priestor.
Mnoziny patriace do 7 volame otvorené, ich doplnky s uzavreté mnoziny.

Priklad 1. Trividlnymi prikladmi st diskrétny (kazdd mnozina je otvorend) a indiskrétny
topologicky priestor (otvorené st len () a X).
Kazdy metricky priestor uréuje topoldgiu. (Topolégiu dantt metrikou d znaéime 7;.)
Kofinitnéa topoldgia = otvorené mnoziny st doplnky koneénych mnozin.
(R, T.),kde T, = {U € PR); (Vx € U)(Fe > 0)(x — e,z) CU}.
Sierpinského topologicky priestor: X = {0,1}, 7 = {0, X, {0} }

Topoldgiu mozno zadat aj tak, Ze zaddme mnozinu uzavretych mnozin.

Definicia 2. Nech X je topologicky priestor, A C X. A=nN{F: AC F, F je uzavretd v X}
sa nazyva uzdver mnoziny A v X.

Tvrdenie 1.
(i) ACA.
(ii) A je uzavretd mnoZina.
(iii) O = 0.
(iv) A je uzavretd & A= A.
(v) AUB=AUB.
(vi) A =A.

Topolégiu mozno zadat aj tak, ze zaddme operator uzaveru. (Musi spliiaf podmienky (i),
(iii), (v), (vi) z predchddzajuceho tvrdenia.)

Definicia 3. Podmnozina A topologického priestoru (X, 7) sa nazyva hustd, ak A = X.
Priestor sa nazyva separabilny, ak v fiom existuje spocitatelnd hustd podmnozina.



Pre A C X sa A° = |J{U € T;U C A} nazyva vnitro mnoZiny A. Plati X° = X, A° C A,
(AN B)° = A°N B°, (A°)° = A°. Naopak, ak je dany operator nt: P(X) — P(X) spliiajici
uvedené vlastnosti, mozno pomocou neho definovat topolégiu na X tak, aby int A = A°.

Definicia 4. Nech (X,7T) je topologicky priestor, a € X. Okolim bodu A nazyvame Tubo-
volnti podmnozinu U C X taka, ze a € U a existuje V € 7 takd, ze a € V C U.

Veta 1. Nech (X,T) je topologicky priestor, A C X, a € X. Potom a € A < pre kaZdé
okolie V bodua VN A#Q.

Definicia 5. Nech (X,7) je topologicky priestor, a € X. Potom systém B(a) okoli bodu a

sa nazyva bazou okoli (bazou systému okoli) bodu a, ak pre kazdé okolie V' bodu a existuje
U € B(a) také, ze U C V.

Definicia 6. Hovorime, ze (X,7) vyhovuje 1. azidme spocitatelnosti, ak pre kazdy bod
a € X existuje spocitatelnd baza okoli.

Definicia 7. Nech (X,7) je topologicky priestor. Systém B C 7 sa nazyva bdzou topoldgie
T, ak pre kazdé U € T existuje S C B tak, ze U = (Jges S-
(X,7T) vyhovuje 2. aziome spocitatelnosti, ak existuje spocitatelna baza topoldgie.

Veta 2. Systém B C T je bdzou topoldgie T vtedy a len vtedy, ak pre kazZdé U € T a kazZdé
x € U ezistuje V € B tak, 2ex € V C U.

Veta 3. Nech B je bdza topoldgie. Potom plati

(i) U B=X.
BeB

(ii) Ak V,W € B, tak pre kazdy bod x € V NW ezistuje mnozina U € B takd, Ze x € U C
Vnw.

Obrdtene, ak nejaky systém B spliia tieto podmienky, je bdzou nejakej topoldgie.

Tvrdenie 2. Ak priestor X md spocitatelni bdzu topoldgie, tak vyhovuje prvej azidme spo-
Citatelnosti.

Nech B je bdza topologického priestoru X. Potom A C X je hustd prdve vtedy, ked
ANU # 0 pre vsetky U € B.

Definicia 8. Nech (X,7) je topologicky priestor. Systém S C 7 sa nazyva subbdzou topo-
16gie T, ak Bs = {V € P(X); @W4,..., Wy, € S)V = NI_, W;} je bézou topoldgie T.

S je subbaza nejakej topoldgie na X prave vtedy, ked (Jg.59 = X.
1.2 Spojité funkcie

Definicia 9. Nech X, Y st topologické priestory. Zobrazenie f: X — Y sa nazyva spojité,
ak vzor f~1(U) kazdej otvorenej mnoziny v Y je otvorend mnozina v X.

Zlozenie spojitych zobrazeni je spojité. Zuzenie spojitého zobrazenia na podpriestor je
spojité. Ak A je podpriestor X, tak vlozenie A do X je spojité zobrazenie. Konstantné
zobrazenie je spojité.

Ekvivalentné podmienky ku spojitosti: Vzor uzavretej mnoziny je uzavreta. Vzor bazovej

mnoziny je otvorené. Pre kazdé A C X je f[A] C f[A].

Definicia 10. Bijekcia f: X — Y je homeomorfizmus, ak f aj f~! si spojité.



Definicia 11. Zobrazenie f: X — Y sa nazyva otvorené (uzavreté), ak pre kazda otvoreni
(uzavret) mnozinu U C X je f[U] otvorend (uzavretd) v Y.

Definicia 12. Spojité zobrazenie m: X — Y sa nazyva vnorenie, ak m: X — m[X] je
homeomorfizmus.

1.3 Zakladné topologické konstrukcie

Definicia 13. Nech (X,7) je topologicky priestor a A C X. Potom topologicky priestor
na mnozine A s topolégion T4 = {U N A;U € T} (tzv. relativna topoldgia) je topologicky
podpriestor priestoru (X, T).

Tvrdenie 3. Nech (X, Tx) je topologicky priestor, Y je mnoZina a f: X — Y je zobrazenie.
Potom Ty = {V € P(Y); f~1(V) € Tx} je topoldgia na'Y. T} sa nazyva faktorové topoldgia.
Plati:

(i) f: (X, Tx) — (Y, Ty) je spojité.
(ii) Ak f: (X, Tx) — (Y,T) je spojité, tak T C T;.

(i11) Ak g: (Y,Ty) — (Z,1z) je zobrazenie a go f: (X,Tx) — (Z,7z) je spojité, tak g je
Spojité.

Definicia 14. Nech (X,7) je topologicky priestor, E je relacia ekvivalencie na X, X/F je
rozklad X na triedy ekvivalencie a p: X — X/E, p(z) = E(x). Potom (X/FE,T,) sa nazyva
faktorovym priestorom priestoru (X, 7), oznac¢ujeme (X,7)/E.

Spojité zobrazenie f: (X,7x) — (Y,7y) sa nazyva faktorové, ak je surjektivne a pre
kazdé V € P(Y) plati f~1(V) € Tx = V € Ty. (Podmnozina Y je otvorend préve vtedy,
ked jej vzor v zobrazeni f je otvorend mnozina v X.)

Tvrdenie 4. (i) Ak f: (X,Tx) — (Y, Ty) je faktorové zobrazenie, tak Ty = T;.

(i) Ak f: (X, Tx) — (Y,Ty) je faktorové zobrazenie a Ej je reldcia ekvivalencie ur-
cend zobrazenim f (t.j. (x,y) € Ey & f(x) = f(y)), tak f: (X, Tx)/Ef — (Y, Ty),

f(Ef(x)) = f(x), je homeomorfizmus.

Tvrdenie 5. Ak spojité zobrazenie f: X — Y je surjektivne a otvorené (uzavreté), tak je
faktorove.

