Verzia: 22. februara 2004

Toto by mal byt prehlad viet, ktoré sa tykaju jednotlivych §tatnicovych otdzok z malého
bloku matematickd analyza. Niekde je toho uvedeného viac, nez treba, alebo viac nez sa
preberalo na prednaskach, inde zasa mozno nieco podstatné chyba. To, Ze sa tieto poznamky
lisia od toho, ¢o sme preberali na prednaskach sivisi s tym, Zze sa mi obcas zdalo rozumnejsie
opisovat to z knih, nez z prednasok. (Nie Zze by niektoré prednasky boli zlé, to len ja som si
nerobil poriadne pozndmky. :-)

Ak sa niekomu stane, Ze mu poskodi nespravna odpoved, ktoru sa naucil z tohto textu,
vopred sa mu ospravedlnujem. Dufam ale, ze aspon niekomu tieto poznamky pomozu.

Poznamky sa momentalne nachddzaju na thales.doa.fmph.uniba.sk/sleziak/texty.
St tam uverejnené aj zdrojiky - takze v pripade, ze sa sylaby zmenia méate moznost si ich
upravif, nejaké casti vynechaf alebo naopak pridat. Ak by ste nasli v texte chyby, budem
rad, ked mi o nich date vediet na sleziak@fmph.uniba.sk a pri najblizsej aktualizicii tam
uz bude opravend verzia.

1 Spojitost

Spojitost funkcie jednej a viacerjch premenniych, spojitost funkcie komplexnej premennej,
spojitost zobrazenia z R™ do R¥. Zdkladné vety o spojityjch funkcidch, Weierstrassove vety.

Spojitost funkcie

Nech (X, d;), (Y, d2) st metrické priestory, A C X a f: A — Y je funkcia.

Definicia 1. Hovorime, ze f: X — Y je spojitd v bode xg € A, ak pre kazdé € > 0 existuje
§ > 0 také, Ze pre kazdé = € A také, Ze dy(z,z9) < ¢ plati da(f(x), f(z0)) < &.

Tvrdenie 1. f je spojitd v bode xo prave vtedy, ked lim f(z) = f(xo).
T—T0

Na zaklade ekvivalencie Cauchyho a Heineho definicie limity funkcie potom dostaneme
nasledovné tvrdenie:

Tvrdenie 2. f je spojitd v bode x¢ prdve vtedy, ked pre kaZdi postupnost taki, Ze x,, — xq,
i f(a) = f(ro).

Podmienka z predchadzajiceho tvrdenia sa niekedy tiez vold Heineho definicia spojitosti
a povodnd definicia Cauchyho definicia spojitosti.

Tvrdenie 3. Ak f, g st spojité v bode xg, tak st v xg spojité aj c1f + cog a fg. Ak navyse

g(xo) # 0, tak aj ggi; je spojitd v xq.

Definicia 2. Hovorime, 7ze f: X — Y je spojitd na mnozine A (A C X), ak je spojitd
v kazdom bode mnoziny A.

Ako $pecidlne pripady spojitosti zobrazeni metrickych priestorov dostaneme pojmy spo-
jitosti pre priestory zo zadania, t.j. napriklad X = R™, Y = R*, alebo X =Y = C.

Zakladné vety o spojitych funkciach

Spojité funkcie na kompaktnych mnozinach

Veta 1 (1.Weierstrassova veta). Ak A je kompaktny metricky (topologicky) priestor, tak
spojita funkcia f: A — R je na A ohranicend.



Veta 2 (2.Weierstrassova veta). Ak A je kompaktny metricky (topologicky) priestor, tak
spojita funkcia f: A — R nadobida na A svoje mazimum aj minimum.

Veta 3 (3.Weierstrassova, Cantorova). Spojitd funkcia na kompaktnom metrickom pries-
tore je rovnomerne spojitd.

Monoténne a spojité funkcie na intervale

Definicia 3. Podmnozina I C R sa nazjva interval, ak plati:
1. Existuja x1, x5 také, ze x1 # x2 a x1,22 € I.
2. Ak z1 <t <woaxy,x0 €1, takt el

Nech I je interval.
Veta 4. Ak f: I — R je spojitd, tak f(I) je jednoprvkovd mnoZina alebo interval.

Tvrdenie 4. xy € I je bod nespojitosti neklesajicej funkcie f: I — R prdve vtedy, ked
lim f(z) < lim f(x).
T—To— T—T0o+4
xzog € I je bod nespojitosti nerasticej funkcie f: I — R prdve vtedy, ked lim f(x) >

T—To_
lim f(x).
T—To+

Veta 5. Ak f: I — R je nerastica (neklesajica) funkcia a f(I) je interval alebo jednobodovd
mnozina, tak f je spojitd na I.

Veta 6. Ak f: I — R je rastica (klesajica) spojitd funkcia, tak aj f=1 je rastica (klesajica)
a spojitd.

...ako také odporné hmyzovité mravce.

Kubéacek

2 Diferencovatelnost

Diferencovatelnost funkcie jednej a viacerjch premenngch, diferencovatelnost zobrazenia z
R™ do R”*. Diferencovatelnost a spojitost. Taylorov vzorec, extrémy funkcit.

2.1 Diferencovatelnost funkcie jednej premennej

Definicia 1. Nech f: O(a) C R — R je funkcia. Hovorime, ze f mé v bode a derivdciu, ak
existuje lim £&=F@ —. ¢7(4),

Definicia 2. Majme a € O(a) C R, f: O(a) — R. Hovorime, Ze f je diferencovatelnd v
bode a, ak existuji A € R a w: O(a) — R také, ze lim w(z) = w(a) = 0 a plati f(z) =
fla) + A(z — a) + w(z)(z — a) pre vSetky x € O(a). Linedrny vyraz A(z — a) =: df(z,a)
nazveme diferencidlom funkcie f v bode a.

Veta 1. f: O(a) — R je diferencovatelnd v a < existuje konecénd derivdcia f'(a) € R.

Definicia 3. Funkcia f: M — R je diferencovatelnd na mnoZine M C R, ak je diferencova-
telna v kazdom bode tejto mnoziny.

Definicia 4. Hovorime, ze funkcia f je n-krat diferencovatelnd v bode a, ak ma v bode a
n-tu derivaciu.



Zakladné vety diferencialneho poctu

Veta 2 (Darbouxova). Ak f: (a,b) — R je spojitd na {(a,b) a md tam deriviciu (v a
sprava, v b zlava), tak f' nadobida vietky hodnoty medzi f' (a) a f’ (D).

Veta 3 (Rolleova). Nech f: (a,b) — R

1. je spojitd v {a,b),

2. ma derivdciu (konecni alebo nekonecnii) v (a,b),
5. f(a) = 1)

Potom ezistuje c € (a,b) tak, Ze f'(c) = 0.

Veta 4 (Lagrangeova). Nech f: (a,b) — R

1. je spojitd v (a,b),

2. md derivdciu (konecnd alebo nekonecni) v (a,b).
Potom ezistuje ¢ € (a,b) tak, Ze f'(c) = f(b) f(a)

Veta 5 (Cauchyho - vo vSeobecnejSej formulacii). Nech f,g: (a,b) = R
1. su spojité v {(a,b),

2. maji derivdciu (koneéni alebo nekoneéni) v (a,b).

Potom ezistuje bod c € (a,b) taky, Ze (f(b) — f(a))g'(c) = (g(b) — g(a))f'(c).

Veta 6 (Cauchyho). Nech f,g: {(a,b) = R
1. si spojité v {a,b),
2. maji derivdciu (koneéni alebo nekonecni) v (a,b), (tu vsak musime poZadovat, aby v
pripade, Ze obe funkcie maju v tom istom bode nekonecni derivaciu bol ,sucin® tychto neko-
necien opacného znamienka ako zlomok vystupujici vo vete)
5’. f’Q(J:) +g"(x) > 0 pre vsetky z € (a,b),

g9(b) # g(a).

Potom existuje ¢ € (a,b) tak, Ze ,EC) = P —s(a)

Veta 7 (L’Hospitalove pravidlo). Nech a € RT, f, g: O(a) — R st spojité a
1. lim f(z) = lim g(z) = 0 (o0),
2. pre x € O(a), x # a ezistuji f'(x), ¢'(z) a ¢'(x) # 0,

3. existuje hm f,é 3

Potom existuje hm féwi a plati ;{f}l ﬁ—i) = i{{}l 5 ég

L’Hospitalove pravidlo mo7no pouZit aj viacndsobne. MoZno ho pouzit tieZ na vypodet

limit typu 0.00 (f.g = f/(1/9)), 0o —oo (f —g = (1/9—1/f)/(1/(f.9))) a o® (f = o™/
a g.ln f je typu 0.00).

2.2 Diferencovatelnost funkcii viac premennych

Definicia 5. Majme danti otvorenti mnozinu M C R" f: M - R,a = (a1,...,a,) € MNM'.
f mévbode avsmere v € R" Gdteauzov diferencidl, ak existuje %in(l) M =: Df(a,v).
Ak je Gateauxov diferencidl v bode a linedrny (ako funkcia smeru v), tak ho nazyvame
derivdciou funkcie f v bode a a v smere v a funkcia sa nazva G-diferencovatelnd v a.

Definicia 6. Hovorime, ze f je Fréchetovsky diferencovatelnd v a, ak existuje linedrne zobra-
zenie I,: R” — R také, ze lim L@=M=-l@=0] _ o Oznacujeme I,(z — a) =: df (a,z — a).

r—a d(z,a




Veta 8. Nech f: M CR" - R, a € MNM', nech f je F-diferencovatelnd v a. Potom

]
8:1{1- (a)nif

M=

(i) existuje G-derivdcia f v bode a a plati Df(a,m) =

=1

(i) f je spojitd v bode a.

Veta 9 (Lagrangeova veta o strednej hodnote). Nech a € O(a) C R™, f: O(a) — R,

x=(x1,...,2,) € O(a), f md parcidlne derivdcie %: O(a) — R. Potom existuji t; € (0,1)
m

také, Ze pre vsetky x € O(a) f(z) — f(a) = > %(ci)(:ﬂi —a;), kde ¢; = (a1,...,a;_1,a; +
i=1

ti(xi — a;),ig1,...,x,) € Oa).

Désledok 1. Aka € R™, O(a) CR™, f: O(a) —» R, f € CY(O(a)), tak f je F-diferencova-
telnd v a.

Toto je tu pre pripad, Ze by niekto chcel rypat a bol zvedavy, ¢ niektord z uvedenych viet
neplati obratene:

flay,xe) = ;;f;g mé G-diferencial ale nie G-deriviciu v (0,0), nie je spojitd v (0,0), na
kazdej priamke prechédzajicej cez 0 je spojita

f(z1,29) = \/]z122] M4 parcidlne derivacie v R?, nie je F-diferencovatelnd v (0,0), ma deri-
vécie vo vSetkych smeroch, nie je G-diferencovatelna.

f(z1,22) = (23 + x3) sin m je F-diferencovatelna v (0,0) ale nema spojité parcialne deri-

vacie
f(z1,22) = {

telna. (asponl podla miia)

(a3 +43)22 pre 2> £ 0

je G-diferencovatelnd v (0,0) ale nie F-diferencova-
0 pre x2 =0

2

0 2
flz,y) = { prey 7 je spojita a G-diferencovatelna v 0, ale nie je tam F-diferencova-
T prey=ux

tena.
Diferencialy a derivacie vysSich radov
Definicia 7. f je G-diferencovatelnd v bode a v smere ny,...,ng, ak f(-,ny,...,ng_1) je

G-diferencovatelnd v a v smere ny.
Nech f: A — R je (k — 1)-krat F-diferencovatelnd v kazdom bode x € O(a) N A a

d*Yf(z;ny,...,np_1) je jej (k — 1)-vy diferencidl v x € O(a) N A v smere nq,...,n;. Ho-
vorime, Ze f je k-krat F-diferencovatelnd v a, ak d*~1f(:;ny,...,nx_1): O(a) N A — R je
F-diferencovatelnd v a pre kazdé nq,...,ng_1.

Dkf((l, Uy .- 7uk) = D[Dkilf('aulv cee 7uk—1)](a’uk)
d¥fasu, ..., up) = d[d*f(ur, . ue1)](a, ug)

lim df(I,U) — df(a,v) B de(a’; V3T — a)

=0
T—a d(z,a)

Veta 10 (O zémennosti G-diferencovania). Nech O(a) C R", a € R", u,v € R"
(smery), f: O(a) — R. Nech



(i) existuji Df(-,u): O(a) = R, Df(-,v): O(a) > R a
(ii) D?f(;;u,v): O(a) — R, D?f(-;v,u): O(a) — R ezistujii a si spojité v bode a.
Potom D?f(a;u,v) = D?f(a;v,u).
2.3 Diferencovatelnost funkcie z R™ do R"
TODO Definicia

Veta o implicitnej funkcii je tu v zneni z [D] aj z [BR], takZe si mozete vybrat.

Veta 11 (o implicitnej funkcii). Nech 2 € R™, yo € R*, O(x0), O(yo) st ich okolia.
Nech pre i = 1,...,k zobrazenia F;: O(xg) x O(yo) — R splriajii nasledovné podmienky:

(i) si spojité v bode (xq,yo);
(ii) Fi(xo,y0) = 0;
OF;

(#1) maji spojité parcidlne derivdcie . pre i, j=1,....k v bode (o,Y0);
J

() jakobidn %(mmyo) #0

Potom existuju ¢isla 6 > 0, € > 0 tak, Ze

(i) pre kazdé x € K(xo,0) C O(xg) existuje prdave jedno f(x) € K(yo,e) C O(yo), pricom
Fi(z, f(x)) =0; (K oznacuje viacrozmerni kocku)

(i) f(x0) = yo;
(iii) zobrazenie f: K(xo,0) — K(yo,€) je spojité v bode xg.

Ak naviac predpokladdme, Ze v okoli O(xg) x O(yo) existuji a si spojité vsetky parcidlne
derivdcie g—gj, 22, tak existuju a su spojité vsetky parcidlne derivdcie gil na K(zo,9).
(fi st zlozky f.) Hodnoty tychto derivacii dostaneme ako riesenie sistavy (ktord ziskame

formdlnym derivovanim a ktord sa mi nechce opisovat).

Veta 12. Nech X, Y, Z siu Banachove priestory, U C X,V CY su otvorené, F': UXV — Z
je C", 0 < r < oo, (zo,90) € U XV, F(zo,yo) = 0. Predpokladajme, Ze D, F(xq,yo) md
spojity inverzny operdtor. Potom existuje okolie Uy x Vi C U x V bodu (x0,y0) a funkcia
f e (U, V) takd, Ze f(xo) = yo a Ze F(x,y) = 0 pre (z,y) € Uy x Vi plati prdve vtedy,
ak y = f(z). Dalej plati

Df(wo) = —[DyF(z0,40)] " DaF (0, y0)-

2.4 Taylorov vzorec

V jednorozmere:
Veta 13.
F(a)

n!

!/ 1
f@) =@+ L0+ L ap iy
Nech f,g: O(a) — R, f je n-krdt diferencovatelng v O(a) a v kaZdom bode x € O(a) md
(n+1)-vd derivdciu. Nech g je v O(a) spojitd a md pre x € O(a), © # a derwdciu ¢'(x) # 0.
Potom existuje 6 € (0,1) také, Ze pre x € O(a) plati

(z —a)" + Ry ()

(o) = == I ) 0 a0 — )




Lagrangeov tvar zvysku (g(t) = (t — a)"*1):

Cauchyho tvar zvysku (g(t) = t):
-0

R, = '
n!

(@ —a)" " f D (a + 0(z — a))

Veta 14. Nech funkcia f md v bode a koneéni derivdciu n-tého rddu a nech Q,(x) je
polynom stupria mensieho alebo rovného n, pricom Qn(x) # T,(x), kde T,,(z) je Taylorov
polynom f v bode a. Potom existuje okolie O(a) bodu a také, Ze pre vietky x € O(a), = # a

je |f(x) = Tu(@)| < [f(x) = Qu(x)]-

Této veta hovori, ze T,,(z) je lokdlne najlepsia aproximécia f v okoli a pomocou polynému
n-tého stupna.
Vo viacrozmere: (predpokladdme, Ze f je (k 4 1)-krat F-diferencovatelna)

Te(f.) = f(a) + df (a2 — a) + Sy flasz — )+ .+ 1 (a0 — a)

1
(k+ 1)

f(@) = Ti(f, a) () + A fla+0(z —a),z — a)

V*? Preco nesta¢i G-diferencovatelnost.
2.5 Extrémy funkcii
Extrémy funkcii jednej premennej

Veta 15. Nech xg je bod lokdlneho extrému funkcie f: I — R. Potom bud f'(x¢) neexistuje,
alebo f'(xg) = 0.

Veta 16. Nech f: I — R a vo vnidtornom bode xg € I plati f'(x9) =0, f"(x0) # 0. Potom f
md v bode xg lokdlny extrém, ak f"(xg) < 0 tak je to ostré lokdlne maximum, ak f"(xg) >0
tak je to ostré lokdlne minimum.

Veta 17. Nech f: I — R wvyhovuje vo vnitornom bodu xg € I podmienkam:
(i) ['(x0) = f"(wo) = ... = f™ V(o) =0,
(i) f(wo) # 0.

Potom pri pdrnom n md f lokdlny extrém v zo (mazimum, ak f((x) < 0 a minimum, ak
f(20) > 0) a pri nepdrnom n funkcia f nemd v bode xq lokdlny extrém.

Lokalne extrémy funkcie viac premennych

Veta 18 (Eulerova nutni podmienka lokalneho extrému). Nech M C R™ a plati:
(i) f: M — R md v bode a € M lokdlny extrém, a € Int M

(ii) existuje D f(a,u) v smere u € R™.



Potom D f(a,u) = 0.

Veta 19 (Lagrangeova postacujica podmienka lokalneho extrému). Nech O(a) C
R™ a plati

(i) a € R™ je staciondrny bod f: O(a) — R, t.j. % =0prei=1,...,m,

(ii) f je 2-krdt F-diferencovatelnd v a a zobrazenie x — d? f(z,v) je spojité v a a definované
v O(a) pre vSetky v € R™.

Potom: Ak d%f(a,v) > 0 Vv € R™ \ {0} (2.diferencidl je kladne definitny), tak f md v a
lokdlne minimum. Ak d*f(a,v) < 0 Yo € R™ \ {0} (2.diferencidl je zdporne definitny), tak
f md v a lokdlne mazimum. Ak existuji vi,va € R™ \ {0} tak Ze d*f(a,v1).d*f(a,v2) < 0
(2.diferencidl je indefinitng), tak a nie je bod lokdlneho extrému.

Viazané extrémy funkcie viac premennych

Veta 20 (Lagrangeove multiplikatory). Nech je dany bod xzy = (zo1,...,Zon) € R",
vo = (o1, -, vor) € R*, O(z0) C R", O(yo) C R* a f: O(x0) x O(yo) — R. Nech sii dané
vizby gi(z,y) = 0, gi: O(xo) x O(yo) — R a plati:

(i) f, g; aj vSetky ich parcidlne derivdcie 1.rddu v O(xzg) x O(yo) st spojité (f,g; €
CL(O(x0) x O(yp))-

(ii) B (x0, y0) # 0
(i) f md v bode (xg,yo) lokdlny extrém wvzhladom na vizbu M = {(x,y) € O(zp) X
O(yo); gi(z,y) =0prei=1,... k}.

Potom ezistuji redlne ¢isla \; € R, i = 1,...,k uréené jednoznacne také, Ze bod (xo,yo) je
staciondrny bod Lagrangeovej funkcie L = f + X191 + ... + Agr: O(zg) x O(yo) — R.

TODO ? ZovSeobecnenia z NADT a varia¢nych metéd ?

A teraz ideme t1i vetu pochopitelne dokézat.
Vencko

3 Komplexna analyza
Derivdcia komplexnej funkcie, Cauchy-Riemannove rovnosti. Cauchyho integrdlny vzorec,
rozvoj analytickej funkcie do Taylorovho radu. Laurentov rad, klasifikdcia izolovanych sin-

guldrnych bodov.

3.1 Topolégia komplexnej roviny

Na mnozine C méme metriku p(21, 22) = |21 — 22| = /(21 — 22)2 + (y1 — y2)%, t.j. C =
R?, je to separabilny lokdlne kompaktny priestor.

Na mnozinu C = C U {oco} modZzeme preniest metriku z gule pomocou stereografickej
projekcie.



Ziskame tak separabilny kompaktny metricky priestor, niekedy sa nazyva uzavretd rovina.
Na C st obe metriky ekvivalentné.
Prstencové okolie: p.(z) ={£ € C: |£ — 2| < ¢}

pe(c0) ={£€C:[¢] > 2}
3.2 Derivacia funkcie komplexnej premennej, Cauchy-Riemannove rovnosti

Definicia 1. Nech f je definovand v okoli bodu zg € D. Derivdciou funkcie f v bode zg

f@=z0) = iy AL ak tato limita existuje. f sa nazyva

sa nazyva limita f’(20) := lim “=—2 Aim R
Z—

zZ—2z0
diferencovatelnd v 2y, ak existuje kone¢né derivécia 1 (z0)-

Tvrdenie 1.

