
Verzia: 22. februára 2004
Toto by mal byť prehľad viet, ktoré sa týkajú jednotlivých štátnicových otázok z malého

bloku matematická analýza. Niekde je toho uvedeného viac, než treba, alebo viac než sa
preberalo na prednáškach, inde zasa možno niečo podstatné chýba. To, že sa tieto poznámky
líšia od toho, čo sme preberali na prednáškach súvisí s tým, že sa mi občas zdalo rozumnejšie
opisovať to z kníh, než z prednášok. (Nie že by niektoré prednášky boli zlé, to len ja som si
nerobil poriadne poznámky. :-)
Ak sa niekomu stane, že mu poškodí nesprávna odpoveď, ktorú sa naučil z tohto textu,

vopred sa mu ospravedlňujem. Dúfam ale, že aspoň niekomu tieto poznámky pomôžu.
Poznámky sa momentálne nachádzajú na thales.doa.fmph.uniba.sk/sleziak/texty.

Sú tam uverejnené aj zdrojáky - takže v prípade, že sa sylaby zmenia máte možnosť si ich
upraviť, nejaké časti vynechať alebo naopak pridať. Ak by ste našli v texte chyby, budem
rád, keď mi o nich dáte vedieť na sleziak@fmph.uniba.sk a pri najbližšej aktualizácii tam
už bude opravená verzia.

1 Spojitosť

Spojitosť funkcie jednej a viacerých premenných, spojitosť funkcie komplexnej premennej,
spojitosť zobrazenia z Rm do Rk. Základné vety o spojitých funkciách, Weierstrassove vety.

Spojitosť funkcie

Nech (X, d1), (Y, d2) sú metrické priestory, A ⊂ X a f : A → Y je funkcia.

Definícia 1. Hovoríme, že f : X → Y je spojitá v bode x0 ∈ A, ak pre každé ε > 0 existuje
δ > 0 také, že pre každé x ∈ A také, že d1(x, x0) < δ platí d2(f(x), f(x0)) < ε.

Tvrdenie 1. f je spojitá v bode x0 práve vtedy, keď lim
x→x0

f(x) = f(x0).

Na základe ekvivalencie Cauchyho a Heineho definície limity funkcie potom dostaneme
nasledovné tvrdenie:

Tvrdenie 2. f je spojitá v bode x0 práve vtedy, keď pre každú postupnosť takú, že xn → x0,
lim

n→∞
f(xn) = f(x0).

Podmienka z predchádzajúceho tvrdenia sa niekedy tiež volá Heineho definícia spojitosti
a pôvodná definícia Cauchyho definícia spojitosti.

Tvrdenie 3. Ak f , g sú spojité v bode x0, tak sú v x0 spojité aj c1f + c2g a fg. Ak navyše
g(x0) 6= 0, tak aj f(x)

g(x) je spojitá v x0.

Definícia 2. Hovoríme, že f : X → Y je spojitá na množine A (A ⊂ X), ak je spojitá
v každom bode množiny A.

Ako špeciálne prípady spojitosti zobrazení metrických priestorov dostaneme pojmy spo-
jitosti pre priestory zo zadania, t.j. napríklad X = Rm, Y = Rk, alebo X = Y = C.

Základné vety o spojitých funkciách

Spojité funkcie na kompaktných množinách

Veta 1 (1.Weierstrassova veta). Ak A je kompaktný metrický (topologický) priestor, tak
spojitá funkcia f : A → R je na A ohraničená.
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Veta 2 (2.Weierstrassova veta). Ak A je kompaktný metrický (topologický) priestor, tak
spojitá funkcia f : A → R nadobúda na A svoje maximum aj minimum.

Veta 3 (3.Weierstrassova, Cantorova). Spojitá funkcia na kompaktnom metrickom pries-
tore je rovnomerne spojitá.

Monotónne a spojité funkcie na intervale

Definícia 3. Podmnožina I ⊂ R sa nazýva interval, ak platí:
1. Existujú x1, x2 také, že x1 6= x2 a x1, x2 ∈ I.
2. Ak x1 < t < x2 a x1, x2 ∈ I, tak t ∈ I.

Nech I je interval.

Veta 4. Ak f : I → R je spojitá, tak f(I) je jednoprvková množina alebo interval.

Tvrdenie 4. x0 ∈ I je bod nespojitosti neklesajúcej funkcie f : I → R práve vtedy, keď
lim

x→x0−
f(x) < lim

x→x0+
f(x).

x0 ∈ I je bod nespojitosti nerastúcej funkcie f : I → R práve vtedy, keď lim
x→x0−

f(x) >

lim
x→x0+

f(x).

Veta 5. Ak f : I → R je nerastúca (neklesajúca) funkcia a f(I) je interval alebo jednobodová
množina, tak f je spojitá na I.

Veta 6. Ak f : I → R je rastúca (klesajúca) spojitá funkcia, tak aj f−1 je rastúca (klesajúca)
a spojitá.

. . .ako také odporné hmyzovité mravce.
Kubáček

2 Diferencovateľnosť

Diferencovateľnosť funkcie jednej a viacerých premenných, diferencovateľnosť zobrazenia z
Rm do Rk. Diferencovateľnosť a spojitosť. Taylorov vzorec, extrémy funkcií.

2.1 Diferencovateľnosť funkcie jednej premennej

Definícia 1. Nech f : O(a) ⊂ R → R je funkcia. Hovoríme, že f má v bode a deriváciu, ak
existuje lim

x→a

f(x)−f(a)
x−a

=: f ′(a).

Definícia 2. Majme a ∈ O(a) ⊂ R, f : O(a) → R. Hovoríme, že f je diferencovateľná v
bode a, ak existujú A ∈ R a ω : O(a) → R také, že lim

x→a
ω(x) = ω(a) = 0 a platí f(x) =

f(a) + A(x − a) + ω(x)(x − a) pre všetky x ∈ O(a). Lineárny výraz A(x − a) =: df(x, a)
nazveme diferenciálom funkcie f v bode a.

Veta 1. f : O(a)→ R je diferencovateľná v a ⇔ existuje konečná derivácia f ′(a) ∈ R.

Definícia 3. Funkcia f : M → R je diferencovateľná na množine M ⊂ R, ak je diferencova-
teľná v každom bode tejto množiny.

Definícia 4. Hovoríme, že funkcia f je n-krát diferencovateľná v bode a, ak má v bode a
n-tú deriváciu.
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Základné vety diferenciálneho počtu

Veta 2 (Darbouxova). Ak f : 〈a, b〉 → R je spojitá na 〈a, b〉 a má tam deriváciu (v a
sprava, v b zľava), tak f ′ nadobúda všetky hodnoty medzi f ′

+(a) a f ′
−(b).

Veta 3 (Rolleova). Nech f : 〈a, b〉 → R

1. je spojitá v 〈a, b〉,
2. má deriváciu (konečnú alebo nekonečnú) v (a, b),
3. f(a) = f(b).
Potom existuje c ∈ (a, b) tak, že f ′(c) = 0.

Veta 4 (Lagrangeova). Nech f : 〈a, b〉 → R

1. je spojitá v 〈a, b〉,
2. má deriváciu (konečnú alebo nekonečnú) v (a, b).
Potom existuje c ∈ (a, b) tak, že f ′(c) = f(b)−f(a)

b−a
.

Veta 5 (Cauchyho - vo všeobecnejšej formulácii). Nech f, g : 〈a, b〉 → R

1. sú spojité v 〈a, b〉,
2. majú deriváciu (konečnú alebo nekonečnú) v (a, b).
Potom existuje bod c ∈ (a, b) taký, že (f(b)− f(a))g′(c) = (g(b)− g(a))f ′(c).

Veta 6 (Cauchyho). Nech f, g : 〈a, b〉 → R

1. sú spojité v 〈a, b〉,
2. majú deriváciu (konečnú alebo nekonečnú) v (a, b), (tu však musíme požadovať, aby v
prípade, že obe funkcie majú v tom istom bode nekonečnú deriváciu bol „súčinÿ týchto neko-
nečien opačného znamienka ako zlomok vystupujúci vo vete)
3. f ′2(x) + g′2(x) > 0 pre všetky x ∈ (a, b),
4. g(b) 6= g(a).

Potom existuje c ∈ (a, b) tak, že f ′(c)
g′(c) =

f(b)−f(a)
g(b)−g(a) .

Veta 7 (L’Hospitalove pravidlo). Nech a ∈ R
+, f, g : O(a)→ R sú spojité a

1. lim
x→a

f(x) = lim
x→a

g(x) = 0 (∞),
2. pre x ∈ O(a), x 6= a existujú f ′(x), g′(x) a g′(x) 6= 0,
3. existuje lim

x→a

f ′(x)
g′(x) .

Potom existuje lim
x→a

f(x)
g(x) a platí limx→a

f(x)
g(x) = limx→a

f ′(x)
g′(x) .

L’Hospitalove pravidlo možno použiť aj viacnásobne. Možno ho použiť tiež na výpočet
limít typu 0.∞ (f.g = f/(1/g)), ∞−∞ (f − g = (1/g − 1/f)/(1/(f.g))) a ∞0 (fg = eg. ln f

a g. ln f je typu 0.∞).

2.2 Diferencovateľnosť funkcií viac premenných

Definícia 5. Majme danú otvorenú množinuM ⊂ R
n f : M → R, a = (a1, . . . , an) ∈ M∩M ′.

f má v bode a v smere v ∈ Rn Gâteauxov diferenciál, ak existuje lim
t→0

f(a+tv)−f(a)
t

=: Df(a, v).

Ak je Gâteauxov diferenciál v bode a lineárny (ako funkcia smeru v), tak ho nazývame
deriváciou funkcie f v bode a a v smere v a funkcia sa nazv́a G-diferencovateľná v a.

Definícia 6. Hovoríme, že f je Frèchetovsky diferencovateľná v a, ak existuje lineárne zobra-
zenie la : R

n → R také, že lim
x→a

|f(x)−f(a)−la(x−a)|
d(x,a) = 0. Označujeme la(x − a) =: df(a, x − a).

3



Veta 8. Nech f : M ⊂ R
n → R, a ∈ M ∩ M ′, nech f je F-diferencovateľná v a. Potom

(i) existuje G-derivácia f v bode a a platí Df(a, n) =
n
∑

i=1

∂f
∂xi
(a)ni,

(ii) f je spojitá v bode a.

Veta 9 (Lagrangeova veta o strednej hodnote). Nech a ∈ O(a) ⊂ R
m, f : O(a) → R,

x = (x1, . . . , xn) ∈ O(a), f má parciálne derivácie ∂f
∂xi
: O(a)→ R. Potom existujú ti ∈ (0, 1)

také, že pre všetky x ∈ O(a) f(x) − f(a) =
m
∑

i=1

∂f
∂xi
(ci)(xi − ai), kde ci = (a1, . . . , ai−1, ai +

ti(xi − ai), xi+1, . . . , xn) ∈ O(a).

Dôsledok 1. Ak a ∈ R
m, O(a) ⊆ R

m, f : O(a)→ R, f ∈ C1(O(a)), tak f je F-diferencova-
teľná v a.

Toto je tu pre prípad, že by niekto chcel rýpať a bol zvedavý, či niektorá z uvedených viet
neplatí obrátene:

f(x1, x2) =
x21x2

x41+x22
má G-diferenciál ale nie G-deriváciu v (0,0), nie je spojitá v (0,0), na

každej priamke prechádzajúcej cez 0 je spojitá
f(x1, x2) =

√

|x1x2| má parciálne derivácie v R
2, nie je F-diferencovateľná v (0,0), má deri-

vácie vo všetkých smeroch, nie je G-diferencovateľná.
f(x1, x2) = (x21 + x22) sin

1
x21+x22

je F-diferencovateľná v (0,0) ale nemá spojité parciálne deri-
vácie

f(x1, x2) =

{

(x21 + x22)
x2
x1
pre x2 6= 0

0 pre x2 = 0
je G-diferencovateľná v (0,0) ale nie F-diferencova-

teľná. (aspoň podľa mňa)

f(x, y) =

{

0 pre y 6= x2

x pre y = x2
je spojitá a G-diferencovateľná v 0, ale nie je tam F-diferencova-

teľná.

Diferenciály a derivácie vyšších rádov

Definícia 7. f je G-diferencovateľná v bode a v smere n1, . . . , nk, ak f(·, n1, . . . , nk−1) je
G-diferencovateľná v a v smere nk.
Nech f : A → R je (k − 1)-krát F-diferencovateľná v každom bode x ∈ O(a) ∩ A a

dk−1f(x;n1, . . . , nk−1) je jej (k − 1)-vý diferenciál v x ∈ O(a) ∩ A v smere n1, . . . , nk. Ho-
voríme, že f je k-krát F-diferencovateľná v a, ak dk−1f(·;n1, . . . , nk−1) : O(a) ∩ A → R je
F-diferencovateľná v a pre každé n1, . . . , nk−1.

Dkf(a;u1, . . . , uk) = D[Dk−1f(·, u1, . . . , uk−1)](a, uk)

dkf(a;u1, . . . , uk) = d[dk−1f(·, u1, . . . , uk−1)](a, uk)

lim
x→a

df(x, v)− df(a, v)− d2f(a; v;x − a)
d(x, a)

= 0

Veta 10 (O zámennosti G-diferencovania). Nech O(a) ⊂ R
n, a ∈ R

n, u, v ∈ Rn

(smery), f : O(a)→ R. Nech
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(i) existujú Df(·, u) : O(a)→ R, Df(·, v) : O(a)→ R a

(ii) D2f(·;u, v) : O(a)→ R, D2f(·; v, u) : O(a)→ R existujú a sú spojité v bode a.

Potom D2f(a;u, v) = D2f(a; v, u).

2.3 Diferencovateľnosť funkcie z R
m do R

n

TODO Definícia
Veta o implicitnej funkcii je tu v znení z [Ď] aj z [BR], takže si môžete vybrať.

Veta 11 (o implicitnej funkcii). Nech x0 ∈ R
m, y0 ∈ R

k, O(x0), O(y0) sú ich okolia.
Nech pre i = 1, . . . , k zobrazenia Fi : O(x0)× O(y0)→ R spĺňajú nasledovné podmienky:

(i) sú spojité v bode (x0, y0);

(ii) Fi(x0, y0) = 0;

(iii) majú spojité parciálne derivácie ∂Fi

∂yj
pre i, j = 1, . . . , k v bode (x0, y0);

(iv) jakobián D(F1,...,Fk)
D(y1,...,yk)

(x0, y0) 6= 0
Potom existujú čísla δ > 0, ε > 0 tak, že

(i) pre každé x ∈ K(x0, δ) ⊂ O(x0) existuje práve jedno f(x) ∈ K(y0, ε) ⊂ O(y0), pričom
Fi(x, f(x)) = 0; (K označuje viacrozmernú kocku)

(ii) f(x0) = y0;

(iii) zobrazenie f : K(x0, δ)→ K(y0, ε) je spojité v bode x0.

Ak naviac predpokladáme, že v okolí O(x0) × O(y0) existujú a sú spojité všetky parciálne
derivácie ∂Fi

∂yj
, ∂Fi

∂xs
, tak existujú a sú spojité všetky parciálne derivácie ∂fi

∂xs
na K(x0, δ).