Definicia 15. Nech (X,, 7o )acr je systém topologickych priestorov (I je mnozina.) Nech

X = ][ Xa, B=A{W € P(X); existuju a,...,ap € T aU; € Ty, pre i € {1,...,k} tak, ze
acl

k
W = (N pa}(Ui)}. Nech T = T3 je topoldgia na X urcend bazou B. Potom (X, T) sa nazyva
i=1
topologickym sucinom topologicky priestorov (X, 74 )acr-
Veta 4 (Vlastnosti topologického stéinu). (i) Projekcie p, st spojité.

(ii) Ak T' je topologia na [],c; Xa takd, Ze pre kazdé o € I je po: ([[pe; X T') —
(Xa, 7o) je spojité, tak T C T'. (T.j. T je najhrubsia takd topoldgia, pre ktord si
vietky p, spojité.)

Tvrdenie 6. Ak pre kazdé a € I je X, Ti-priestor (i = {0,1,2}), tak aj [[,c; Xa je
T;-priestor.



Tvrdenie 7. Ak f je zobrazenie topologickeho priestoru’Y do topologického sicinu [, c; Xa,
tak [ je spojité prave vtedy, ked po o f je spojité pre vsetky o € I.

Désledok 1. Nech X, o € I # 0, je systém topologickijch priestorov a pre kaZdé o € T
je fo: Y — X, je spojité zobrazenie. Potom existuje prdve jedno spojité zobrazenie f:Y —
[locs Xao také, Ze po o f = fo pre kaZdé a € 1.

Désledok 2. Nech X, Yo, a € I # 0, su systémy topologickych priestorov a pre kaZdé
a € 1 je fo: Xo — Y, spojité zobrazenie. Potom existuje prdve jedno spojité zobrazenie
I aer Xa = [lacr Yo také, Ze fo 0 pa = pi, o f. Oznacujeme ho f =:[[,c; fa-

Definicia 16. Nech I je neprdzdna mnozina a (X,,«a € I) je systém topologickych priesto-

rov. Nech X = J,c; Xo x{a} aT ={U € P(X);U N (X, x {a}) je otvorend v X, x {a}

pre kazdé a € I}. Pouziva sa oznacdenie (X,7) = > (X4, 70) = @ Xo = ][] Xo. (X,7T) sa
acl aecl acl

nazyva topologicky sucet priestorov X,.

1.4 Axiémy oddelitelnosti

Definicia 17. Nech (X, 7) je topologicky priestor.

(i) X sa nazyva Ty-priestor, ak pre kazdé a,b € X, a # b, existuje otvorend mnozina U
taka, ze a € U, b ¢ U alebo otvorend mnozina V takd, ze be V,a ¢ V.

(ii) X sa nazyva Ti-priestor, ak pre kazdé a,b € X, a # b, existuji otvorené mnoziny U,
Vtaké, zeac U, b¢ U,a ¢V, beV.

(ili) X sa nazyva Ty-priestor (hausdorffouvsky priestor), ak pre kazdé a,b € X, a # b,
existuju otvorené mnoziny U, V také, Zea c U, bV aUNV = (.

Tvrdenie 8. X je T -priestor prdve vtedy, ked vietky jednobodové mnoZiny si v X uzavreté.

Tvrdenie 9. Nech (X, T) je T;-priestor (i =0,1,2) a (Y, Ty) je podpriestor (X,T). Potom
aj (Y, Ty) je T;-priestor.

Definicia 18. Priestor X sa nazyva reguldrny, ak pre kazda uzavreti mnozinu A v X a pre
kazdé ¢ € X \ A existuju otvorené mnoziny U, V v X tak, ze ce U, ACV aUNV = .
Regularny Tj-priestor sa nazyva T3-priestor.

Priestor X sa nazyva dplne reguldrny, ak pre kazda uzavreti mnozinu Av X ace X\ A
existuje spojité zobrazenie f: X — (0,1) také, ze f[A] C {0}, f(c) = 1. Uplne regularny
Ti-priestor sa nazyva Ty 1 -priestor.

Priestor X sa nazyva normdalny, ak pre kazdé uzavreté disjunktné podmnoziny A, B v
X existuju otvorené mnoziny U, V v X tak, 2e A C U, B C V aUNV = (. Normalny
Ty -priestor je Ty-priestor.

Tvrdenie 10. Nech X je priestor a pre kazdé ¢ € X B. je bdza okoli c, ktorej prvky su
otvorené. Potom X je reguldrny < pre kaZdé c € X a kazdé U € B, existuje V € B, také, Ze
VCu.

Tvrdenie 11. KaZdy T3-priestor je To-priestor. Ak X je iplne requldrny (T3%) priestor, tak
X je reguldrny (T5) priestor. Kazdy Ty-priestor je Ts-priestor.

Veta 5 (Urysohnova lema). Ak X je normdlny priestor, A, B st uzavreté disjunktné
podmnoZiny v X, tak existuje spojité zobrazenie f: X — (0,1) také, Ze f[A] C {0} a f[B] C

{1}.



Veta 6. Kazdy Ty-priestor je TS% -priestor.

Tvrdenie 12. Nech X je topologicky priestor a S je subbdza topoldgie v X. Potom X je
Uplne reguldrny < pre kazdé ¢ € X a kazdé U € S také, Ze ¢ € U existuje spojité zobrazenie
f: X —1[0,1] tak, zZe f(c)=1a f(X\U) C {0}.

Veta 7. Kazdy podpriestor/topologicky sucin requldrnych/uplne reguldmych/Tg/Ti;% pries-
torov je reguldrny/. ..

Veta 8. Priestor X je TS% -priestor prdve vtedy, ked existuje mnoZina A tak, Ze X je home-

omorfng nejakému podpriestoru [0,1]4 (tzv. Tichonovova kocka,).

Regularny priestor, ktory nie je T5: dvojprvkovy indiskrétny.

Normalny, ktory nie je tplne regularny: Sierpinského priestor.

Priestor P, na mnozine R x Ry je dany bézou okoli:

B(A) = {O:(A),e >0}, 0. (A) = {(z,y € RxR{) : y/(a — 2)2 + (b —y)% < &} pre A = [a, b],
b#0

B(A) = {P.(A),e > 0}, P-(A) = {(z,y e RxRT) : /(a—2)®+ (b—y)? < e} U{A} pre
A = [a,0]

P je priklad T5-priestoru, ktory nie je regularny.

Ps: ako Ps, len béza okoli bodu (a,0) je B(c,0) = {T.(c,0),e > 0}, T.(c,0) = O:((c,e)) U
{(c,0)}

Ps je tplne regularny priestor, ktory nie je normalny.

1.5 Stvislost

Definicia 19. Topologicky priestor X je suvisly, ak jediné obojaké (t.j. otvorené aj uzavreté)
mnoziny v X st () a X. Suvisld mnoZina je mnoZina, ktora ako topologicky podpriestor tvori
suvisly priestor. (Ekvivalentnéd definicia savislého topologického priestoru: nedd sa napisat
ako zjednotenie svojich dvoch neprazdnych disjunktnych otvorenych podmnozin.)

Tvrdenie 13. Ak AC B C A a A je stwvisld mnozina, tak aj B je stvisld.

Definicia 20. Komponent stvislosti priestoru X je suvisld podmnozina X, ktord je maxi-
mélna (vzhladom na inklaziu).

C, =U{4 € P(X); A je stvisld a a € A} - komponent stvislosti bodu a.
Tvrdenie 14. Komponenty suvislosti tvoria rozklad topologického priestoru.
Tvrdenie 15. Spojity obraz suvislého topologického priestoru je stuvisly.