(f +9)'(20) = f'(20) + ¢'(20)
(cf)'(20) = cf'(20)
(£9)'(20) = f'(20)9(20) + f(20)g (0)
(f) _ f'(20)9(20) — f(20)9'(20)
g 9*(20)
Tvrdenie 2. F(z) = o(f(2)) = F'(20) = ¢'(f(20)) f'(20).

Veta 1 (Cauchy-Riemannove vzorce). Nech f je komplexnd funkcia, u a v si jej redlna

a imagindrna éast (f = u+iv). Potom [ je diferencovatelnd v zo prdve vtedy, ked jej redlna

a imagindrna cast si diferencovatelné v zo = (xo,y0) a ul, = ’|(w07y0), Uy = =V | (2,50) -
Vitedy plati f'(z0) = uy(zo,yo) + ivy(zo, yo) = vy(xo,yo) — tuy (2o, yo)

C-R vzorce v polarnych suradniciach: Ozna¢me U(r, p) = u(rcosp,rsinp),V(r,¢) =
v(rcos p,7sin p). Potom rU] =V arV, = ~U,.

Definicia 2. f sa nazyva reguldrna (holomorfnd) v z, ak je diferencovatelnd v nejakom
okoli bodu zg.

f sa nazyva reguldrna (holomorfnd) v oblasti D, ak je holomorfné v kazdom bode tejto
oblasti.

Ak u, v st redlna a imaginarna cast regularne; funkcie f (vbode zp/v oblasti D), nazyvame
ich harmonicky zdrufenymi funkciami. Plati Au = uy, + uy, = vy, — vy, = 0, ¢ize u je
harmonicki. Podobne sa d& ukdzat, Ze v je harmonicka funkcia. Ak mame dané u, v sa da

ur¢it az na konsStantu z CR vzorcov.
3.3 Cesty a krivky

Definicia 3. Cesta je lubovolné spojité zobrazenie v: (a,b) — C, v(0) je zaciatok cesty, (1)
je koniec cesty. Cesta je uzavretd , ak v(0) = y(1).



Definicia 4. Cesty 71: (a1,81) — C a v2: (ag,B2) — C st ekvivalentné (y; ~ 72), ak
existuje spojita rastica funkcia 7: {aq, 51) — (ag, B2) taka, ze v1(t) = y2(7(t)).

Krivka je trieda ekvivalencie ciest vzhladom na tuto relaciu.

Jordanova krivka - taka, Ze v je jednozna¢né (prosté).

Uzavreta Jordanova krivka - 7 je prosté s vynimkou krajnych bodov.

Cesta v je spojite diferencovatelnd cesta, ak pre kazdé t € {«, () existuje v'(t) = z'(¢t) +
iy (t). Spojite diferencovatelnd cesta sa nazyva hladkd, ak pre kazdé ¢ je ~'(¢) # 0.

Po dastiach hladkd - spojitd na {(«, ) a interval (a, 5) sa da rozdelit na koneény podet
intervalov tak, Ze na kazdom z nich je cesta hladka.

3.4 Integral funkcie komplexnej premennej

Definicia 5. Ak v je po Castiach hladké cesta a f o~y je spojitd, tak definujeme

z1 B
/ fdz / (f o (B (1)t

Mohli by sme definovat [ pomocou ¢iastoénych stcétov pre fubovolné (rektifikovatelné ')
krivky, z tejto definicie sa d4 pre hladké cesty odvodit uvedeny vztah.

Tvrdenie 3. Ak f =u+iv, tak [ fdz = [(udz — vdy) + i [(udy + vdz).
v v 2!

3.5 Cauchyho integralny vzorec

Veta 2 (Cauchyho integralna veta). Ak f je holomorfnd v oblasti D a 7o, y1 st homo-
topické cesty v D, potom [ fdz= [ fdz.
Yo 71

Désledok 1. f € H(D) = [ fdz =0 pre kazdi krivku v homotopickd 0 v D.
v

Definicia 6. Oblast D sa nazyva jednoducho stvisla, ak 9D je stvisla.

Dosledok 2. Ak f € H(D) a D je jednoducho sivisld oblast, tak ¢ fdz = 0.
¥

Veta 3 (Cauchyho integralny vzorec). Nech f € H(D) (f je holomorfnd v oblasti D)
a G C D, 0G pozostdva z koneéného poctu spojitych kriviek a je orientovand kladne. Potom
pre kazdé zg € G plati

7% f—Zo

3.6 Taylorov rad

Veta 4 (Taylorova). Ak f € H(D), z9 € D, tak v U = {2z : |z — 29| < R} C D plati
f(Z) - Zocn(z - ZO)n’ kde ¢, = % f (= Zﬂ)n+1d€; Yo = {|Z - ZO| - p}’ p< R.
Yo

n=

Veta 5 (Cauchyho nerovnosti). Nech f € H(D), U = {z: |z — 2| <r} C D, 7, = dU.
Nech f je na v, ohranidend, |f| < M. Potom |c,| < %

1Rektifikovatelna krivka je krivka, ktora mé koneénu dizku.



Veta 6 (Liouville). Ak f je holomorfnd v C a je tam ohranicend, f je konstantnd.

Veta 7. Ak f € H(D), tak md v D derivdcie vietkych rddov a f™ € H(D).

),
Veta 8. C,, = £ E o)

ni

Désledok 3. f(™)(z) = 2 f( 1O e

27 E—zg)nT1

o0

Veta 9 (o holomorfnosti sactu). f(z) = > c,(z — a)™ je holomorfnd v kruhu konver-
n=0

gencie.

Veta 10. Nasledujice podmienky su ekvivalentne:
(i) f je holomorfnd v zo. (V*? Nemalo by tu byt, Ze v nejakom okoli zy?)
(i) f € Cu(zy), | fdz=0 pre kazdy trojuholnik taky, Ze AcCU.
EYN

(#ii) f sa dd rozloZit v nejakom okoli zg do Taylorovho radu.
Definicia 7. Nulovgm bodom funkcie f nazyvame a € C, f(a) = 0.

Veta 11. Ak a je nulovy bod funkcie f, f € H(D), f £ 0 v Ziadnom okoli bodu a, tak
existuje n € N také, Ze f(z) = (z — a)"p(z), ¢ € H{U) a ¢ # 0 v nejakom okoli bodu a (t.j.
existuje také okolie V bodu a, Ze p(z) #0 pre Vy € V).

Veta 12 (o jednoznaénosti). Nech D je sivisld oblast a f1, fo € H(D), fi1(z) = fa(z) pre
vSetky z € E C D a E md v D hromadny bod. Potom f1 = fy pre vsetky z € D.

Definicia 8. Rddom nulového bodu funkcie f nazyvame rad najnizsej derivicie f, ktorej

hodnota v bode a je nenulova.

f(2)

(z=—a)™

Veta 13. Rdd nulového bodu a funkcie f je maximdlne n také, Ze
v a holomorfnou funkciou.

je po dodefinovani

3.7 Laurentove rady, klasifikacia izolovanych singularnych bodov

Veta 14. Nech f € H(V), kde V = {z € C : r < |z — a| < R} je medzikruZie. Potom

fx)= Y clz—a)", cn = zim &%df pre n € Z, kde ~y je kruZnica so stredom a a

polomerom p, r < p < R.

Veta 15 (o jednoznaénosti rozvoja do Laurentovho radu). Ak f mozno rozvinit do
Laurentovho radu, tak c, = 2m f = zo)n+1d£

Veta 16 (Cauchyho nerovnosti). |c,| < p—Af{, ak f(§) < M na ,.

o0
> ¢n(z —a)™ ... reguldrna Cast Laurentovho radu
n=0

—1

> cn(z —a)™ ...hlavné ¢ast Laurentovho radu

n=—oo
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Definicia 9. a € C sa nazyva izolovany singuldrny bod funkcie f, ak f v bode a nie je
reguldrna a existuje prstencové okolie bodu a, v ktorom je holomorfnéd (regulérna).
Izolovany singularny bod sa nazyva odstrdnitelng, ak existuje lim f(z) € C.
z—a

Izolovany singuldrny bod sa nazyva pdl, ak lim f(z) = oco.
z—a

Izolovany singuldrny bod sa nazyva podstatng inak (teda ak nie je odstranitelny ani pdl).

Veta 17. Izolovany singuldrny bod a € C funkcie f je odstrdnitelny < Laurentov rozvoj f v

P(a) neobsahuje hlavni éast < |f| < M € R v nejakom P(a).

Veta 18. Izolovany singuldrny bod a € C funkcie f je pdl < Laurentov rozvoj f v P(a)
o0

obsahuje (nenulovy) koneény pocet nenulovych élenov v hlavnej casti, t.j. f(z) = > cp(z—
n=—N
a)”, N € N.

Veta 19. Bod a je polom funkcie [ < ¢ = %, © # 0 je holomorfnd v nejakom okoli a a a
je nulovy bod .

Definicia 10. Nasobnost pélu = nasobnost a ako nulového bodu ¢.

Veta 20 (Sochockij-Weierstrass). Ak a je podstatny singuldrny bod, tak pre VA € C
existuje (z,)nen takd, Ze z, — a a lim f(z,) = A.
n—oo

Definicia 11. Nech a € C, f € H(P(a)). Reziduom funkcie f v bode a nazyvame res =
ﬁffd@ Y- C P(a).

Tr

Veta 21 (Cauchyho veta o reziduach). Nech f € H(D) okrem izolovanej mnoziny singu-
ldrnych bodov, G C D, OG neprechddza singuldrnymi bodmi f. Potom [ fdz=2mi Y res
oG

a; €G @i
(stcet cez vSetky singuldrne body a; leZiace v G).
Veta 22. res f =C_4
a
Désledok 4. Ak a je odstrdnitelny singuldrny bod funkcie f, tak res f = 0.
a

Désledok 5. Ak a je jednoduchy pdl, tak lim(z —a)f(z) = C_1.

Ak a je pol ndsobnosti n, tak C_; = ﬁ ;13}1 j;,—:l [(z—a)"f(#)].

Definicia 12. )
res f = — /fdz
oo 211
Yr
resf=—-C_4
o0

k
Veta 23. Ak f je holomorfnd v C okrem konecného poctu singuldrnych bodov, tak > res f +

i=1 %
res f = 0.
o0

Veta 24 (princip maxima modulu). Ak f(z) # C, f € H(D) (D je oblast), tak |f(z)|
nenadobida vo vniutri D mazimum.

Definicia 13. Hovorime, Ze funkcia f je meromorfnd v oblasti D, ak nem4 v D iné singularne
body ako pdly a odstranitelné singularne body.

11



Veta 25 (princip argumentu). Nech f je meromorfnd v D, G je oblast, G C D, 9G

neprechddza nulovgmi bodmi ani polmi funkcie f. Potom N — P = ﬁ ];/((ZZ)) dz, kde N je
oG

pocet nulovych bodov a P je pocet pdlov funkcie f v oblasti G, pricom nulové body aj pdly
pocitame vrdtane ndsobnosti.

No, je to ocividné, ze?
Valéasek

4 Postupnosti a rady funkcii

Postupnosti a rady funkcii. Bodovd a rovnomernd konvergencia, mocninové rady, polomer
resp. kruh konvergencie, derivovanie a integrovanie funkciondlnych postupnosti a radov. Tay-
lorov rad. Fourierov trigonometricky rad, postacujice podmienky pre bodovi a rovnomerni
konvergenciu.

4.1 Kritéria konvergencie pre ¢iselné rady
Mozno nezaskodi zopakovat si aj kritérid konvergencie pre ¢iselné rady:
o0 o0
Veta 1 (1. porovnavacie kritérium). Majme rady > a,, >, b,. Nech pre skoro vetky
n= n=1

o0 o0
n € N0 < a, <b,. Potom ak konverguje rad >_ by, tak konverguje aj rad > ay.

n=1 n=1

oo oo
Veta 2 (2. porovnavacie kritérium). Majme rady > an, Y. bn, an,by, > 0. Nech pre

n=1 n=1

(o]
skoro vietky n € N 222 < but1 - Potom ak konverguje rad 3 by, tak konverguje aj rad

a b,
n=1

Q-

s

npP

o0
3 L diverguje pre 0 < p < 1.
n=1

n—oo

[ee]
Veta 3 (Cauchy). Majme rad >’ a,, a, >0, oznacme a = lim {/a,,. Potom
n=1

(i) ak a <1, rad konverguje,
(i) ak o > 1, rad diverguje,

(iii) existuji konvergeniné aj divergentné rady, pre ktoré o = 1.
oo

Veta 4 (D’Alembert). Majme rad > an, a, > 0.
n=1

(i) Ak limsup == < 1, tak rad konverguge.
n—oo

(i) Ak pre skoro vSetky n € N ”Z—il > 1, tak rad diverguje.

An+1
an -’

(i4i) Ezistuji konvergentné aj divergeniné rady, pre ktoré lim inf aa—:l <1 <limsup

Veta 5 (Raabe). Majme rad > an, an > 0.

n=1

12



(i) Ak existuje r > 1 také, Ze pre skoro vsetky n € N plati n( dn_ 1) > r, tak rad

An+41
konverguje.

(i) Ak limsupn ( e — 1) < 1, tak rad diverguje.

n
a 1
n— o0 nt

Veta 6 (integralne kritérium). Nech f: (1,00) — R je nezdpornd, spojitd, nerastica a
F(z) je k nej primitivna funkcia na (1,00). Nech f(n) = a,. Ak lim F(x) je koneénd, tak
n—oo

o0
rad Y a, konverguje, ak je rovnd +oo, tak tento rad diverguge.
n=1

4.2 Bodova a rovnomerna konvergencia

Nech X a Y st metrické priestory a f: M C X — Y je zobrazenie.

Definicia 1. Hovorime, Ze postupnost (f,(z))nen (bodovo) konverguje na M k funkcii f, ak
Vo € M Ve > 03ng € NVn > ng d(frn(z), f(z)) < &, oznacujeme lim f,(z) = f(x),x € M,

alebo f,(x) M ).

Definicia 2. Hovorime, Ze postupnost (f,(x))nen rovnomerne konverguje na M k funkcii
f,ak Ve > 03ng € NVn > ng Vo € M d(fn(z), f(z)) < e, oznadujeme lim f,(x) = f(x)

M
rovnomerne vzhladom k M, alebo f,(x) = f(x).

Rovnomerni a bodovt konvergenciu funkcionalnych radov definujeme ako konvergenciu
postupnosti ¢iastoénych suctov prislusného typu. (Okrem Diniho vety a suprémového kritéria
s tu vSetky ostatné vety uvedené pre R.)

Veta 7 (suprémové kritérium).

fn(x) g f(z) < lim M, = lim sup d(f,(x), f(x))=0

n—0oo n—oo xeM

Veta 8 (Cauchy-Bolzanov princip).
M
(i) fu(z) = f(z) © Ve >03ng € NVp,q > ng | fp(z) — fe(z)| < ¢
o0 M
() > up =2 < Ve>03Ing € NVn > ngVm € N |upp1(2) + tpi2(2) + .o o 4 tUnpm(2)] <€
n=1

Veta 9 (Weierstrass). Ak |u,(2)| < Ap a > A, —, tak > uy(x) =

Veta 10 (Diniho). Nech ()52, je monotonna postupnost spojitych funkcii fr,: M — R,
kde M je kompaktnd podmmnoZina metrického priestoru X a f, bodovo konverguje k spojitej
funkcii f. Potom f, konverguje rovnomerne k f.

Lema 1 (Abelova lema, Abelova parcidlna sumacia). Nech a1,as,...,an,b1,b2,...,b,
ER, a1 <ax<...<ay (g >ay>...>ay) anech |by+...+b;] < Bprei=1,...,n.

Potom | 3 a;b;i| < B (Ja1| + 2|an))
i=1

o)
Veta 11 (Dirichlet). Majme > an(z)b,(x), x € M. Nech
n=1

13



(i) Yx € M postupnost {a,(z)} je neklesajica (nerastica) a a,(z) =,
(i) 3B > 0Vx € M Vn € N |B,(z)| < B, pricom B,(z) = |bi(x) + ... + bp(z)| (tzv.

rovnomernd ohranicenost).

Potom Y an(x)by(x) =.
n=1 M

Veta 12 (Abel). Majme > an(x)b,(z), x € M. Nech
n=1

(i) Y € M postupnost {an(x)} je neklesajica (nerastica) a 3A > 0Vx € M Vn €
Nlan(2)| < A4,

(ii) ni; by (2) .

Potom i an (2)by () A:/Ii

n=1
Veta 13. Majme postupnost (f,(x))°,, v € M, nech a € R* je hromadng bod M. Nech
M
existuje konecnd lim f,(x) =: A, pre n € N a nech f,(x) =. Potom ezxistuje konecnd limita
lim A, =: A a plati lim f(z) = A (t.j. lim lim f,(z) = lim lim f,(z)).

Veta 14. Majme postupnost (f(x))S2,, € I, kde I je interval, nech f,(x) si spojité na
I
I preneN a f,(x) = f(z). Potom f(x) je na I spojitd.

oo
Dosledok 1. Majme rad >, un(z), © € I, I je interval, nech u,(x) si na I spojité pre

n=1

oo I
n € N a nech > un(x) = s(x). Potom s(z) je spojitd na I.
n=1

Veta 15. Majme postupnost (fn(x))22, € (a,b). Nech pre lubovolné n € N je f,(z) €
(a;b)
R({a, b)) (fn je riemannovsky integrovatelnd na {(a,b)) a nech f,(x) = f(x). Potom f(x) €
b b b
R({a,b)) a plati [ f(x)dz = [ lim f,(x)dz = lim [ f,(z)dz
a a n—oo n—oo a

Désledok 2. Plati to aj pre rady.
Veta 16. Majme postupnost (fn(2))5,, © € {a,b). Nech
(i) existuje xo € {a,b) také, Ze ciselnd postupnost (fn(x0))5L; konverguge,

<a7b>
(i) pre vSetky n € N je f,(x) diferencovatelné na {(a,b) a f](z) = .

(a,b)
Potom f,(z) = f(x), pricom f(z) je diferencovatelnd na {(a,b) a plati f'(z) = lim f!(z).

n—oo

Désledok 3. Pre rady.

14



4.3 Mocninové rady

Definicia 3. Mocninovgm (potencénym) radom so stredom v bode a € R nazyvame rad
o0

> an(z —a)”, a, € R st koeficienty potenéného radu.
n=0

[ee]
Veta 17. Majme rad > ap(z —a)".
n=0
(i) Nech ezxistuje xo # 0, v ktorom tento rad konverguje. Potom absolitne konverguje pre
z € (—|zol, [zo]).
(i) Nech existuje v1 € R, v ktorom tento rad diverguje alebo relativne konverguje. Potom
diverguje pre vsetky x € (—oo, —|z1]) U (|z1], 00).
o0
Veta 18. Majme rad >, a,(x — a)”, nech existuje xg # 0, v ktorom tento rad konverguje.
n—=
Potom existuje jediné R také, e 0 < R < oo a pre x € (—R, R) dany rad konverguje a (v
pripade R < 00) pre x € (—oo, —R) U (R, 00) diverguge.
Definicia 4. Bod R, o existencii a jednoznac¢nosti ktorého hovori predchddzajica veta, sa
o0
nazyva polomer konvergencie radu Y. an(x — o) a interval (—R, R) sa nazyva interval

n=0
konvergencie.

Veta 19 (Cauchy-Hadamard). Majme rad i an(r — a)", oznacme A = limsup /|a,|.
Potom " T

(i) ak 0 < X < oo, tak R = 1,

(i) ak A =0, tak R = oo,

(#ii) ak A\ = o0, tak R = 0.

e

Veta 20. Nech 0 < R < oo je polomer konvergencie radu Y, an,(z — a)™, oznacme f(x) :=
n=0

> an(z —a)" pre x € (—R, R). Potom

n=0

(i) pre kazdé {a,b) C (—R, R) rad na (a,b) rovnomerne konverguje,

(ii) f je na (—R, R) spojitd,
&)

(i) f je na (=R, R) diferencovatelnd a plati f'(z) = > na,z™ 1,
n=1

QC"+1
n+1°

(iv) pre kazdé x € (—R,R) f € R((0,z) a plati [ f(t)dt = > ap
0 n=0

Veta 21 (Leja). Nech rad Y an(z — a)™ md polomer konvergencie R, 0 < R < oo, nech v
n=0

bode R (resp. —R) konverguje. Potom rovnomerne konverguje na (0, R) (resp. (—R,0)).
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Definicia 5. Nech f: O(a) — R (a € R) je v bode a nekonecne diferencovatelna (teda
existuje kone¢nd derivécia v bode a Iubovolného rddu). Taylorovym radom nazyvame rad

*  4(n)(q
S Wy )
n=0

Veta 22. > %(Jj—a)" =f(x),z €l < lim R,(f,z,a)=0.

n=0 n—oo
o0
Veta 23. Majme mocninovy rad Y an(x —a)™ =: f(z), © € I. Potom tento rad je Taylo-
n=0
(n)
rovgm radom f v bode a (a, = fT(a))

Veta 24. Ak f: I — R je rozvinutelnd do potenéného radu, tak jej rozvoj je jednoznacni.