(fi sú zložky f .) Hodnoty týchto derivácií dostaneme ako riešenie sústavy (ktorú získame
formálnym derivovaním a ktorú sa mi nechce opisovať).

Veta 12. Nech X, Y , Z sú Banachove priestory, U ⊂ X, V ⊂ Y sú otvorené, F : U×V → Z
je Cr, 0 < r ≤ ∞, (x0, y0) ∈ U × V , F (x0, y0) = 0. Predpokladajme, že DyF (x0, y0) má
spojitý inverzný operátor. Potom existuje okolie U1 × V1 ⊂ U × V bodu (x0, y0) a funkcia
f ∈ Cr(U1, V1) taká, že f(x0) = y0 a že F (x, y) = 0 pre (x, y) ∈ U1 × V1 platí práve vtedy,
ak y = f(x). Ďalej platí

Df(x0) = −[DyF (x0, y0)]−1DxF (x0, y0).

2.4 Taylorov vzorec

V jednorozmere:

Veta 13.

f(x) = f(a) +
f ′(a)
1!
(x − a) +

f ′′(a)
2!
(x − a)2 + . . .+

f (n)(a)
n!

(x − a)n +Rn(x)

Nech f, g : O(a) → R, f je n-krát diferencovateľná v O(a) a v každom bode x ∈ O(a) má
(n+1)-vú deriváciu. Nech g je v O(a) spojitá a má pre x ∈ O(a), x 6= a deriváciu g′(x) 6= 0.
Potom existuje θ ∈ (0, 1) také, že pre x ∈ O(a) platí

Rn(x) =
(x − a)n(1− θ)n

n!
g(x)− g(a)

g′(a+ θ(x − a))
f (n+1)(a+ θ(x − a))
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Lagrangeov tvar zvyšku (g(t) = (t − a)n+1):

Rn =
f (n+1)(a+ θ(x − a))

(n+ 1)!
(x − a)(n+1)

Cauchyho tvar zvyšku (g(t) = t):

Rn =
(1− θ)n

n!
(x − a)n+1f (n+1)(a+ θ(x − a))

Veta 14. Nech funkcia f má v bode a konečnú deriváciu n-tého rádu a nech Qn(x) je
polynóm stupňa menšieho alebo rovného n, pričom Qn(x) 6= Tn(x), kde Tn(x) je Taylorov
polynóm f v bode a. Potom existuje okolie O(a) bodu a také, že pre všetky x ∈ O(a), x 6= a
je |f(x)− Tn(x)| < |f(x)− Qn(x)|.

Táto veta hovorí, že Tn(x) je lokálne najlepšia aproximácia f v okolí a pomocou polynómu
n-tého stupňa.
Vo viacrozmere: (predpokladáme, že f je (k + 1)-krát F-diferencovateľná)

Tk(f, a) = f(a) + df(a;x − a) +
1
2!

d2f(a;x − a) + . . .+
1
k!

dkf(a;x − a)

f(x) = Tk(f, a)(x) +
1

(k + 1)!
dk+1f(a+ θ(x − a), x − a)

V*? Prečo nestačí G-diferencovateľnosť.

2.5 Extrémy funkcií

Extrémy funkcií jednej premennej

Veta 15. Nech x0 je bod lokálneho extrému funkcie f : I → R. Potom buď f ′(x0) neexistuje,
alebo f ′(x0) = 0.

Veta 16. Nech f : I → R a vo vnútornom bode x0 ∈ I platí f ′(x0) = 0, f ′′(x0) 6= 0. Potom f
má v bode x0 lokálny extrém, ak f ′′(x0) < 0 tak je to ostré lokálne maximum, ak f ′′(x0) > 0
tak je to ostré lokálne minimum.

Veta 17. Nech f : I → R vyhovuje vo vnútornom bodu x0 ∈ I podmienkam:

(i) f ′(x0) = f ′′(x0) = . . . = f (n−1)(x0) = 0,

(ii) f (n)(x0) 6= 0.

Potom pri párnom n má f lokálny extrém v x0 (maximum, ak f (n)(x0) < 0 a minimum, ak
f (n)(x0) > 0) a pri nepárnom n funkcia f nemá v bode x0 lokálny extrém.

Lokálne extrémy funkcie viac premenných

Veta 18 (Eulerova nutná podmienka lokálneho extrému). Nech M ⊂ R
m a platí:

(i) f : M → R má v bode a ∈ M lokálny extrém, a ∈ IntM

(ii) existuje Df(a, u) v smere u ∈ R
m.
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Potom Df(a, u) = 0.

Veta 19 (Lagrangeova postačujúca podmienka lokálneho extrému). Nech O(a) ⊂
R

m a platí

(i) a ∈ R
m je stacionárny bod f : O(a)→ R, t.j. ∂f

∂xi
= 0 pre i = 1, . . . ,m,

(ii) f je 2-krát F-diferencovateľná v a a zobrazenie x 7→ d2f(x, v) je spojité v a a definované
v O(a) pre všetky v ∈ R

m.

Potom: Ak d2f(a, v) > 0 ∀v ∈ R
m \ {0} (2.diferenciál je kladne definitný), tak f má v a

lokálne minimum. Ak d2f(a, v) < 0 ∀v ∈ R
m \ {0} (2.diferenciál je záporne definitný), tak

f má v a lokálne maximum. Ak existujú v1, v2 ∈ Rm \ {0} tak že d2f(a, v1).d2f(a, v2) < 0
(2.diferenciál je indefinitný), tak a nie je bod lokálneho extrému.

Viazané extrémy funkcie viac premenných

Veta 20 (Lagrangeove multiplikátory). Nech je daný bod x0 = (x01, . . . , x0n) ∈ R
n,

y0 = (y01, . . . , y0k) ∈ R
k, O(x0) ⊂ R

n, O(y0) ⊂ R
k a f : O(x0) × O(y0) → R. Nech sú dané

väzby gi(x, y) = 0, gi : O(x0)× O(y0)→ R a platí:

(i) f , gi aj všetky ich parciálne derivácie 1.rádu v O(x0) × O(y0) sú spojité (f, gi ∈
C1(O(x0)× O(y0)).

(ii) D(g1,...,gk)
D(y1,...,yk)

(x0, y0) 6= 0

(iii) f má v bode (x0, y0) lokálny extrém vzhľadom na väzbu M = {(x, y) ∈ O(x0) ×
O(y0); gi(x, y) = 0 pre i = 1, . . . , k}.

Potom existujú reálne čísla λi ∈ R, i = 1, . . . , k určené jednoznačne také, že bod (x0, y0) je
stacionárny bod Lagrangeovej funkcie L = f + λ1g1 + . . .+ λkgk : O(x0)× O(y0)→ R.

TODO ? Zovšeobecnenia z NADT a variačných metód ?

A teraz ideme tú vetu pochopiteľne dokázať.
Vencko

3 Komplexná analýza

Derivácia komplexnej funkcie, Cauchy-Riemannove rovnosti. Cauchyho integrálny vzorec,
rozvoj analytickej funkcie do Taylorovho radu. Laurentov rad, klasifikácia izolovaných sin-
gulárnych bodov.

3.1 Topológia komplexnej roviny

Na množine C máme metriku ρ(z1, z2) = |z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2, t.j. C ∼=
R
2, je to separabilný lokálne kompaktný priestor.
Na množinu C = C ∪ {∞} môžeme preniesť metriku z gule pomocou stereografickej

projekcie.
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Získame tak separabilný kompaktný metrický priestor, niekedy sa nazýva uzavretá rovina.
Na C sú obe metriky ekvivalentné.
Prstencové okolie: ρε(z) = {ξ ∈ C : |ξ − z| < ε}
ρε(∞) = {ξ ∈ C : |ξ| > 1

ε
}

3.2 Derivácia funkcie komplexnej premennej, Cauchy-Riemannove rovnosti

Definícia 1. Nech f je definovaná v okolí bodu z0 ∈ D. Deriváciou funkcie f v bode z0
sa nazýva limita f ′(z0) := lim

z→z0

f(z)−f(z0)
z−z0

= lim
∆z→0

∆f
∆z
, ak táto limita existuje. f sa nazýva

diferencovateľná v z0, ak existuje konečná derivácia f ′(z0).

Tvrdenie 1.
(f + g)′(z0) = f ′(z0) + g′(z0)

(cf)′(z0) = cf ′(z0)

(fg)′(z0) = f ′(z0)g(z0) + f(z0)g′(z0)
(

f

g

)′
(z0) =

f ′(z0)g(z0)− f(z0)g′(z0)
g2(z0)

Tvrdenie 2. F (z) = ϕ(f(z)) ⇒ F ′(z0) = ϕ′(f(z0))f ′(z0).

Veta 1 (Cauchy-Riemannove vzorce). Nech f je komplexná funkcia, u a v sú jej reálna
a imaginárna časť (f = u+ iv). Potom f je diferencovateľná v z0 práve vtedy, keď jej reálna
a imaginárna časť sú diferencovateľné v z0 = (x0, y0) a u′

x = v′
y|(x0,y0), u′

y = −v′
x|(x0,y0).

Vtedy platí f ′(z0) = u′
x(x0, y0) + iv′x(x0, y0) = v′

y(x0, y0)− iu′
y(x0, y0).

C-R vzorce v polárnych súradniciach: Označme U(r, ϕ) = u(r cosϕ, r sinϕ),V (r, ϕ) =
v(r cosϕ, r sinϕ). Potom rU ′

r = V ′
ϕ a rV ′

r = −U ′
ϕ.

Definícia 2. f sa nazýva regulárna (holomorfná) v z0, ak je diferencovateľná v nejakom
okolí bodu z0.

f sa nazýva regulárna (holomorfná) v oblasti D, ak je holomorfná v každom bode tejto
oblasti.

Ak u, v sú reálna a imaginárna časť regulárnej funkcie f (v bode z0/v oblastiD), nazývame
ich harmonicky združenými funkciami. Platí △u = u′′

xx + u′′
yy = v′′

yx − v′′
xy = 0, čiže u je

harmonická. Podobne sa dá ukázať, že v je harmonická funkcia. Ak máme dané u, v sa dá
určiť až na konštantu z CR vzorcov.

3.3 Cesty a krivky

Definícia 3. Cesta je ľubovoľné spojité zobrazenie γ : 〈a, b〉 → C, γ(0) je začiatok cesty, γ(1)
je koniec cesty. Cesta je uzavretá , ak γ(0) = γ(1).
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Definícia 4. Cesty γ1 : 〈α1, β1〉 → C a γ2 : 〈α2, β2〉 → C sú ekvivalentné (γ1 ∼ γ2), ak
existuje spojitá rastúca funkcia τ : 〈α1, β1〉 → 〈α2, β2〉 taká, že γ1(t) = γ2(τ(t)).
Krivka je trieda ekvivalencie ciest vzhľadom na túto reláciu.
Jordanova krivka - taká, že γ je jednoznačné (prosté).
Uzavretá Jordanova krivka - γ je prosté s výnimkou krajných bodov.
Cesta γ je spojite diferencovateľná cesta, ak pre každé t ∈ 〈α, β〉 existuje γ′(t) = x′(t) +

iy′(t). Spojite diferencovateľná cesta sa nazýva hladká, ak pre každé t je γ′(t) 6= 0.
Po častiach hladká - spojitá na 〈α, β〉 a interval 〈α, β〉 sa dá rozdeliť na konečný počet

intervalov tak, že na každom z nich je cesta hladká.

3.4 Integrál funkcie komplexnej premennej

Definícia 5. Ak γ je po častiach hladká cesta a f ◦ γ je spojitá, tak definujeme

z1
∫

z0

fdz
def
=

β
∫

α

(f ◦ γ(t))γ′(t)dt

Mohli by sme definovať
∫

pomocou čiastočných súčtov pre ľubovoľné (rektifikovateľné 1)
krivky, z tejto definície sa dá pre hladké cesty odvodiť uvedený vzťah.

Tvrdenie 3. Ak f = u+ iv, tak
∫

γ

fdz =
∫

γ

(udx − vdy) + i
∫

γ

(udy + vdx).

3.5 Cauchyho integrálny vzorec

Veta 2 (Cauchyho integrálna veta). Ak f je holomorfná v oblasti D a γ0, γ1 sú homo-
topické cesty v D, potom

∫

γ0

fdz =
∫

γ1

fdz.

Dôsledok 1. f ∈ H(D) ⇒
∫

γ

fdz = 0 pre každú krivku γ homotopickú 0 v D.

Definícia 6. Oblasť D sa nazýva jednoducho súvislá, ak ∂D je súvislá.

Dôsledok 2. Ak f ∈ H(D) a D je jednoducho súvislá oblasť, tak
∮

γ

fdz = 0.

Veta 3 (Cauchyho integrálny vzorec). Nech f ∈ H(D) (f je holomorfná v oblasti D)
a G ⊂ D, ∂G pozostáva z konečného počtu spojitých kriviek a je orientovaná kladne. Potom
pre každé z0 ∈ G platí

f(z0) =
1
2πi

∫

∂G

f(ξ)
ξ − z0

dξ

3.6 Taylorov rad

Veta 4 (Taylorova). Ak f ∈ H(D), z0 ∈ D, tak v U = {z : |z − z0| < R} ⊂ D platí

f(z) =
∞
∑

n=0
cn(z − z0)n, kde cn = 1

2πi

∫

γρ

f(ξ)
(ξ−z0)n+1

dξ, γρ = {|z − z0| = ρ}, ρ < R.

Veta 5 (Cauchyho nerovnosti). Nech f ∈ H(D), U = {z : |z − z0| ≤ r} ⊂ D, γr = ∂U .
Nech f je na γr ohraničená, |f | ≤ M . Potom |cn| ≤ M

rn .

1Rektifikovateľná krivka je krivka, ktorá má konečnú dĺžku.
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Veta 6 (Liouville). Ak f je holomorfná v C a je tam ohraničená, f je konštantná.

Veta 7. Ak f ∈ H(D), tak má v D derivácie všetkych rádov a f (n) ∈ H(D).

Veta 8. Cn =
f(n)(z0)

n!

Dôsledok 3. f (n)(z0) = n!
2πi

∫

∂G

f(ξ)
(ξ−z0)n+1

dξ

Veta 9 (o holomorfnosti súčtu). f(z) =
∞
∑

n=0
cn(z − a)n je holomorfná v kruhu konver-

gencie.

Veta 10. Nasledujúce podmienky sú ekvivalentné:

(i) f je holomorfná v z0. (V*? Nemalo by tu byť, že v nejakom okolí z0?)

(ii) f ∈ CU(z0),
∫

∂△
fdz = 0 pre každý trojuholník taký, že △ ⊂ U .

(iii) f sa dá rozložiť v nejakom okolí z0 do Taylorovho radu.

Definícia 7. Nulovým bodom funkcie f nazývame a ∈ C, f(a) = 0.

Veta 11. Ak a je nulový bod funkcie f , f ∈ H(D), f 6≡ 0 v žiadnom okolí bodu a, tak
existuje n ∈ N také, že f(z) = (z − a)nϕ(z), ϕ ∈ H(U) a ϕ 6= 0 v nejakom okolí bodu a (t.j.
existuje také okolie V bodu a, že ϕ(z) 6= 0 pre ∀y ∈ V ).