Stvislost sa nezachovéva pre topologické sucty a podpriestory. Prendsa sa na topologicky
sucin, spojity obraz a faktorovy priestor (lebo to je tiez spojity obraz).

Definicia 21. Topologicky priestor X sa nazyva linedrne suvisly, ak Tubovolné jeho dva
body mozno spojit cestou. (T.j. pre kazdé a,b € X existuje spojité zobrazenie f: (0,1) — X
také, ze f(0) =a a f(1) =0.)

Kaizdy lineérne savisly priestor je suvisly. Priestor X, kde X = {(z,sin(2)); = € R}, je
priklad priestoru, ktory je stvisly, ale nie je linedrne sivisly.

Definicia 22. Priestor sa nazyva lokalne suvisly, ak pre kazdy bod a € X existuje baza
okoli, ktoré st vSetky stvislé mnoziny v X.

Nie kazdy suvisly priestor je lokalne stivisly a nie kazdy lokédlne stuvisly priestor je stvisly.



1.6 Kompaktné priestory

Definicia 23. Priestor X sa nazyva lindeldffovsky, ak z kazdého otvoreného pokrytia X sa
da vybrat spocitatelné podpokrytie.

Priestor X sa nazyva kompaking, ak z lubovolného otvoreného pokrytia X mozno vybrat
konec¢né podpokrytie X. Podmnozina A priestoru X sa nazyva kompaktnd, ak podpriestor
uréeny A je kompaktny priestor.

Tvrdenie 16. Ak X je reguldrny, lindeldffovsky, tak X je normdlny.

Tvrdenie 17. Ak A je uzavretd podmnozina kompaktného priestoru, tak A je kompaktnd.
Ak A je kompakind podmnozina Ty-priestoru, tak A je uzavretd.

Tvrdenie 18. Ak X je Ty-priestor, A, B si kompaktné podmnoZiny v X, AN B =, tak
existuji otvorené mnoZiny U, V v X, pre ktore ACU, BCV aUNV = .

Dosledok 3. Ak X je kompakingy Ty-priestor, tak je normdlny (Ty).
Kazdy podpriestor kompakiného Ty -priestoru je T3% -priestor.

Tvrdenie 19. Ak f: X — Y je spojité a surjektivne a X je kompakiny, tak aj Y je kom-
paktny.
Definicia 24. Systém S # () podmnozin mnoziny X sa nazyva centrovany, ak pre lubovolny
neprazdny koneény podsystém S’ systému S plati (\pcg F # 0.
Tvrdenie 20. Nech X je topologicky priestor. Potom su nasledujice tvrdenia ekvivalentné:
(i) X je kompakiny.
(i) Pre lubovolny centrovany systém S uzavretych podmnozin X plati, Ze (ges S # 0.
(iii) Pre lubovolny centrovany systém S C P(X) plati Ngeg S # 0.

Veta 9 (Tichonovova). Ak (X,,«a € I) je systém kompakingch priestorov, tak ich topolo-

gicky sicin X = [[,c; Xa je kompaktny priestor.

Veta 10. Topologicky priestor X je kompaktny priestor < X je homeomorfny s uzavretym
podpriestorom priestoru [0,1]4 pre vhodné A.

Definicia 25. Priestor X sa nazyva lokdlne kompaktny, ak pre kazdé a € X existuje baza
okoli, ktoré su vsetky kompaktné.

Tvrdenie 21. Ts-priestor X je lokdlne kompakiny prdve vtedy, ked pre kazdé a € X existuje
kompakiné okolie a.

Kazdy kompaktny Ts-priestor je lokdlne kompaktng.

AE'Y je uzavrety (otvoreny) podpriestor lokdlne kompaktného priestoru X, tak'Y je lo-
kdlne kompaktny.

R je lokalne kompaktny, ale nie je kompaktny.



Kompaktifikacie

Definicia 26. Nech X je T4 1 -priestor. Usporiadant dvojicu (e, V') nazveme kompaktifikdciou
priestoru X, ak plati:

(i) Y je kompaktny Th-priestor,
(ii) e: X — Y je vnorenie,
(iii) e[X] =Y, t.j. e[X] je husta v Y.

Nech X je Ty, -priestor. Kompaktifikdcia (bx,3X) sa nazyva Stone-Cechova kompaktifi-
kdcia priestoru X, ak pre kazdé spojité zobrazenie f: X — [0, 1] existuje prave jedno spojité
zobrazenie f: X — [0,1] tak, ze f = f o b,, t.j. komutuje diagram

|
y
N

(0,1]

Tvrdenie 22. Pre kazdy T3%-pm'est07” existuje Stone-Cechova kompaktifikdcia.

Nech X je T3%-priestor a (bx,BX) je jeho Stone-Cechova kompaktifikicia. Potom pre
lubovolny kompakiny Ts-priestor K a spojité zobrazenie f: X — K existuje prdve jedno
spojité zobrazenie f: BX — K také, Ze fobx = f.

Tvrdenie 23. Nech (X,T) je lokalne kompaktny To-priestor, a ¢ X. Nech X* = X U {a},
T ={U € P(X*),a € U, X —U je kompaktnd v (X,T)}UT. Potom (X*,T*) je kompakiny
Ty-priestor, (X,T) je otvoreny podpriestor. Ak (X,T) nie je kompakiny, tak X je hustd v
(X*,T*). Teda je to kompaktifikicia priestoru (X,T) — tzv. jednobodova (Alexandrovova)
kompaktifikacia.

1.7 Konvergencia v topologickych priestoroch
Konvergencia pomocou filtrov

Definicia 27. Neprazdny systém F podmnoZin mnoziny X sa nazyva filter, ak plati
(i) 0 ¢ F.
(ii) Ak Fy, Fy € F,tak i NFy € F.
(iii) Ak FeFaFCGCX, tak G e F.

Filter U sa nazyva ultrafilter na X, ak pre lubovolny filter  na X plati: Ak U C F, tak
u==r.

Nech F je filter na X. Potom systém H C F sa nazyva bdza filtra F, ak plati: Pre kazdé
F € F existuje H € 'H tak, ze H C F.

Tvrdenie 24. Ak H je bdza nejakého filtra F na X, tak plati
(i) D¢H
(i) Ak Hy, Hy € H, tak existuje H € H tak, ¢ H C Hy N Hs.



Systém H C P(X) sa nazyva baza filtra, ak plati (i) a (i1). Filter uréeny bdzou H je Fp =
{UCP(X);(3H e H)H C U}.

Definicia 28. Nech X je topologicky priestor, F je filter na X, B je baza filtra na X a
ce X.

(i) Hovorime, ze filter F konverquje k ¢ v X, ak F obsahuje vSetky okolia bodu c.

(ii) Hovorime, Ze bdza filtra B konverguje k ¢ v X, ak Fp konverguje k ¢, t.j. pre kazdé
okolie U bodu c existuje prvok B € B tak, ze B C U.

(iii) Bod ¢ sa nazyva hromadnym bodom filtra F, ak pre kazdé okolie U bodu c¢ a kazdy
FeFUNF #0. (T.j. c€F pre vietky F € F).