2 n

ex:1+x+m_+...+x_
2 n!

3 2n—1
. _ T n-1 &
81nx—x—§+-~—|—(—1) @n 1)
.’1?2 N x2n
cosx:1—5+~-~—|—(—1) )
In(1 + z) TP ey e <)
n =x— —+ —+---+(— — T
2 3 n
= [
1 a: n
(1+2) E(n)x

4.4 Fourierove rady

Pyq,p) = priestor po castiach spojitych funkcii na intervale (a,b)

b
Na Py, 1y definujeme skaldrny sucin ako (f,g) = [ f(z)g(x)dx.

b
Tento skalarny stcin definuje metriku p(f,g) = (/[ (f(z) — g(x))?dz, ktord sa tiez nie-

a
kedy nazyva strednd kvadratickd odchylka funkecii f a g. Ak postupnost funkcii konverguje
k nejakej funkcii podla tejto metriky, tak hovorime, Ze tato postupnost konverguje v strede.
Konvergencia v strede vyplyva z rovnomernej konvergencie a z konvergencie v strede zasa
vyplyva, ze uvedenti postupnost mozno integrovat ¢len po clene.

Definicia 6. Ak (¢,);2; je ortonormalna postupnost funkcii z P, 1y a f € P, 1), tak cisla

(f, i) nazgvame Fourierove koeficienty funkcie f a rad Y. ¢;¢;, kde ¢; = (f, p;) sa nazyva
n=1

Fourierov rad funkcie f podla systému ().

cosnx sinnz

s . . > ’ ’ o1
Definicia 7. Fourierov rad podla ortonormélneho systému funkcii Bom m ym sa

nazyva trigonometricky Fourierov rad. Ak ho vyjadrime s pomocou kosinov a sinov (teda bez
normovania), tak dostaneme

1 oo
flz) ~ §a0 + Z(an cos nx + by, sinnx),

n=1
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kde koeficienty su
2w
ap = 7/ f(x) cosnzxdz,
0

™

1 2
b, = — / f(x) sinnzdx,
T Jo

pren=12...a

n

Veta 25. Zo vietkych suctov 6, = . drpr najmensiu stredni kvadratickd odchylku od f
k=1

md n-ty ciastocny sucet s, Fourierovho radu.

Doésledok 4. Pre kazdyj ortonormdlny systém (pr) a kazdi funkciu f € P,y plati

1 ewon = FIP = AP =D ke
k=1 k=1

(ck. st Fourierove koeficienty.)

Daosledok 5. Ak trigonometricky rad konverguje v strede k mejokej funkcii, tak jeho koefi-
cienty su prdave Fourierove koeficienty tejto funkcie.

Veta 26 (Besselova nerovnost). Pre kaZdij ortonormdlny systém (py) a kaZdi funkciu f
plati nerovnost

n

> <P

k=1

Dosledok 6. Pre trigonometricky Fourierov rad md Besselova nerovnost tvar

1 oo 2 a+l
5a3+;(ai+bi) < 7/a f3(x)dx

Daosledok 7. Pre Fourierove koeficienty po castiach spojitej funkcie f plati lim a, =
n—od
lim b, = 0.

n—00

Definicia 8. Ortonormélny systém (o) sa nazyva uzavrety , ak Fourierov rad kazdej funkcie
[ € P, podla tohto systému konverguje k nej v strede.

Veta 27 (Parsevalova rovnost). Pre kaZdi funkciu f € P, vy a kaZdy uzavrety ortonor-
malny systém (o) plati rovnost

o0

o=l

n=1

Definicia 9. Hovorime, Ze ortonormélny systém je uping, ak okrem nulovej funkcie neexistuje
v P4 p) Ziaden iny prvok ortogonalny ku vSetkym prvkom systému.

Veta 28. KazZdy uzavrety ortonormdlny systém je uplng.

Veta 29. Dve rozne funkcie f,g € P, v magi rozne Fourierove rady podla kaZdého iplnéeho
(a tym skor aj podla kaZdého uzavretého) ortonormdlneho systému.

17



Veta 30 (O rovnomernej konvergencii). Ak v uzavretom ortonormdlnom systéme Fou-
rierov rad funkcie f rovnomerne konverguje na {(a,b), tak jeho sicet sa rovnd danej funkcii
(aZ na koneényg pocet bodov).

Veta 31. Trigonometricky rad danej funkcie f € Py ory md na kaZdom intervale dlzky
27 ten isty tvar. Ak f je pdrna funkcia, tak b, = 0 (koeficienty pri sinusovijch ¢élenoch si
nulové), ak [ je pdarna funkcia, tak a, = 0 (koeficienty pri kosinusovych ¢lenoch si nulové).
Trigonometricky rad pdrnej funkcie sa nazyva kosinusovy rad, trigonometricky rad nepdrnej
funkcie sa nazyva sinusovy rad.

Veta 32. Ak je funkcia f spojitd na intervale (—m,7) a md na (—m, ™) po Castiach spojiti
derivdciu a plati f(m) = f(—mn), tak trigonometricky rad funkcie f konverguje rovnomerne
na intervale (—oo, 00).

Veta 33. Nech funkcia f a vsetky jej derivdcie aZ do rddu k (vrdtane) si spojité a spliaji
podmienky f(r) = f(=n), f'(7) = f'(=x), ... f¥)(x) = f®)(=n). Nech md funkcia na in-
tervale (—7, ™) po castiach spojitd derivaciu (k+1)-vého rddu. Potom mozno trigonometricky
rad funkcie f k-krdt derivovat élen po clene.

Veta 34. Nech f je periodickd funkcia s periodou 2w, ktord je po ¢astiach spojitd na intervale
(—m, ). Potom n-ty éiastoény sucet jej Fourierovho radu moZno vyjadrit v tvare

sin(n + 1)z

in 2
281112

sn(z) = 2 / et 2+ S 2)

™

Daésledok 8. Ak f(x) =1, tak aj sp(z) =1, a teda

s 2n+1
2 [T sin L=z
z 2 "dy=1
0

in Z
T 2s1n2

pren=1,2,....

Veta 35 (O bodovej konvergencii Fourierovho radu). Ak si funkcia [ aj jej deri-
vdcia po éastiach spojité na (—m, ), tak Fourierov rad funkcie f bodovo konverguje k jej
normalizovanému (spriemerovanému) periodickému predlZeniu v kaZdom bode x € R.

Lema 2. Ak g(x) je po castiach spojitd funkcia na intervale (a,b), tak

b
lim g(t)sinntdt =0

n—oo

a tiez .
lim g(t) cosntdt = 0.

n—
1—00 a

Veta 36 (Diniho veta). Fourierov radu funkcie f € P, ry konverguje v bode x k jej
normalizovanému periodickému prediZeniu, tak existuje také c¢islo § > 0, Ze integrdl

/5903;—(Z)d2

konverguje. (pqo(t) = f(z+t)+ f(x—t)—2f(x), kde f je normalizované periodické predlZenie
f)
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Veta 37 (Fejérova veta). Ak je funkcia f(x) spojitd na intervale (—m, ) a plati f(—m) =
f(m), tak postupnost on(z, f), kde

s0(®) +s1(x) + - + sn-1(2)

Un($>f) =

rovnomerne konverguje na celom R k periodickému predlZeniu funkcie f(x).

Veta 38 (Weierstrassova). KaZdi funkciu f(x) spojiti na intervale (—m,m) s vlastnostou
f(=m) = f(7) moZno na tomto intervale s lubovolnou presnostou aprozimovat trigonomet-
rickymi polyndmami.

Veta 39. Trigonometricky systém funkcii je uzavrety. To znamend, Ze pre kaZdu funkciu
[ € Pi_x = a pre kaZd€ cislo € > 0 strednd kvadratickd odchylka n-tého ciastocného sictu jej
Fourierovho radu podla trigonometrického systému je pre vietky dostatocne velké n mensia
ako e (||f —snll <e).

Fourierove rady som pisal podla [BS].
Napisal som to velmi zlozZito, pretoZe o tom ni¢ neviem.
Laub

5 Riemannov integral

Riemannov integrdl jednej a viacerych premenngch a jeho zdkladné vlastnosti. Nutné a posta-
Cugice podmienky integrovatelnosti, mnoZiny integrovatelngych funkcii. Metody vypoctu (Fu-
biniova veta, veta o transformdcii.)

5.1 Definicia Riemannovho integralu v R

O funkcii f: (a,b) — R predpokladame, Ze je ohranic¢ena.

Definicia 1. Delenim intervalu {(a,b) rozumieme kazd@ koneéni mnozinu bodov {xg,z1,
ozt kdea=a9 <z <... <z, =0
Delenie D; sa nazyva zjemnenim delenia Dy, ak Dy C D;y.
Oznacujeme d; = (x;_1, ;) a Ax; = z; — ;1.
Norma delenia D n(D) := max{Az;: i =1,...,n}.

Horngm (dolngm) R-integralnym sictom rozumieme ¢islo U(f, D) = > M;Ax; (L(f, D)
i=1

ol

m;Axz;), pricom M; = sup f(z) (m; = inf f(z)).

R-integrdlnym sictom rozumieme ¢islo S(f, D) = i ft)Az;, kde t; € d; je lubovolny
bod intervalu d;. =
Tvrdenie 1. MnoZiny {L(f,D)}p a {U(f,D)}p si ohranicené.
Tvrdenie 2. Ak Dy je zjemnenim D1, tak L(f, D1) < L(f, Do) a U(f,D1) > U(f, D).
Tvrdenie 3. Ak D1, Dy si lubovolné delenia intervalu (a,b), tak L(f, D1) < U(f, D2).
Definicia 2 (R-integralu). Horngm Riemannovym integralom z funkcie f na (a,b) roz-
b

umieme infimum hornych integralnych suctov U(f, D), oznacujeme [ f(x)dz.
a
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Dolnym Riemannovym integrdlom z funkcie f na (a,b) rozumieme suprémum dolnych

b
integralnych suc¢tov L(f, D), oznacujeme [ f(z)dz.
a
Hovorime, ze f: {a,b) — R je integrovatelnd v Riemannovom zmysle (mé R-integral), ak

8 —

b
f(z)dx = [ f(z)dz. Ich spoloéni hodnotu nazgvame Riemannovym integralom a oznacu-
a

jeme ff(a:)dx.

Triedu R-integrovateInych funkcii oznac¢ujeme R({a,b)).

/: flz)dz < /jf(x)da:

Tvrdenie 5. Funkcia f € R{a,b) < Ve > 03Dy U(f, Do) — L(f, Do) < €.

Tvrdenie 4.

Triedy integrovatelnych funkcii

Tvrdenie 6. Ak f: (a,b) — R je spojitd, tak f € R({a,b)).

Definicia 3. Hovorime, Ze mnoZina () # M C R méa Jordanovu mieru 0, ak pre kazdé € > 0
existuje koneény pocet uzavretych intervalov dj ...d; takych, ze
n

(i) X |di <e
i=1
(ii) Vx € M 3j € {1,...,k} tak, Ze z je vnitorny bod dy.

Tvrdenie 7. Nech f: (a,b) — R je spojitd na {a,b) s vgnimkou bodov mnoziny M C {(a,b).
Nech M md Jordanovu mieru 0. Potom f € R({a,b)).

Tvrdenie 8. Ak f: {a,b) — R je na {a,b) monotdnna, tak f € R{a,b).

Plati to aj pre funkcie s ohranidenou varidciou, pretoze tieto mozno napisat ako rozdiel
dvoch neklesajicich funkcii.

Zakladné vlastnosti R-integralu

Veta 1. Ak f € R(a,b) a c €R, tak c¢f € R{a,b) a plati

/ab of ()da = c/abf(a:)dx.

Veta 2. Ak f,g € R{a,b), tak f + g € R{a,b) a plati

/ab(f +g)(z)dx = /ab f(x)dx + /abg(x)da;.

Veta 3. Nech f,g € R{a,b) a nech pre x € {(a,b) plati f(x) < g(z). Potom plat{

/a  faydr < / " (@)
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Veta 4. Nech f € R{a,b) a|f(z)] < M na (a,b). Potom

/ab f(z)dx

Veta 5 (Aditivna vlastnost integralu). Nech funkcia f: (a,b) — R je ohrani¢end, majme
b

< M- a).

c€R, a<c<b. Potom f € R(a,b) & f € R(a,c) A f € R(c,b). Navyse plati: [ f(z)dx =

c b

[ fx)dz + [ f(z)dx

Veta 6. Nech f € R{a,b), oznaéme m := (in£> f, M := sup f. Nech p: (m, M) — R je tam
@ ((l,b>

spojitd. Potom o(f(x)) € R{a,b).

Vo v8eobecnosti neplati, ze ak dve funkcie st Riemannovsky integrovatelné, tak aj ich
zlozenie bude Riemannovsky integrovatelné. (Podla pozndmok z prednasky. Presnejsie pove-
dané, podla poznamky prednédsajuceho poznadenej v poznamkach z prislusnej prednésky.)

Veta 7. Nech f,g € R(a,b). Potom
(i) f-9 € R(a,b),
(i) ak naviac inf g > 0 (pre g > 0), alebo supg < 0 (pre g < 0), tak % € R{a,b),

b b
(iii) |f] € R(a,b) a plati |[ f(x)dz| < [|f(z)|dz.

Integral ako limita integralnych stuctov

Definicia 4. Hovorime, 7e ¢islo A € R je limitou mnoZiny integrdlnych sictov {S(f,D)}p
pre normu delenia idicu k 0, oznacujeme A = (lliyr)n OS(f, D), ak (Ve > 0)(3d > 0)(VD) plati
n(D)<d§=|S(f,D)—A| <e.

Vencko poznamenal, Ze definiciu limity postupnosti aj tejto limity spaja Mooreova-Smi-
thova definicia limity.

b

Veta 8. Ak f € R{a,b), tak existuje (lfi)r)n OS(f7D) a plati (hr)n S(f,D) = [ f(x)
Naopak, ak existuje lir)n S(f,D), tak f € R{a,b) a plati (111)11 S(f,D ff (z)dzx.

Definicia 5. Hovorime, Ze postupnost deleni Dy, intervalu (a, b) je normdlna, ak hm n(Dy)
k—oo
=0.

b
Veta 9. Ak f € R(a,b), tak pre vsetky normdlne postupnosti (Dy)32, plati: [ f(x)dz =
klim S(f, Dk)

Veta 10. Majme f,g: {a,b) — R (ohrani¢ené). Nech pre x € (a,b) \ M f(x) = g(z), pricom
M je mnozina s Jordanovou mierou 0. Potom

b b
(i) bud sicasne f € R{a,b) aj g € R(a,b) a plati [ f(z)dx = [ g(x)dz,

a

(#) alebo sicasne f ¢ R{a,b) aj g ¢ R{a,b).
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Integral ako funkcia hornej hranice

Veta 11. Nech f € R{a,b). Pre x € (a,b) oznaéme F(z) := [ f(t)dt. Potom

a

(i) F je na {(a,b) spojitd,

(i1) navyse, ak je f v bode xg spojitd, tak F je v xo diferencovatelnd a plati F'(xo) = f(z0).
Veta 12 (Leibnitz-Newtonov vzorec). Nech f € R{a,b), nech F' je na {(a,b) primitivna
funkcia k f. Potom ff(:c)dw = F(b) — F(a) =: F(z)]%.

Ak funkcia f mé primitivnu funkciu, hovorime, Ze je integrovatelné v Newtonovom zmysle.
Vety o strednej hodnote

Veta 13 (1.Veta o strednej hodnote). Nech f,g € (a,b), nech pre x € (a,b) je g(x) > 0(<
b
0). Oznaéme M = sup f, m = <1nf>f Potom existuje A € (m, M) také, Ze ff x)g(x)dx =
(a, b)

A g(z)da.

a

Dosledok 1. Ak f: <a7b> — R je spojitd na {(a,b), g € R{a,b), g(xz) > 0(< 0), tak existuje

€ (a, b) ffgdx— g(x

@%cr

Veta 14 (2.veta o strednej hodnote) Nech f: (a b) — R je tam monoto’nna g € R{a,b).
Potom ezistuje ¢ € R{a,b) také, Ze ff x)dx = fg Ydx + f(b fg

a
Metédy vypoctu uréitého integralu

Veta 15 (per partes). Nech u,v: {a,by — R si tam spojite diferencovatelné. Potom

fu dz = u(z)v(z)]; - IU(w)v’(w)'

a

Veta 16 (substituéna metdda). Nech f je spojitd na {(a,b), ¢ spojite diferencovatelnd na
(a, B), mech (o) = a, o(B) =b. Potom

b B
/ f(x)dz = / F(o () (D)t

TODO Vencko spomenul, Ze tieto vety platia obecnejsie, mozno to dopl.

5.2 Nevlastné jednorozmerné integraly

/:0 f(z)dx := Algnoo /aA f(x)dx
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Ak existuja [ f(z)dz aj [ f(x)dz, tak [ f(z)dz definujeme ako ich stcet.
a — 00 —00

Tiez sa definujii nevlastné integraly pre neohrani¢ené funkcie. Pre nevlastné integraly
existuju rozne kritéria konvergencie: Cauchy-Bolzanova podmienka, porovnavacie kritérium,
Abelove a Dirichletove kritérium - pozri [BS] alebo [GD].

5.3 Riemannov integral v R"
Integral ohranicéenych funkcii s kompaktnym nosi¢om

Ohraniéené funkcie s kompaktnym nosicom budeme znacit By(R").

Definicia 6. Nech pre kazdé i = 1,...,n je dany konecny systém m, nadrovin o;; := {z =
(1,...,2n) € R"2; = a5}, kde j = 1,...,m; +1 a ain < ... < @im, S0 redlne &isla.
Zjednotenie tychto nadrovin nazyvame delenie priestoru R™.

Definicia 7. Hovorime, Ze n-rozmerny interval I = J; x --- X J,, je polootvoreny sprava, ak
kazdy z jednorozmernych intervalov J; j polootvoreny sprava.

Funkciu s: R" — R nazyvame elementdrna s-funkcia, ak existuje delenie D(R") priestoru
R™ také, ze funkcia s je konstantna na kazdom intervale delenia D(R"™). MnoZinu vSetkych
elementarnych s-funkcii zna¢ime S.(R").

Definicia 8. Horngy R'-integrdl funkcie f € By(R") je

n

(R") / fdv = inf{(LS)/ sdV € R;s € S.(R"),s > f}.
Dolny R -integrdl funkcie f € Bo(R™) je

(R [ fdV := sup{(Ls)/ rdV € R;r € S.(R™),r < f}.
R™

n

L? v predchadzajicej definicii znamena integral zo schodovitej funkcie.

Definicia 9. Funkciu f € By(R") nazyvame riemannovsky R'°-integrovatelnd na R™, ak
horny a dolny RY°-integrél sti rovnaké. Spoloénti hodnotu oboch integrdlov nazyvame Rie-
mannov R -integrdl a oznacujeme ho (R") Jgn fAV. Mnozinu vetkych RY°-integrovatemgch
funkcii na R™ z By(R") zna¢ime R (R™).

Riemannov integral ohranic¢enej funkcie f na ohrani¢enej mnozine A C R" sa definuje
ako jej integral cez celé R™ po dodefinovani nulou mimo mnoziny A. Mnozinu riemannovsky
integrovatelnych funkcii na mnozine A znac¢ime R°(A).

5.4 Metddy vypodétu viacrozmernych integralov

Tieto vety sme mali formulované pre Lebesguove integraly.

Veta 17. Nech mnoZina A C R" je kompakind a funkcia f: A — R je spojitd na A. Potom
(@) [ f@ava@) = @) [ (] fa eV @ )avi @),
A B JA®)

Definicia 10. Nech A C R" je otvorend mnozina. Zobrazenie g: /A — R" sa nazyva regu-
larne, ak
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(i) g je injektivne zobrazenie,
(i) g€ C'(A,RY),
(iii) Jacobiho determinant zobrazenia g v kazdom bode t € A je rozny od nuly.
Veta 18. Nech A CR"™ a D C R" s4 otvorené mnoZiny a g: A — D je surjektivne requldrne

zobrazenie (x = g(t)). Ak funkcia f: D — R je spojitd a mnoZina A C D je meratelnd,
potom plati

) [ s@av =) [ awlsawiave

5.5 Par poznamok

V skriptach [NV2] (tiez [SSN, Veta 5.5.2]) je v dodatku této pekna veta:

Veta 19. Ohranicend funkcia f: (a,b) — R je R-integrovatelnd vtedy a len vtedy, ak mnoZina
jej bodov nespojitosti ma Lebesguovu mieru 0.