Veta 12 (o jednoznačnosti). Nech D je súvislá oblasť a f1, f2 ∈ H(D), f1(z) = f2(z) pre
všetky z ∈ E ⊂ D a E má v D hromadný bod. Potom f1 = f2 pre všetky z ∈ D.

Definícia 8. Rádom nulového bodu funkcie f nazývame rád najnižšej derivácie f , ktorej
hodnota v bode a je nenulová.

Veta 13. Rád nulového bodu a funkcie f je maximálne n také, že f(z)
(z−a)n je po dodefinovaní

v a holomorfnou funkciou.

3.7 Laurentove rady, klasifikácia izolovaných singulárnych bodov

Veta 14. Nech f ∈ H(V ), kde V = {z ∈ C : r < |z − a| < R} je medzikružie. Potom
f(z) =

n=∞
∑

n=−∞
cn(z − a)n, cn = 1

2πi

∫

γ

f(ξ)
(ξ−z0)n+1

dξ pre n ∈ Z, kde γ je kružnica so stredom a a

polomerom ρ, r < ρ < R.

Veta 15 (o jednoznačnosti rozvoja do Laurentovho radu). Ak f možno rozvinúť do
Laurentovho radu, tak cn = 1

2πi

∫

γ

f(ξ)
(ξ−z0)n+1

dξ.

Veta 16 (Cauchyho nerovnosti). |cn| < M
ρn , ak f(ξ) ≤ M na γρ.

∞
∑

n=0
cn(z − a)n . . . regulárna časť Laurentovho radu

−1
∑

n=−∞
cn(z − a)n . . . hlavná časť Laurentovho radu
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Definícia 9. a ∈ C sa nazýva izolovaný singulárny bod funkcie f , ak f v bode a nie je
regulárna a existuje prstencové okolie bodu a, v ktorom je holomorfná (regulárna).
Izolovaný singulárny bod sa nazýva odstrániteľný, ak existuje lim

z→a
f(z) ∈ C.

Izolovaný singulárny bod sa nazýva pól, ak lim
z→a

f(z) =∞.
Izolovaný singulárny bod sa nazýva podstatný inak (teda ak nie je odstrániteľný ani pól).

Veta 17. Izolovaný singulárny bod a ∈ C funkcie f je odstrániteľný ⇔ Laurentov rozvoj f v
P (a) neobsahuje hlavnú časť ⇔ |f | < M ∈ R v nejakom P (a).

Veta 18. Izolovaný singulárny bod a ∈ C funkcie f je pól ⇔ Laurentov rozvoj f v P (a)

obsahuje (nenulový) konečný počet nenulových členov v hlavnej časti, t.j. f(z) =
∞
∑

n=−N

cn(z−
a)n, N ∈ N.

Veta 19. Bod a je pólom funkcie f ⇔ ϕ = 1
f
, ϕ 6≡ 0 je holomorfná v nejakom okolí a a a

je nulový bod ϕ.

Definícia 10. Násobnosť pólu = násobnosť a ako nulového bodu ϕ.

Veta 20 (Sochockij-Weierstrass). Ak a je podstatný singulárny bod, tak pre ∀A ∈ C

existuje (zn)n∈N taká, že zn → a a lim
n→∞

f(zn) = A.

Definícia 11. Nech a ∈ C, f ∈ H(P (a)). Rezíduom funkcie f v bode a nazývame res
a
=

1
2πi

∫

γr

fdz, γr ⊂ P (a).

Veta 21 (Cauchyho veta o rezíduách). Nech f ∈ H(D) okrem izolovanej množiny singu-
lárnych bodov, G ⊂ D, ∂G neprechádza singulárnymi bodmi f . Potom

∫

∂G

fdz = 2πi
∑

ai∈G

res
ai

(súčet cez všetky singulárne body ai ležiace v G).

Veta 22. res
a

f = C−1

Dôsledok 4. Ak a je odstrániteľný singulárny bod funkcie f , tak res
a

f = 0.

Dôsledok 5. Ak a je jednoduchý pól, tak lim
z→a
(z − a)f(z) = C−1.

Ak a je pól násobnosti n, tak C−1 = 1
(n−1)! limz→a

dn−1

dzn−1 [(z − a)nf(z)].

Definícia 12.

res
∞

f =
1
2πi

∫

γr

fdz

res
∞

f = −C−1

Veta 23. Ak f je holomorfná v C okrem konečného počtu singulárnych bodov, tak
k
∑

i=1

res
ai

f+

res
∞

f = 0.

Veta 24 (princíp maxima modulu). Ak f(z) 6≡ C, f ∈ H(D) (D je oblasť), tak |f(z)|
nenadobúda vo vnútri D maximum.

Definícia 13. Hovoríme, že funkcia f jemeromorfná v oblastiD, ak nemá vD iné singulárne
body ako póly a odstrániteľné singulárne body.
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Veta 25 (princíp argumentu). Nech f je meromorfná v D, G je oblasť, G ⊂ D, ∂G

neprechádza nulovými bodmi ani pólmi funkcie f . Potom N − P = 1
2Πi

∫

∂G

f ′(z)
f(z) dz, kde N je

počet nulových bodov a P je počet pólov funkcie f v oblasti G, pričom nulové body aj póly
počítame vrátane násobnosti.

No, je to očividné, že?
Valášek

4 Postupnosti a rady funkcií

Postupnosti a rady funkcií. Bodová a rovnomerná konvergencia, mocninové rady, polomer
resp. kruh konvergencie, derivovanie a integrovanie funkcionálnych postupností a radov. Tay-
lorov rad. Fourierov trigonometrický rad, postačujúce podmienky pre bodovú a rovnomernú
konvergenciu.

4.1 Kritériá konvergencie pre číselné rady

Možno nezaškodí zopakovať si aj kritériá konvergencie pre číselné rady:

Veta 1 (1. porovnávacie kritérium). Majme rady
∞
∑

n=1
an,

∞
∑

n=1
bn. Nech pre skoro všetky

n ∈ N 0 ≤ an ≤ bn. Potom ak konverguje rad
∞
∑

n=1
bn, tak konverguje aj rad

∞
∑

n=1
an.

Veta 2 (2. porovnávacie kritérium). Majme rady
∞
∑

n=1
an,

∞
∑

n=1
bn, an, bn > 0. Nech pre

skoro všetky n ∈ N
an+1

an
≤ bn+1

bn
. Potom ak konverguje rad

∞
∑

n=1
bn, tak konverguje aj rad

∞
∑

n=1
an.

∞
∑

n=1

1
np diverguje pre 0 < p ≤ 1.

Veta 3 (Cauchy). Majme rad
∞
∑

n=1
an, an ≥ 0, označme α = lim

n→∞
n
√

an. Potom

(i) ak α < 1, rad konverguje,

(ii) ak α > 1, rad diverguje,

(iii) existujú konvergentné aj divergentné rady, pre ktoré α = 1.

Veta 4 (D’Alembert). Majme rad
∞
∑

n=1
an, an > 0.

(i) Ak lim sup
n→∞

an+1

an
< 1, tak rad konverguje.

(ii) Ak pre skoro všetky n ∈ N
an+1

an
≥ 1, tak rad diverguje.

(iii) Existujú konvergentné aj divergentné rady, pre ktoré lim inf an+1

an
≤ 1 ≤ lim sup an+1

an
.

Veta 5 (Raabe). Majme rad
∞
∑

n=1
an, an > 0.
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(i) Ak existuje r > 1 také, že pre skoro všetky n ∈ N platí n
(

an

an+1
− 1

)

≥ r, tak rad

konverguje.

(ii) Ak lim sup
n→∞

n
(

an

an+1
− 1

)

< 1, tak rad diverguje.

Veta 6 (integrálne kritérium). Nech f : 〈1,∞) → R je nezáporná, spojitá, nerastúca a
F (x) je k nej primitívna funkcia na 〈1,∞). Nech f(n) = an. Ak lim

n→∞
F (x) je konečná, tak

rad
∞
∑

n=1
an konverguje, ak je rovná +∞, tak tento rad diverguje.

4.2 Bodová a rovnomerná konvergencia

Nech X a Y sú metrické priestory a f : M ⊂ X → Y je zobrazenie.

Definícia 1. Hovoríme, že postupnosť (fn(x))n∈N (bodovo) konverguje na M k funkcii f , ak
∀x ∈ M ∀ε > 0 ∃n0 ∈ N ∀n > n0 d(fn(x), f(x)) < ε, označujeme lim

n→∞
fn(x) = f(x), x ∈ M ,

alebo fn(x)
M→ f(x).

Definícia 2. Hovoríme, že postupnosť (fn(x))n∈N rovnomerne konverguje na M k funkcii
f , ak ∀ε > 0 ∃n0 ∈ N ∀n > n0 ∀x ∈ M d(fn(x), f(x)) < ε, označujeme lim

n→∞
fn(x) = f(x)

rovnomerne vzhľadom k M , alebo fn(x)
M

⇉ f(x).

Rovnomernú a bodovú konvergenciu funkcionálnych radov definujeme ako konvergenciu
postupnosti čiastočných súčtov príslušného typu. (Okrem Diniho vety a suprémového kritéria
sú tu všetky ostatné vety uvedené pre R.)

Veta 7 (suprémové kritérium).

fn(x)
M

⇉ f(x)⇔ lim
n→∞

Mn = lim
n→∞

sup
x∈M

d(fn(x), f(x)) = 0

Veta 8 (Cauchy-Bolzanov princíp).

(i) fn(x)
M

⇉ f(x) ⇔ ∀ε > 0 ∃n0 ∈ N ∀p, q > n0 |fp(x)− fq(x)| < ε

(ii)
∞
∑

n=1
un

M

⇉ ⇔ ∀ε > 0 ∃n0 ∈ N ∀n > n0 ∀m ∈ N |un+1(x) + un+2(x) + . . .+ un+m(x)| < ε

Veta 9 (Weierstrass). Ak |un(x)| ≤ An a
∑

An →, tak ∑

un(x)⇉.

Veta 10 (Diniho). Nech (fn)∞n=1 je monotónna postupnosť spojitých funkcií fn : M → R,
kde M je kompaktná podmnožina metrického priestoru X a fn bodovo konverguje k spojitej
funkcii f . Potom fn konverguje rovnomerne k f .

Lema 1 (Abelova lema, Abelova parciálna sumácia). Nech a1, a2, . . . , an, b1, b2, . . . , bn

∈ R, a1 ≤ a2 ≤ . . . ≤ an (a1 ≥ a2 ≥ . . . ≥ an) a nech |b1 + . . . + bi| ≤ B pre i = 1, . . . , n.

Potom |
n
∑

i=1

aibi| ≤ B (|a1|+ 2|an|)

Veta 11 (Dirichlet). Majme
∞
∑

n=1
an(x)bn(x), x ∈ M . Nech
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(i) ∀x ∈ M postupnosť {an(x)} je neklesajúca (nerastúca) a an(x)⇉,

(ii) ∃B > 0 ∀x ∈ M ∀n ∈ N |Bn(x)| ≤ B, pričom Bn(x) = |b1(x) + . . . + bn(x)| (tzv.
rovnomerná ohraničenosť).

Potom
∞
∑

n=1
an(x)bn(x)⇉

M

.

Veta 12 (Abel). Majme
∞
∑

n=1
an(x)bn(x), x ∈ M . Nech

(i) ∀x ∈ M postupnosť {an(x)} je neklesajúca (nerastúca) a ∃A > 0 ∀x ∈ M ∀n ∈
N |an(x)| ≤ A,

(ii)
∞
∑

n=1
bn(x)

M

⇉.

Potom
∞
∑

n=1
an(x)bn(x)

M

⇉.

Veta 13. Majme postupnosť (fn(x))∞n=1, x ∈ M , nech a ∈ R
∗ je hromadný bod M . Nech

existuje konečná lim
x→a

fn(x) =: An pre n ∈ N a nech fn(x)
M

⇉. Potom existuje konečná limita

lim
n→∞

An =: A a platí lim
x→a

f(x) = A (t.j. lim
x→a

lim
n→∞

fn(x) = lim
n→∞

lim
x→a

fn(x)).

Veta 14. Majme postupnosť (fn(x))∞n=1, x ∈ I, kde I je interval, nech fn(x) sú spojité na

I pre n ∈ N a fn(x)
I

⇉ f(x). Potom f(x) je na I spojitá.

Dôsledok 1. Majme rad
∞
∑

n=1
un(x), x ∈ I, I je interval, nech un(x) sú na I spojité pre

n ∈ N a nech
∞
∑

n=1
un(x)

I

⇉ s(x). Potom s(x) je spojitá na I.

Veta 15. Majme postupnosť (fn(x))∞n=1, x ∈ 〈a, b〉. Nech pre ľubovoľné n ∈ N je fn(x) ∈

R(〈a, b〉) (fn je riemannovsky integrovateľná na 〈a, b〉) a nech fn(x)
〈a,b〉
⇉ f(x). Potom f(x) ∈

R(〈a, b〉) a platí
b
∫

a

f(x)dx =
b
∫

a

lim
n→∞

fn(x)dx = lim
n→∞

b
∫

a

fn(x)dx

Dôsledok 2. Platí to aj pre rady.

Veta 16. Majme postupnosť (fn(x))∞n=1, x ∈ 〈a, b〉. Nech

(i) existuje x0 ∈ 〈a, b〉 také, že číselná postupnosť (fn(x0))∞n=1 konverguje,

(ii) pre všetky n ∈ N je fn(x) diferencovateľné na 〈a, b〉 a f ′
n(x)

〈a,b〉
⇉ .

Potom fn(x)
〈a,b〉
⇉ f(x), pričom f(x) je diferencovateľná na 〈a, b〉 a platí f ′(x) = lim

n→∞
f ′

n(x).

Dôsledok 3. Pre rady.
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4.3 Mocninové rady

Definícia 3. Mocninovým (potenčným) radom so stredom v bode a ∈ R nazývame rad
∞
∑

n=0
an(x − a)n, an ∈ R sú koeficienty potenčného radu.

Veta 17. Majme rad
∞
∑

n=0
an(x − a)n.

(i) Nech existuje x0 6= 0, v ktorom tento rad konverguje. Potom absolútne konverguje pre
x ∈ (−|x0|, |x0|).

(ii) Nech existuje x1 ∈ R, v ktorom tento rad diverguje alebo relatívne konverguje. Potom
diverguje pre všetky x ∈ (−∞,−|x1|) ∪ (|x1|,∞).

Veta 18. Majme rad
∞
∑

n=0
an(x − a)n, nech existuje x0 6= 0, v ktorom tento rad konverguje.

Potom existuje jediné R také, že 0 < R ≤ ∞ a pre x ∈ (−R,R) daný rad konverguje a (v
prípade R < ∞) pre x ∈ (−∞,−R) ∪ (R,∞) diverguje.

Definícia 4. Bod R, o existencii a jednoznačnosti ktorého hovorí predchádzajúca veta, sa

nazýva polomer konvergencie radu
∞
∑

n=0
an(x − a)n a interval (−R,R) sa nazýva interval

konvergencie.

Veta 19 (Cauchy-Hadamard). Majme rad
∞
∑

n=0
an(x − a)n, označme λ = lim sup

n→∞
n
√

|an|.
Potom

(i) ak 0 < λ < ∞, tak R = 1
λ
,

(ii) ak λ = 0, tak R =∞,

(iii) ak λ =∞, tak R = 0.