(iv) Podobne sa definuje hromadng bod bdzy filtra ako hromadny bod Fg.
Tvrdenie 25. Nech X je topologicky priestor.
(i) Ak F —cvX, G je filter a G2 F, tak G — c.
(ii) Filter Froy generovany bazou filtra {c} konverguje k c.
(iii) Ak F — ¢, tak c je hromadng bod F.
(iv) Ak ¢ je hromadny bod filtra F, tak existuje filter G O F tak, Ze G — c.
Tvrdenie 26. Nech X je topologicky priestor, A C X, ¢ € X. Potom plati:
(i) c € A & emistuje bdza filtra F na A tak, e F — c v X.
(i1) A je uzavretd < pre kaZdi bdzu filtra F na A plati lim F C A.
(iii) X je Ty-priestor < kaZdy filter (bdza filtra) md najviac jednu limitu.
(iv) Ak F je ultrafilter na X a c je hromadny bod F, tak F — c.

Konvergencia pomocou sieti

Definicia 29. Usporiadand dvojica (A, <) sa nazyva usmernend mnoZina, ak A # 0 je
neprazdna mnozina, < je kvdziusporiadanie na A (t.j. relacia < je reflexivna a tranzitivna)
a pre lubovolné a,b € A existuje c z A tak, zZe a < caj b <c.

Definicia 30. Nech ¥ je usmernend mnozina, X je topologicky priestor. Potom zobrazenie
s: X — X, s(0) = z, sa nazyva sietou v priestore X. Oznacuje sa S = (z,,0 € X).

Definicia 31. Hovorime, ze bod ¢ € X je hromadng bod siete S = (x,,0 € X), ak pre kazdé
okolie U bodu c a kazdé o € ¥ existuje ¢’ > o tak, ze z, € U. Bod ¢ sa nazyva limitou siete
S = (z,,0 € X), ak pre kazdé okolie U bodu ¢ existuje o9 € X tak, ze pre kazdé o > og
T, € U. Oznacenie: c € lim S, limS =¢, S — c.

Tvrdenie 27. Nech X je topologicky priestor, A C X, ¢ € X. Potom ¢ € A & existuje
S =(z,,0 €X) v A tak, Ze S — c.

Zobrazenie f: X — Y je spojité < pre kaidé ¢ € X a kaZdi siet S = (z,,0 € ¥) v X,
ktord konverguge k ¢, plati (f(z,),0 € ¥) = foS — f(c).

Definicia 32. Nech S = (z,,0 € ), 8’ = (y,,0’ € ¥’) st siete v X. Potom S’ sa nazyva
podsiet (zjemnenie) siete S, ak existuje zobrazenie ¢: 3 — ¥ také, ze



(i) pre kazdé og € ¥ existuje of, € ¥’ tak, ze pre o’ > oy, plati p(c’) > oy,

(ii) pre kazdé o’ € X/ yor = (01
Tvrdenie 28. Ak siet S = (15,0 €X) = cv X a S = (2,0 € X') je podsiet siete S,
tak aj S" — c.

Ak c je hromadny bod siete S = (x,,0 € X), tak existuje podsiet S" = (x, 51y, 0" € X')
siete S tak, Ze S' — c.

Stvis medzi siefami a filtrami

Tvrdenie 29. Nech S = (2,0 € X) je siet v X. Polozme Fg = {A € P(X);(Jog € X)(Vo >
00)xs € A}. Potom Fg je filter vX a S — ¢ & Fg — c.

Nech F je filter v X, ¥ = ({(z,A); A € F;z € A}, <), (z,A) < (y,B) & B C A. Potom
Sz = (Y@, (v, A) € X), kde definujeme y(, 4y = z, je siet v X a pre kazdé c € X plati
F—oc&s Sgp—ec.

1.8 Metrizacia topologickych priestorov

Definicia 33. Priestor (X,7) sa nazyva metrizovatelny, ak existuje metrika d na X tak, ze
Tqo=T.

Tvrdenie 30. Ak d je metrika na X, tak d': X x X — R, d'(z,y) = min{l,d(z,y)} je
metrika na X a Ty =Ty .

Tvrdenie 31. Podpriestor metrizovatelného priestoru je metrizovatelny. Topologicky sicet
metrizovatelngch priestorov je metrizovatelny.

Faktorovy priestor metrizovatelného nemusi byt metrizovatelny: p: R — {Q,R \ Q} -
faktorizaciou dostaneme indiskrétny priestor.

Tvrdenie 32. Ak ((X,,7T,))nen je systém metrizovatelngch priestorov, tak [, cn(Xn, Tn)
je metrizovatelny priestor.

Désledok 4. Priestor [0,1)N je metrizovatelny.

Veta 11 (Urysohn). Ak X je reguldrny Ti-priestor so spocitatelnou bdzou topoldgie, tak
X je metrizovatelny.

Definicia 34. Zobrazenie d: X x X — R sa nazjva pseudometrika, ak spliia rovnaké vlast-
nosti ako mé metrika s vynimkou tej, ze méze platit d(x,y) = 0 aj pre z # y.

Tvrdenie 33. Ak (X,d) je (pseudo)metricky priestor, tak zobrazenie d: (X, Ty) x (X, Tq) —
R je spojité.

Definicia 35. Pre A # () definujeme d(z, A) = inf{d(z,a),a € A}. Ak B # 0, tak d(A, B) =
inf{d(a,b),a € A,b € B}.

Tvrdenie 34. Nech d je pseudometrika na X, (X,T) je topologicky priestor a d: (X,T) X
(X,7T) — R je spojité zobrazenie a ) # A C X. Potom zobrazenie fa: (X,7) — R, fa =
d(x, A) je spojité.

Definicia 36. Nech X je topologicky priestor a S je systém podmnozin X. Potom S sa
nazyva lokdlne konecény (diskrétny), ak pre kazdé a € X existuje otvorené okolie U, bodu a
tak, ze {S € S,SNU, # 0} je koneénd (jednoprvkova alebo prazdna — card{S € S,SNU, #
0} < 1). S sa nazyva o-lokdlne konecny (o-diskréiny), ak je zjednotenim spocitatelného
systému lokalne kone¢nych (diskrétnych) systémov.



Definicia 37. Nech U je pokrytie priestor X. Potom pokrytie V sa nazyva zjemnenim U, ak
pre kazdé V € V existuje U € U tak, ze V C U. Oznacujeme V < U.

Veta 12. Ak (X,d) je metricky priestor, tak pre kaZdé otvorené pokrytie U priestoru (X, Ty)
existuje o-diskrétne otvorené pokrytie take, Ze V < U.

Veta 13. Ak (X,d) je metricky priestor, tak (X,73) md o-diskrétnu bdzu.
Veta 14. Nech X je metrizovatelny (metricky) priestor. Potom st ekvivalentné
(i) X md spocitatelni bazu,
(i) X je separabilng,
(ii1) X je lindeldffovsky.
Désledok 5. Kazdy kompaktny metrizovatelny priestor md spocitatelni bdzu.

Déosledok 6. X je kompaking, metrizovatelng < X je homeomorfny s uzavretym podpries-
torom priestoru [0, 1]N.

Veta 15. Nech S je lokdlne konecny systém podmnoZin priestoru X. Potom plati
(i) US=US
ses ses
(ii) Ak pre kaZdé S € S je S uzavretd v X, tak aj \JS je uzavretd v X .
Veta 16. Ak X je reqularny a md o-lokdlne konecni bdzu B, tak X je normdlny.

Désledok 7. Kazdy metrizovatelny priestor je normdiny.

Veta 17. Nech X je Ty-priestor a (p;,i € N) je systém pseudometrik na X, ktory md
nasledujuce vlastnosti:

(i) Vi€ NVa,y € X pi(w,y) <1
(1)) Vi € N p;: (X,7) x (X,7T) — R je spojité zobrazenie.