Ako priklad na dvojicu riemannovsky integrovatelnych funkcii, ktorych zloZenie nie je
riemannovsky integrovatelné, mozeme pouzit funkcie f: (0,1) — (0,1), f() = %7 F(R\Q) =
0 (tato sa tusim vold Riemannova funkcia) a g: (0,1) — (0,1), g(0) =0, g(z) = 1 pre = # 0.
g o f je Dirichletova funkcia. R-integrovatelnost funkcie f vyplyva z predchadzajicej vety.

Veta 8 v [NV2] asi nie je dokazovana dobre, spravny dokaz je v [JAR].
Citatel si iste rad premysli platnost nasledujiiceho tvrdenia.
Neubrunn+ Vencko

6 Parametrické integraly

Parametrické integrdly, spojitost a derivdcia integrdlu zdvislého od parametra.

Veta 1. Nech A C R" je meratelnd a B C R™ je otvorend mnoZina a funkcia f: Ax B — R
je spojitd na A x B. Predpokladajme, Ze existuje majoranta g € L(A) takd, Ze |f(x,t)] < g(z)
pre vsetky x € A, t € B. Potom funkcia h: B — R s hodnotami

()= (L) [ £V, @)
A

je spojitd na B.

Veta 2. Nech A C R" je meratelnd a B C R™ je otvorend mnoZina. Nech funkcia f: AXB —
R je spolu s parcidlnymi derivdciami Of/0t;, 7 = 1,...,m (t = (t1,...,t,) € B, z =
(z1,...,2n) € A) spojitd na Ax B a spliia podmienky | f(x,t)| < g(x), |0f/0t;(x,t)| < g;(z),
kde g,g1,- .. gm su funkcie z L(A). Potom funkcia h z predchddzajicej vety je z triedy C*(B)
a jej parcidlne derivdcie st dané rovnostou

oh,.  [of
8—7%('5) = (L) %j(x,t)dvn(x)
A

prej=1,...,mateb.

Na cvic¢eniach si to uz dotvorite.
Durikovié
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7 Krivkovy integral
Krivkové a plosné integraly, zdkladné vlastnosti a vypocet.
7.1 Krivky v R"

Definicia 1. Nech g: {(a,b) — R" je zobrazenie s hodnotami g(t) = (g1(¢),...,gn(t)) pre
t € (a,b) také, ze

(i) g; € C*({a,b)) prei=1,...,n,

(i) ¢'(t) = (91(1), -, 9, (1)) # 0 € R" pre t € {a,b).

Potom zobrazenie g nazjvame C*-parametrickd reprezentdcia na (a, b) trajektérie k = {g(t) €
R™;t € (a,b)}.

Definicia 2. Nech g: (a,b) — R" je Cl-parametrickd reprezenticia trajektérie k C R” a
nech G: (a, ) — R je zobrazenie z triedy C1({c, 3)) s vlastnostami

(i) G(a) =a, G(B) =,
(i) G'(7) > 0 pre vSetky T € («, 3).

Potom zobrazenie f = go G: (a,3) — R" je Cl-parametrické reprezentacia trajektérie k
ekvivalentna s g.

Definicia 3. Triedu 7 vietkych ekvivalentnych C'-parametrickych reprezentacii g danej tra-
jektérie & C R™ budeme nazyvat krivkou z R™ a g € v jej Cl-parametrickou reprezentaciou.

Definicia 4. Nech g: (a,b) — R" je C'-reprezentacia krivky v z R™ a nech G: (o, ) — R
je zobrazenie z triedy C'((a,b)) s vlastnostami:

(i) G(a) =0, G(B) = a,

(ii) G'(7) < 0 pre vsetky t € («, 3).

Potom f = goG: (a, ) — R" reprezentuje opacne orientovani krivku k ku krivke . Krivku
K oznacujeme —-y.

Definicia 5. Ndsobnost bodu x krivky + s parametrickou reprezentaciou g: {(a,b) — R" je
pocet bodov ¢ € (a, b), pre ktoré x = g(t). Body krivky s ndsobnostou 1 nazyvame jednoduché
body.

Bod g(a) nazyvame zaciatocnym a g(b) koncovgm bodom krivky g. Ak g(a) = g(b), krivka
sa nazyva uzavreta.

Krivka, ktord ma iba jednoduché body sa nazyva jednoduchy oblik. Uzavretd krivka sa
nazyva jednoduchd, ak kazdy jej bod je jednoduchy okrem bodu g(a), ktory ma nasobnost 2.

7.2 Dlzka krivky a integral 1.typu cez krivku

Definicia 6. Nech je dana krivka v z R" a g: (a,b) — R" je jej C'*-parametricka reprezen-
tacia. Potom dizka krivky ~ je

b b
Vi(y) == / ds := (L) / o/ (B)dt(= (R) / g/ (0)de).
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Definicia 7. Nech v z R” je krivka a g: (a,b) — R" je jej C'-parametrickd reprezentacia.
Nech funkcia F': (D C R") — R, kde D je otvorend mnozina a v C D, je spojitd na v. Potom
krivkovy integrdl 1.typu definujeme rovnostou

b
/ Fds = / F(s)ds == (L) / Fla®)lg' (8)]dt.
%l ¥ a
Mnozinu vsetkych funkcii, pre ktoré je krivkovy integral prvého typu cez -y konecny,
budeme oznacovat L (7).

Veta 1. Nech v je krivka z R", Fy,F5 € L1(7y) a ¢ € R. Potom
(Z) f(Fl +F2)d8 = fFldS + szdS
gl 2l ¥
(ii) [cFids =c [ Fids
gl ¥
(iti) [Fids < [ Fads, ak Fy < F> na 7.
¥ ¥
(iv) [ Fids= [ Fids.
¥ -
Krivkovy integral pre krivky po Castiach hladké sa definuje ako stucet integralov cez hladké
useky.
7.3 Krivkovy integral 2.typu

Diferencialne formy 1.stupna

Definicia 8. Nech D C R" je otvorend mnozina. Zobrazenie w: D — (R™)* sa nazyva
diferencidlna forma 1.stupria (kratko 1-forma) na D.

Definicia 9. Budeme hovorit, ze 1-forma w: (D C R") — (R™)* je exaktnd na D (D je
oblast), ak existuje funkcia f: D — R tak, Ze df = w.

Hovorime, 7e 1-forma je z triedy C*(D), ak kazda jej komponenta w; € C*(D) (D je
otvorend mnozina).

Veta 2. Nech w = widxy + ...+ wydx, je evaktnd 1-forma triedy C*(D). Potom

awi o Owj

an o (9%1"

i,7=1,...n na D.

1-forma spliiajica podmienku z predchadzajicej vety sa nazyva uzavretd.
Nutnd podmienka z predchidzajicej vety je v pripade jednoducho suvislej oblasti aj
postacujuca.

Definicia a vlastnosti

Definicia 10. Nech v C R" je po ¢astiach hladké krivka a zobrazenie g: (a,b) — R" je
jej Cl-parametricka reprezentacia na (a,b). Dalej nech w je spojitd 1-forma na otvorenej
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mnozine D C R", pricom v v C D (t.j. trajektéria krivky lezi v D). Potom krivkovy integrdl
2.typu z w cez krivku v je

b b n
/ wi= / widzy + -+ woda, = (L) / wlg(t))g'(t) = (L) / {3 wilg(0))gl(0) Y.

Veta 3. Nech ~y je po castiach hladkd krivka v R"™, w a £ nech si spojité 1-formy na otvorenej
mnozine D, v ktorej lezi . Potom

(i) [(w+&)ds= [wds+ [£&ds
(i) [(cw)ds = c [ wds

(iti) [ wds = [wds+ [wds, ak v1, V2 si po éastiach hladké disjunkiné krivky v R".
Y1+72 Y1 Y2

(iv) 7f wds = — [wds.

Veta 4. Nech D C R" je otvorend mnoZina a nech w je spojitd 1-forma na D. Potom
nasledujuce tri tvrdenia si ekvivalentné:

(i) w je exakind,
(i) pre kazdi uzavretd po castiach hladkd krivku v C D integrdl f,y w =0,

(#ii) ak y1 a y2 st dve lubovolné po éastiach hladké krivky y D s tym istym zaciatongm a

koncovym bodom, potom f,yl w= [ w.

Fyzikalny vyznam krivkového integralu 2.typu je praca v silovom poli. Krivkovy integral
1.typu mozno pouzit na vypocet hmotnosti, faziska a roznych momentov.

7.4 Veta o divergencii

Integraly na varietach by som sem asi ani nemusel pisat, vSak? (MoZno by som aj mal,
ale sa mi nechce.:=() Aj pre integraly na varietach st dva druhy. Pri integraloch druhého
druhu treba uvazovat aj orientaciu variety.

Definicia 11. Hovorime, %e mnozina D C R" je reguldrna oblast, ak:
(i) D je otvorena a ohranicend,
(ii) pre kazdé zg € D existuje okolie U bodu zg a zobrazenie F: U — R F € CY(U) s
grad F'(x) # (0) pre z € U pricom 0DNU = {z €; F(z) =0}, DNU = {z €; F(z) < 0}.

Definicia 12. Nech D C R" je reguldrna oblast v R™ a v # 0 je normélovy vektor k D v
bode z. Potom v nazyvame vonkajSou normdlou v bode z € 9D, ak existuje § > 0 tak, Ze
x4+treDpre —d<t<Oaz+treR"—Dpre0<t<d.

Veta 5 (Veta o divergencii, prva verzia). Nech D C R" je reguldrna oblast, v(x) je
Jjednotkovy vektor vonkajsej normdly k 0D v bode x € 0D a nech w je 1-forma z triedy
CY(D). Potom

/ w(z).v(x)ds,—1 = (L)/ div w(z)dV, (z),
aD D
ak oba integrdly existuji. (Integrand na lavej strane je skaldrny sucin 1-kovektora z (RY)* a

vektora z R". - Co to ale znamend, to sa ma nepytajte.)
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(R7)* sa oznacovala mnozina vSetkych alternujicich r-linedrnych zobrazeni z (R™)" do R.

Désledok 1. Nech st splnené predpoklady predchddzajicej vety, kde w = f(z).g(x)dz;.
Funkcie f,g: clD — R st z triedy C*(cl D). Potom

W [ Hogt @) = [ fg@u@ds, - @) [

aD p 0x;

(2)g(z)dV,,(z)

Veta 6. Nech D C R" je ohranicend otvorend mnozina, ktorej hranica je 0D = Ay U... U
A UE. MnoZiny Ay st relativne otvorené podmnoZiny 0D, Ay je kompaktnd podmnoZina
nejakej (n — 1)-variety z triedy C* a E je kompaktnd pomnoZina (n — 2)-variety triedy C*,

pricom AiﬁA_j C E prei#j. Ak v(x) je Jednotkovy normdlovy vektor k Ay prek =1,....m
v bode © € Ay a w je 1-forma z triedy C*(D), potom

(L)/ divwdV,, = Z/ W.vdSy,_1
D k=1 4%k

Predchadzajica veta sa tyka napriklad takych mnozin, ako n-rozmerny simplex a n-
rozmerna kocka.

Veta 7 (Veta o divergencii, druha verzia). Nech D C R" je reguldrna oblast s kladnou
orientdciou a s kladne orientovanou hranicou 0Dt a w je 1-forma z triedy C(D). Potom

/ w = dw,
oD+ D+

kde dw je vonkajsi diferencidl formy w.
Nasledujtice tvrdenia st Specialne pripady vety o divergencii:

Veta 8 (Greenova veta). Oznacme w(x,y) = M(x,y)dz+N(z,y)dy. Potom (ak si splnené
predpoklady vety o divergencii)

de—l—Ndy:/ (6_N_8_M) dzdy.
aD+ p+ \ Oz dy

Gauss-Ostrogradského vzorec - uréuje vztah medzi objemovym a plo$nym integralom.

oP 0Q OR

(L) /D+ (% oy T £> dVs(x,y, 2) = /aD+ Pdydz + Qdzdz + Rdxdy

Stokesova veta - udava vztah medzi plosnym a krivkovym integralom v R®.
Nech krivka C' ohranic¢uje plochu S. Potom

[ (o op on 09 or
/c*de+Qdy+Rdz_//€ (8y 8z>dydz+<62 8x>dzdﬂc+<ax 8y)alxdy
inak: [w = [[rotw
c s

Funkcia bude ist tam.
Feckan

8 Lebesguov integral

Lebesguov integrdl v R™a jeho vlastnosti, porovnanie s Riemannovym integrdlom.
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8.1 Meratelnost a miera mnozin

TODO Na, cvikach z funkcionéalky s Tereséakom sme asi tieZ robili Lebesguovsky meratelné
mnoziny, ale nenasiel som zosit.

TODO Lebesguov integral by mal byt aj v [GD] na str.476 (?77).

TODO Cosi o Lebesguovej miere by mohlo byt aj v Salat: Metrické priestory.

TODO ?Fubiniho vetu aj vo formulécii pre sicin meratelnych priestorov?

Na definiciu Lebesguovho integrélu treba mat najprv zavedent Lebesguovu mieru. Jeden
pristup k zavedeniu Lebesguovej miery je pomocou indukovanej vonkajsej miery (z knihy
[RN]), iny k nemu ekvivalentny pristup pouzil Durikovi¢ na prednéske. Najprv zavedenie
Lebesguovej miery z Riecana:

Definicia 1. Nech E ¢ P(X), § € E. Nech pu: E — R je funkcia, ktora spliia podmienku

n(®) =0
Ei,Ey € E,El NE, = @,El UFE, € E = ,LL(El U E2) = ,[L(El) + ,U,(EQ) (81)

Potom hovorime, ze funkcia u je aditivna mnozinova funkcia definovana na E.
Ak p splia aj podmienku

E,€En=12,.. . ENE =0prei#j | JE, € E= p(

n=1 n—=

E,) = ZN(En)7 (8.2)

tak hovorime, Ze i je o-aditivna, alebo Ze je zovseobecnend miera.
Ak je zovSeobecnend miera nezapornd, hovorime, ze je miera. Ak nadobida len konec¢né
hodnoty, hovorime o konecnej miere.

Teres¢ak definoval mieru tak, Ze namiesto podmienky p(@) = 0 pozadoval existenciu
B € S takého, ze u(B) < co. Obe definicie st ekvivalentné.

Definicia 2. Neprazdny systém E podmnozin X budeme nazjyvat okruh, ak
(i) ELFeE=EUF €E,
(iil) ELFeEE=F\F€E,

E sa nazyva o-okruh, ak je okruh a plati
E,€E (n=12,..)= ) E,€E.
n=1

Ku Tubovolnému systému R C P(X) existuje najmensi o-okruh, ktory ho obsahuje a
oznacuje sa o(R).

Definicia 3. Ak R C P(X) je okruh a X € R, tak R sa nazyva algebra. Ak algebra je
sucasne o-okruh, tak sa nazyva o-algebra.

Veta 1 (vlastnosti miery na okruhu). Nech p je miera definovand na okruhu R. Potom
(i) E,F €eE,ECF = u(E) <u(F) (1 je neklesajica),
(i) ak asponi jedno z c¢isel u(E), u(F) je koneéné a E C F, tak u(F \ E) = u(F) — u(E).

(Tejto vlastnosti hovorime subtraktivnost s podmienkou konecnosti.)
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(iii)) EER, E, e R, EC U E, = w(E) < > u(E,) (c-subaditivita)

n=1 n=1
[eS)

(i) A; €8S, A; C Airqg prei € N = p(lJ 4;) = lim w(A;) (polospojitost zdola)
i=1 n—0o0

(v) A; €8, A; D A1 prei € N = pu(() A;) = lim p(A4;) (polospojitost zhora)
=1 n—oo

1=

Definicia 4. Nech R C P(X) je okruh a y je miera na R. Pre lubovolni mnozinu A € P(X)
definujeme

w (A) = inf{i w(E,); A C G E,;E,eRn=12 .1} (8.3)

n=1 n=1

(pri¢om infimum prazdnej mnoziny kladieme oo). Takto definovand mnozinové funkcia p* na
P(X) sa nazyva vonkaj§ia miera indukovand mierou L.

Veta 2. Nech p* je vonkajsia miera indukovand mierou u definovanou na okruhu. Potom
plati:

(i) p*(0) =0, u*(A) >0 pre kazdé A € P(X),
(1) p*(A) < u*(B) pre kazdé A,B € P(X), A C B,

(iii) 1 (4) < immn), akAc U A,

n=1
() ok E, € R, tak p*(E) = p(E).

Definicia 5. Nech p* je mnozinova funkcia definovand na P(X) a nadobtdajica hodnoty v
R, ktora spliia podmienky (i)—(iii) z predchadzajticej vety. Potom hovorime, Ze u* je vonkajsia
miera.

Definicia 6. Nech p* je lubovolnd vonkajsia miera na P(X). Mnozina E € P(X) sa na-
zyva p*-meratelnd (alebo tiez p*-meratelnd v zmysle Caratheodoryho), ak pre lubovolné dve
mnoziny P C E, Q C E’ plati

W (PUQ) = i (P) +4°(Q). (5.4
Vidno, Ze je to ekvivalentné s podmienkou, Ze pre Tubovolné A € P(X) plati:
WH(A) = @ (ANE) + (AN E), (8.5)

z ¢oho dalej vyplyva, Ze () aj X st vidy p*-meratelné.
Systém vSetkych p*-meratelnych mnozin budeme znacit S,,-.

Veta 3 (Caratheodoryho). Systém S,- je algebra a p* je vonkajsia miera na P(X).
Systém S, je o-algebra a p* je miera na S,-.

Veta 4. Nech u* je vonkajsia miera, indukovand mierou u, definovanou na okruhu R. Potom
S, Da(R).

7 predchadzajucej vety vyplyva, Ze plati:

Veta 5 (o rozSireni miery). Nech p je miera definovand na okruhu R. Potom existuje
miera p1 na najmensom o-okruhu o(R) nad okruhom R, ktord je rozsirenim mieru p.
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Definicia 7. Miera p definovana na okruhu R sa nazyva o-konecnd, ak pre kazdé E € R

o0
existuje postupnost (E,)3° ; mnozin z R takd, ze E C |J E, a u(E,) < cc.
n=1

Veta 6. Nech i je o-konecnda miera definovand na okruhu R. Potom existuje prdve jedno
rozsirenie miery u z R na o(R).

Definicia 8. Znakom <7 oznacujeme systém vsetkych zlava uzavretych, sprava otvorenych
intervalov.
5(<7)) oznacime systém obsahujici prazdnu mnozinu a koneéné zjednotenia intervalov z

<7). Systém s(<7T)) je okruh.

Lema 1. Nech | je mnoZinovd funkcia definovand na okruhu s(<T)) takto: I()) = 0 a
WU (ai, b)) = Y0 (b — a;), ak intervaly {(a;,b;) si navzdjom disjunkiné. Potom | je
miera na s(<7)).

Najmensi o-okruh, ktorj obsahuje s(<77), uz musi obsahovaf vietky otvorené, uzavreté
aj vsetky borelovské mnoziny.

Definicia 9. Vonkaj$iu mieru /* indukovanti mierou [ na s(<7)) nazjvame Lebesguova miera.
Systém [*-meratelnych mnozin oznacujeme L a z(Zenie [* na L znacime .

Veta 7. Jedind miera pn na systéme B(R) vsetkych borelovskych mnozin, pre ktord plati
wula,b) = b — a pre vietky a,b € R sa na B(R) zhoduje s Lebesguovou mierou.

Tvrdenie 1. Lebesguova miera je uplnd a o-konecnd. (Miera je uplnd, ak vsetky podmnoZiny
mnoZin s nulovou mierou si meratelné.)

Veta 8. Nech £ € L a ¢ > 0. Existuje takd otvorend mnozina G O FE a takd uzavretd
mnoZina F C E, Z2e \(G\ E) <e, A\(E\ F) <e.

Désledok 1. Ku kazdej mnozine E € L existuje mnoZina Gy typu Gs (t.j. Go je prienikom
postupnosti otvorengch mnozin) a mnozina Fy typu F, (t.j. Fy je zjednotenim postupnosti
uzavretych mnoZin), e Go D E D Fy a AM(Go \ E) = ME'\ Fp) = 0.

Tvrdenie 2. KaZdd spocitatelnd mnozina md Lebesguovu mieru 0.
Podobne, ako sme definovali s({77), mozno definovat s({7)2).

Definicia 10. E C R? patri do s({7)2) prave vtedy, ked E = 0, alebo E = J'_, (a;, b;) x
(ciyd;), kde {(a;,b;),{ci,d;) € <7). Vyjadrenie mnoziny E mozno volif tak, Ze dvojrozmerné
intervaly, ktoré v nom vystupuja budu disjunktné.

12(0) =0 a (P (ai, b)) x {ciydi)) = S0 (b — ai)(d; — ).

Zavedenie Lebesguovej miery vo viacrozmere bolo v [RN] ponechané ako cvicenie a mé
sa urobit analogicky ako v jednorozmernom pripade.

Durikovi¢ zaviadza Lebesguovu mieru trochu inak - za¢ne vlastne tak, Ze ju definuje pre
ohrani¢ené otvorené a kompaktné mnoziny. Z doteraz uvedenych viet vyplyva (podla mia),
ze bude takto zavedena miera rovnaka.