Veta 20. Nech 0 < R ≤ ∞ je polomer konvergencie radu
∞
∑

n=0
an(x − a)n, označme f(x) :=

∞
∑

n=0
an(x − a)n pre x ∈ (−R,R). Potom

(i) pre každé 〈a, b〉 ⊂ (−R,R) rad na 〈a, b〉 rovnomerne konverguje,

(ii) f je na (−R,R) spojitá,

(iii) f je na (−R,R) diferencovateľná a platí f ′(x) =
∞
∑

n=1
nanxn−1,

(iv) pre každé x ∈ (−R,R) f ∈ R(〈0, x〉 a platí
x
∫

0

f(t)dt =
∞
∑

n=0
an

xn+1

n+1 .

Veta 21 (Leja). Nech rad
∞
∑

n=0
an(x − a)n má polomer konvergencie R, 0 < R < ∞, nech v

bode R (resp. −R) konverguje. Potom rovnomerne konverguje na 〈0, R〉 (resp. 〈−R, 0〉).
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Definícia 5. Nech f : O(a) → R (a ∈ R) je v bode a nekonečne diferencovateľná (teda
existuje konečná derivácia v bode a ľubovoľného rádu). Taylorovým radom nazývame rad

∞
∑

n=0

f (n)(a)
n!

(x − a)n (1)

Veta 22.
∞
∑

n=0

f(n)(a)
n! (x − a)n = f(x), x ∈ I ⇔ lim

n→∞
Rn(f, x, a) = 0.

Veta 23. Majme mocninový rad
∞
∑

n=0
an(x − a)n =: f(x), x ∈ I. Potom tento rad je Taylo-

rovým radom f v bode a (an =
f(n)(a)

n! ).

Veta 24. Ak f : I → R je rozvinuteľná do potenčného radu, tak jej rozvoj je jednoznačný.

ex = 1 + x+
x2

2
+ · · ·+ xn

n!

sinx = x − x3

3!
+ · · ·+ (−1)n−1 x2n−1

(2n − 1)!

cosx = 1− x2

2!
+ · · ·+ (−1)n x2n

(2n)!

ln(1 + x) = x − x2

2
+

x3

3
+ · · ·+ (−1)n−1 x

n

n
(|x| < 1)

(1 + x)α =
∞
∑

n=0

(

α

n

)

xn

4.4 Fourierove rady

P〈a, b〉 = priestor po častiach spojitých funkcií na intervale 〈a, b〉

Na P〈a, b〉 definujeme skalárny súčin ako (f, g) =
b
∫

a

f(x)g(x)dx.

Tento skalárny súčin definuje metriku ρ(f, g) =

√

b
∫

a

(f(x)− g(x))2dx, ktorá sa tiež nie-

kedy nazýva stredná kvadratická odchýlka funkcií f a g. Ak postupnosť funkcií konverguje
k nejakej funkcii podľa tejto metriky, tak hovoríme, že táto postupnosť konverguje v strede.
Konvergencia v strede vyplýva z rovnomernej konvergencie a z konvergencie v strede zasa
vyplýva, že uvedenú postupnosť možno integrovať člen po člene.

Definícia 6. Ak (ϕn)∞n=1 je ortonormálna postupnosť funkcií z P〈a, b〉 a f ∈ P〈a, b〉, tak čísla

(f, ϕi) nazývame Fourierove koeficienty funkcie f a rad
∞
∑

n=1
ciϕi, kde ci = (f, ϕi) sa nazýva

Fourierov rad funkcie f podľa systému (ϕn).

Definícia 7. Fourierov rad podľa ortonormálneho systému funkcií 1√
2π
, cosnx√

π
, sinnx√

π
sa

nazýva trigonometrický Fourierov rad. Ak ho vyjadríme s pomocou kosínov a sínov (teda bez
normovania), tak dostaneme

f(x) ∼ 1
2
a0 +

∞
∑

n=1

(an cosnx+ bn sinnx),
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kde koeficienty sú

an =
1
π

∫ 2π

0

f(x) cosnxdx,

bn =
1
π

∫ 2π

0

f(x) sinnxdx,

pre n = 1, 2, . . . a

a0 =
1
π

∫ 2π

0

f(x).

Veta 25. Zo všetkých súčtov δn =
n
∑

k=1

dkϕk najmenšiu strednú kvadratickú odchýlku od f

má n-tý čiastočný súčet sn Fourierovho radu.

Dôsledok 4. Pre každý ortonormálny systém (ϕk) a každú funkciu f ∈ P〈a, b〉 platí

||
n

∑

k=1

ckϕk − f ||2 = ||f ||2 −
n

∑

k=1

c2k.

(ck sú Fourierove koeficienty.)

Dôsledok 5. Ak trigonometrický rad konverguje v strede k nejakej funkcii, tak jeho koefi-
cienty sú práve Fourierove koeficienty tejto funkcie.

Veta 26 (Besselova nerovnosť). Pre každý ortonormálny systém (ϕk) a každú funkciu f
platí nerovnosť

n
∑

k=1

c2k ≤ ||f ||2.

Dôsledok 6. Pre trigonometrický Fourierov rad má Besselova nerovnosť tvar

1
2
a20 +

∞
∑

n=1

(a2n + b2n) ≤
2
l

∫ a+l

a

f2(x)dx

.

Dôsledok 7. Pre Fourierove koeficienty po častiach spojitej funkcie f platí lim
n→∞

an =

lim
n→∞

bn = 0.

Definícia 8. Ortonormálny systém (ϕk) sa nazýva uzavretý , ak Fourierov rad každej funkcie
f ∈ P〈a, b〉 podľa tohto systému konverguje k nej v strede.

Veta 27 (Parsevalova rovnosť). Pre každú funkciu f ∈ P〈a, b〉 a každý uzavretý ortonor-
málny systém (ϕk) platí rovnosť

∞
∑

n=1

c2k = ||f ||2.

Definícia 9. Hovoríme, že ortonormálny systém je úplný, ak okrem nulovej funkcie neexistuje
v P〈a, b〉 žiaden iný prvok ortogonálny ku všetkým prvkom systému.

Veta 28. Každý uzavretý ortonormálny systém je úplný.

Veta 29. Dve rôzne funkcie f, g ∈ P〈a, b〉 majú rôzne Fourierove rady podľa každého úplného
(a tým skôr aj podľa každého uzavretého) ortonormálneho systému.
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Veta 30 (O rovnomernej konvergencii). Ak v uzavretom ortonormálnom systéme Fou-
rierov rad funkcie f rovnomerne konverguje na 〈a, b〉, tak jeho súčet sa rovná danej funkcii
(až na konečný počet bodov).

Veta 31. Trigonometrický rad danej funkcie f ∈ P〈0, 2π〉 má na každom intervale dĺžky
2π ten istý tvar. Ak f je párna funkcia, tak bn = 0 (koeficienty pri sínusových členoch sú
nulové), ak f je párna funkcia, tak an = 0 (koeficienty pri kosínusových členoch sú nulové).
Trigonometrický rad párnej funkcie sa nazýva kosínusový rad, trigonometrický rad nepárnej
funkcie sa nazýva sínusový rad.

Veta 32. Ak je funkcia f spojitá na intervale 〈−π, π〉 a má na 〈−π, π〉 po častiach spojitú
deriváciu a platí f(π) = f(−π), tak trigonometrický rad funkcie f konverguje rovnomerne
na intervale (−∞,∞).

Veta 33. Nech funkcia f a všetky jej derivácie až do rádu k (vrátane) sú spojité a spĺňajú
podmienky f(π) = f(−π), f ′(π) = f ′(−π), . . . f (k)(π) = f (k)(−π). Nech má funkcia na in-
tervale 〈−π, π〉 po častiach spojitú deriváciu (k+1)-vého rádu. Potom možno trigonometrický
rad funkcie f k-krát derivovať člen po člene.

Veta 34. Nech f je periodická funkcia s periódou 2π, ktorá je po častiach spojitá na intervale
〈−π, π〉. Potom n-tý čiastočný súčet jej Fourierovho radu možno vyjadriť v tvare

sn(x) =
1
π

∫ π

0

[f(x+ z) + f(x − z)]
sin(n+ 12 )z

2 sin z
2

dz.

Dôsledok 8. Ak f(x) ≡ 1, tak aj sn(x) ≡ 1, a teda

2
π

∫ π

0

sin 2n+12 z

2 sin z
2

dz = 1

pre n = 1, 2, . . ..

Veta 35 (O bodovej konvergencii Fourierovho radu). Ak sú funkcia f aj jej deri-
vácia po častiach spojité na 〈−π, π〉, tak Fourierov rad funkcie f bodovo konverguje k jej
normalizovanému (spriemerovanému) periodickému predĺženiu v každom bode x ∈ R.

Lema 2. Ak g(x) je po častiach spojitá funkcia na intervale 〈a, b〉, tak

lim
n→∞

∫ b

a

g(t) sinntdt = 0

a tiež

lim
n→∞

∫ b

a

g(t) cosntdt = 0.

Veta 36 (Diniho veta). Fourierov radu funkcie f ∈ P〈−π, π〉 konverguje v bode x k jej
normalizovanému periodickému predĺženiu, tak existuje také číslo δ > 0, že integrál

∫ δ

0

|ϕx(z)|
z

dz

konverguje. (ϕx(t) = f(x+t)+f(x−t)−2f̃(x), kde f̃ je normalizované periodické predĺženie
f .)
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Veta 37 (Fejérova veta). Ak je funkcia f(x) spojitá na intervale 〈−π, π〉 a platí f(−π) =
f(π), tak postupnosť σn(x, f), kde

σn(x, f) =
s0(x) + s1(x) + · · ·+ sn−1(x)

n

rovnomerne konverguje na celom R k periodickému predĺženiu funkcie f(x).

Veta 38 (Weierstrassova). Každú funkciu f(x) spojitú na intervale 〈−π, π〉 s vlastnosťou
f(−π) = f(π) možno na tomto intervale s ľubovoľnou presnosťou aproximovať trigonomet-
rickými polynómami.

Veta 39. Trigonometrický systém funkcií je uzavretý. To znamená, že pre každú funkciu
f ∈ P〈−π, π〉 a pre každé číslo ε > 0 stredná kvadratická odchýlka n-tého čiastočného súčtu jej
Fourierovho radu podľa trigonometrického systému je pre všetky dostatočne veľké n menšia
ako ε (||f − sn|| < ε).

Fourierove rady som písal podľa [BS].

Napísal som to veľmi zložito, pretože o tom nič neviem.
Laub

5 Riemannov integrál

Riemannov integrál jednej a viacerých premenných a jeho základné vlastnosti. Nutné a posta-
čujúce podmienky integrovateľnosti, množiny integrovateľných funkcií. Metódy výpočtu (Fu-
biniova veta, veta o transformácii.)

5.1 Definícia Riemannovho integrálu v R

O funkcii f : 〈a, b〉 → R predpokladáme, že je ohraničená.

Definícia 1. Delením intervalu 〈a, b〉 rozumieme každú konečnú množinu bodov {x0, x1,
. . . , xn}, kde a = x0 ≤ x1 ≤ . . . ≤ xn = b.
Delenie D1 sa nazýva zjemnením delenia D0, ak D0 ⊂ D1.
Označujeme di = 〈xi−1, xi〉 a ∆xi = xi − xi−1.
Norma delenia D n(D) := max{∆xi : i = 1, . . . , n}.
Horným (dolným) R-integrálnym súčtom rozumieme číslo U(f,D) =

n
∑

i=1

Mi∆xi (L(f,D)

=
n
∑

i=1

mi∆xi), pričom Mi = sup
x∈di

f(x) (mi = inf
x∈di

f(x)).

R-integrálnym súčtom rozumieme číslo S(f,D) =
n
∑

i=1

f(ti)∆xi, kde ti ∈ di je ľubovoľný

bod intervalu di.

Tvrdenie 1. Množiny {L(f,D)}D a {U(f,D)}D sú ohraničené.

Tvrdenie 2. Ak D0 je zjemnením D1, tak L(f,D1) ≤ L(f,D0) a U(f,D1) ≥ U(f,D0).

Tvrdenie 3. Ak D1,D2 sú ľubovoľné delenia intervalu 〈a, b〉, tak L(f,D1) ≤ U(f,D2).

Definícia 2 (R-integrálu). Horným Riemannovým integrálom z funkcie f na 〈a, b〉 roz-

umieme infimum horných integrálnych súčtov U(f,D), označujeme
b
∫

a

f(x)dx.
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Dolným Riemannovým integrálom z funkcie f na 〈a, b〉 rozumieme suprémum dolných

integrálnych súčtov L(f,D), označujeme
b
∫

a

f(x)dx.

Hovoríme, že f : 〈a, b〉 → R je integrovateľná v Riemannovom zmysle (má R-integrál), ak
b
∫

a

f(x)dx =
b
∫

a

f(x)dx. Ich spoločnú hodnotu nazývame Riemannovým integrálom a označu-

jeme
b
∫

a

f(x)dx.

Triedu R-integrovateľných funkcií označujeme R(〈a, b〉).

Tvrdenie 4.
∫ b

a

f(x)dx ≤
∫ b

a

f(x)dx

Tvrdenie 5. Funkcia f ∈ R〈a, b〉 ⇔ ∀ε > 0 ∃D0 U(f,D0)− L(f,D0) < ε.

Triedy integrovateľných funkcií

Tvrdenie 6. Ak f : 〈a, b〉 → R je spojitá, tak f ∈ R(〈a, b〉).

Definícia 3. Hovoríme, že množina ∅ 6=M ⊂ R má Jordanovu mieru 0, ak pre každé ε > 0
existuje konečný počet uzavretých intervalov d1 . . . di takých, že

(i)
n
∑

i=1

|di| < ε

(ii) ∀x ∈ M ∃j ∈ {1, . . . , k} tak, že x je vnútorný bod dk.

Tvrdenie 7. Nech f : 〈a, b〉 → R je spojitá na 〈a, b〉 s výnimkou bodov množiny M ⊂ 〈a, b〉.
Nech M má Jordanovu mieru 0. Potom f ∈ R(〈a, b〉).

Tvrdenie 8. Ak f : 〈a, b〉 → R je na 〈a, b〉 monotónna, tak f ∈ R〈a, b〉.

Platí to aj pre funkcie s ohraničenou variáciou, pretože tieto možno napísať ako rozdiel
dvoch neklesajúcich funkcií.

Základné vlastnosti R-integrálu

Veta 1. Ak f ∈ R〈a, b〉 a c ∈ R, tak cf ∈ R〈a, b〉 a platí
∫ b

a

cf(x)dx = c

∫ b

a

f(x)dx.

Veta 2. Ak f, g ∈ R〈a, b〉, tak f + g ∈ R〈a, b〉 a platí
∫ b

a

(f + g)(x)dx =
∫ b

a

f(x)dx+
∫ b

a

g(x)dx.

Veta 3. Nech f, g ∈ R〈a, b〉 a nech pre x ∈ 〈a, b〉 platí f(x) ≤ g(x). Potom platí

∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx.
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Veta 4. Nech f ∈ R〈a, b〉 a |f(x)| ≤ M na 〈a, b〉. Potom
∣

∣

∣

∣

∣

∫ b

a

f(x)dx

∣

∣

∣

∣

∣

≤ M(b − a).