(#ii) Pre kazdi uzavreti mnoZinu A a kaZdé x ¢ A existuje i € N p;(x, A) > 0.
o0
Potom zobrazenie d: X x X > R, d(z,y) = Y 3pi(z,y) je metrikana X a Ty ="T.
i=1
Veta 18. Nech X je regularny Ti-priestor. Potom nasledujice podmienky siu ekvivalentné:
(i) X je metrizovatelny.
(i1) X md o-diskrétnu bdzu. (Bing)

(ii) X md o-lokdlne konecni bdzu. (Nagata)
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2 Topolégia II

Takto vyzerala otazka tykajica sa topoldgie na malej analyze.
Topologické priestory. Otvorené a uzavreté mmnoziny, okolia, husté mnoZiny a pod. Spojité
zobrazenia, homeomorfné zobrazenia, otvorené a uzavreté zobrazenia. Spojity obraz kompakt-
nych a suvislych mnozin.

Definicia 1. Systém podmnozin mnoziny X 7 C P(X) sa nazyva topoldgia na X, ak
(i) 0,X €T,

(ll) A, €T preiel = UAiET,
icl

(iii) A, BeT = ANBeT.
Dvojicu (X, 7) nazyvame topologicky priestor ak T je topoldgia na X.

Priklady topologickych priestorov:

(X, {0, X}) - indiskrétny topologicky priestor

(X,P(X)) - diskrétny topologicky priestor

(X,7),kde T ={U C X : X \ U je kone¢na} - kofinitna topoldgia
Kazdy metricky priestor urcuje topoldgiu.

Definicia 2. Mnoziny patriace do 7 nazyvame otvorené a ich doplnky uzavreté mnoziny.
Tvrdenie 1.

(1) 0 a X si uzavreté,

(i) prienik lubovolného systému uzavretych mnoZin je uzavretd mnoZina,
(#ii) zjednotenie koneéného podtu uzavretgych mnoZin je uzavretd mnoZina.

Definicia 3. Nech X je topologicky priestor, A C X. A=N{F: AC F, F je uzavretd v X}
sa nazyva uzdver mnoziny A v X.

Tvrdenie 2.

(i) A je uzavretd < A= A,
(i) 0 =0,
(iii) A C A,

(iv) A =14,
(v) AUB=AUB.

Definicia 4. Ak (X,7T) je topologicky priestor a Y C X, tak 7* = {GNY : G € T} je
topoldgia na Y a nazyva sa relativnou topoldgiou indukovanou na Y topolégiou 7. (Y, 7*)
sa nazyva topologicky podpriestor priestoru X.

Definicia 5. Nech X je topologicky priestor a © € V' C X. V sa nazyva okolie bodu x, ak
existuje otvorend mnozina U taka, ze x € U C V.

Veta 1. z € A < kaZdé okolie bodu x md neprdzdny prienik s A (pretina mnoZinu A).
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2.1 Typy bodov a mnoZin v topologickych priestoroch

Definicia 6. Bod p topologického priestoru X sa nazyva izolovany bod priestoru X, ak
mnozina {p} je otvorend v X. Bod p € A C X je izolovany bod mnoziny A, ak je izolovany
v topologickom podpriestore A priestoru X.

Definicia 7. Bod p € X je hromadny bod mnoziny A C X, ak lubovolné okolie bodu p
obsahuje bod mnoziny A rézny od p. MnozZina vSetkych hromadnych bodov mnoZiny A sa
oznacuje D(A) a nazyva sa derivdcia mnoZiny A.

Tvrdenie 3. Nech X je topologicky priestor a A C X. Potom plati:
(i) A= AU D(A),

(i) mnoZina A je uzavretd prdive vtedy, ked D(A) C A (A obsahuje vietky svoje hromadné
body.)

Definicia 8. Nech (X, 7) je topologicky priestor, A C X. Potom mnozina Int A = U{G: G C

A,G € T} sa nazyva vniitro mnoziny A a mnozina H(A) = AN (X \ A) hranica mnoziny A.
Prvky mnoziny Int A nazyvame vnitorné body a prvky mnoziny H(A) nazyvame hranicné
body mnoziny A.

Tvrdenie 4. (i) A je otvorend < A =1Int A,
(1)) ACInt AUH(A),
(iii) ak A je uzavreté, tak A =Int AU H(A).
(i) mtA=X\X\A
(v) A=Tnt AU H(A)
Definicia 9. Mnozina A C X sa nazjva hustd (v X), ak A = X.

Tvrdenie 5. MnoZina A C X je hustd v X prdve vtedy, ked kazdd neprdzdna mnoZina G
otvorend v X md neprdzdny prienik s mnozinou A.

Definicia 10. Mnozina A C X sa nazyva perfekind, ak A = D(A).
Veta 2. MnoZina A C X je perfektnd prdve vtedy, ked A je uzavretd a nemd izolované body.
Definicia 11. Mnozina A C X sa nazyva riedka (v priestore X), ak Int A = ().

Veta 3. MnoZina A C X je riedka v X prdve vtedy, ked kazdd neprdzdna mnozina G C X
obsahuje taki neprdzdnu otvoreni podmmnozinu H C G, 2e HN A = (.

2.2 Baza topoldgie, baza okoli

Definicia 12. Nech (X,7T) je topologicky priestor. Systém mnozin B C 7 sa nazyva bdza
topologie T, ak kazda mnozina z 7 je zjednotenim mnozin z B.

Tvrdenie 6. Nutnd a postacujica podmienka na to, aby B C P(X) bola bdza nejakej topo-
logie na X su:

(i) U A=X,

AeB
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(i) ak A,B € B a p € AN B, tak ezistuje takd mnozina V€ B, Z2ep e V C AN B.

Definicia 13. Topologicky priestor (X,7) sa nazyva priestor so spocitatelnou bdzou, ak
existuje spocitatelna baza B pre topolégiu 7. Hovorime potom, ze X splia druhi azidmu
spocitatelnosti.

Definicia 14. Topologicky priestor X sa nazyva separabilng, ak v X existuje hustd spoci-
tateln4 podmnozina.

Tvrdenie 7. Ak X je priestor so spocitatelnou bdzou, tak X je separabilny.
Pre metrické priestory plati aj obratenad implikacia.

Definicia 15. Hovorime, Ze systém S C 7 je subbdza topoldgie T, ak systém pozostavajici
zo vSetkych koneénych prienikov mnozin z S tvori bazu topolégie 7.

Definicia 16. Nech X je topologicky priestor a p € X. Mnozina B okoli bodu p sa nazyva
bdza okoli bodu p, ak p € B pre vSetky B € B a pre kazdé okolie V' bodu p existuje mnozina
B € B taka, ze BC V.

Definicia 17. Ak (X;,7;), i € I st topologické priestory, tak ([][X;,7), kde 7 je urcend
subbazou S = {p; ' (U;): U; € T;,i € I} (p; oznacujeme projekcie z kartezidnskeho stcinu
[1X: na mnozinu X;) sa nazyva topologicky sicin topologickych priestorov (X;,7;), i € I.
(Teda béaza topoldgie topologického sicinu obsahuje mnoziny tvaru [[,.; V;, pricom V; € 7;
pre vietky i € I a V = X, pre v8etky i € I aZ na koneény pocet.)

iel

2.3 Zobrazenia topologickych priestorov

Definicia 18. Nech (X,7) a (Y,S) su topologické priestory a f: X — Y je zobrazenie.
Hovorime, ze f je

(i) spojité, ak pre kazda otvorenti mnozinu U C Y je jej vzor f~1(U) otvorend v X,
(ii) homeomorfizmus, ak f je bijekcia a f aj f~! st spojité,
(iil) wzavreté, ak obraz kazdej uzavretej mnoziny je uzavreta,
(iv) otvorené , ak obraz kazdej otvorenej mnoziny je otvorena.