Definicia 11. Mnozina I C R" sa nazyva n-rozmerny interval v R", ak I je kartezidnsky
stéin 1-dimenzionédlnych nedegerovanych intervalov s n-¢initelmi, t.j. I = J; x ... x J,, kde

koncové body intervalu J; st rozne realne ¢isla pre i = 1,...,n.

Suéin dlzok intervalov Ji,...,.J, nazjvame n-rozmerna miera intervalu I a oznacujeme
V(1) >o.

Interval I nazyvame uzavrety (otvoreny), ak kazdy z intervalov Ji,...,J, je uzavrety
(otvoreny).
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Definicia 12. Nech pre kazdé ¢ = 1,...,n je dany konec¢ny systém m; nadrovin ay; :=
{z = (21,...,2,) € R"jz; = a;;}, kde j =1,...,m; + 1 a a;1 < ... < @i, su redlne disla.
Zjednotenie tychto nadrovin nazyvame delenie priestoru R".

Hovorime, ze delenie D1 (R"™) je zjemnenim delenia D(R™), ak D(R™) C D1(R").

Definicia 13. Mnozinu Y C R" nazyvame s-mnoZina (jednoduchd alebo elementirna mno-
Zina), ak existuje také delenie D(R") ap € N, Ze Y je zjednotenie koneéného poétu uzavretych
P
intervalov I, ..., I, generovanych delenim D(R"), tj. Y = | L.
i=1
Miera s-mnoziny Y je definovand rovnostou V*(Y) := VI(I}) + ... + VI(I,) € RT.

Veta 9. Hodnota miery V(YY) zdvisi iba od Y a nezavisi od vgberu delenia, ktoré generuje
Y.

Désledok 2. Mnozina S, vsetkgjch schodovitych mnozin z R" a prdzdna mnoZina tvori okruh
mnozin. Naviac pre Y,Z € S, plati, 26 Y NZ € S, U{0} a V(Y UZ) < V5(Y)+ V5 (Z).

Definicia 14. Nech G C R" je otvorené neprizdna mnozina. Potom miera mnoZiny G je

VO(GQ) :=sup{V*(Y) e RT;Y € S,,Y C G}.
%

Ak K C R" je kompaktnd mnozina, tak je mieru definujeme rovnostou:

V() = inf{V*(Z) € R";Z € S,; K € Int Z}.

Lema 2. Nech Z € S,,. Potom V°(Int Z) = V*(Z) a ak Z je kompaktnd, tak Ve(Z) =V*(Z).

Pre ohrani¢entt mnozinu sa miera vybuduje aproximativne, zdola pomocou kompaktnych
a zhora pomocou otvorenych mnozin.

Definicia 15. Nech A C R" je ohrani¢end mnozina. Vonkaj§iu mieru mnoziny A definujeme
rovnostou

Vb(A) = iréf{Vo(G) eERT;G€0,,ACG}>0.
a vnatorni mieru rovnostou

VP = sup{V¢(K) e R"; K € C,,, K C A} > 0.
K

Tvrdenie 3. Nech A C B si ohranicené mnoziny z R". Potom VP(A) < VP(A), VP(A) <
V*(B) a V*(A) < V¥(B).
Definicia 16. Nech A C R" je ohraniend mnozina. Hovorime, Ze A je b-meratelnd, ak
plati V*(A) = V?(A). Spoloént hodnotu vnitornej a vonkajsej miery mnoZiny A nazjvame
n-rozmernd miera mnoziny A a zna¢ime ju V°(A).

Opit mozno ukézat, Ze pre kompaktné a otvorené mnoziny nova definicia miery splyva s
povodnou.

Veta 10. Systém ohranicenych b-meratelngjch podmnozin R™ tvori okruh, ktory je mavyse
uzavrety na konecéné prieniky.

Definicia 17. Neohrani¢end mnozina A C R" sa nazyva u-meratelnd, ak ohrani¢end mnozina
AN B, je b-meratelnd pre kazdé r > 0. (B, je otvorend gula s polomerom r.)
Mieru neohrani¢enej mnoziny definujeme rovnostou V*%(A) := lim V(AN B,).
r—00

Veta 11. Systém meratelnijch mnoZin tvori o-algebru, ktord obsahuje vietky otvorené mmno-
ziny. V je miera na tejto o-algebre.
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8.2 Meratelné funkcie

Definicia 18. Nech X je mnoZina a S je nejaky okruh jej podmnozin. Usporiadani dvojicu
(X, S) nazyvame meratelny priestor. Ak na S je definovani nejaka miera, tak usporiadani
trojicu (X, S, ) nazyvame priestor s mierou. Mnozinu E C X, ktord E € S nazyvame
meratelnd mnoZina (S-meratelnd mnozina).

Definicia 19. Nech (X, S) je meratelny priestor. Budeme hovorit, Ze redlna funkcia f(x)
definovand na X je meratelnd na meratelnom priestore (X, S), ak pre fubovolnt otvorent
mnozinu G C R je f~}(G) € S.

Veta 12. Funkcia f je meratelnd prdve vtedy, ked mnozina f~Y(c,00) (f~Xe, 00), f~Y(—o0, c),
[ Y —00,¢)) je meratelnd pre kaZdé c € R.

Uplne rovnako sa definujii meratelné funkcie aj v pripade, Ze namiesto R vystupuje fubo-
volny topologicky priestor. (Teda vzor otvorenej je meratelna.)

Tvrdenie 4. Nech (X,S) je meratelny priestor, (Y, Ty) a (Z,T z) su topologické priestory.
Ak f: X — Y je meratelnd funkcia a g: Y — Z je spojité zobrazenie, tak g o f je meratelnd
funkcia.

Tvrdenie 5. Nech f,g: X — R st meratelné a ®: R* — R je spojité. Potom funkcia
U(f,9)(x) =®(f(x),g(x)) je meratelnd.

Definicia 20. Nech E,...,E, st mnoZiny z S. Nech F; U E, = () pre ¢ # k. Funkciu

> ¢ix g, nazyvame jednoduchou meratelnou funkciou.
i=1

Tvrdenie 6. Ku kazdej meratelnej funkcii existuje postupnost (fr,(x))2, jednoduchych me-
ratelngch funkcit tak, Ze f(xr) = lim f,(z). Ak f(x) > 0 tak ewxistuje takdto neklesajica

postupnost.

Tvrdenie 7. Ak funkcie f, g si meratelné, tak funkcia h(x) = max{f(x),g(z)} je tiez
meratelnd.

Ak funkcie f1, fa,... st meratelné a g(x) = sup{f1, fa,...}, h(x) = inf{f1, fa,...}, tak
funkcie g a h si meratelné.

Ak funkcie f1, fa,... si meratelné a g(x) = limsup fi, h(z) = likm inf fy, tak funkcie g a
k—o00 — 00
h si meratelné.

n
Definicia 21. Jednoduchti meratelnt funkciu budeme nazyvat f(x) = > ¢;xg, (x) jednodu-
i=1

n
chou integrovatelnou funkciou, ak u(E;) < co pre vietky i, pre ktoré ¢; # 0. Cislo >~ c;u(E;)
i=1
budeme nazyvat integrdlom funkcie f.
Definicia 22. Integrdlom z nezépornej meratelnej funkcie f nazgyvame ¢islo [ fdu, ktoré
dostaneme ako limitu postupnosti ([ f,,(z)du)22,, kde (fn(2))52; je neklesajuca postup-
nost jednoduchych meratelnych funkcii konvergujtca k f(x). (Hodnota integralu nezavisi od
vyberu postupnosti.)
Definicia 23. Integrdlom z meratelnej funkcie f(z) nazyvame éislo, [ f(z)dp = [ fi(z)dp—
[ fo(z)dp, kde fi(z) = f%m a fo(z) = WT_f, za predpokladu, Ze aspori jedno z cisel
[ fi@)dp, [ fa(z)dp je redlne.
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Vlastnosti Lebesguovho integralu:

/(f+g)du=/fdﬂ+/gdu
/cfd,u:c/fd,u

fﬁgé/fduﬁ/gdu

15+ gl < [1s1du+ [1glan
[ il < [ 1f1a

Veta 13. Meratelnd funkcia f(x) je integrovatelnd (=md konecny integrdl) prdve vtedy, ked
|f(z)| je integrovatelnd.

Tato vlastnost Riemannov integral nemd. Kontrapriklad je funkcia xgno,1) — X (0, 1)\0-

Veta 14. Ak f(z) je meratelnd funkcia a g je meratelnd funkcia o ok |f| < g, potom f(x)
je integrovatelnd.

Veta 15 (Beppo-Leviho veta). Nech (f,(x))22, je neklesajica postupnost nezdporngch
meratelnych funkeii konvergujica k funkcii f(x), potom [ fdp = lim [ f.du. (Inak povedané

[ i fodp = lim [ fodp.)

Désledok 3. Nech (fn(2))$2, je postupnost nezdporngch meratelnych funkcii. Potom pre
f= ni; fu plati [ fdpp= Y25, [ fadp.

Veta 16 (Fatouova lema). Ak (f,(x))2, je postupnost nezdaporngch meratelnych funkcii
aak f= 7}1)1150 fn, potom [ fdp < I%{Ii)i()léfffndu.

Veta 17 (Lebesguova veta). Nech (f,(x))3%, je postupnost meratelngch funkcii, ktord
konverguge podla miery (alebo skoro vsade) k funkcii f(x). Nech g(x) je integrovatelnd funkcia
a nech | fn| < g. Potom f je integrovatelnd funkcia a plati:

/fd,u:/ lim f,dp = lim /fnd,u.

Konvergencia podla miery znamend, ze lim p({z : |f,(x)—f(z)| > €}) = 0. Konvergencia

podla miery vyplyva z konvergencie skoro vSade.
8.3 Lebesguov integral

Definicia 24. Integril podla Lebesguovej miery nazyvame Lebesguovym integralom.

Takisto sa vSak zvykne Lebesguovym integralom nazyvat aj spdsob, ktorym sme definovali
integral na Tubovolnom priestore s mierou.

Veta 18. Ak je ohranicend funkcia f riemannovsky integrovatelnd na intervale {a,b), potom
je lebesquovsky integrovatelnd na (a,b) a Riemannov integrdl sa rovnd Lebesguovmu integrdlu.

Literattra tykajtca sa miery a integralu: [RN], [D], [MEM], [ND], [SSN], [Q], [FR].
Co mi to tu vzniklo?

Durikovié
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9 Metrické priestory

Metrické priestory, uplné a kompaktné priestory. Banachova veta o pevnom bode. Aplikdcie.
Tato kapitola je spracovand podla [SSN]. St tam aj nejaké veci, ktoré sme nebrali.

9.1 Metrické priestory

Definicia 1. Nech X je mnozina a d: X x X — R. Potom (X, d) sa nazyva metricky priestor
s metrikou d, ak:

(i) d(z,y) >0ad(z,y) =0cz=y
(i) d(z,y) = d(y,»)
(iii) d(z,z) < d(z,y) + d(y, z) (trojuholnikovi nerovnost)

Konvergencia postupnosti v metrickom priestore: lim z, = 2 < limd(x,,z) = 0.
n—oo

Gule v metrickom priestore tvoria bazu topoldgie. V tejto topoldgii sit uzavreté prave
mnoziny, ktoré obsahuji vsetky limity konvergentnych postupnosti svojich prvkov. Topoldgia
uréena metrikou je hausdorffovska. Kazdy bod ma spocitatelnti bazu okoli (priestor spliia
1. axiému spoéitatelnosti).

V Tubovolnom topologickom priestore z existencie spocitatelnej bazy vyplyva separabilita
priestoru. V metrickych priestoroch to plati aj naopak:

Tvrdenie 1. Ak metricky priestor (X, d) je separabilny, tak je aj priestorom so spocitatelnou
bdazou topoldgie.

9.2 Uplné metrické priestory

Definicia 2. Postupnost (z,,)22; prvkov metrického priestoru X je fundamentdlna, ak k
lubovolnému € > 0 existuje ng € N také, ze pre lubovolné m,n > ng plati d(z,, z,) < €.

Metricky priestor nazveme uplnym, ak kazda fundamentdlna postupnost prvkov priestoru
X konverguje v X.

Veta 1 (Cantorova veta). Nech (X,d) je metricky priestor. Potom X je 4plny prdve
vtedy, ked pre kaZdi merasticu postupnost neprdzdnych uzavretjch podmnoZin s vlastnostou

o0
diam A,, — 0 pre n — oo obsahuje (| A, prdve jeden bod.
n=1

Definicia 3. Podmnozina A topologického priestoru X sa nazyva mnoZina prvej Bairovej
o0
kategorie (v X), ak existuji také mnoziny A, C X (n € N) riedke v X, ze A = |J A,. Ak
n=1
mnozina A C X nie je prvej Bairovej kategdrie v X, tak sa nazjva mnozinou druhej Bairovej
kategorie.

Veta 2 (Bairova veta). Nech (X,d) je tuplny metricky priestor, X # 0. Potom X je
mnozina druhej Bairovej kategorie v X.
Veta 3 (Bairova veta o hustote). Nech (X, d) je uplnyg metricky priestor a nech X # 0.

nech X, C X (k € N) st riedke mnoZiny. Potom mnozina X \ |J X je hustd v X.
k=1

Definicia 4. Ziplnenie metrického priestoru X je taky tplny metricky priestor Y, Ze X je
podpriestor Y a X =Y (X je hustd podmnozina Y').
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Veta 4. KazZdy metricky priestor md zuplnenie, toto zuplnenie je jediné az na izometriu.

Tvrdenie 2. Nech X je uplny metricky priestor a’ Y C X je jeho podpriestor. Potom Y je
uplny metricky priestor < Y je uzavretd mnoZina v X.

9.3 Kompaktné metrické priestory

Definicia kompaktného topologického priestoru je v otazke ¢islo 11.

Definicia 5. Topologicky priestor sa nazyva sekvencidlne kompaktny, ak kazda postupnost
mé konvergentni podpostupnost.

Veta 5. Nech (X,d) je kompaktng metricky priestor. Potom st ekvivalentné tieto vyroky:
(i) (X,d) je kompaking,
(1) (X,d) je sekvencidlne kompaking,

(iii) (X,d) je uplngy a totdlne ohraniceny (totdlne ohraniceny znamend, Ze pre kaZdé € > 0
existuje konecénd e-siet),

(iv) Kazdd nekonecnd podmnoZzina priestoru (X, d) md hromadny bod. (V knihe [NS] tomu
hovoria, ze (X,d) md tzv. Bolzanovu-Weierstrassovu vlastnost.)

V [BS] sa definuje totalne ohraniceny priestor ako taky, ze z kazdej postupnosti sa dé
vybrat fundamentélna podpostupnost. Je to ekvivalentné s definiciou pomocou e-sieti.

Veta 6 (Cantorova veta). Nech (X,d) je metricky priestor. Nasledujice podmienky si
ekvivalentne:

(i) X je kompaktny.
(i1) Nech Fy, (k € N) si neprazdne uzavreté mnoZiny v X. Nech F1 D Fy D ... D F D

Fyi1D.... Potom () Fj #0.
k=1

(Ak sa nemglim, tak toto by malo platit pre topologické priestory vieobecne.)

V priestore spojitych funkcii na kompaktnej mnozine charakterizuje kompaktné podmno-
ziny Ascoliho lema. Je tu uveden4 najprv vo formulacii z [SSN] (v takomto zneni ju pouzival
Medved pri dokaze Peanovej vety) a vo verzii, ktort sme mali s Tereséakom.

Definicia 6. Nech F je mnozina funkcii f: A - Y, A C X. (X, Y - metrické priestory.) F
je rovnomocne spojitd, ak Ve > 030 > 0V, a2’ € AVf € Fd(z,2') <= f(a') <e.

Rovnomocna spojitost je teda nieco ako rovnomerné spojitost, pricom 0 nezévisi od f.

Veta 7 (Ascoliho lema). Nech A C X je kompakind podmnoZina, Y je uplnyg metricky
priestor a nech F' je mnoZina funkcii f: A —'Y spojityjich na A. Potom si nasledovné vijroky
st ekvivalentné.

(i) F je rovnomerne ohranicend a rovnomocne spojitd.
(i) Kazdd postupnost prvkov z F' obsahuje rovnomerne konvergentni podpostupnost.

Veta 8. Nech A je kompaking a Y dplny metricky priestor. F C C(A,Y) je kompaktnd <
F je uzavretd, pre kazdé x € A je {f(z): f € F} kompaktnd a F je rovnomocne spojitd.
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9.4 Banachova veta o pevnom bode

Uvazujme o funkcii f: A — A, A C X, X je metricky priestor.
Definicia 7. Bod z € A, pre ktory plati f(zo) = z¢, nazyvame pevngy bod funkcie f.

Definicia 8. Hovorime, 7e funkcia f: A — Y, A C X, spliia na mnozine A Lipschitzovu
podmienku, ak d(f(x1), f(22)) < Ld(x1,72). Ak funkcia f: A — A splita Lipschitzovu pod-
mienku s konstantou L takou, ze 0 < L < 1, nazyvame kontraktivnou alebo kontrakciou.

Veta 9 (Banachova veta o pevnom bode). Nech (X, d) je uplny metricky priestor. Nech
f: X — X je kontrakcia. Potom f md prdve jeden pevny bod. Tento pevny bod mozno ziskat
ako limitu postupnosti (2,)°2, = (f(2n-1))52,, kde x1 je lubovolny bod z X .

Navyse plati odhad d(xg,x,) < %d(d?g, x1), kde xo = nlggo T, je pevny bod f.

Aplikacie Banachovej vety o pevnom bode

Nevedel som celkom, ¢o by tu este mohlo byt okrem toho, ¢o robil Medved na difkach,
tak som sem odpisal nejaké veci z [SSN].

Hladanie korena

Ak f:{(a,b) > R, 0 < K71 < f'(z) < K3 na {(a,b), tak f ma v (a, b) koreti.
F(z) =2z —Af(x). F(z) =z < x je koreii f. Vhodnou volbou X\ dosiahneme kontraktivnost
zobrazenia F'.

Existencia rieSenia diferencialnej rovnice

Nech P = (z9,79 + a) x R, f: P — R je spojitd na P a spliia Lipschitzovu podmienku
vzhladom na y
|f(@,91) — f(z,92)] < Llys — ya,

L > 0. Potom zaciato¢né uloha

y/ = f(:s,y),y(xo) =Y

mé prave jedno rieSenie a toto rieSenie existuje na intervale J = (g, 2o + a).
1o je rieSenim uvedenej zaciatocnej tlohy prave vtedy, ked je pevnym bodom funkcionalu
T:C(J)— C(J)

(Ty)(z) = zo + / ’ F(t,y(t))dt.

Ak definujeme na C(J) normu vzfahom ||y|| = max,c;{|y(z)|.e 2%}, tak ziskame Bana-
chov priestor a 7" je na nom kontraktivny.

Poznamka pisatela paskvilu: Mohlo by sa mozno zdaft, Ze takymto pouzitim Banachovej
vety sme odvodili lepsi vysledok, ako na prednaske z ODR, kde sme vyslovili vetu, ktora
hovorila iba to, Ze existuje nejaky interval, na ktorom existuje rieSenie. V skutoc¢nosti dizka
intervalu v dokaze tejto vety zavisela iba od konStanty L a nie od bodu tg, teda aj pri
tomto dokaze vieme predlzif rieSenie na cely interval, na ktorom je funkcia lipschitzovska.
(Za predpokladu, Ze rieSenie ,nevybehne“ z oblasti D.)
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Existencia implicitnej funkcie

Veta 10 (Veta o implicitnej funkcii). Nech A = (xg,y0) € R*. Nech O(A) C R? je
kruhové okolie bodu A. Nech F(x,y) a %Z’y) = F,(z,y) st spojité redlne funkcie na O(A).
Nech dalej F(xo,y0) = 0 a Fy(xo,y0) # 0. Potom existuji také cisla &,n > 0, Ze rovnicou
F(z,y) =0 je na intervale J = (xg — &, xg + &) definovand jedind spojitd funkcia f: J — R,
se f(z0) = 90, F(z, f(2)) = 0 a |f(2) — yo| <1 pre kaidé z € J.

={g € C(J): g(x0) = yo,|9(x) — yo| < n pre kazdé x € J}
d(91792) max\gl(x) ga()|

d je metrika na B a (B, d) je Gplny metricky priestor
(Tg)(z) = g(z) — £F(z,9(x)), kde K je také, ze F, < K na oblasti D, D je také okolie, Ze
F,#0naD.

Zovseobecnenia Banachovej vety

Veta 11. Nech (X,d) je uplng metricky priestor a nech operdtor T: X — X je taky, Ze T™
pre nejake n € N je kontraktivny operator. Potom T md v X prave jeden pevny bod.

Veta 12. Nech X je Banachov priestor. Nech xo € X je dany prvok. Nech S: X — X je
linedrny ohraniceny operdtor a mech

ZHS”H < 0.
n=1
Potom operdtor
T(x) =z9+ S(z)

md prave jeden pevny bod.