Veta 5 (Aditívna vlastnosť integrálu). Nech funkcia f : 〈a, b〉 → R je ohraničená, majme

c ∈ R, a < c < b. Potom f ∈ R〈a, b〉 ⇔ f ∈ R〈a, c〉 ∧ f ∈ R〈c, b〉. Navyše platí:
b
∫

a

f(x)dx =

c
∫

a

f(x)dx+
b
∫

c

f(x)dx.

Veta 6. Nech f ∈ R〈a, b〉, označme m := inf
〈a, b〉

f , M := sup
〈a, b〉

f . Nech ϕ : 〈m,M〉 → R je tam

spojitá. Potom ϕ(f(x)) ∈ R〈a, b〉.
Vo všeobecnosti neplatí, že ak dve funkcie sú Riemannovsky integrovateľné, tak aj ich

zloženie bude Riemannovsky integrovateľné. (Podľa poznámok z prednášky. Presnejšie pove-
dané, podľa poznámky prednášajúceho poznačenej v poznámkach z príslušnej prednášky.)

Veta 7. Nech f, g ∈ R〈a, b〉. Potom
(i) f.g ∈ R〈a, b〉,
(ii) ak naviac inf g > 0 (pre g > 0), alebo sup g < 0 (pre g < 0), tak f

g
∈ R〈a, b〉,

(iii) |f | ∈ R〈a, b〉 a platí |
b
∫

a

f(x)dx| ≤
b
∫

a

|f(x)|dx.

Integrál ako limita integrálnych súčtov

Definícia 4. Hovoríme, že číslo A ∈ R je limitou množiny integrálnych súčtov {S(f,D)}D

pre normu delenia idúcu k 0, označujeme A = lim
n(D)→0

S(f,D), ak (∀ε > 0)(∃δ > 0)(∀D) platí

n(D) < δ ⇒ |S(f,D)− A| < ε.

Vencko poznamenal, že definíciu limity postupnosti aj tejto limity spája Mooreova-Smi-
thova definícia limity.

Veta 8. Ak f ∈ R〈a, b〉, tak existuje lim
n(D)→0

S(f,D) a platí lim
n(D)→0

S(f,D) =
b
∫

a

f(x)dx.

Naopak, ak existuje lim
n(D)→0

S(f,D), tak f ∈ R〈a, b〉 a platí lim
n(D)→0

S(f,D) =
b
∫

a

f(x)dx.

Definícia 5. Hovoríme, že postupnosť delení Dk intervalu 〈a, b〉 je normálna, ak lim
k→∞

n(Dk)

= 0.

Veta 9. Ak f ∈ R〈a, b〉, tak pre všetky normálne postupnosti (Dk)∞k=1 platí:
b
∫

a

f(x)dx =

lim
k→∞

S(f,Dk).

Veta 10. Majme f, g : 〈a, b〉 → R (ohraničené). Nech pre x ∈ 〈a, b〉 \M f(x) = g(x), pričom
M je množina s Jordanovou mierou 0. Potom

(i) buď súčasne f ∈ R〈a, b〉 aj g ∈ R〈a, b〉 a platí
b
∫

a

f(x)dx =
b
∫

a

g(x)dx,

(ii) alebo súčasne f /∈ R〈a, b〉 aj g /∈ R〈a, b〉.
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Integrál ako funkcia hornej hranice

Veta 11. Nech f ∈ R〈a, b〉. Pre x ∈ 〈a, b〉 označme F (x) :=
x
∫

a

f(t)dt. Potom

(i) F je na 〈a, b〉 spojitá,

(ii) navyše, ak je f v bode x0 spojitá, tak F je v x0 diferencovateľná a platí F ′(x0) = f(x0).

Veta 12 (Leibnitz-Newtonov vzorec). Nech f ∈ R〈a, b〉, nech F je na 〈a, b〉 primitívna

funkcia k f . Potom
b
∫

a

f(x)dx = F (b)− F (a) =: F (x)|ba.

Ak funkcia f má primitívnu funkciu, hovoríme, že je integrovateľná v Newtonovom zmysle.

Vety o strednej hodnote

Veta 13 (1.Veta o strednej hodnote). Nech f, g ∈ 〈a, b〉, nech pre x ∈ 〈a, b〉 je g(x) ≥ 0(≤

0). Označme M = sup
〈a, b〉

f , m = inf
〈a, b〉

f . Potom existuje λ ∈ 〈m,M〉 také, že
b
∫

a

f(x)g(x)dx =

λ
b
∫

a

g(x)dx.

Dôsledok 1. Ak f : 〈a, b〉 → R je spojitá na 〈a, b〉, g ∈ R〈a, b〉, g(x) ≥ 0(≤ 0), tak existuje

c ∈ 〈a, b〉
b
∫

a

fgdx = f(c)
b
∫

a

g(x)dx.

Veta 14 (2.veta o strednej hodnote). Nech f : 〈a, b〉 → R je tam monotónna, g ∈ R〈a, b〉.

Potom existuje c ∈ R〈a, b〉 také, že
b
∫

a

f(x)g(x)dx = f(a)
c
∫

a

g(x)dx+ f(b)
b
∫

c

g(x)dx.

Metódy výpočtu určitého integrálu

Veta 15 (per partes). Nech u, v : 〈a, b〉 → R sú tam spojite diferencovateľné. Potom
b
∫

a

u′(x)v(x)dx = u(x)v(x)|ba −
b
∫

a

u(x)v′(x).

Veta 16 (substitučná metóda). Nech f je spojitá na 〈a, b〉, ϕ spojite diferencovateľná na
〈α, β〉, nech ϕ(α) = a, ϕ(β) = b. Potom

b
∫

a

f(x)dx =

β
∫

α

f(ϕ(t)).ϕ′(t)dt

TODO Vencko spomenul, že tieto vety platia obecnejšie, možno to doplň.

5.2 Nevlastné jednorozmerné integrály

∫ ∞

a

f(x)dx := lim
A→∞

∫ A

a

f(x)dx
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Ak existujú
∞
∫

a

f(x)dx aj
a
∫

−∞
f(x)dx, tak

∞
∫

−∞
f(x)dx definujeme ako ich súčet.

Tiež sa definujú nevlastné integrály pre neohraničené funkcie. Pre nevlastné integrály
existujú rôzne kritériá konvergencie: Cauchy-Bolzanova podmienka, porovnávacie kritérium,
Abelove a Dirichletove kritérium - pozri [BS] alebo [GĎ].

5.3 Riemannov integrál v R
n

Integrál ohraničených funkcií s kompaktným nosičom

Ohraničené funkcie s kompaktným nosičom budeme značiť B0(R
n).

Definícia 6. Nech pre každé i = 1, . . . , n je daný konečný systém mi nadrovín αij := {x =
(x1, . . . , xn) ∈ R

n;xi = aij}, kde j = 1, . . . ,mi + 1 a ai1 < . . . < aimi
sú reálne čísla.

Zjednotenie týchto nadrovín nazývame delenie priestoru R
n.

Definícia 7. Hovoríme, že n-rozmerný interval I = J1 × · · · × Jn je polootvorený sprava, ak
každý z jednorozmerných intervalov Ji j polootvorený sprava.
Funkciu s : Rn → R nazývame elementárna s-funkcia, ak existuje delenie D(Rn) priestoru

R
n také, že funkcia s je konštantná na každom intervale delenia D(Rn). Množinu všetkých
elementárnych s-funkcií značíme Se(Rn).

Definícia 8. Horný Rbo-integrál funkcie f ∈ B0(R
n) je

(Rbo)
∫

Rn

fdV := inf{(Ls)
∫

Rn

sdV ∈ R; s ∈ Se(R
n), s ≥ f}.

Dolný Rbo-integrál funkcie f ∈ B0(R
n) je

(Rbo)
∫

Rn

fdV := sup{(Ls)
∫

Rn

rdV ∈ R; r ∈ Se(R
n), r ≤ f}.

Ls v predchádzajúcej definícii znamená integrál zo schodovitej funkcie.

Definícia 9. Funkciu f ∈ B0(R
n) nazývame riemannovsky Rbo-integrovateľná na R

n, ak
horný a dolný Rbo-integrál sú rovnaké. Spoločnú hodnotu oboch integrálov nazývame Rie-
mannov Rbo-integrál a označujeme ho (Rbo)

∫

Rn fdV . Množinu všetkých Rbo-integrovateľných
funkcií na R

n z B0(R
n) značíme Rbo(Rn).

Riemannov integrál ohraničenej funkcie f na ohraničenej množine A ⊂ R
n sa definuje

ako jej integrál cez celé R
n po dodefinovaní nulou mimo množiny A. Množinu riemannovsky

integrovateľných funkcií na množine A značíme Rb(A).

5.4 Metódy výpočtu viacrozmerných integrálov

Tieto vety sme mali formulované pre Lebesguove integrály.

Veta 17. Nech množina A ⊂ R
n je kompaktná a funkcia f : A → R je spojitá na A. Potom

(Lb)
∫

A

f(x)dVn(x) = (Lb)
∫

B

{
∫

A(x′)

f(x′, x′′)dVn−s(x′′)}dVs(x′).

Definícia 10. Nech △ ⊂ Rn je otvorená množina. Zobrazenie g : △ → Rn sa nazýva regu-
lárne, ak
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(i) g je injektívne zobrazenie,

(ii) g ∈ C1(△, Rn),

(iii) Jacobiho determinant zobrazenia g v každom bode t ∈ △ je rôzny od nuly.
Veta 18. Nech ∆ ⊂ R

n a D ⊂ R
n sú otvorené množiny a g : ∆→ D je surjektívne regulárne

zobrazenie (x = g(t)). Ak funkcia f : D → R je spojitá a množina A ⊂ D je merateľná,
potom platí

(Lc)
∫

A

f(x)dV (x) = (Lc)
∫

g−1(A)

f [g(t)]|Jg(t)|dV (t).

5.5 Pár poznámok

V skriptách [NV2] (tiež [ŠŠN, Veta 5.5.2]) je v dodatku táto pekná veta:

Veta 19. Ohraničená funkcia f : 〈a, b〉 → R je R-integrovateľná vtedy a len vtedy, ak množina
jej bodov nespojitosti má Lebesguovu mieru 0.

Ako príklad na dvojicu riemannovsky integrovateľných funkcií, ktorých zloženie nie je
riemannovsky integrovateľné, môžeme použiť funkcie f : 〈0, 1〉 → 〈0, 1〉, f(p

q
) = 1

q
, f(R\Q) =

0 (táto sa tuším volá Riemannova funkcia) a g : 〈0, 1〉 → 〈0, 1〉, g(0) = 0, g(x) = 1 pre x 6= 0.
g ◦ f je Dirichletova funkcia. R-integrovateľnosť funkcie f vyplýva z predchádzajúcej vety.
Veta 8 v [NV2] asi nie je dokazovaná dobre, správny dôkaz je v [JAR].

Čitateľ si iste rád premyslí platnosť nasledujúceho tvrdenia.
Neubrunn+Vencko

6 Parametrické integrály

Parametrické integrály, spojitosť a derivácia integrálu závislého od parametra.

Veta 1. Nech A ⊂ R
n je merateľná a B ⊂ R

m je otvorená množina a funkcia f : A×B → R

je spojitá na A×B. Predpokladajme, že existuje majoranta g ∈ L(A) taká, že |f(x, t)| ≤ g(x)
pre všetky x ∈ A, t ∈ B. Potom funkcia h : B → R s hodnotami

h(t) := (L)
∫

A

f(x, t)dVn(x)

je spojitá na B.

Veta 2. Nech A ⊂ R
n je merateľná a B ⊂ R

m je otvorená množina. Nech funkcia f : A×B →
R je spolu s parciálnymi deriváciami ∂f/∂tj, j = 1, . . . ,m (t = (t1, . . . , tn) ∈ B, x =
(x1, . . . , xn) ∈ A) spojitá na A×B a spĺňa podmienky |f(x, t)| ≤ g(x), |∂f/∂tj(x, t)| ≤ gj(x),
kde g, g1, . . . gm sú funkcie z L(A). Potom funkcia h z predchádzajúcej vety je z triedy C1(B)
a jej parciálne derivácie sú dané rovnosťou

∂h

∂tj
(t) = (L)

∫

A

∂f

∂tj
(x, t)dVn(x)

pre j = 1, . . . ,m a t ∈ b.

Na cvičeniach si to už dotvoríte.
Ďurikovič
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7 Krivkový integrál

Krivkové a plošné integrály, základné vlastnosti a výpočet.

7.1 Krivky v R
n

Definícia 1. Nech g : 〈a, b〉 → R
n je zobrazenie s hodnotami g(t) = (g1(t), . . . , gn(t)) pre

t ∈ 〈a, b〉 také, že

(i) gi ∈ C1(〈a, b〉) pre i = 1, . . . , n,

(ii) g′(t) = (g′1(t), . . . , g
′
n(t)) 6= 0 ∈ R

n pre t ∈ 〈a, b〉.

Potom zobrazenie g nazývame C1-parametrická reprezentácia na 〈a, b〉 trajektórie k = {g(t) ∈
R

n; t ∈ 〈a, b〉}.

Definícia 2. Nech g : 〈a, b〉 → R
n je C1-parametrická reprezentácia trajektórie k ⊂ R

n a
nech G : 〈α, β〉 → R je zobrazenie z triedy C1(〈α, β〉) s vlastnosťami

(i) G(α) = a, G(β) = b,

(ii) G′(τ) > 0 pre všetky τ ∈ 〈α, β〉.

Potom zobrazenie f = g ◦ G : 〈α, β〉 → R
n je C1-parametrická reprezentácia trajektórie k

ekvivalentná s g.

Definícia 3. Triedu γ všetkých ekvivalentných C1-parametrických reprezentácií g danej tra-
jektórie k ⊂ R

n budeme nazývať krivkou z R
n a g ∈ γ jej C1-parametrickou reprezentáciou.

Definícia 4. Nech g : 〈a, b〉 → R
n je C1-reprezentácia krivky γ z R

n a nech G : 〈α, β〉 → R

je zobrazenie z triedy C1(〈a, b〉) s vlastnosťami:

(i) G(α) = b, G(β) = a,

(ii) G′(τ) < 0 pre všetky t ∈ 〈α, β〉.

Potom f = g◦G : 〈α, β〉 → R
n reprezentuje opačne orientovanú krivku κ ku krivke γ. Krivku

κ označujeme −γ.

Definícia 5. Násobnosť bodu x krivky γ s parametrickou reprezentáciou g : 〈a, b〉 → R
n je

počet bodov t ∈ 〈a, b〉, pre ktoré x = g(t). Body krivky s násobnosťou 1 nazývame jednoduché
body.
Bod g(a) nazývame začiatočným a g(b) koncovým bodom krivky g. Ak g(a) = g(b), krivka

sa nazýva uzavretá.
Krivka, ktorá má iba jednoduché body sa nazýva jednoduchý oblúk. Uzavretá krivka sa

nazýva jednoduchá, ak každý jej bod je jednoduchý okrem bodu g(a), ktorý má násobnosť 2.