Tvrdenie 8. Nech X a Y su topologické priestory, f: X — Y je zobrazenie. Nasledujice
podmienky su ekvivalentné:

(i) f je spojite,
(i1) vzor kaZdej uzavretej mnoZiny v zobrazeni f je uzavretd mnoZina,

(iii) pre kaZdi podmnozinu A C X plati f(A) C f(A).

Tvrdenie 9. Ak X a'Y si topologické priestory a f: X — Y je bijekcia, tak si ekvivalentné
podmienky:

(i) f je homeomorfizmus,
(ii) f je spojité a otvorené,

(iii) f je spojité a uzavreté.
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2.4 Suvisly topologicky priestor

Definicia 19. Topologicky priestor X sa nazyva suvisly, ak nie je zjednotenim svojich dvoch
neprazdnych uzavretych disjunktnych podmnozin.

Veta 4. Ak f: (X,T) — (Y,S) je spojité, surjektivne a (X,T) je suvisly, tak aj (Y,S) je
suwvisly. (Spojity obraz stvislého topologického priestoru je suvisly.)

2.5 Kompaktny topologicky priestor

Definicia 20. Topologicky priestor X sa nazyva kompaktny, ak kazdé jeho otvorené pokrytie
obsahuje konecné podpokrytie.

Definicia 21. Hovorime, Ze systém mnozin je centrovany, ak kazdy jeho koneény podsystém
ma neprazdny prienik.

Tvrdenie 10. Topologicky priestor X je kompaktny prdve vtedy, ked kaZdy centrovany sys-
tém uzavretych mnoZin md neprazdny prienik.

Tvrdenie 11. Uzavretd podmnoZina kompaktného topologického priestoru je kompakind.
Tvrdenie 12. Kompaktny podpriestor hausdorffovského priestoru je uzavrety.
Veta 5. Spojity obraz kompaktného topologického priestoru je kompaktny.

Veta 6 (Tichonovova). Ak X, v € ' si kompaktné topologické priestory, tak ich topolo-
gicky sucin [ X, je kompaktny.
vel

3 Diferencialna topoldgia

Diferencovatelné variety a funkcie. Dotykovd varieta. VioZenie kompaktnyjch variet do R™.
Veta o lokdlnej inverzii. Vektorové fibrdacie. Veta o transverzalite.

4 Algebraicka topolégia

Homotopia a homotopické zobrazenia, fundamentalna grupa. Fundamentdlna grupa kruznice.
Geometrické a retazové komplexry. Singuldrne a simplicidlne homoldgie.

4.1 Homotdpia

Definicia 1. Nech f,g: X — Y st spojité zobrazenia. Hovorime, Ze f je homotopné s g
(f ~ g, f sa d4 homotopicky zdeformovat na g), ak existuje spojité zobrazenie H: X xI — Y
také, ze H(x,0) = f(x), H(z,1) = g(z) pre kazdé = € X.

H je homotdpia od f ku g.

Vlastne: V¢ € I H definuje spojité zobrazenie hy: X — Y ; hy(x) = H(z,t).
To, ze H je spojité znamend to, Ze systém zobrazeni {h;}icr je spojity.
To, ze H je homotépia od f ku g znamena, 7e hg = f a hy = g.

Definicia 2. Ak f,g: X — Y st spojité zobrazenia, také, ze pre ddku podmnozinu A C X
méme f(a) = g(a) pre Va € A, hovorime, zZe f a g st homotopné rel A, ak existuje homotGpia
H: X xI — Y takd, ze H(x,0) = f(x), H(z,1) = g(x) a H(a,t) = f(a) = g(a) pre
Ya € At e l.

H=homotdpia rel A od f ku g.

Oznacujeme f ~ g(relA).
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Tvrdenie 1. Na triede spojitjch zobrazeni z X do'Y (pre dané X, Y ) je reldcia ~ reldciou
ekvivalencie.

Definicia 3. Triedy ekvivalencie ~ sa nazyvaju homotopické triedy zobrazeni z X do Y.

Veta 1. Spojité zobrazenie f: S™ — X sa dd rozsirit na spojité zobrazenie F: D"t — X«
f je homotopné s konstantnym zobrazenim; f ~ const.

Definicia 4. Zobrazenie, ktoré je homotopné s konstantnym zobrazenim sa tiez nazyva nula-
homotopné (alebo homotopné s nulou).

Veta 2. Nech f,g: X =Y , nech AC X a fla=gla. Nech h: Y — Z je lubovolné spojité
zobrazenie. Ak f ~ g(relA), tak aj ho f ~ ho g(relA).

Nech f,g: X =Y ,nech A C X a fla = gla. Ak k: W — X a f =~ g(relA), tak
fok~gok(rel k=1(A))

Definicia 5. Zobrazenie f: X — Y sa nazyva homotopickd ekvivalencia, ak existuje spojité
zobrazenie g: Y — X také, Ze go f ~ idx, fog ~ idy. (g sa tiez zvykne volaf lavé
homotopicky inverzné zobrazenie ku f a naopak, f a g si navzajom homotopicky inverzné.)
Priestory X, Y s homotopicky ekvivalentné (=magi ten isty homotopicky typ), ak existuje
homotopicka ekvivalencia f: X — Y. Budeme oznacovat X ~ Y (v literatire aj X =2 Y).

Plati: Topologicky ekvivalentné topologické priestory st homotopicky ekvivalentné (ho-
meomorfizmus je homotopické ekvivalencia).

Tvrdenie 2. Reldcia homotopickej ekvivalencie je reldcia ekvivalencie na triede topologic-
kych priestorov.

R™ ~ {x}
R™ — {0} ~ Sn—l

Definicia 6. Ak A je topologicky podpriestor X ai: A — X ar: X — A je (spojité)
také, ze r o i = ida (t.j. r|la = ida), tak r sa nazyva retrakcia (stiahnutie) priestoru X na
podpriestor A. (A je retrakt X.)

Ak r: X — A je retrakcia takd, Ze i or ~ idx, tak r sa nazyva deformacnd retrakcia. (A
je deformacny retrakt priestoru X).

Ak ior ~idx(relA), tak r je silnd deformacnd retrakcia.

Definicia 7. Priestor X sa nazyva kontraktibilng (stiahnutelny), ak pre ddke x € X plati,
7e {x} je deformaénym retraktom priestoru X.

Tvrdenie 3. Priestor X je kontraktibilny < X je homotopicky ekvivalentny s jednobodovym
priestorom.

Tvrdenie 4. Priestor X je kontraktibilny < idx ~ const.

Tvrdenie 5. Nech f: X — S™ | n > 1 je spojité zobrazenie také, Ze f(X) # S™. Potom
f =~ const.

Tvrdenie 6. CX =X x I/X x {1} je kontraktibilng.
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4.2 Fundamentalna grupa topologického priestoru

Definicia 8. Q(X, ) = mnozina vSetkych ciest v X, ktoré za¢inaja aj koncia v xy. Prvky
z Q(X, zg) sa nazyvaju slucky.

Veta 3. Nech c,d: I — X si cesty také, Ze ¢(1) = d(0) a nech ¢’,d': I — X su cesty také,
Ze (1) =d'(0). Ak ¢~ (rel{0,1}) a d ~ d'(rel{0,1}), tak ¢ xd ~ ¢’ = d'(rel{0,1}).
Okrem toho: ¢~ ~ ¢ "rel{0,1}

Désledok 1. Na mnozine homotopickych tried rel{0, 1} sluciek priestoru X v bode xq predpis
[c] - [d] = [c*d] dobre definuje bindrnu operdciu.