Husté polievka je takd, ze kdekolvek naberiem,
bude nejaky rezanec.

Hustéa prednéska je taka, ze kamkolvek pozriem
je nejaké tvrdenie, ktorému nerozumiem.
Terescak - pri definicii hustej mnoziny

10 Banachov a Hilbertov priestor
Linedrny normovany priestor, Banachov priestor, Hilbertov priestor. Linedrne spojité operd-
tory a funkciondly. Veta o reprezentdcii linedrneho ohraniceného funkciondlu v Hilbertovom
priestore.

Linearny normovany priestor

Definicia 1. Linearny priestor X s funkciou [|-]|: X — R spliiajticou
() el >0, ol =0 & x =0,
(if) [IAz]] = [l

(i) [z +yll < [lz]l + ]l
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nazyvame linedrny normovany priestor.

Definicia 2 (Hamelova baza). Nech X je linedrny priestor. Potom linedrne nezavisli
mnozinu H C X nazyvame bdzou v X, ak [H] = X (linedrny obal H je celé X).

Veta 1. KaZdy netrividlny linedrny priestor md Hamelovu bdzu. Lubovolné dve bdzy maji
rovnaki kardinalitu. Kardinalita lubovolnej bazy sa nazgva dimenzia linedrneho priestoru.

Veta 2 (Hahn-Banach). Nech X je linedrny priestor, K uzavretd konvexnd mnoZina, Ag
je afinng podpriestor, nepretinajici K. Potom existuje nadrovina A obsahujica Ag nepreti-
najuca K.

Tvrdenie 1. Nech X je linedrny priestor al: X — R linedrny funkciondal. Potom nasledujice
podmienky su ekvivalentné.

(i) 1 je spojity,

(i) ¥r >0 3¢ > 0 |I(z)| < ¢ Vz € B(0,7),
(ii1) 3C >0 [l(z) = U(y)| < Cllz —yl|,

(iv) z, — 0= l(z,) — 0,

() T — x = U(z,) — I(z).

Tvrdenie 2. Nech X je linedrny normovany priestor. Potom ok Iy, Iy su spojité linedrne
funkciondly, tak aj l1 + lo a A1 st spojité linedrne funkciondly. Teda mmnoZina vsetkych li-
nedrnych spojitych funkciondlov na X oznacovand ako X* a mnazyvand dudl X je linedrny

priestor s normou ||I|| = sup |l(x)|. X* s touto normou je Banachov priestor.
z€B(0,1)

Veta 3 (Hahn-Banach). Nech X je linedrny normovany priestor, Y je jeho linedrny pod-
priestor a lp: Y — R linedrny a na 'Y spojity funkciondl s normou na'Y oznadenou ||lol|.
Potom existuje L € X* taky, Ze Lly =1y a ||L|| = |[lo]|-

Tvrdenie 3. Nech X je lineirny normovany priestor. Potom zobrazenie x: X x X* — R
definované ako x(v,1) = 1(v) je bilinedrne a plati |x(v,1)| < ||I|||v], pre l € X*, v € X. Dalej
zobrazenie i: X — X** definované ako i(v) := x(v,-) je linedrne injektivne a zachovdvajice
normu, t.j. |v| = ||i(v)||.

Tvrdenie 4. Nech X je linedrny normovany priestor a l je linedrny funkciondl na X. Potom
| je spojity prdve vtedy, ked 171(0) je uzavretd mnoZina. 0 # | je nespojity prave vtedy, ked
uzdver 171(0) je X.

Definicia 3. Nech X je linedrny normovany priestor. Potom hovorime, Ze postupnost z,,
konverguje slabo k x (a znalime x,, — x), ak pre kazdy | € X* plati I(z,,) — I(z) pre
m — oo. Hovorime, Ze postupnost konverguje silne, ak konverguje k = v norme.

Definicia 4. Nech X je linedrny normovany priestor a i: X — X** kanonické vloZenie. Ak
i je bijekcia, hovorime, ze X je reflexivny priestor.

X je reflexivny prave vtedy, ked z kazdej postupnosti ohrani¢enej v norme sa dé vybrat
slabo konvergentna podpostupnost. (Eberlejn-Smuljan)

Désledok 1. Nech X # {0} je linedrny priestor av € X. Potom ezistujel € X*; [(v) = ||v]|,
12l = 1.
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Tvrdenie 5 (Baire). Nech (M,d) je dplng metricky priestor a G;, i € N je systém otvore-
o0

nych a hustjych podmnoZin v M. Potom (| G; je husty v M.
i=1

1=

Veta 4 (Banach-Steinhaus - princip rovnomernej ohraniéenosti). Nech X, Y si
linedrne normované priestory a A, je postupnost A, € L(X,Y), n € N. Potom bud {z €
X: sup||Anzx| = oo} je prienik spocitatelného systému otvorengch a hustych podmmnoZin X
alebo ezistuje C > 0 také, Ze ||An|| < C pre vsetky n € N.

Tvrdenie 6. Nech X je Banachov priestor al, € X*, n € N. Ak {l,,(z);n € N} je ohrani-
cend pre vietky x € X, potom ezistuje C' > 0 také, Ze ||l,,|| < C Vn € N.

Tvrdenie 7. Nech A je linedrne zobrazenie z linearneho priestoru X do'Y , potom nasledovné
podmienky siu ekvivalentné

(i) A je spojité,
(ii) existuje B(zg,r0), na ktorej je A ohranicené,
(i5) 3C > 0: ||Az|| < C, z € B1(0),
(iv) 30> 0: | Az — Ayly < Cllz —llx,
(v) ©, — 0= Az, — 0,
(vi) T, — v = Az, — Az.

Tvrdenie 8. Nech X, Y su linedrne normované priestory a 'Y je Banachov priestor. Potom
L(X,Y) je Banachov priestor.

Tvrdenie 9 (von Neumann). Nech X je Banachov priestor. Potom ak A € L(X,X) a

|AllL(x,x) < 1, tak existuje inverzny operdtor B € L(X, X) k operatoru I—A a || B|| < 17ﬁA||'

Priklady Banachovych priestorov:
BC(X,R) - ohrani¢ené funkcie z X do R so suprémovou normou (ak X je kompakt, st to
vietky spojité funkcie)

1

Ly - llzl, = (Jy lz(®)Pdt)” (1< p < o)
Lo - ||z|lco = esssup{|z(t) : t € J|} = inf{B : |z(t)| < B skoro v8ade na intervale I'} (L je
mnozina tych funkeii, pre ktoré je mnozina vystupujica v definicii ||-||» neprazdna, a teda
existuje esencidlne suprémum.)
b - Nzl = (ol leil)7 (1< p < o0)
loo - ohraniené postupnosti, ||z|| . = sup{|z;|: i € N}
Holderove priestory, Sobolevove priestory

Porovnanie kone¢norozmernych a nekonecnorozmernych Banachovych priestorov:
V koneénorozmernych priestoroch st vSetky normy ekvivalentné. Jednotkova gula v X je
kompaktné prave vtedy, ked X je koneénorozmerny. Slabé a silné konvergencia st v koneé-
norozmere ekvivalentné.
Koneénorozmerny linedrny podpriestor linedrneho normovaného priestoru je vzdy uzavrety.

Hilbertov priestor

Definicia 5. Nech X je linedrny priestor. Potom zobrazeniu (-,-): X x X — R hovorime
skaldrny sucin na X, ak plati
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(1) (l’,l‘) =0s =0, ((E,lL‘) >0,
(i) (ax+ By, 2) = alz, 2) + B(y, 2),
(ili) (2,y) = (y, @)

a priestoru X so skaldrnym stéinom (-,-) hovorime predhilbertov priestor (priestor so skalar-
nym stéinom).

Definicia 6. Ak je linedrny normovany priestor s metrikou odvodenou od normy tplny met-
ricky priestor, tak ho nazyvame Banachovym priestorom. Ak priestor so skaldrnym sic¢inom
s metrikou odvodenou od skalarneho stcinu je uplny metricky priestor, tak hovorime, ze je
to Hilbertov priestor.

Tvrdenie 10. Nech X je predhilbertov priestor. Potom +/(x,x) je norma na X.
Tvrdenie 11. Nech X je predhilbertov priestor. Potom |(z,y)| < ||z].||y| pre z,y € X.
Tvrdenie 12. Nech X je predhilbertov priestor. Potom ||z + y| < ||z| + |yl

Predchadzajtce tvrdenie hovori, Ze norma odvodend od skaldrneho stcinu splia trojuhol-
nikovl nerovnost, teda Ze je skutoéne normou.

Definicia 7. Nech X je predhilbertov priestor. Potom piSeme = Ly, ak (z,y) =0.Pre M C X
piSeme x 1 M, ak plati x Ly pre vSetky y € M.

Tvrdenie 13 (RovnobeZnikové pravidlo). Nech X je predhilbertov priestor. Potom plati
2 +ylI? + llz =yl = 2([l<]1? + llylI*)-

Tvrdenie 14. Nech X je Hilbertov priestor, v € X a K je konvexnd a uzavretd podmnozina
X. Potom existuje jeding xo € K taky, Ze |z — x| = dist(z, K).

Tvrdenie 15. Nech X je Hilbertov priestor, Y je afinny uzavrety podpriestor a x € X.
Potom ezistuje y € Y taky, Ze ||y — x| = dist(z,Y) a plati (x —y)L(y —Y)

Tvrdenie 16. Nech X je Hilbertov priestor, Y uzavrety linearny podpriestor. Potom existuji
linedrne zobrazenia P,Q € L(X,X) také, Ze:

(i) P(X)=Y, Q(X)=Y"+,
(ii) x> = |Pz]? +|Qx|?,
(iii) P2 =P, Q2 = Q.

Veta 5 (Rieszova veta o reprezentacii). Nech X je Hilbertov priestor. Potom pre kaZdy
l € X* existuje jediné y € X také, Ze l(x) = (y,x) pre vietky v € X.

Daésledok 2. Hilbertov priestor je reflexivny.

Definicia 8. Nech X je predhilbertov priestor. Potom systém vektorov {uy, A € A} (A # 0)
nazyvame ortogondlny, ak (ux,,ur,) = 0 pre vSetky A\; # Ao € A. Ortogondlny systém
{ux, X € A} nazgvame ortonormdlny, ak navyse |luy|| = 1 pre vietky A € A.

Tvrdenie 17. Nech X je Hilbertov priestor (predhilbertov priestor) a {us,...,u,} je orto-

n
normdlny systém v X. Potom plati ||x||* > > (z,u;)?.
i=1
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Definicia 9. Nech ¢y, A € A st nezdporné. > ¢y = sup Y. cy.
AEA JCA XeJ

J<oo
Tvrdenie 18 (Besselova nerovnost). Nech X je predhilbertov priestor a {ux, A € A} je
ortonormdlny systém v X. Potom ||z]|®> > Y (z,uy)?
AEA

Veta 6 (Riesz-Fischer). Nech X je Hilbertov priestor, {u;;i € I} je ortonormdlny systém
v X a{c; € R;i € I} je mnoZina redlnych ¢isel. Ak >.._,c? < oo, potom ezistuje v € X

el ~1
taky, Ze (x,u;) = ¢; pre vietky i € I.

Definicia 10. Nech X je predhilbertov priestor a {u;;i € I} ortonormalny (ortogonélny)
systém. Hovorime, Ze tento systém je uplng (plny ortonormalny (ortogonalny) systém), ak
je maximéalny (tzn. neexistuje u # 0 taky, ze ulu, pre vietky ¢ € I).

Tvrdenie 19. Nech X je Hilbertov priestor a {u;;i € I} je ortonormdlny systém. Potom
nasledujice podmienky siu ekvivalentné:

(i) {ui;i € I} je dplny,
(ii) linedrny obal {u;;i € I} je husty v X,

(iii) Vo € X ||=l* = 3 (2, ui)?,
iel
(ZU) Vm,y €X (x,y) = Z(xauz)(yaul)
=
Definicia 11. Ortonormaélny systém v Hilbertovom priestore sa nazyva ortonormdlna bdza
priestoru, ak je uplny.

Tvrdenie 20. Nech X # 0 je Hilbertov priestor. Potom existuje ortonormdlna bdza (teda
dplng ortonormdlny systém) tohto priestoru.

Priklady Hilbertovych priestorov: Sobolevov priestor W3, La({(a,b)), la.
Par poznamok

Rovnobeznikové pravidlo mozno obratit v tom zmysle, Ze ak ho nejaka norma splia, tak
je odvodend od skalarneho st¢inu. Ak chceme ukdzat, Ze nejakd norma nie je odvodend od
skalarneho st¢inu, méze pomdct toto kritérium ([SSN, tloha 8.1.1]):

Tvrdenie 21. V priestore so skaldrnym sicinom plati |z + y|| = ||z]| + ||y]| = = = ay.

Ak u,,n € N je spocitatelnd ortonormdlna béza, tak pre kazdé = € X plati z =
(o ]

> (2, up)un. (Linedrny obal je husty v X, preto v fiom existuje postupnost konvergujica k
n=0
prvku z. Potom sa d& vyuZitf veta 25 z otézky 4.)

Kazdy nekoneénorozmerny separabilny redlny Hilbertov priestor je izomorfny s ly. (V X
existuje spocitatelnd ortonormalna baza. z — ((x,u;));cn. Na surjektivnost staéi overit, ze
pre a € ls > a;u; konverguje, ¢o vyplyva z Gplnosti.) Dokonca plati, ze Hilbertov priestor je
jednoznacéne uréeny kardinalitou svojej ortonormalnej bazy (pozri [TAY]).

Situacia je velice, velice jednoducha.
Terescak
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11 Topologické priestory

Topologické priestory. Otvoren€ a uzavreté mmnoziny, okolia, husté mnoZiny a pod. Spojité
zobrazenia, homeomorfné zobrazenia, otvorené a uzavreté zobrazenia. Spojity obraz kompakt-
nych a suvislych mnoZin.

Definicia 1. Systém podmnozin mnoziny X 7 C P(X) sa nazyva topoldgia na X, ak
(i) 0,X €T,

(i) A, €eTpreicl = JA €T,
el

(ii) A,BeT = ANBeT.
Dvojicu (X, 7) nazyvame topologicky priestor ak T je topoldgia na X.

Priklady topologickych priestorov:

(X,{0,X}) - indiskrétny topologicky priestor

(X, P(X)) - diskrétny topologicky priestor

(X,7),kde T ={U C X : X \ U je kone¢na} - kofinitna topoldgia
Kazdy metricky priestor urcuje topoldgiu.

Definicia 2. Mnoziny patriace do 7 nazyvame otvorené a ich doplnky uzavreté mnoziny.
Tvrdenie 1.

(i) 0 a X st uzavreté,

(1) prienik lubovolného systému uzavretych mnoZin je uzavretd mnoZina,
(#ii) zjednotenie koneéného podtu uzavretgch mnozin je uzavretd mnoZina.

Definicia 3. Nech X je topologicky priestor, A C X. A =N{F : AC F, F je uzavretd v X}
sa nazyva uzdver mnoziny A v X.

Tvrdenie 2.

(i) A je uzavretd & A = A,

(i) O =0,
(iii) AC A,
(iv) A=A,

(v) AUB=AUB.

Definicia 4. Ak (X,T) je topologicky priestor a Y C X, tak 7" = {GNY : G € T} je
topoldgia na Y a nazyva sa relativnou topoldgiou indukovanou na Y topolégiou 7. (Y, 77)
sa nazyva topologicky podpriestor priestoru X.

Definicia 5. Nech X je topologicky priestor a x € V' C X. V sa nazyva okolie bodu z, ak
existuje otvorend mnozina U taka, ze x € U C V.

Veta 1. z € A < kaZdé okolie bodu x md neprdzdny prienik s A (pretina mnoZinu A).
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11.1 Typy bodov a mnoZin v topologickych priestoroch

Definicia 6. Bod p topologického priestoru X sa nazyva izolovany bod priestoru X, ak
mnozina {p} je otvorend v X. Bod p € A C X je izolovany bod mnoziny A, ak je izolovany
v topologickom podpriestore A priestoru X.

Definicia 7. Bod p € X je hromadny bod mnoziny A C X, ak lubovolné okolie bodu p
obsahuje bod mnoziny A rézny od p. MnozZina vSetkych hromadnych bodov mnoZiny A sa
oznacuje D(A) a nazyva sa derivdcia mnoZiny A.

Tvrdenie 3. Nech X je topologicky priestor a A C X. Potom plati:
(i) A= AU D(A),

(i) mnoZina A je uzavretd prdive vtedy, ked D(A) C A (A obsahuje vietky svoje hromadné
body.)

Definicia 8. Nech (X, 7) je topologicky priestor, A C X. Potom mnozina Int A = U{G: G C

A,G € T} sa nazyva vniitro mnoziny A a mnozina H(A) = AN (X \ A) hranica mnoziny A.
Prvky mnoziny Int A nazyvame vnitorné body a prvky mnoziny H(A) nazyvame hranicné
body mnoziny A.

Tvrdenie 4. (i) A je otvorend < A =1Int A,
(1)) ACInt AUH(A),
(iii) ak A je uzavreté, tak A =Int AU H(A).
(i) mtA=X\X\A
(v) A=Tnt AU H(A)
Definicia 9. Mnozina A C X sa nazjva hustd (v X), ak A = X.

Tvrdenie 5. MnoZina A C X je hustd v X prdve vtedy, ked kazdd neprdzdna mnoZina G
otvorend v X md neprdzdny prienik s mnozinou A.

Definicia 10. Mnozina A C X sa nazyva perfekind, ak A = D(A).
Veta 2. MnoZina A C X je perfektnd prdve vtedy, ked A je uzavretd a nemd izolované body.
Definicia 11. Mnozina A C X sa nazyva riedka (v priestore X), ak Int A = ().

Veta 3. MnoZina A C X je riedka v X prdve vtedy, ked kazdd neprdzdna mnozina G C X
obsahuje taki neprdzdnu otvoreni podmmnozinu H C G, 2e HN A = (.

11.2 Baza topoldgie, baza okoli

Definicia 12. Nech (X,7T) je topologicky priestor. Systém mnozin B C 7 sa nazyva bdza
topologie T, ak kazda mnozina z 7 je zjednotenim mnozin z B.

Tvrdenie 6. Nutnd a postacujica podmienka na to, aby B C P(X) bola bdza nejakej topo-
logie na X su:

(i) U A=X,

AeB
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(i) ak A,B € B a p € AN B, tak ezistuje takd mnozina V€ B, Z2ep e V C AN B.

Definicia 13. Topologicky priestor (X,7) sa nazyva priestor so spocitatelnou bdzou, ak
existuje spocitatelna baza B pre topolégiu 7. Hovorime potom, ze X splia druhi azidmu
spocitatelnosti.

Definicia 14. Topologicky priestor X sa nazyva separabilng, ak v X existuje hustd spoci-
tateln4 podmnozina.

Tvrdenie 7. Ak X je priestor so spocitatelnou bdzou, tak X je separabilny.
Pre metrické priestory plati aj obratenad implikacia.

Definicia 15. Hovorime, Ze systém S C 7 je subbdza topoldgie T, ak systém pozostavajici
zo vSetkych koneénych prienikov mnozin z S tvori bazu topolégie 7.

Definicia 16. Nech X je topologicky priestor a p € X. Mnozina B okoli bodu p sa nazyva
bdza okoli bodu p, ak p € B pre vSetky B € B a pre kazdé okolie V' bodu p existuje mnozina
B € B taka, ze BC V.

Definicia 17. Ak (X;,7;), i € I sa topologické priestory, tak (][ X;,7), kde 7 je urcend
subbazou S = {p; }(U;): U; € T4,i € I} (p; oznacujeme projekcie z kartezidnskeho stcinu
[1X: na mnozinu X;) sa nazyva topologicky sicin topologickych priestorov (X;,7;), i € I.
(Teda béza topoldgie topologického stéinu obsahuje mnoziny tvaru [[,.; Vi, pricom V; € T;
pre vietky i € I a V = X, pre v8etky i € I aZ na koneény pocet.)

iel

11.3 Zobrazenia topologickych priestorov

Definicia 18. Nech (X,7) a (Y,S) su topologické priestory a f: X — Y je zobrazenie.
Hovorime, ze f je

(i) spojité, ak pre kazd otvorenti mnozinu U C Y je jej vzor f~1(U) otvorend v X,
(ii) homeomorfizmus, ak f je bijekcia a f aj f~! st spojité,
(i) wzavreté, ak obraz kazdej uzavretej mnoziny je uzavreta,
(iv) otvorené , ak obraz kazdej otvorenej mnoziny je otvorena.

Tvrdenie 8. Nech X a Y su topologické priestory, f: X — Y je zobrazenie. Nasledujice
podmienky su ekvivalentné:

(i) f je spojite,
(i1) vzor kaZdej uzavretej mnoZiny v zobrazeni f je uzavretd mnoZina,

(iii) pre kaZdi podmnozinu A C X plati f(A) C f(A).