7.2 Dĺžka krivky a integrál 1.typu cez krivku

Definícia 6. Nech je daná krivka γ z R
n a g : 〈a, b〉 → R

n je jej C1-parametrická reprezen-
tácia. Potom dĺžka krivky γ je

V1(γ) :=
∫

γ

ds := (L)
∫ b

a

|g′(t)|dt(= (R)
∫ b

a

|g′(t)|dt).
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Definícia 7. Nech γ z R
n je krivka a g : 〈a, b〉 → R

n je jej C1-parametrická reprezentácia.
Nech funkcia F : (D ⊂ R

n)→ R, kde D je otvorená množina a γ ⊂ D, je spojitá na γ. Potom
krivkový integrál 1.typu definujeme rovnosťou

∫

γ

Fds :=
∫

γ

F (s)ds := (L)
∫ b

a

F [g(t)]|g′(t)|dt.

Množinu všetkých funkcií, pre ktoré je krivkový integrál prvého typu cez γ konečný,
budeme označovať L1(γ).

Veta 1. Nech γ je krivka z R
n, F1, F2 ∈ L1(γ) a c ∈ R. Potom

(i)
∫

γ

(F1 + F2)ds =
∫

γ

F1ds+
∫

γ

F2ds

(ii)
∫

γ

cF1ds = c
∫

γ

F1ds

(iii)
∫

γ

F1ds ≤
∫

γ

F2ds, ak F1 ≤ F2 na γ.

(iv)
∫

γ

F1ds =
∫

−γ

F1ds.

Krivkový integrál pre krivky po častiach hladké sa definuje ako súčet integrálov cez hladké
úseky.

7.3 Krivkový integrál 2.typu

Diferenciálne formy 1.stupňa

Definícia 8. Nech D ⊂ R
n je otvorená množina. Zobrazenie w : D → (Rn)∗ sa nazýva

diferenciálna forma 1.stupňa (krátko 1-forma) na D.

Definícia 9. Budeme hovoriť, že 1-forma w : (D ⊂ R
n) → (Rn)∗ je exaktná na D (D je

oblasť), ak existuje funkcia f : D → R tak, že df = w.
Hovoríme, že 1-forma je z triedy Ck(D), ak každá jej komponenta wi ∈ Ck(D) (D je

otvorená množina).

Veta 2. Nech w = w1dx1 + . . .+ wndxn je exaktná 1-forma triedy C1(D). Potom

∂wi

∂xj

=
∂wj

∂xi

,

i, j = 1, . . . n na D.

1-forma spĺňajúca podmienku z predchádzajúcej vety sa nazýva uzavretá.
Nutná podmienka z predchádzajúcej vety je v prípade jednoducho súvislej oblasti aj

postačujúca.

Definícia a vlastnosti

Definícia 10. Nech γ ⊂ R
n je po častiach hladká krivka a zobrazenie g : 〈a, b〉 → R

n je
jej C1-parametrická reprezentácia na 〈a, b〉. Ďalej nech w je spojitá 1-forma na otvorenej
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množine D ⊂ R
n, pričom v γ ⊂ D (t.j. trajektória krivky leží v D). Potom krivkový integrál

2.typu z w cez krivku γ je
∫

γ

w :=
∫

γ

w1dx1 + · · ·+ wndxn := (L)
∫ b

a

w[g(t)]g′(t) = (L)
∫ b

a

{
n

∑

i=1

wi[g(t)]g′i(t)}dt.

Veta 3. Nech γ je po častiach hladká krivka v R
n, w a ξ nech sú spojité 1-formy na otvorenej

množine D, v ktorej leží γ. Potom

(i)
∫

γ

(w + ξ)ds =
∫

γ

wds+
∫

γ

ξds

(ii)
∫

γ

(cw)ds = c
∫

γ

wds

(iii)
∫

γ1+γ2

wds =
∫

γ1

wds+
∫

γ2

wds, ak γ1, γ2 sú po častiach hladké disjunktné krivky v R
n.

(iv)
∫

−γ

wds = −
∫

γ

wds.

Veta 4. Nech D ⊂ R
n je otvorená množina a nech w je spojitá 1-forma na D. Potom

nasledujúce tri tvrdenia sú ekvivalentné:

(i) w je exaktná,

(ii) pre každú uzavretú po častiach hladkú krivku γ ⊂ D integrál
∫

γ
w = 0,

(iii) ak γ1 a γ2 sú dve ľubovoľné po častiach hladké krivky y D s tým istým začiatoņým a
koncovým bodom, potom

∫

γ1
w =

∫

γ2
w.

Fyzikálny význam krivkového integrálu 2.typu je práca v silovom poli. Krivkový integrál
1.typu možno použiť na výpočet hmotnosti, ťažiska a rôznych momentov.

7.4 Veta o divergencii

Integrály na varietach by som sem asi ani nemusel písať, však? (Možno by som aj mal,
ale sa mi nechce.:=() Aj pre integrály na varietach sú dva druhy. Pri integráloch druhého
druhu treba uvažovať aj orientáciu variety.

Definícia 11. Hovoríme, že množina D ⊂ R
n je regulárna oblasť, ak:

(i) D je otvorená a ohraničená,

(ii) pre každé x0 ∈ ∂D existuje okolie U bodu x0 a zobrazenie F : U → R F ∈ C1(U) s
gradF (x) 6= (0) pre x ∈ U pričom ∂D∩U = {x ∈;F (x) = 0}, D∩U = {x ∈;F (x) < 0}.

Definícia 12. Nech D ⊂ R
n je regulárna oblasť v R

n a ν 6= 0 je normálový vektor k ∂D v
bode x. Potom ν nazývame vonkajšou normálou v bode x ∈ ∂D, ak existuje δ > 0 tak, že
x+ tν ∈ D pre −δ < t < 0 a x+ tν ∈ R

n − D pre 0 < t < δ.

Veta 5 (Veta o divergencii, prvá verzia). Nech D ⊂ R
n je regulárna oblasť, ν(x) je

jednotkový vektor vonkajšej normály k ∂D v bode x ∈ ∂D a nech w je 1-forma z triedy
C1(D). Potom

∫

∂D

w(x).ν(x)dsn−1 = (L)
∫

D

divw(x)dVn(x),

ak oba integrály existujú. (Integrand na ľavej strane je skalárny súčin 1-kovektora z (Rn
1 )

∗ a
vektora z R

n. - Čo to ale znamená, to sa ma nepýtajte.)
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(Rn
r )

∗ sa označovala množina všetkých alternujúcich r-lineárnych zobrazení z (Rn)r do R.

Dôsledok 1. Nech sú splnené predpoklady predchádzajúcej vety, kde w = f(x).g(x)dxi.
Funkcie f, g : clD → R sú z triedy C1(clD). Potom

(L)
∫

D

f(x)
∂g

∂xi

(x)dVn(x) =
∫

∂D

f(x)g(x)vi(x)dsn−1 − (L)
∫

D

∂f

∂xi

(x)g(x)dVn(x)

Veta 6. Nech D ⊂ R
n je ohraničená otvorená množina, ktorej hranica je ∂D = A1 ∪ . . . ∪

Am ∪ E. Množiny Ak sú relatívne otvorené podmnožiny ∂D, Ak je kompaktná podmnožina
nejakej (n − 1)-variety z triedy C1 a E je kompaktná pomnožina (n − 2)-variety triedy C1,
pričom Ai∩Aj ⊂ E pre i 6= j. Ak ν(x) je jednotkový normálový vektor k Ak pre k = 1, . . . ,m
v bode x ∈ Ak a w je 1-forma z triedy C1(D), potom

(L)
∫

D

divwdVn =
m

∑

k=1

∫

Ak

w.νdsn−1

Predchádzajúca veta sa týka napríklad takých množín, ako n-rozmerný simplex a n-
rozmerná kocka.

Veta 7 (Veta o divergencii, druhá verzia). Nech D+ ⊂ R
n je regulárna oblasť s kladnou

orientáciou a s kladne orientovanou hranicou ∂D+ a w je 1-forma z triedy C1(D). Potom
∫

∂D+
w =

∫

D+
dw,

kde dw je vonkajší diferenciál formy w.

Nasledujúce tvrdenia sú špeciálne prípady vety o divergencii:

Veta 8 (Greenova veta). Označme w(x, y) =M(x, y)dx+N(x, y)dy. Potom (ak sú splnené
predpoklady vety o divergencii)

∫

∂D+
Mdx+Ndy =

∫

D+

(

∂N

∂x
− ∂M

∂y

)

dxdy.

Gauss-Ostrogradského vzorec - určuje vzťah medzi objemovým a plošným integrálom.

(L)
∫

D+

(

∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)

dV3(x, y, z) =
∫

∂D+
Pdydz +Qdzdx+Rdxdy

Stokesova veta - udáva vzťah medzi plošným a krivkovým integrálom v R
3.

Nech krivka C ohraničuje plochu S. Potom
∫

C

Pdx+Qdy +Rdz =
∫∫

S

(

∂R

∂y
− ∂Q

∂z

)

dydz +
(

∂P

∂z
− ∂R

∂x

)

dzdx+
(

∂Q

∂x
− ∂P

∂y

)

dxdy

inak:
∫

C

w =
∫∫

S

rotw

Funkcia bude ísť tam.
Fečkan

8 Lebesguov integrál

Lebesguov integrál v R
na jeho vlastnosti, porovnanie s Riemannovým integrálom.
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8.1 Merateľnosť a miera množín

TODO Na cvikách z funkcionálky s Tereščákom sme asi tiež robili Lebesguovsky merateľné
množiny, ale nenašiel som zošit.
TODO Lebesguov integrál by mal byť aj v [GĎ] na str.476 (???).
TODO Čosi o Lebesguovej miere by mohlo byť aj v Šalát: Metrické priestory.
TODO ?Fubiniho vetu aj vo formulácii pre súčin merateľných priestorov?
Na definíciu Lebesguovho integrálu treba mať najprv zavedenú Lebesguovu mieru. Jeden

prístup k zavedeniu Lebesguovej miery je pomocou indukovanej vonkajšej miery (z knihy
[RN]), iný k nemu ekvivalentný prístup použil Ďurikovič na prednáške. Najprv zavedenie
Lebesguovej miery z Riečana:

Definícia 1. Nech E ⊂ P(X), ∅ ∈ E. Nech µ : E→ R je funkcia, ktorá spĺňa podmienku

µ(∅) = 0
E1, E2 ∈ E, E1 ∩ E2 = ∅, E1 ∪ E2 ∈ E ⇒ µ(E1 ∪ E2) = µ(E1) + µ(E2). (8.1)

Potom hovoríme, že funkcia µ je aditívna množinová funkcia definovaná na E.
Ak µ spĺňa aj podmienku

En ∈ E, n = 1, 2, . . . , Ei ∩ Ej = ∅ pre i 6= j,
∞
⋃

n=1

En ∈ E⇒ µ(
∞
⋃

n=1

En) =
∞
∑

n=1

µ(En), (8.2)

tak hovoríme, že µ je σ-aditívna, alebo že je zovšeobecnená miera.
Ak je zovšeobecnená miera nezáporná, hovoríme, že je miera. Ak nadobúda len konečné

hodnoty, hovoríme o konečnej miere.

Tereščák definoval mieru tak, že namiesto podmienky µ(∅) = 0 požadoval existenciu
B ∈ S takého, že µ(B) < ∞. Obe definície sú ekvivalentné.

Definícia 2. Neprázdny systém E podmnožín X budeme nazývať okruh, ak

(i) E,F ∈ E⇒ E ∪ F ∈ E,

(ii) E,F ∈ E⇒ E \ F ∈ E,.

E sa nazýva σ-okruh, ak je okruh a platí

En ∈ E (n = 1, 2, . . .)⇒
∞
⋃

n=1

En ∈ E.

Ku ľubovoľnému systému R ⊂ P(X) existuje najmenší σ-okruh, ktorý ho obsahuje a
označuje sa σ(R).

Definícia 3. Ak R ⊂ P(X) je okruh a X ∈ R, tak R sa nazýva algebra. Ak algebra je
súčasne σ-okruh, tak sa nazýva σ-algebra.

Veta 1 (vlastnosti miery na okruhu). Nech µ je miera definovaná na okruhu R. Potom

(i) E,F ∈ E, E ⊂ F ⇒ µ(E) ≤ µ(F ) (µ je neklesajúca),

(ii) ak aspoň jedno z čísel µ(E), µ(F ) je konečné a E ⊂ F , tak µ(F \ E) = µ(F ) − µ(E).
(Tejto vlastnosti hovoríme subtraktívnosť s podmienkou konečnosti.)
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(iii) E ∈ R, En ∈ R, E ⊂
∞
⋃

n=1
En ⇒ µ(E) ≤

∞
∑

n=1
µ(En) (σ-subaditivita)

(iv) Ai ∈ S, Ai ⊂ Ai+1 pre i ∈ N ⇒ µ(
∞
⋃

i=1

Ai) = lim
n→∞

µ(Ai) (polospojitosť zdola)

(v) Ai ∈ S, Ai ⊃ Ai+1 pre i ∈ N ⇒ µ(
∞
⋂

i=1

Ai) = lim
n→∞

µ(Ai) (polospojitosť zhora)

Definícia 4. Nech R ⊂ P(X) je okruh a µ je miera na R. Pre ľubovoľnú množinu A ∈ P(X)
definujeme

µ∗(A) = inf{
∞
∑

n=1

µ(En);A ⊂
∞
⋃

n=1

En;En ∈ R, n = 1, 2, . . .} (8.3)

(pričom infimum prázdnej množiny kladieme∞). Takto definovaná množinová funkcia µ∗ na
P(X) sa nazýva vonkajšia miera indukovaná mierou µ.

Veta 2. Nech µ∗ je vonkajšia miera indukovaná mierou µ definovanou na okruhu. Potom
platí:

(i) µ∗(∅) = 0, µ∗(A) ≥ 0 pre každé A ∈ P(X),

(ii) µ∗(A) ≤ µ∗(B) pre každé A,B ∈ P(X), A ⊂ B,

(iii) µ∗(A) ≤
∞
∑

n=1
µ∗(An), ak A ⊂

∞
⋃

n=1
An,

(iv) ak En ∈ R, tak µ∗(E) = µ(E).

Definícia 5. Nech µ∗ je množinová funkcia definovaná na P(X) a nadobúdajúca hodnoty v
R, ktorá spĺňa podmienky (i)–(iii) z predchádzajúcej vety. Potom hovoríme, že µ∗ je vonkajšia
miera.

Definícia 6. Nech µ∗ je ľubovoľná vonkajšia miera na P(X). Množina E ∈ P(X) sa na-
zýva µ∗-merateľná (alebo tiež µ∗-merateľná v zmysle Caratheodoryho), ak pre ľubovoľné dve
množiny P ⊂ E, Q ⊂ E′ platí

µ∗(P ∪ Q) = µ∗(P ) + µ∗(Q). (8.4)

Vidno, že je to ekvivalentné s podmienkou, že pre ľubovoľné A ∈ P(X) platí:

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ E′), (8.5)

z čoho ďalej vyplýva, že ∅ aj X sú vždy µ∗-merateľné.
Systém všetkých µ∗-merateľných množín budeme značiť Sµ∗ .

Veta 3 (Caratheodoryho). Systém Sµ∗ je algebra a µ∗ je vonkajšia miera na P(X).
Systém Sµ∗ je σ-algebra a µ∗ je miera na Sµ∗ .