Lema 1. Nech ¢: I — X je cesta. Nech a: I — I je spojité zobrazenie také, Ze a(0) =
0, a(1l) =1. Potom co a ~ ¢(rel{0,1}).

Definicia 9. Nech ¢,d: I — X st 2 cesty v X také, Ze ¢(1) = d(0). Nech ¢ € (0,1). Potom
definujeme novi cestu c *, d.

u te<0,q>
crgd(ty =) I
d(=L) te<q, 1>

Veta 4. Nech c¢,d: I — X su 2 cesty v X také, Ze c(1) = d(0). Nech q € (0,1). Potom
(cxqd)oa=cxd pre vhodné a: I — I; a(0) =0, a(l) = 1. Cize c x4 d ~ c*d(rel{0,1}).

Veta 5. Nechc,d, | si také cesty v X, Ze sa daju skladat. Potom: (cxd)xf ~ cx(dx f)rel{0,1}.

Désledok 2. Operdcia - na mnoZine homotopickych tried rel{ 0,1} sluciek v zo € X defino-
vand pomocou spdjania ciest je asociativna.

(e - [d]) - [f] = [e] - (1d] - [£]) pre lubovolné c,d, f € (X, xo).

Veta 6. Nech c: I — X je cesta v X a nech ¢(0) resp. ¢(1) si konstantné cesty v ¢(0) resp.
¢(1). Potom

¢(0) * ¢ ~ ¢ rel{0,1},

c*c(l) ~crel{0,1}.

Daésledok 3. Konstantnd slucka v xg € X je neutrdlnym prvkom operdcie - na mnoZine
homotopickych tried rel{ 0,1} sluciek v xg € X.

Veta 7. Pre lubovolni cestu c: I — X.
c*xc” ~c(0) rel{0,1}
¢ xc~c(l) rel{0,1}

Désledok 4. Pre c € Q(X, x9) mdme, Ze [c7] =[] L.

Veta 8. Nech X je topologicky priestor, pevne zvolme xg € X. Ak na mnoZine homotopickijch
tried rel{ 0,1} sluciek priestoru X v bode xo definujeme operdciu - predpisom [c] - [d] = [c*d],
tak dostaneme z tejto mnoziny grupu; oznacme ju w(X, xo).

Definicia 10. Grupa 7(X, o) sa nazyva fundamentdlna grupa priestoru X v bode zg (s
referenénym (bazovym) bodom ).
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4.3 Zavislost m(X, ) od xg

Definicia 11. Ak r: [ — X je cesta v X, r(0) = z1, r(1) = ¢, definujeme a;.: Q(X,z¢) —
Q(X,z1), ar(c) =r* cxr~. Toto zobrazenie indukuje zobrazenie fundamentalnych grup:
o (X, z9) — m(X, x1)

aple] =[r*xc*xr]

Tvrdenie 7. «,: 7(X,2z9) — 7(X,z1)

1. je homomorfizmus grip

2. je izomorfizmus grup

3. a, zdvisi od homotopickej triedy rel{0,1} cesty r.

4. Ak s: I — X je cesta z x1 do xg, tak a, a oy sa liSia o vnidtorny automorfizmus grupy
m(X,x1) (Teda ok 7(X,x1) je komutativna, tak mdme o, = g, t.j. izomorfizmus m(X, xg) =
(X, x1) nezavisi od vgberu cesty z xg do w1 (ak takd cesta existuje).)

Daésledok 5. Ak priestor X je linedrne stivisly, tak pre lubovolné xg,x1 € X mdme w(X,xg) =
m(X,x1). (vo vSeobecnosti tento izomorfizmus nie je kanonicky - zavist od homotopickej triedy
rel{0,1}) Potom w(X,x0) oznacujeme w(X).

Lema 2. Nech c¢,d: I — X st uzavreté cesty a nech H: I x I — X je homotopia od c
ku d takd, Ze H(0,s) = H(1,s) Vs € I (=t.j. cez uzavreté cesty). Nech h: I — X je cesta
definovand ako h(s) = H(0,s) pre s € I. Potom ap([d]) = [¢].

Definicia 12. Pre spojité zobrazenie f: X — Y, definujeme 7(f): n(X, z9) — 7 (Y, f(z0)),
m(f)([e) = [f o).

Tvrdenie 8. 7(f): n(X,z9) — w(Y, f(x0)) je homomorfizmus grip. Ak g: Y — Z je spo-
jJité, tak m(go f) = w(g) o w(f). T.j. ak diagram x _ ! >y komutuje, tak komutuje aj

NS

Z

(X, z0) — 7r_(f)> 7(Y, f(w0)) - Okrem toho m(idx) = idy(x ) -

m iw(g)

m(Z,9f(x0))

Veta 9. Nech f: X - Y, g: X — Y su spojité zobrazenia, nech xog € X. Nech f ~ g a
H: X xI—Y je homotdpia od f ku g. Definujme cestu h: I =Y, h(s) = H(zg, s). (cesta
z f(xo) do g(xo)) Potom ap om(g) = w(f) a ap, je izomorfizmus.

(X, 20) =~ 7(Y, g(20))

ap
=(f) l

m(Y, f(xo))
Dosledok 6. 7(g) je izomorfizmus < w(f) je izomorfizmus.

Veta 10. Nech X,Y maju ten isty homotopicky typ. Potom ich fundamentdlne grupy su
izomorfné.

Doésledok 7. Fundamentdlna grupa lubovolného kontraktibilného priestoru je trividina.
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Tvrdenie 9. Nech X, Y su topologické priestory, nech xg € X, yo € Y. Potom m(X X
Y, (z0,0)) = (X, x0) x m(Y,10).

4.4 Fundamentalna grupa kruZnice

Veta 11. 7(S1,1) 2 Z.

Lema 3. Oznacme ®: R — S, ®(t) = > Nech c: I — S je lubovolnd slucka v bode
1 € St. Potom ezistuje jedind cesta ¢: I — R takd, Ze: ¢(0) = 0 a ® 0 & = c. (¢ sa nazjva
zdvih cesty ¢ do R.)

Tvrdenie 10. V situdcii z predchddzagicej lemy je é(1) € Z.

Veta 12. Nech c,d € (S, 1) si homotopné rel{0,1}. Nech H:IxI— St je homotdpia
rel{0,1} od c ku d. Potom existuje jedind homotopia rel{0,1} H: I x I — R od ¢ ku d takd,
e PoH=H.

Désledok 8. Ak [c] = [d] € 7(S*,1), tak & ~ d(rel{0,1}), a preto é&(1) = d(1). Teda predpis
[c] — &(1) dobre definuje zobrazenie x: w(S') — Z.

Tvrdenie 11. x je izomorfizmus grip.

Tvrdenie 12. S! nie je retraktom gule D?.

~

Tvrdenie 13. Torus T md fundamentdlnu grupu = (T) = Z2.
4.5 Retazcové komplexy

Definicia 13. Postupnost v @ . « 8 . ~n abelovskych grip a homomorfizmov
medzi nimi je exaktnd v G, ak Ker(8) = Im(a).

Postupnost ... G_; >t Gy —2 G; —*2 @G,...abelovskych grip a homomor-
fizmov medzi nimi je ezaktnd, ak kazdd postupnost ¢, —2* G, ;1 —*1, @G, je exakt-
nd v Gpy1. (Vn € 7).