Tvrdenie 9. Ak X a'Y si topologické priestory a f: X — Y je bijekcia, tak si ekvivalentné
podmienky:

(i) f je homeomorfizmus,
(ii) f je spojité a otvorené,

(iii) f je spojité a uzavreté.
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11.4 Suvisly topologicky priestor

Definicia 19. Topologicky priestor X sa nazyva suvisly, ak nie je zjednotenim svojich dvoch
neprazdnych uzavretych disjunktnych podmnozin.

Veta 4. Ak f: (X, T) — (Y,S) je spojité, surjektivne a (X,T) je suvisly, tak aj (Y,S) je
suwvisly. (Spojity obraz stvislého topologického priestoru je suvisly.)

11.5 Kompaktny topologicky priestor

Definicia 20. Topologicky priestor X sa nazyva kompaktny, ak kazdé jeho otvorené pokrytie
obsahuje konecné podpokrytie.

Definicia 21. Hovorime, Ze systém mnozin je centrovany, ak kazdy jeho kone¢ny podsystém
ma neprazdny prienik.

Tvrdenie 10. Topologicky priestor X je kompaktny prdve vtedy, ked kaZdy centrovany sys-
tém uzavretych mnoZin md neprazdny prienik.

Tvrdenie 11. Uzavretd podmnoZina kompakiného topologického priestoru je kompaktnd.
Tvrdenie 12. Kompakiny podpriestor hausdorffovského priestoru je uzavrety.
Veta 5. Spojity obraz kompaktného topologického priestoru je kompaktny.
Veta 6 (Tichonovova). Ak X, v € T' su kompaktné topologické priestory, tak ich topolo-
gicky sucin [[ X, je kompaktnyg.
~el’
Ked ¢lovek nemd,
hlada, ¢o je na zemi.
Medved - hladajuci kriedu

12 Linearne diferencialne rovnice a ich systémy

Linedrna diferencidlna rovnica n-tého rddu a linedrne diferencidlne systémy. Struktira mno-
Zin rieSent, rovnice a systémy s konstantnymi koeficientams.

12.1 Linearne diferencidlne rovnice prvého radu

Definicia 1. Nech D C R x R" je oblast a f: D — R"™. Obycajnd diferencidlna rovnica

I.rddu v D je rovnica tvaru fi—f = f(t,z). Ak z = (z1,...,2n) & f = (f1,-.., [n), tak je
ekvivalentna systému rovnic dd””ti = fi(t,x).

Nech zobrazenie f: D — R" je spojité. Riesenie diferencidinej rovnice ‘fl—f = p(t)z na
intervale I C R je také spojité diferencovatelné zobrazenie p: I — R", Ze

() (t,0(t)) e DVt e,
(i) 228 = f(t, (1))

Linearna homogénna diferencidlna rovnica 1.rddu je rovnica tvaru

C(Zi—f = p(t)z, (12.1)

p: (a,b) — R je spojita funkcia, a,b € RT.
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Veta 1. Pre kazdé tg € (a,b) a kaZdé o € R md zaciatocnd dloha

o = b0e
a7 (12.2)
J}(t()) = X
prdve jedno riesenie x: (a,b) — R
x(t) = elto p()ds 4. (12.3)
Kazdé rieSenie x(t) rovnice (12.1) md tvar
w(t) = el (12.4)
kde C € R je konstanta.
Linearna nehomogénna diferenciilna rovnica 1.rddu v R je rovnica tvaru
dz
& pleye + 1(0), (125)
kde p, f: (a,b) — R st spojité funkcia a f(¢) # 0.
Veta 2. Pre kazdé tg € (a,b) a kaZdé o9 € R md zaciatoénd dloha
dz
— =p(t t
o = Ptz + f(2) (12.6)
x(to) = X0
prdve jedno rieSenie
t t t T
2(t) = woelto PO 4 oJig PO / e IO f(7)ar. (12.7)
to

KaZdé riesenie x(t) diferencidlnej rovnice (12.5) md tvar z(t) = xp(t) + 2,(t), kde x,(t) =
efto P()s f:o e o p(s)dsf(r)dT je tzv. partikuldrne riesenie diferencidlnej rovnice (12.6) a

t
s)ds . v PRI . . g .. . .
zp(t) = Celio P je vseobecné riesenie homogénnej diferencidlnej rovnice.

Bernoulliho rovnica je rovnica tvaru ' = p(t)x + f(¢)a™, ktort rieSime prevedenim do
tvaru ="z’ — p(t)z'~" = f(t) a substittciou y = 1",

12.2 Linearne diferencidlne systémy
¢ize linearne diferencidlne rovnice v R". Najprv nie¢o o homogénnych

i=A(t)x (12.8)
Veta 3. Mnozina rieSent (12.8) tvori n-rozmerny vektorovy priestor nad R.

Definicia 2. Kazd4 mnozina @1, .. ., ¢, linedrne nezavislych rieSeni (12.8) sa nazyva funda-
mentdalny systém rieSeni. ®(t) = (¢1(¢)...¢n(t)) sa nazyva fundamentilna matica systému
(12.8) (riesenia ¢, ..., @, tvoria jej stipce). Ak ®(0) = I,,, potom ®(t) sa nazyva normdlna
fundamentdlna matica.
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Lema 1. &(t) = A(t)®(t) Vt € I, ¢iZe fundamentdlna matica je maticové riesenie (12.8).

Veta 4. Maticové rieSenie ®(t) rovnice (12.8) je fundamentdina matica tejto rovnice <
det ®(t) #0 Vt € I.

Definicia 3. R(t,s) = ®(t)®(s)~! je rezolventa (12.8).
Veta 5. Zaciatocnd uloha

z(t) = A(t)x(t) (12.9)
.%‘(t()) = X0
ma riesenie tvaru x(t) = R(t,t0)xo.
Nehomogénny linedrny systém: & = A(t)x + f(t).

Veta 6. Ak ®(t) je fundamentdlna matica homogénnej diferencidlnej rovnice & = A(t)z,
potom x(t) = R(t,to)xo + ftf) R(t,s)f(s)ds je rieSenie zaciatocnej dlohy & = A(t)x + f(1),
x(to) = 9.

Doékaz. Metédou varidcie konstant, t.j. rieSenie hladdme v tvare z(t) = ®(t)c(t).
@(t) = D(t)e(t) + B(t)é(t) = A(t)D(t)e(t) + D(t)é(t)

A(t)z(t) + f(t) = A()@(t)e(t) + f(2)

(1) = BH)e(t) = DK + D(t) / ®(s) f(s)ds

to

K uréime z rovnosti 7o = z(tg) = ®(tg) K = K = & 1(¢y)zo.

2(t) = B(1)D (to)zo + / B(1) D1 (s)  (5)ds

to

x(t) = R(t,t0)xo Jr/t R(t,s)f(s)ds

O

Lema 2 (Liouvilleova formula). Ak ®(t) je maticové rieSenie diferencidlnej rovnice & =
A(t)x, potom pre kazdé to € R plati det (t) = det @(tg).ef’b Tr A(s)ds

Déosledok 1. Ak det ®(tg) # 0 pre nejaké tg € R, tak det ®(¢) # 0 pre vsetky t € R.
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12.3 Linearne diferencialne rovnice n-tého radu

Oznacme

d"u a1ty

du

L, u = ao(t) o

kde ag, ..., an, f: R — R st spojité.
Linedrnou diferencidlnou rovnicou n-tého rddu nazyvame rovnicu

Lyu=f. (12.11)

Ak f(t) =0, tak je to homogénna diferencidlna rovnica n-tého radu.

Ak f(t) £ 0, je to nehomogénna diferencidlna rovnica n-tého radu.

Ak ag(7) = 0 pre nejaké 7 € R, je to singuldrna diferencidlna rovnica n-tého radu.

Ak ag(t) # 0, tak je to reguldrna diferencidlna rovnica n-tého radu.

My sa budeme zaoberat len reguldrnymi. V tom pripade je mozné predpokladat, ze ao(t) =
1 (rovnicu mozeme predelit).

Pomocou substiticii v = xq,u’ = za,...,u™ Y = z, ju mdZeme previest na systém
diferencialnych rovnic prvého radu.
Ak 1, ..., @, s rieSenia homogénnej rovnice, tak
©1(t) o on(t)
W(e1,...,0n) =det .
-1 —1
AT el
je wronskidn (Wronského determinant) rieSeni @1, ..., @p,.
Veta 7. Riesenia ¢1,...,9, homogénnej diferencidlnej rovnice Ly u = 0 s linedrne nezd-

vislé prave vtedy, ked W (p1,...,pr) # 0 pre vietky t € R.

Definicia 4. Mnozina linedrne nezavislych rieseni ¢4, . .., ¢, diferencidlnej rovnice L, u = 0
sa nazyva fundamentdlny systém rieSeni tejto diferencidlnej rovnice.

Veta 8. Ak ¢1,...,0, je fundamentdlny systém rieseni diferencidlnej rovnice Lyu = 0,
potom kaZdé jej rieSenie p(t) md tvar p(t) = c1p1(t) + ...+ crpn(t), kde c1,...,cn € R.

Veta 9. Nech p1,...,p, je fundamentdlny systém rieseni homogénnej diferencidlnej rovnice
Lou = u™ + a;(H)u D + ... + a,(t) = 0. Potom rieienie 1(t) Cauchyho tulohy Lyu =
f),u1(to) = ug, ..., u"D(tg) = u,_1 md tvar

n

i Wk(@lv . 'v@n)(s)

P(t) = Yp(t) + wr(t f(s)ds,

(t) = ¢n(t) kZ:l k(1) . Wen, . on)) (s)

kde 1p(t) je riesenim homogénnej zaciatoénej Cauchyho dlohy a
e1(s) - @e-1(s) 0 grgals) oo on(s)
e1(s) o eoals) 0 wha(s) o @(s)

Wi(o1,...,pn) = det : : :
n—1 n—1 n—1 n—1
O B e O I W el O BTN A ©)
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12.4 Metdda variacie konstant

Loy =i+ a1(t)y + az(t)y = f(t)

y(to) = yo,9(to) = 1 (12.12)

Nech 1(t), x2(t) je fundamentdlny systém rieSseni homogénnej diferencidlnej rovnice
Loy = 0. Hladdme rieSenie (12.12) v tvare
y(t) = c1(t)z1(t) + ca(t)z2(?)
Dostaneme §(t) = é121 + Coxa + 141 +Coie. Zvolime é121 4 é229 = 0 a méme § = ¢141 + caidia,
i = Cc1@1 + coZa + €181 + éad2. Vyuzitim toho, Ze x1, xo s rieSenia homogénnej rovnice

dostaneme Loy = ¢1x1 + éoxy = f. Ststavu

é1(t)xa(t) + c2(t)z2(t) =0
¢ () a1 (t) + éa(t)ao2(t) = f(2)

mozeme riesit Cramerovym pravidlom, a dostaneme

() =

; e 0 xg(t)
W (z1,22)(t) det (f(t) x'z(t))

y(t) = cr(t)za(t) + c2(t)z2(t) =
crz1(t) + anza(t) + () [ TAELTIE) oy /t Walwn,22)(8) (g

Ak n > 2, postup je analogicky:

e (O21(t) + o+ En(t)za(t) =0

aOzTEE) + . en(DT
GOz HE) + . F en(D)T

ne
n
ne
n
12.5 Linearne diferencialne rovnice n-tého radu s konstantnymi koeficientami

Homogénna diferencidlna rovnica rddu n s konStantnymi koeficientami je rovnica tvaru

Lou=u"™ 4+au™V +. . +a, 1¢ +au=0 (12.13)
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Definicia 5. Polyném P(\) = A" + \*~! + ... + a,_1\ + a, sa nazyva charakteristickj
polynom diferencidlnej rovnice (12.13).

Lema 3. L,(eMu(t)) = M | P(M\)v(t) + %v(l)(t) +.+ P(n—)!(’\)v(")(t)

n

Veta 10. Ak A1, Ao, ..., s sd navzdjom rozne korene charakteristického polyndmu P(\) =
AT+ AL 4+ an 1\ + ay diferencidlnej rovnice (12.18) a ndsobnost koreria \; je my,
potom fundamentdlny systém rieSeni (vo vSeobecnosti kompleznich) diferencidlnej rovnice
(12.13) je eMt tert . tmaTleMt Qrat qerat | gme—ledat gy oAst geslt o gms—leAst,

12.6 Systémy linearnych diferencialnych rovnic s konsStantnymi koeficientami

Veta 11. Nech Aq,..., A, st viastné ¢isla matice A (vo vSeobecnosti komplezné) a v1,...,Yn
st im zodpovedajice vlastné vektory, pricom predpokladame, Ze su linedrne nezdvislé. Potom
eMtyy, ... ety st linedrne nezdvislé riesenia diferencidlnej rovnice @ = Ax (Cize tvoria
fundamentdlny systém).

Veta 12. Nech A = 0 +iw, w # 0 je komplexny k-ndsobny koren charakteristickej rovnice
P(X\) = det(A — A) = 0, pricom k nemu existuje k linedrne nezdvislyjch vlastngch vektorov
& = g1+ih, ..., & = gp+ihg. Potom mnoZina vietkijch riedeni tvaru (a cos wt+bsinwt)e®,
a,b € R" tvori 2k-rozmerny vektorovy priestor Vay, (podpriestor mnoZiny vsetkych riesent).
Jeho bdzu tvoria riesenia:

u1 (t) = [g1 coswt — hy sinwt]e””

ug(t) = [gr coswt — hy, sin wt]e”"

v1(t) = [hy coswt + gy sinwt]e”"

v (t) = [hi coswt + gy, sin wt]e

Retazec zovseobecnenych vlastnych vektorov prislichajicich k vlastnému ¢&islu A matice A
rozumieme vy, vs, . . . , U, ak spliaji (A —A)vy = 0, (A—A)vy = vy, ..., (A= X)vg = v_1.

Veta 13. Nech vy, v, ..., v, je retazec zovSeobecnengjch vlastnijch vektorov matice A prisli-
chajici vlastnej hodnote A. Potom

y1(t) = vie
Y2 (t) = (’UQ -+ vlt)e)‘t

_ 1 1 m—1 At
ym(t) = ('Um + ﬁ’l}mflt + ...+ m@lt ) (&

st linedrne nezdvislé rieSenia diferencidlnej rovnice & = Az (nad C).

Matematika je hra. Ak sa hrate, robite dobre. Ak sa trapite, nema to zmysel.
Medved
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13 Picardova existencéna veta

Picardova existenénd veta.

&= f(t,x)
x(to) = X0

Veta 1 (o existencii a jednoznaé¢nosti). Nech D C RxR" je oblast, f: D — R", (t,z) —
f(t,x) je spojité zobrazenie spliiajice Lipschitzovu podmienku vzhladom na premenni x (t.j.
existuje L > 0 také, Ze ||f(t,z1) — f(t,22)|| < Ll|xy — x2||, ||| je euklidovskd norma). Potom
pre kaZdé (to, o) € D existuje otvoreny interval I C R taky, Ze to € I a na I existuje prave
jedno riesenie ulohy (13.1).

(13.1)

Tvrdenie 1. Funkcia = je riesenim (13.1) prdve vtedy, ked x splia rovnicu

t) =z + /t F(t,z(t))dt (13.2)

Na prednaske sa robilo viac dokazov vety 1, jeden na zaklade Banachovej vety o pevnom
bode, druhy pomocou Picardovych aproximécii:

Il(t) =X
t (13.3)

Tnp1(t) =zo+ | f(s,2,(8))ds

to
Postupnost Picardovych aproximécii je vlastne postupnost, ktord vystupuje v dokaze Bana-
chovej vety o pevnom bode, ktora konverguje k pevnému bodu. V nasom pripade to znamena,
7e tato postupnost rovnomerne konverguje k rieSeniu diferencialnej rovnice (13.1). Treti dokaz
bol pomocou Eulerovych polygénov, ktoré sa potom vyuzili aj v dokaze Peanovej vety.

Definicia 1. Nech f: D — R" je spojité zobrazenie a € > 0. Spojité zobrazenie x: [ — R"
(I C R jeinterval) sa nazyva e-priblizné rieSenie diferencidlnej rovnice © = f(¢, x) na intervale
I ak

(i) (¢t,z(t)) € D pre vSetky ¢ € I,

(ii) existuje koneénd mnozina S C I takd, Ze x je spojito diferencovatelnd na I\ S a pre

dzgt), tlin dztt), (teda dm t) je po Castiach spojitd na I,)

kazdé s € S existuju lim+
t—s

(iii) ||dx(t) f(t,z(t)] < e pre vietky t € T\ S.

Lema 1 (Gronwallova). Nech 3: (ty,00) — R, ¢: (tg,00) — R st spojité nezdporné
funkcie a o > 0 je konstanta. Nech

0§a+[6@w®@

o(t) < aelts OIS

pre vsetky t > tg. Potom

Lema 2. Nech G = (tg —a,to+a) x {x € R"|||lz — x| < b} a f: G — R" je spojité
zobrazenie. Potom pre kaZdé ¢ > 0 existuje e-priblizné rieSenie x(t) diferencidlnej rovnice

(13.1) na intervale I, = (to,to + ), kde a = min(a, %), M = (tn;?é(GHf(t,x)H.
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e-priblizné riesenia z predchadzajicej lemy sa konstruuji ako Eulerove polygdny, teda po
Castiach linearne funkcie, ktorych smernica v ,bodoch zlomu“ sa zvoli prave f(t,z). Ukaze
sa pomocou rovnomernej konvergencie f, Ze ak zvolime deliace body dostato¢ne husto, do-
staneme e-priblizné rieSenie.

Lema 3. Nech @1 je e1-priblizné riesenie a o je eo-priblizné riesenie rovnice (13.1) na
intervale I, = (to,to + ) také, Ze ||p1(to) — @2(to)|| <6, § > 0 a nech f je lipschitzovskd s
konstantou L. Potom ||p1(t) — p2(t)|| < (0 + ea)e*E pret € I,. (e =1 +¢e2)

Veta 2 (Peanova veta o existencii). Nech D C R x R" je oblast a f: D — R", (t,z) —
f(t,x) je spojité zobrazenie. Potom pre kaZdy bod (to,xo) € D existuje otvoreny interval
I CR, kde tg € I, na ktorom je definované riesenie p: I — R" zacdiatocnej ulohy (15.1).

Téato veta sa dokazovala tak, Ze pre Eulerove polygdny (resp. pre postupnost e-pribliznych
rieSeni) sa overila rovnomocnd spojitost a rovnomerné ohranic¢enost a z Arzeli-Ascoliho lemy
potom vyplynulo, Ze sa d& vybrat (v C'(I,R")) konvergentnd podpostupnost.

Veta 3 (o predlZitelnosti na interval I = (—o00,0)). Nech f: R x R" — R" je spojité
zobrazenie spliiajice podmienku

£t 2)| < w(llz]]) V(t,2) € R xR,
kde w: (0,00) — je spojitd, w(u) > 0 pre u > 0, pricom

. " ds
lim —— =400, 1r9>0.
=00 Jy, w(s)
Potom pre kaZdé (tg,z9) € R x R" existuje riefenie p: (—oo,00) — R"™ zadiatoénej dlohy
(13.1).

Clovek nem4 skusat vsetko, ¢o prednasa
a nemal by prednasat vsetko, ¢o vie.
Medved

14 Klasifikacia linearnych parcialnych diferencialnych rovnic

Klasifikdcia linedrnych parcidlnych diferencidlnych rovnic 2. rddu.

Definicia 1. Pod parcidlnou diferencidlnou rovnicou rozumieme funkcionalnu rovnicu, v kto-
rej vystupuje nezndma funkcia u: 2 C R™ — R a ktord mé vo vSeobecnosti tvar

F(zy,...,2n,u, D10550) g, (0,0, )g, D%u) = 0.

Riegenie je funkcia, ktora ma spojité derivacie, ktoré v rovnici vystupuja, a splia tito rovnicu.
Rad parcialnej diferencidlnej rovnice je maximélna dlzka multiindexu.

Druhy podmienok:
zadiato¢né (Cauchyho)
okrajové - modze byt zadany predpis pre funkciu (Dirichletove) alebo jej derivaciu v smere
normély (Neumannove) na okraji danej oblasti, pripadne ich kombin4cia.

Z rovnic prvého rddu sme sa zaoberali linedrnymi (> a;(z)u;(x) + b(x)u(z) = f(z)) a
kvazilinedrnymi (3 a;(z, u(z))u;(z) = b(x, u(x))).

Homogénne linearne parcidlne diferenciélne rovnice 1.radu ) fi (x)aa—;i = 0 (fx st spojité
a nie st v Ziadnom z € 2 sucasne nulové) sme riesili pomocou charakteristického systému

% = fr(x1,...,2,). RieSenia charakteristického systému sa nazyvaju charakteristiky.
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Veta 1. ¥ € CY(Q,R) je riesenie Y. fr(z )% =0 < ¥ je konstantné na kazZdej charakte-
ristike.