Veta 4. Nech µ∗ je vonkajšia miera, indukovaná mierou µ, definovanou na okruhu R. Potom
Sµ∗ ⊃ σ(R).

Z predchádzajúcej vety vyplýva, že platí:

Veta 5 (o rozšírení miery). Nech µ je miera definovaná na okruhu R. Potom existuje
miera µ1 na najmenšom σ-okruhu σ(R) nad okruhom R, ktorá je rozšírením mieru µ.
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Definícia 7. Miera µ definovaná na okruhu R sa nazýva σ-konečná, ak pre každé E ∈ R
existuje postupnosť (En)∞n=1 množín z R taká, že E ⊂

∞
⋃

n=1
En a µ(En) < ∞.

Veta 6. Nech µ je σ-konečná miera definovaná na okruhu R. Potom existuje práve jedno
rozšírenie miery µ z R na σ(R).

Definícia 8. Znakom <T ) označujeme systém všetkých zľava uzavretých, sprava otvorených
intervalov.

s(<T )) označíme systém obsahujúci prázdnu množinu a konečné zjednotenia intervalov z
<T ). Systém s(<T )) je okruh.
Lema 1. Nech l je množinová funkcia definovaná na okruhu s(<T )) takto: l(∅) = 0 a
l(

⋃n
i=1〈ai, bi)) =

∑n
i=1(bi − ai), ak intervaly 〈ai, bi) sú navzájom disjunktné. Potom l je

miera na s(<T )).
Najmenší σ-okruh, ktorý obsahuje s(<T )), už musí obsahovať všetky otvorené, uzavreté

aj všetky borelovské množiny.

Definícia 9. Vonkajšiu mieru l∗ indukovanú mierou l na s(<T )) nazývame Lebesguova miera.
Systém l∗-merateľných množín označujeme L a zúženie l∗ na L značíme λ.

Veta 7. Jediná miera µ na systéme B(R) všetkých borelovských množín, pre ktorú platí
µ〈a, b) = b − a pre všetky a, b ∈ R sa na B(R) zhoduje s Lebesguovou mierou.

Tvrdenie 1. Lebesguova miera je úplná a σ-konečná. (Miera je úplná, ak všetky podmnožiny
množín s nulovou mierou sú merateľné.)

Veta 8. Nech E ∈ L a ε > 0. Existuje taká otvorená množina G ⊃ E a taká uzavretá
množina F ⊂ E, že λ(G \ E) < ε, λ(E \ F ) < ε.

Dôsledok 1. Ku každej množine E ∈ L existuje množina G0 typu Gδ (t.j. G0 je prienikom
postupnosti otvorených množín) a množina F0 typu Fσ (t.j. F0 je zjednotením postupnosti
uzavretých množín), že G0 ⊃ E ⊃ F0 a λ(G0 \ E) = λ(E \ F0) = 0.

Tvrdenie 2. Každá spočítateľná množina má Lebesguovu mieru 0.

Podobne, ako sme definovali s(〈T )), možno definovať s(〈T )2).
Definícia 10. E ⊂ R

2 patrí do s(〈T )2) práve vtedy, keď E = ∅, alebo E =
⋃n

i=1〈ai, bi) ×
〈ci, di), kde 〈ai, bi), 〈ci, di) ∈ <T ). Vyjadrenie množiny E možno voliť tak, že dvojrozmerné
intervaly, ktoré v ňom vystupujú budú disjunktné.

l(2)(∅) = 0 a l(2)(
⋃n

i=1〈ai, bi)× 〈ci, di)) =
∑n

i=1(bi − ai)(di − ci).

Zavedenie Lebesguovej miery vo viacrozmere bolo v [RN] ponechané ako cvičenie a má
sa urobiť analogicky ako v jednorozmernom prípade.
Ďurikovič zavádza Lebesguovu mieru trochu inak - začne vlastne tak, že ju definuje pre

ohraničené otvorené a kompaktné množiny. Z doteraz uvedených viet vyplýva (podľa mňa),
že bude takto zavedená miera rovnaká.

Definícia 11. Množina I ⊂ R
n sa nazýva n-rozmerný interval v R

n, ak I je karteziánsky
súčin 1-dimenzionálnych nedegerovaných intervalov s n-činiteľmi, t.j. I = J1 × . . . × Jn, kde
koncové body intervalu Ji sú rôzne reálne čísla pre i = 1, . . . , n.
Súčin dĺžok intervalov J1, . . . , Jn nazývame n-rozmerná miera intervalu I a označujeme

V I(I) > 0.
Interval I nazývame uzavretý (otvorený), ak každý z intervalov J1, . . . , Jn je uzavretý

(otvorený).
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Definícia 12. Nech pre každé i = 1, . . . , n je daný konečný systém mi nadrovín αij :=
{x = (x1, . . . , xn) ∈ R

n;xi = aij}, kde j = 1, . . . ,mi + 1 a ai1 < . . . < aimi
sú reálne čísla.

Zjednotenie týchto nadrovín nazývame delenie priestoru R
n.

Hovoríme, že delenie D1(R
n) je zjemnením delenia D(Rn), ak D(Rn) ⊂ D1(R

n).

Definícia 13. Množinu Y ⊂ R
n nazývame s-množina (jednoduchá alebo elementárna mno-

žina), ak existuje také delenieD(Rn) a p ∈ N, že Y je zjednotenie konečného počtu uzavretých

intervalov I1, . . . , Ip generovaných delením D(Rn), t.j. Y =
p
⋃

i=1

Ii.

Miera s-množiny Y je definovaná rovnosťou V s(Y ) := V I(I1) + . . .+ V I(Ip) ∈ R
+.

Veta 9. Hodnota miery V s(Y ) závisí iba od Y a nezávisí od výberu delenia, ktoré generuje
Y .

Dôsledok 2. Množina Sn všetkých schodovitých množín z R
na prázdna množina tvorí okruh

množín. Naviac pre Y,Z ∈ Sn platí, že Y ∩ Z ∈ Sn ∪ {∅} a V s(Y ∪ Z) ≤ V s(Y ) + V s(Z).

Definícia 14. Nech G ⊂ R
n je otvorená neprázdna množina. Potom miera množiny G je

V o(G) := sup
Y

{V s(Y ) ∈ R
+;Y ∈ Sn, Y ⊂ G}.

Ak K ⊂ R
n je kompaktná množina, tak je mieru definujeme rovnosťou:

V c(K) := inf
Z
{V s(Z) ∈ R

+;Z ∈ Sn;K ∈ IntZ}.

Lema 2. Nech Z ∈ Sn. Potom V o(IntZ) = V s(Z) a ak Z je kompaktná, tak V c(Z) = V s(Z).

Pre ohraničenú množinu sa miera vybuduje aproximatívne, zdola pomocou kompaktných
a zhora pomocou otvorených množín.

Definícia 15. Nech A ⊂ R
n je ohraničená množina. Vonkajšiu mieru množiny A definujeme

rovnosťou
V b(A) := inf

G
{V o(G) ∈ R

+;G ∈ On, A ⊂ G} ≥ 0.

a vnútornú mieru rovnosťou

V b := sup
K

{V c(K) ∈ R
+;K ∈ Cn,K ⊂ A} ≥ 0.

Tvrdenie 3. Nech A ⊂ B sú ohraničené množiny z Rn. Potom V b(A) ≤ V b(A), V b(A) ≤
V b(B) a V b(A) ≤ V b(B).

Definícia 16. Nech A ⊂ R
n je ohraničená množina. Hovoríme, že A je b-merateľná, ak

platí V b(A) = V b(A). Spoločnú hodnotu vnútornej a vonkajšej miery množiny A nazývame
n-rozmerná miera množiny A a značíme ju V b(A).

Opäť možno ukázať, že pre kompaktné a otvorené množiny nová definícia miery splýva s
pôvodnou.

Veta 10. Systém ohraničených b-merateľných podmnožín R
n tvorí okruh, ktorý je navyše

uzavretý na konečné prieniky.

Definícia 17. Neohraničená množina A ⊂ Rn sa nazýva u-merateľná, ak ohraničená množina
A ∩ Br je b-merateľná pre každé r > 0. (Br je otvorená guľa s polomerom r.)
Mieru neohraničenej množiny definujeme rovnosťou V u(A) := lim

r→∞
V b(A ∩ Br).

Veta 11. Systém merateľných množín tvorí σ-algebru, ktorá obsahuje všetky otvorené mno-
žiny. V je miera na tejto σ-algebre.
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8.2 Merateľné funkcie

Definícia 18. Nech X je množina a S je nejaký okruh jej podmnožín. Usporiadanú dvojicu
(X,S) nazývame merateľný priestor. Ak na S je definovaná nejaká miera, tak usporiadanú
trojicu (X,S, µ) nazývame priestor s mierou. Množinu E ⊂ X, ktorá E ∈ S nazývame
merateľná množina (S-merateľná množina).

Definícia 19. Nech (X,S) je merateľný priestor. Budeme hovoriť, že reálna funkcia f(x)
definovaná na X je merateľná na merateľnom priestore (X,S), ak pre ľubovoľnú otvorenú
množinu G ⊂ R je f−1(G) ∈ S.

Veta 12. Funkcia f je merateľná práve vtedy, keď množina f−1(c,∞〉 (f−1〈c,∞), f−1(−∞, c〉,
f−1(−∞, c)) je merateľná pre každé c ∈ R.

Úplne rovnako sa definujú merateľné funkcie aj v prípade, že namiesto R vystupuje ľubo-
voľný topologický priestor. (Teda vzor otvorenej je merateľná.)

Tvrdenie 4. Nech (X,S) je merateľný priestor, (Y, T Y ) a (Z, T Z) sú topologické priestory.
Ak f : X → Y je merateľná funkcia a g : Y → Z je spojité zobrazenie, tak g ◦ f je merateľná
funkcia.

Tvrdenie 5. Nech f, g : X → R sú merateľné a Φ: R
2 → R je spojité. Potom funkcia

Ψ(f, g)(x) = Φ(f(x), g(x)) je merateľná.

Definícia 20. Nech E1, . . . , En sú množiny z S. Nech Ei ∪ Ek = ∅ pre i 6= k. Funkciu
n
∑

i=1

ciχEi
nazývame jednoduchou merateľnou funkciou.

Tvrdenie 6. Ku každej merateľnej funkcii existuje postupnosť (fn(x))∞n=1 jednoduchých me-
rateľných funkcií tak, že f(x) = lim

n→∞
fn(x). Ak f(x) ≥ 0 tak existuje takáto neklesajúca

postupnosť.

Tvrdenie 7. Ak funkcie f , g sú merateľné, tak funkcia h(x) = max{f(x), g(x)} je tiež
merateľná.
Ak funkcie f1, f2, . . . sú merateľné a g(x) = sup{f1, f2, . . .}, h(x) = inf{f1, f2, . . .}, tak

funkcie g a h sú merateľné.
Ak funkcie f1, f2, . . . sú merateľné a g(x) = lim sup

k→∞
fk, h(x) = lim inf

k→∞
fk, tak funkcie g a

h sú merateľné.

Definícia 21. Jednoduchú merateľnú funkciu budeme nazývať f(x) =
n
∑

i=1

ciχEi
(x) jednodu-

chou integrovateľnou funkciou, ak µ(Ei) < ∞ pre všetky i, pre ktoré ci 6= 0. Číslo
n
∑

i=1

ciµ(Ei)

budeme nazývať integrálom funkcie f .

Definícia 22. Integrálom z nezápornej merateľnej funkcie f nazývame číslo
∫

fdµ, ktoré
dostaneme ako limitu postupnosti (

∫

fn(x)dµ)∞n=1, kde (fn(x))∞n=1 je neklesajúca postup-
nosť jednoduchých merateľných funkcií konvergujúca k f(x). (Hodnota integrálu nezávisí od
výberu postupnosti.)

Definícia 23. Integrálom z merateľnej funkcie f(x) nazývame číslo,
∫

f(x)dµ =
∫

f1(x)dµ−
∫

f2(x)dµ, kde f1(x) =
f+|f |
2 a f2(x) =

|f |−f

2 , za predpokladu, že aspoň jedno z čísel∫

f1(x)dµ,
∫

f2(x)dµ je reálne.
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Vlastnosti Lebesguovho integrálu:
∫

(f + g)dµ =
∫

fdµ+
∫

gdµ

∫

cfdµ = c

∫

fdµ

f ≤ g ⇒
∫

fdµ ≤
∫

gdµ

∫

|f + g|dµ ≤
∫

|f |dµ+
∫

|g|dµ

|
∫

fdµ| ≤
∫

|f |dµ

Veta 13. Merateľná funkcia f(x) je integrovateľná (=má konečný integrál) práve vtedy, keď
|f(x)| je integrovateľná.
Túto vlastnosť Riemannov integrál nemá. Kontrapríklad je funkcia χQ∩〈0, 1〉 − χ〈0, 1〉\Q.

Veta 14. Ak f(x) je merateľná funkcia a g je merateľná funkcia a ak |f | ≤ g, potom f(x)
je integrovateľná.

Veta 15 (Beppo-Leviho veta). Nech (fn(x))∞n=1 je neklesajúca postupnosť nezáporných
merateľných funkcií konvergujúca k funkcii f(x), potom

∫

fdµ = lim
n→∞

∫

fndµ. (Inak povedané
∫

lim
n→∞

fndµ = lim
n→∞

∫

fndµ.)

Dôsledok 3. Nech (fn(x))∞n=1 je postupnosť nezáporných merateľných funkcií. Potom pre

f =
∞
∑

n=1
fn platí

∫

fdµ =
∑∞

n=1

∫

fndµ.

Veta 16 (Fatouova lema). Ak (fn(x))∞n=1 je postupnosť nezáporných merateľných funkcií
a ak f = lim

n→∞
fn, potom

∫

fdµ ≤ lim inf
n→∞

∫

fndµ.

Veta 17 (Lebesguova veta). Nech (fn(x))∞n=1 je postupnosť merateľných funkcií, ktorá
konverguje podľa miery (alebo skoro všade) k funkcii f(x). Nech g(x) je integrovateľná funkcia
a nech |fn| ≤ g. Potom f je integrovateľná funkcia a platí:

∫

fdµ =
∫

lim
n→∞

fndµ = lim
n→∞

∫

fndµ.

Konvergencia podľa miery znamená, že lim
n→∞

µ({x : |fn(x)−f(x)| ≥ ε}) = 0. Konvergencia
podľa miery vyplýva z konvergencie skoro všade.

8.3 Lebesguov integrál

Definícia 24. Integrál podľa Lebesguovej miery nazývame Lebesguovým integrálom.

Takisto sa však zvykne Lebesguovým integrálom nazývať aj spôsob, ktorým sme definovali
integrál na ľubovoľnom priestore s mierou.

Veta 18. Ak je ohraničená funkcia f riemannovsky integrovateľná na intervale 〈a, b〉, potom
je lebesguovsky integrovateľná na 〈a, b〉 a Riemannov integrál sa rovná Lebesguovmu integrálu.
Literatúra týkajúca sa miery a integrálu: [RN], [Ď], [MEM], [ND], [ŠŠN], [Q], [FR].

Čo mi to tu vzniklo?
Ďurikovič
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9 Metrické priestory

Metrické priestory, úplné a kompaktné priestory. Banachova veta o pevnom bode. Aplikácie.
Táto kapitola je spracovaná podľa [ŠŠN]. Sú tam aj nejaké veci, ktoré sme nebrali.