Exaktna postupnost 0— G o G B G" s ( abelovskych griup a homomorfiz-
mov medzi nimi sa nazyva krdtka exaktnd postupnost.

Definicia 14. A, = g-rozmerny Standardny simplex = konvexny obal koncovych bodov

a
bazovych vektorov eg,...e, v RITH = {(to,...,t,);t; >0, > t; =1}
i=0

Body e, ..., eq sa volaji vrcholy A,.

Mnozina {(to,...,tq) € Ay; t; = 0} pre ddke i sa nazyva i-ta stena simplexu A, lezi
oproti vrcholu e;.

Deﬁnujeme zobrazenie d; Aq—l — Aq d;(to, ‘e atq—l) = (to, ‘e ,ti_l, 0, ti+1, RPN atq—l)
pre kazdé i = 0,...,q. (tzv. stenové zobrazenie)
Lema 4. i,5 € {0,1,...,q} také, Ze j < i mdme dfl o df}l = dg o df;ll.

Definicia 15. Singuldrny q-rozmerny simplezx topologického priestoru X je spojité zobraze-
nie f: A, — X.
Sq(X):= volna abelovskd grupa generovana mnozinou vsetkych ¢-simplexov priestoru X pre
¢g>0aSy(X):=0preg<0.
Definujme homomorfizmus 9 : S;(X) — Sy-1(X), 0.(f) = fod, prei=0,...,q.
Definujeme hranicny operdtor: 0y: Sq(X) — Sq—1(X), 0y = i(fl)ia;, ak ¢ > 0, inak

=0
0, = 0.
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Veta 13. 0, 0 0411 = 0 pre vsetky q € Z.
Definicia 16. Prvky z S;(X) sa volaja g-rozmerné singuldrne retazce priestoru X.

Definicia 17. Postupnost S(X) = (S,(X),dy)qez sa nazyva singuldrny retazcovy komplex
topologického priestoru X.

Pre spojité zobrazenie f: X — Y definujeme S(f): Sq(X) — Sq(Y), Sq(f)(T) = foT
pre ¢ > 0, pre ¢ < 0 je Sy(f) nulové zobrazenie.

Veta 14. Ak f: X — Y je spojité, tak diagram

9, 9g1
- Sq(X) — Sq—l(X) I Sq—Q(X) I

lsq(f) lsq—l(f)

(r‘)q,1

\qu_Q(f)
0q
— 5(Y) —= 51(Y) —= 542(Y) —

komutuge, t.j. Vg € Z mdme Sy_1(f) 0 0y = 940 Sq(f).

Tvrdenie 14. Ak f: X — Y, g: Y — Z su spojité, tak Sq(g o f) = Sq(g) 0 Sq(f) a
Sy(idx) =ids,(x)-

Definicia 18. Retazcovy komplez je postupnost K = (K, 0q)qez, kde K, st abelovské grupy
a 0q: Kqg — K41 je homomorfizmus grap (pre vetky ¢ € Z) taky, ze 0q—1 0 0q = 0.

Ak K = (K4,0q9)qez, L = (Lg,04)qez su dva retazcové komplexy, tak homomorfiz-
mom retazcovych komplexov z K do L rozumieme postupnost f = (f,)4ez homomorfizmov
fq: Kq — Lg takych, Ze 0o fy = fq—1 00, pre Vq € Z.

Struéne hovorime o homomorfizme retazcovych komplexov f: K — L. (9, sa aj tu vola
hranic¢ny operdtor).

Tvrdenie 15. Je jasné, Ze ak f: K — L, g: L — M st homomorfizmy retazcovych kom-
plexzov, tak aj go f: K — M je homomorfizmus retazcovijch komplezov, idyx : K — K je tieZ
homomorfizmus retazcovijch komplexov.

Definicia 19. K=kategdria vSetkych refazcovych komplexov a homomorfizmov medzi nimi.

Definicia 20. Retazcovy komplex E taky, ze Ey = Z a E; = 0 pre ¢ # 0 sa nazyva
augmentacny komplex.

Definicia 21. Nech K = (K,,0;)qez je retazcovy komplex. Potom oznatme Z (K) :=
Ker(0q), By(K) := Im(9q+1).

Tvrdenie 16. B,(K) je podgrupa grupy Z,(K).

Definicia 22. Z,(K)=grupa g-cyklov retazcového komplexu K. B,(K)=grupa g-hranic re-
tazcového komplexu K.

Definicia 23. Ak K = (K,,0,) je retazcovy komplex, tak faktorovd grupa H,(K) =
Zy(K)/By(K) sa nazyva g-ta grupa homoldgii (¢-ta homologickd grupa) komplexu K. Jej
prvky oznacujeme [c] € Hy(K).

Definicia 24. Relacia ekvivalencie na grupe Z,(K) uréend podrupou B,(K) sa nazyva
homoldgia.

e,d€ Zy(K): cd&c—de By(K) & c—d = 0g41(a) pre dike a € K 1. Hovori sa
vtedy, Ze ¢ a d st homologické.
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Tvrdenie 17. Nech K = (K, 04)qez, L = (Lq,0q)qez st retazcové komplexy, nech f: K —
L je homomorfizmus retazcovyjch komplexov. Potom:

f(Z4(K)) € Z4(L)

fa(Bq(K)) € By(L)

Veta 15. Ak f: K — L je homomorfizmus retazcovyjch komplexov, tak predpis [c] — [fq(c)]
dobre definuje homomorfizmus grip Hy(f): He(K) — Hq(L).

Definicia 25. Homomorfizmus H,(f): H,(K) — H,(L) z predchadzajicej vety sa na-
zyva homomorfizmus homologickyjch grip indukovany homomorfizmom retazcovych komple-
zov f: K — L.

Tvrdenie 18. Ak f: K — L, g: L — M st homomorfizmy retazcovijch komplexov, tak pre
kazZdé q € Z mame:

Hy(go f) = Hq(g) o He(f)
H,(idk) = idg, (k)
Mame teda kovariantny funktor H: K — GradAb.

4.6 Singularne homologické grupy topologickych priestorov

Definicia 26. Nech X je topologicky priestor. Potom ¢-ta singuldrna grupa homoldgii pries-
toru X sa definuje ako Hy(X) := H,(S(X)) pre Vg € Z. Ak f: X — Y je spojité zobrazenie,
tak mame homomorfizmus singuldrnych retazcovych komplexov S(f): S(X) — S(Y); definu-
jeme homomorfizmus singularnych grap homoldgii ako H,(f) := Hy(S(f)): He(X) — Hy(Y).
Hy(f) sa nazyva homomorfizmus singuldrnych grip homoldgii indukovany spojitym zobra-
zenim f: X — Y.

Samozrejme H,(fog) = Hy(f)oHy(9), Hy(idx) = idm,(x), teda Hy: Top — Aba H: Top —
GradAb.

Tvrdenie 19. Ak P je jednobodovy priestor, tak

Hy(P) = Z ,akq=0
a o ,akqg#0

Veta 16. Nech X je linedrne sivisly priestor. Potom Ho(X) = Z.

Dosledok 9. Nech { X, }aca je systém komponentov linedrnej siuvislosti priestoru X . Potom
Hy(X) =[] Hy(Xa).
acA

Désledok 10. Hy(X) = P Z
acA

Désledok 11. X je linedrne suvisly < Ho(X) = Z

Tu by mal byt prehlad nejakej literattry z topoldgie (vSeobecnej, diferencidlnej, algeb-
raickej).
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