Vsetky rieSenia moZzeme ziskat pomocou fundamentalneho systému rieseni ¥q,..., ¥, 1,
ktoré st nezavislé. Ak mame jedno rieSenie, toto rieSenie je vhodné ako substitiicia na zniZenie
poctu premennych.

Aj kvézilinedrne rovnice sa rieSia pomocou charakteristik.

ou
ka T1y-vyTns )&rk g(x1, ... T, ) (14.1)

K uvedenej kvazilinarnej rovnici priradime linedrnu rovnicu

ka (x,u) + g(z, u)% =0 (14.2)

Charakteristicky systém kvézilinedrnej rovnice (14.1) je charakteristicky systém (14.2)
ako linedrnej homogénnej parcialnej diferencidlnej rovnice.

Veta 2. Nech fi,g € C(2 x R,R), x € CY(Q,R). Nech ¥(z,u) € C*(Q x R,R) je riesenie
linedrnej rovnice (14.2). Nech

(i) V¥ C Q3 e Q : TL(E, x(€)) # 0 (v kaZdej podoblasti),

(ii) U(z,x(x)) = const.
Potom x je rieSenie (14.1).

Linearne parcialne diferencialne rovnice 2.radu: Uvazujme linedrnu parcidlnu diferencialnu
rovnicu v tvare a11Uzy + 2a12Ugy + G22Uyy + F(2, 2,4, g, u,) = 0. Jej diskriminant A =
a%, — aj1az2 nemeni znamienko pri fubovolnej transforméacii nezavisle premennych. Rovnicu
nazveme hyperbolickou ak A > 0, parabolickou ak A = 0 a eliptickou ak A < 0.

Kanonicky tvar pre hyperbolickt rovnicu je ug, + Fi(ug, uy, u,&,n) = 0. Kanonicky tvar
pre parabolicktl rovnicu je uee + Fi(ue, uy, u,&,n) = 0. Kanonicky tvar pre eliptick rovnicu
je uge + upy + Fi(ug, uy,u, &, m) = 0.

Transformécie £ = p(z,y), n = ¥(x,y), ktoré preveda uvedent diferencidlnu rovnicu na
kanonicky tvar hladdme pomocou rovnic augoz +2a12050y —|—a22cpy =0, a111/1 + 201292y +
a22w2 = 0, ktoré rieSime metddou charakteristik. V zavislosti od typu rovnice dostaneme
dve rieSenia (hyperbolickd), jedno rieSenie, ktoré doplnime Iubovolnou nezavislou funkciou
(parabolickd) alebo dve komplexné riesenia, ktorych redlnu a imagindrnu c¢ast zvolime za
pouzité transformécie (eliptickd).

Pre parcialne rovnice 2.radu viac premennych uréime typ rovnice na zaklade vlastnych
¢isel matice urcéenej koeficientmi, ak maja rovnaké znamienko, ide o eliptickd rovnicu (kvad-
ratickd forma dand touto maticou urcuje elipsu/elipsoid), ak st nenulové a nemaji rovnaké
znamienka, ide o hyperbolicki rovnicu (hyperbola) a ak je jedno nulové a ostatné maji
rovnaké znamienka, ide o parabolickt rovnicu.

Parcialne diferencidlne rovnice st modelmi réznych fyzikalnych javov. Parabolické rovnice
st naprlklad rovnica pre vedenie tepla div(kVu)+ f(¢,x) = pu; (k(xz) > 0, p(z) > 0) a rovnica
SpOJltostl + div(p?¥) = 0. Rovnica pre prie¢ne kmitanie struny u; = a?ug, je prikladom
hyperbohckej rovnice.

Volovi je vSetko jasné.
Vencko
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15 Cauchyho tuloha

Cauchyho tdloha pre vinovi rovnicu (D’Alembertov vzorec), jednoznacnost rieSenia.

Najprv sme preberali dokazy jednoznacnosti pre zaciatoéno-okrajové ulohy (pre vSetky
tri typy rovnic), potom princip maxima pre parabolické a eliptické rovnice, z ktorych tiez
vyplyva jednoznac¢nost rieSenia tychto tloh. Otazka sa tyka (asi) iba jednoznaé¢nosti Cauchyho
ulohy, v jej dokaze sa vyuziva princip maxima pre parabolické rovnice, tak som sem dal aj
ten.

15.1 Princip maxima a minima pre parabolické rovnice

2 CR" - ohraniCend oblast, T' > 0,
Qr={reQ0<t<T}

Uvazujme rovnicu:

div(kVu) = pus,x € Q,t € (0,T) (15.1)
k(x) > 0,p(z) >0 '
Veta 1 (o maxime a minime). KaZdé riesenie rovnice (15.1) u € C(Qr,R) nadobida
najvicsiv a najmensdiu hodnotu na dolnej hranici Qr (t = 0) alebo na pldsti valca P = {x €
90,0<t<T}.

Fyzikdlny vyznam principu maxima a minima je v tom, Ze teplo sa $iri z miesta s vys$Sou
teplotou na miesta s nizSou teplotou a teploty sa pritom vyrovnavaja. (Pri tepelnej vymene
s okolim sa moze maximum dosahovat na okraji v ¢ase ¢ > 0.)

Désledok 1 (princip porovnavania rieSeni). Nech ui,us € C(Q,R) st riesenia rovnice
div(EVu)+ f(t, ) = pus, ur(t, x) < ug(t,z) pre (t,z) €T = {xz € 0Q,t > 0}u{x € Q,t = 0}.

Potom uy(t,x) < us(t,x) pre (t,x) € Q.
Désledok 2 (spojita zavislost na zaéiatoénych a okrajovych podmienkach - veta

o stabilite). Nech si dané€ dve Dirichletove zmiesané ulohy: div(kVu) + f(t,z) = puy,
U‘F = ¢1,2(t7w)7 u(O,x) = 901:2(‘7") a |(p1(l‘) - 902($)| < g, |¢1(t7x) - ¢2<t7x)| <et=>0,

x € 0. Potom |uy(t,z) — ua(t, )| < e pre (t,x) € Q.

Déosledok 3. div(kVu) + f(t,x) = put, ulpr = ¥(t, ), u(0,z) = ¢(x) md najviac jedno
riesenie.

15.2 Princip maxima a minima pre eliptické rovnice

Veta 2. Nech Q C R" je ohranicend oblast, nech u € C(Q,R) je harmonickd funkcia. Potom
u dosahuje mazximum aj minimum na OS).

Dosledkom st jednoznacnost riesenia Dirichletovej tlohy, spojitd zavislost rieSenia, po-
rovnavaci princip a to, ze ak postupnost harmonickych funkcii rovnomerne konverguje na
hranici ohranicenej oblasti, potom rovnomerne konverguje v celej oblasti a limita je harmo-
nicka funkcia.

15.3 Jednoznaénost rieSenia Cauchyho tlohy

Pri Cauchyho tlohe ide o neohrani¢ent oblast, v nasom pripade R".
Pre parabolickt tlohu:
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a*Nu+ ft,x) = uy
u(0,z) = ¢()

Veta 3. Riesenie Cauchyho dlohy (15.2) u € C((0,00) x R™",R), ktoré je navyse ohranicené,
je urcené jednoznacne.

(15.2)

Vraj sa to d& dokazaf aj bez tej ohranicenosti.
Pre hyperbolickt tlohu:

Au=uy,t >0,z €R"
u(0,z) = f(z),z € R" (15.3)
u(0,z) = g(x),z € R”
Definicia 1. Charakteristicky kuZel k rovnici (15.3) je Z.(zo) = {(t,2) e RxR": 0 <t <
ry ||z — zo] < r —t}.
Lema 1. Ak u € C?*(Z.(0),R) je riesenie (15.3) s nulovymi pociatocnymi podmienkami, tak
je nulové na celom charakteristickom kuZels.

Veta 4. Cauchyho uloha pre rovnicu (15.3) md na zjednoteni vsetkych charakteristickjch
kuZelov s podstavou v Q najviac jedno riesenie.

15.4 Existencia rieSenia Cauchyho ulohy pre hyperbolicka rovnicu ak n =1

Rovnica
Pu 0%
e e
ot? 0x?
t> 0,z € (—00,00)

u(0,2) = 1), 54(0,2) = g(a)

maé rieSenie

ult.) f(z+at)+ f(z — at) N 1 /“‘”
2 2a r—at
Uvedeny vzorec (d’Alembertova formula) udéva klasické rieSenie v pripade, Ze g je raz a
f dvakrat spojite diferencovatelné, vzdy vSak udéava rieSenie v zmysle distribtcii.
Na prednaske sme mali aj vzorce pre n = 2,3, bez odvodenia.
TODO Treba sem daf aj Greenovu funkciu?

15.5 Jednoznaénost rieSenia zaciatoéno-okrajovych tiloh

V dalsom budeme éasto pouzivat vztah

/L(v)wdaj:—/ k(w)Vu.Vvdm—/qvwdx—i—/ kwa—gds, *
Q Q Q so  Om

ktory sa d4 odvodit napriklad v takto: Ak v (Arseninovi) znamom vzorci div(pE) = pdiv E +
E.Vp polozime p = w a E = kVv, tak mame JoLw)w = [, div(kVu)w — [, quvde =
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Jo div(EVow) — [ EVoVw — [ quwdz a teraz uz staci pouzit vetu o divergencii. (Na pred-
néaske sme to bolo pomocou per partes, je to v podstate ten isty postup. Takto je to v [ARS].)

Ked sme dokazovali jednoznacnost riesenia pre roézne typy rovnic, vzdy sme postupovali
tak, Ze sme predpokladali existenciu dvoch rieseni u; # us nehomogénnej rovnice s fubovol-
nymi zaciatoénymi a okrajovymi podmienkami a ich od¢itanim sme ziskali nenulové riesenie
v = u; — uy homogénnej rovnice s nulovymi pociatoénymi a okrajovymi podmienkami. O
tomto riedeni potom ukéZzeme, Ze musi byt nulové. Zaoberali sme sa klasickymi rieSeniami,
teda sme predpokladali, Ze rieSenia st funkcie spojite diferencovatelné na € tolkokrat, aky je
rad rovnice.

Hyperbolické

L(u) = div(k(x)Vu) — q(z)u+ f(t,z) = p(x)% (15.4)
Vl(x)% + 2 (@)uloq = g(t,x), t>0 (15.5)
u(0,z) = p(x) ut (0, z) = (x) r€Q (15.6)

Veta 5. Zaciatocno-okrajovd tloha (15.4)-(15.6) md jediné riesenie u € CYB,R) (B =
{(z,t);2 € Q,t > 0}).

Mame v, pre ktoré plati L(v) = p(x)ve. Z toho dostaneme

/p(m)vttvtdx:/L(v)vtdx(;)/ kvta—gds—/ vaVvtdx—/qvvtd:c
Q Q o0 on Q Q

/p(m)vttvtdaz—k/ va(Vv)tdx—k/qvvtdx:/ kvta—ﬁds
Q Q Q a0 on

1 0, 4 0 0 v

z g — (V)% 4+ g= (v®)dz = kvi—d

2/Qpat(vt)+at( v) + ag (v)de oo tom
V pripade Dirichletovej tlohy (73 = 0, 2 = 1) a Neumannovej tlohy (v = 1, 72 = 0)

je €len na pravej strane 0. Celd rovnost zintegrujeme podla t od 0 po T, zamenime poradie

integrovania a vyuzijeme tiez to, ze v;(0,z) = v(0,z) = Vv(0,2) = 0. Dostaneme

/ pv2(T, z)dx +/ k(Vv)*(T, x)dx +/ q*(T, x)dz = 0

Q Q Q

Pretoze o funkcii k predpokladdame k(x) > 0, dostaneme Vv = 0. Sti¢asne vieme, Ze na hranici
00 je v =0, preto musi platif v = 0 vSade.

V pripade Newtonovej podmienky plati g—%\@g = —%vbg, pricom sme predpokladali,

ze 1,72 > 0, preto na pravej strane dostaneme — |, a0 kvt %vvtds a po zintegrovani cez T
dostaneme na pravej strane zaporné &islo — [, kv, 220*(T, x)ds, teda opif mozeme pouzit

Bt
ten isty argument.
Parabolické rovnice

Teraz sa venujeme rovnici tvaru L(u)+ f(¢, ) = p(x)u; pricom mame len jednu zaciatoént

podmienku u(0,z) = @(x). Opét prevedieme dokaz jednozna¢nosti na dokaz, Ze rieSenie
homogénnej rovnice s homogénnymi podmienkami je nulové.
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Pre v plati L(v) = p(x)vs. Tentokrat polozime w(x) = v(z) a dostaneme

/pvtvdx:/L(v)vdxz—/ k(VU)de—/qv2da:+ kva—ﬁds
Q Q Q Q oo On

V pripade Dirichletovej alebo Neumannovej podmienky je posledny ¢len nulovy. Dostaneme,
ze %(vz) je skoro vS8ade rovné 0, zo spojitosti potom aj celkom vSade a tym mame, ze v = 0.

V pripade Newtonovej tlohy budeme pouzijeme podobny trik ako minule.
Eliptické

Zaoberame sa rovnicou L(u) = f(z) na okraji plati ’yl(x)g—%Jrfyg (z)u|on = g(z), zatiatoéné
podmienky pochopitelne nie si.
Mame L(v) = 0 a zintegrovanim tejto rovnosti cez Q dostaneme

/k(Vv)2da:+/q02dx—/ kva—gdx.
Q Q oo O

V pripade Dirichletovej podmienky je posledny ¢len 0, preto v = 0. V pripade Newtonovej
podmienky rovnakym postupom ako pri predchadzajicich dvoch typoch rovnic dostaneme
¢len, v ktorom bude vystupovat nezaporny nasobok v2.

Pri Neumannovej podmienke takisto v pripade q # 0 dostaneme jednoznacnost. V pripade
q = 0 (¢o je pripad Laplaceovej rovnice) dostaneme Vv = 0 na 2, pre je v konstantné. To
znamena, ze v tomto pripade je riesenie urcené jednoznac¢ne az na konsStantu.

(Neviem, to len tak mimochodom, nemali by sme to rozdelit na dva pripady ¢ =0a ¢ # 0
aj pre Newtonovu podmienku?)

Do kelu! Vy mi ni¢ nepoviete.
Durikovié

16 Fourierova metdda

Fourierova metoda pre hyperbolické, parabolické a eliptické zmiesané a okrajové ulohy (vinovd
rovnica, rovnica pre vedenie tepla, Laplaceova rovnica.

16.1 Fourierova metéda - rovnice hyperbolického a parabolického typu

L(u) = div(k(x)Vu) — q(z)u = p(m)% (16.1)
71(33)2—; + Y2(z)ulon =0 (16.2)
u(0,2) = (x) ut(0,2) = ¢1(x) reN (16.3)

Pricom: k(x) > 0, g(z) > 0, p(x) > 0, vetky tieto funkcie st spojité. v1 a v2 s spojité na
0, 1,72 > 0 a2 ++2 > 0.
A={f:(Q CR") — R; f je spojité na €2, ma po astiach spojitl 1. a 2. derivaciu na Q a
spliia (16.2)}.

Hlad4me rieSenie uvedenej rovnice v tvare u(t, z) = T(t)®(x).

L@, ,_1"

pT(x) T (t)=-A
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L(®)+ AP =0 (16.4)
T" +XT =0 (16.5)

0P (x
1@ 2D 4 (@) 8() acon = 0 (16.6)

(16.4), (16.6) - Sturm-Liouvillova tloha
Tato tloha mé spocitatelni mnozinu vlastnych éisel \,, a im zodpovedajice vlastné fun-
kcie ®,, tvoria Gplna ortonormdlnu bézu priestoru Lo (€2) s vdhou p(x), teda kazda funkciu
z Lo (Q) moZno rozvinit do Fourierovho radu f(z) = Y ¢,®,(z) a ¢, = %%

n=1 @ "
(MozZno nie je celkom spravny, ale je tu aspoil pokus o nejaké zdovodnenie. L: A — Lo(Q) je
samoadjungovany operator a L~! je kompaktny. Dalej vyuZijeme to, Ze funkcia a funkcia k
nej inverzna maju rovnaké vlastné funkcie.)
(16.5) ma rieSenie T}, (t) = Cy, cos(v/Ant) + Dy, sin(v/Ant). RieSenie (16.1)—(16.3) bude po-
tom Y. ®(z)T,(¢) a konstanty, ktoré tu vystupuji mozno vyratat ako C,, = %#,
n:1 J n
D. = Lr@e1(@)®n(2)dz
T VG [ p(2)®F (x)da |

_ [ p@)e(x)®n(x)dz

oo
V parabolickom pripade dostaneme riesenie > C,e *'®, (z) a C, = T o(0)32 (0)de
n=1 "

16.2 Nehomogénne tlohy

L(u) + f(t, x) = div(k(z)Vu) — q(z)u+ f(t,2) = p(x)un  (p(z)ur) (16.7)
’71(35)2—; +72(7)ulog =0 (16.8)
u(0,2) =0 = us(0, z) (16.9)

Riesenie opéf hladdme v tvare u(t,z) = 3. Cn(t)®,(z). Ak L&2 — S 1 (1), (2)
n=1 n=1
(rozvoj do Fourierovho radu), tak mame:

cn(t) L (7) + p(x) fu(t)Pr () = p(2) Z CZ(t)fbn(m)
Z[_)‘ncn(t) + fa(t) — C;{(t)]@n(x) =0

Potom vsetky koeficienty musia byt 0:
C%(t) + )‘ncn(t) = fn(t) (C’/I’L(t) + )‘ncn(t) = fn(t))
n(0) =, (0) =0
Takto dostaneme riesenie (16.7), (16.8), (16.9).

L(u) + f(t,x) = div(k(z)Vu) — q(z)u+ f(t,2) = p(@)uu (p(2)ur) (16.10)
71(90)% +72(x)ulog =0 (16.11)
u(0,z) = p(x) ut(0,2) = ¢1(x) r€Q (16.12)
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Riesenie tejto tlohy hladdame ako stcet rieSenia homogénnej tilohy, ktoré spliha dané po-
¢iatocné podmienky a nehomogénnej tlohy s nulovymi pociatoénymi podmienkami.

Ak st nehomogénne aj okrajové podmienky, tak hladdme rieSenie v tvare st¢tu rieSenia
pre nehomogénnu rovnicu s homogénnymi podmienkami a rieSenia homogénnej rovnice s
nehomogénnymi podmienkami, ktoré treba uhadnut. (Ak st podmienky v tvare fi(z).f2(t),
mozno ho hladaf tieZ separdciou.) Niekedy mozno najst rieSenie tejto rovnice, ktoré nezavisi
od casu - ide o ustaleny stav daného systému.

16.3 Laplaceova tiloha

Pri tlohach eliptického typu treba pouzit transforméciu (polérne, sférické, cylindrické
suradnice), a potom sa da pouzit Fourierova metéda.

10 1
Polarne stradnice: Vu = &2 (ru,) + -z Upp-
R _ _ 9% 2 ou
Sférické suradm(;e. r = rsinpsing, y = sinpcos, 2 = rcosp = Vu = 53 + 5 +
cotg ¢ du 1 o%u (9
2 Op + r2sin2 p 902 ( )
8%u

Cylindrické stiradnice: x = rcosp, y =rsing, z = 2 = Vu = %%(rur) + Lugy, 5% 50
Riesenie Laplaceovej tilohy na kruhu

Tato tlohu mozeme riesit Fourierovou metédou. Ak do rovnice Vu = 0 vyjadrenej v
polarnych suradniciach dosadime u(r, ) = F(r)¥(y), dostaneme po Gprave

rF'(r) + 2 F(r) - 9(p) _
F(r) P(ep)

Najprv riesime rovnicu ¥ () + A¥(¢) = 0 s podmienkou ¥(p) = ¥(p + 27). Této rovnica
m4 rieSenie tvaru ¥(p) = acos VAp + bsin vV Ag a musi platit VX = n, A = n2. Mame teda
rieSenia ¥, (p) = A, cosny + B, sinnep.

Dalej dostaneme rovnicu 72 F"(r) 4+ rF'(r) = n>F(r). RieSenie hladdme v tvare r*. Do-
staneme dve riesenia ™ a Tin Pretoze rieSenie, ktoré hladdme, je v 0 ohranicené (to vieme z
vlastnosti harmonickych funkcii), tak pouzijeme iba 7.

Vysledok je v tvare u(r,¢) = Z;ozl(Ak sin ko + Bk cos kp)rk. Koeﬁcienty mozno urcit

pomocou okrajovej podmienky u(R, ) = ) ako 5= fOW e, By, = %f()% f(so);%ksod(p a
Ay = T f(e) smlwdw

Dalsnm Gpravami sa tento tvar rieSenia dal upravit na Poissonov vzorec:

2m P
u(r, 9)% J szfz — R)ch(gi‘(ii 7 Ak si cheete pre zaujimavost pozriet jeho odvodenie pomocou

komplexnej analyzy, mozete ho najst v [CA].
Jednoznacnost riesenia Laplaceovej tlohy je v predchadzajice]j otazke.

Uz ste mali vetu o spektralnom poromele?
Feckan
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