9.1 Metrické priestory

Definícia 1. Nech X je množina a d : X×X → R. Potom (X, d) sa nazýva metrický priestor
s metrikou d, ak:

(i) d(x, y) ≥ 0 a d(x, y) = 0⇔ x = y

(ii) d(x, y) = d(y, x)

(iii) d(x, z) ≤ d(x, y) + d(y, z) (trojuholníková nerovnosť)

Konvergencia postupnosti v metrickom priestore: lim
n→∞

xn = x ⇔ lim d(xn, x) = 0.

Gule v metrickom priestore tvoria bázu topológie. V tejto topológii sú uzavreté práve
množiny, ktoré obsahujú všetky limity konvergentných postupností svojich prvkov. Topológia
určená metrikou je hausdorffovská. Každý bod má spočítateľnú bázu okolí (priestor spĺňa
1. axiómu spočítateľnosti).
V ľubovoľnom topologickom priestore z existencie spočítateľnej bázy vyplýva separabilita

priestoru. V metrických priestoroch to platí aj naopak:

Tvrdenie 1. Ak metrický priestor (X, d) je separabilný, tak je aj priestorom so spočítateľnou
bázou topológie.

9.2 Úplné metrické priestory

Definícia 2. Postupnosť (xn)∞n=1 prvkov metrického priestoru X je fundamentálna, ak k
ľubovoľnému ε > 0 existuje n0 ∈ N také, že pre ľubovoľné m,n > n0 platí d(xm, xn) < ε.
Metrický priestor nazveme úplným, ak každá fundamentálna postupnosť prvkov priestoru

X konverguje v X.

Veta 1 (Cantorova veta). Nech (X, d) je metrický priestor. Potom X je úplný práve
vtedy, keď pre každú nerastúcu postupnosť neprázdnych uzavretých podmnožín s vlastnosťou

diamAn → 0 pre n → ∞ obsahuje
∞
⋂

n=1
An práve jeden bod.

Definícia 3. Podmnožina A topologického priestoru X sa nazýva množina prvej Bairovej

kategórie (v X), ak existujú také množiny An ⊂ X (n ∈ N) riedke v X, že A =
∞
⋃

n=1
An. Ak

množina A ⊂ X nie je prvej Bairovej kategórie v X, tak sa nazýva množinou druhej Bairovej
kategórie.

Veta 2 (Bairova veta). Nech (X, d) je úplný metrický priestor, X 6= ∅. Potom X je
množina druhej Bairovej kategórie v X.

Veta 3 (Bairova veta o hustote). Nech (X, d) je úplný metrický priestor a nech X 6= ∅.
nech Xk ⊂ X (k ∈ N) sú riedke množiny. Potom množina X \

∞
⋃

k=1

Xk je hustá v X.

Definícia 4. Zúplnenie metrického priestoru X je taký úplný metrický priestor Y , že X je
podpriestor Y a X = Y (X je hustá podmnožina Y ).
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Veta 4. Každý metrický priestor má zúplnenie, toto zúplnenie je jediné až na izometriu.

Tvrdenie 2. Nech X je úplný metrický priestor a Y ⊆ X je jeho podpriestor. Potom Y je
úplný metrický priestor ⇔ Y je uzavretá množina v X.

9.3 Kompaktné metrické priestory

Definícia kompaktného topologického priestoru je v otázke číslo 11.

Definícia 5. Topologický priestor sa nazýva sekvenciálne kompaktný, ak každá postupnosť
má konvergentnú podpostupnosť.

Veta 5. Nech (X, d) je kompaktný metrický priestor. Potom sú ekvivalentné tieto výroky:

(i) (X, d) je kompaktný,

(ii) (X, d) je sekvenciálne kompaktný,

(iii) (X, d) je úplný a totálne ohraničený (totálne ohraničený znamená, že pre každé ε > 0
existuje konečná ε-sieť),

(iv) Každá nekonečná podmnožina priestoru (X, d) má hromadný bod. (V knihe [NS] tomu
hovoria, že (X, d) má tzv. Bolzanovu-Weierstrassovu vlastnosť.)

V [BS] sa definuje totálne ohraničený priestor ako taký, že z každej postupnosti sa dá
vybrať fundamentálna podpostupnosť. Je to ekvivalentné s definíciou pomocou ε-sietí.

Veta 6 (Cantorova veta). Nech (X, d) je metrický priestor. Nasledujúce podmienky sú
ekvivalentné:

(i) X je kompaktný.

(ii) Nech Fk (k ∈ N) sú neprázdne uzavreté množiny v X. Nech F1 ⊃ F2 ⊃ . . . ⊃ Fk ⊃
Fk+1 ⊃ . . .. Potom

∞
⋂

k=1

Fk 6= ∅.

(Ak sa nemýlim, tak toto by malo platiť pre topologické priestory všeobecne.)

V priestore spojitých funkcií na kompaktnej množine charakterizuje kompaktné podmno-
žiny Ascoliho lema. Je tu uvedená najprv vo formulácii z [ŠŠN] (v takomto znení ju používal
Medveď pri dôkaze Peanovej vety) a vo verzii, ktorú sme mali s Tereščákom.

Definícia 6. Nech F je množina funkcií f : A → Y , A ⊂ X. (X, Y - metrické priestory.) F
je rovnomocne spojitá, ak ∀ε > 0 ∃δ > 0 ∀x, x′ ∈ A ∀f ∈ F d(x, x′) < δ ⇒ f(x′) < ε.

Rovnomocná spojitosť je teda niečo ako rovnomerná spojitosť, pričom δ nezávisí od f .

Veta 7 (Ascoliho lema). Nech A ⊂ X je kompaktná podmnožina, Y je úplný metrický
priestor a nech F je množina funkcií f : A → Y spojitých na A. Potom sú nasledovné výroky
sú ekvivalentné.

(i) F je rovnomerne ohraničená a rovnomocne spojitá.

(ii) Každá postupnosť prvkov z F obsahuje rovnomerne konvergentnú podpostupnosť.

Veta 8. Nech A je kompaktný a Y úplný metrický priestor. F ⊂ C(A, Y ) je kompaktná ⇔
F je uzavretá, pre každé x ∈ A je {f(x) : f ∈ F} kompaktná a F je rovnomocne spojitá.
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9.4 Banachova veta o pevnom bode

Uvažujme o funkcii f : A → A, A ⊂ X, X je metrický priestor.

Definícia 7. Bod x0 ∈ A, pre ktorý platí f(x0) = x0, nazývame pevný bod funkcie f .

Definícia 8. Hovoríme, že funkcia f : A → Y , A ⊂ X, spĺňa na množine A Lipschitzovu
podmienku, ak d(f(x1), f(x2)) ≤ Ld(x1, x2). Ak funkcia f : A → A spĺňa Lipschitzovu pod-
mienku s konštantou L takou, že 0 < L < 1, nazývame kontraktívnou alebo kontrakciou.

Veta 9 (Banachova veta o pevnom bode). Nech (X, d) je úplný metrický priestor. Nech
f : X → X je kontrakcia. Potom f má práve jeden pevný bod. Tento pevný bod možno získať
ako limitu postupnosti (xn)∞n=1 = (f(xn−1))∞n=1, kde x1 je ľubovoľný bod z X.
Navyše platí odhad d(x0, xn) ≤ Ln−1

1−L
d(x2, x1), kde x0 = lim

n→∞
xn je pevný bod f .

Aplikácie Banachovej vety o pevnom bode

Nevedel som celkom, čo by tu ešte mohlo byť okrem toho, čo robil Medveď na difkách,
tak som sem odpísal nejaké veci z [ŠŠN].

Hľadanie koreňa

Ak f : 〈a, b〉 → R, 0 < K1 ≤ f ′(x) ≤ K2 na 〈a, b〉, tak f má v 〈a, b〉 koreň.
F (x) = x − λf(x). F (x) = x ⇔ x je koreň f . Vhodnou voľbou λ dosiahneme kontraktívnosť
zobrazenia F .

Existencia riešenia diferenciálnej rovnice

Nech P = 〈x0, x0 + a〉 × R, f : P → R je spojitá na P a spĺňa Lipschitzovu podmienku
vzhľadom na y

|f(x, y1)− f(x, y2)| ≤ L|y1 − y2|,
L ≥ 0. Potom začiatočná úloha

y′ = f(x, y), y(x0) = y0

má práve jedno riešenie a toto riešenie existuje na intervale J = 〈x0, x0 + a〉.
y0 je riešením uvedenej začiatočnej úlohy práve vtedy, keď je pevným bodom funkcionálu

T : C(J)→ C(J)

(Ty)(x) = x0 +
∫ x

x0

f(t, y(t))dt.

Ak definujeme na C(J) normu vzťahom ‖y‖ = maxx∈J{|y(x)|.e−2Lx}, tak získame Bana-
chov priestor a T je na ňom kontraktívny.
Poznámka pisateľa paškvilu: Mohlo by sa možno zdať, že takýmto použitím Banachovej

vety sme odvodili lepší výsledok, ako na prednáške z ODR, kde sme vyslovili vetu, ktorá
hovorila iba to, že existuje nejaký interval, na ktorom existuje riešenie. V skutočnosti dĺžka
intervalu v dôkaze tejto vety závisela iba od konštanty L a nie od bodu t0, teda aj pri
tomto dôkaze vieme predĺžiť riešenie na celý interval, na ktorom je funkcia lipschitzovská.
(Za predpokladu, že riešenie „nevybehneÿ z oblasti D.)
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Existencia implicitnej funkcie

Veta 10 (Veta o implicitnej funkcii). Nech A = (x0, y0) ∈ R
2. Nech O(A) ⊂ R

2 je
kruhové okolie bodu A. Nech F (x, y) a ∂F (x,y)

∂y
= Fy(x, y) sú spojité reálne funkcie na O(A).

Nech ďalej F (x0, y0) = 0 a Fy(x0, y0) 6= 0. Potom existujú také čísla ξ, η > 0, že rovnicou
F (x, y) = 0 je na intervale J = 〈x0 − ξ, x0 + ξ〉 definovaná jediná spojitá funkcia f : J → R,
že f(x0) = y0, F (x, f(x)) = 0 a |f(x)− y0| ≤ η pre každé x ∈ J .

B = {g ∈ C(J) : g(x0) = y0, |g(x)− y0| ≤ η pre každé x ∈ J}
d(g1, g2) = max

J
|g1(x)− g2(x)|

d je metrika na B a (B, d) je úplný metrický priestor
(Tg)(x) = g(x)− 1

K
F (x, g(x)), kde K je také, že Fy < K na oblasti D, D je také okolie, že

Fy 6= 0 na D.

Zovšeobecnenia Banachovej vety

Veta 11. Nech (X, d) je úplný metrický priestor a nech operátor T : X → X je taký, že Tn

pre nejaké n ∈ N je kontraktívny operátor. Potom T má v X práve jeden pevný bod.

Veta 12. Nech X je Banachov priestor. Nech x0 ∈ X je daný prvok. Nech S : X → X je
lineárny ohraničený operátor a nech

∞
∑

n=1

‖Sn‖ < ∞.

Potom operátor
T (x) = x0 + S(x)

má práve jeden pevný bod.

Hustá polievka je taká, že kdekoľvek naberiem,
bude nejaký rezanec.

Hustá prednáška je taká, že kamkoľvek pozriem
je nejaké tvrdenie, ktorému nerozumiem.
Tereščák - pri definícii hustej množiny

10 Banachov a Hilbertov priestor

Lineárny normovaný priestor, Banachov priestor, Hilbertov priestor. Lineárne spojité operá-
tory a funkcionály. Veta o reprezentácii lineárneho ohraničeného funkcionálu v Hilbertovom
priestore.

Lineárny normovaný priestor

Definícia 1. Lineárny priestor X s funkciou ‖·‖ : X → R spĺňajúcou

(i) ‖x‖ ≥ 0, ‖x‖ = 0 ⇔ x = 0,

(ii) ‖λx‖ = |λ|‖x‖,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖
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nazývame lineárny normovaný priestor.

Definícia 2 (Hamelova báza). Nech X je lineárny priestor. Potom lineárne nezávislú
množinu H ⊂ X nazývame bázou v X, ak [H] = X (lineárny obal H je celé X).

Veta 1. Každý netriviálny lineárny priestor má Hamelovu bázu. Ľubovoľné dve bázy majú
rovnakú kardinalitu. Kardinalita ľubovoľnej bázy sa nazýva dimenzia lineárneho priestoru.

Veta 2 (Hahn-Banach). Nech X je lineárny priestor, K uzavretá konvexná množina, A0
je afinný podpriestor, nepretínajúci K. Potom existuje nadrovina A obsahujúca A0 nepretí-
najúca K.

Tvrdenie 1. Nech X je lineárny priestor a l : X → R lineárny funkcionál. Potom nasledujúce
podmienky sú ekvivalentné.

(i) l je spojitý,

(ii) ∀r > 0 ∃c > 0 |l(x)| ≤ c ∀x ∈ B(0, r),

(iii) ∃C > 0 |l(x)− l(y)| ≤ C‖x − y‖,

(iv) xn → 0 ⇒ l(xn)→ 0,

(v) xn → x ⇒ l(xn)→ l(x).

Tvrdenie 2. Nech X je lineárny normovaný priestor. Potom ak l1, l2 sú spojité lineárne
funkcionály, tak aj l1 + l2 a λl1 sú spojité lineárne funkcionály. Teda množina všetkých li-
neárnych spojitých funkcionálov na X označovaná ako X∗ a nazývaná duál X je lineárny
priestor s normou ‖l‖ = sup

x∈B(0,1)

|l(x)|. X∗ s touto normou je Banachov priestor.

Veta 3 (Hahn-Banach). Nech X je lineárny normovaný priestor, Y je jeho lineárny pod-
priestor a l0 : Y → R lineárny a na Y spojitý funkcionál s normou na Y označenou ‖l0‖.
Potom existuje L ∈ X∗ taký, že L|Y = l0 a ‖L‖ = ‖l0‖.

Tvrdenie 3. Nech X je lineárny normovaný priestor. Potom zobrazenie χ : X × X∗ → R

definované ako χ(v, l) = l(v) je bilineárne a platí |χ(v, l)| ≤ ‖l‖|v|, pre l ∈ X∗, v ∈ X. Ďalej
zobrazenie i : X → X∗∗ definované ako i(v) := χ(v, ·) je lineárne injektívne a zachovávajúce
normu, t.j. |v| = ‖i(v)‖.

Tvrdenie 4. Nech X je lineárny normovaný priestor a l je lineárny funkcionál na X. Potom
l je spojitý práve vtedy, keď l−1(0) je uzavretá množina. 0 6= l je nespojitý práve vtedy, keď
uzáver l−1(0) je X.

Definícia 3. Nech X je lineárny normovaný priestor. Potom hovoríme, že postupnosť xm

konverguje slabo k x (a značíme xm ⇀ x), ak pre každý l ∈ X∗ platí l(xm) → l(x) pre
m → ∞. Hovoríme, že postupnosť konverguje silne, ak konverguje k x v norme.

Definícia 4. Nech X je lineárny normovaný priestor a i : X → X∗∗ kanonické vloženie. Ak
i je bijekcia, hovoríme, že X je reflexívny priestor.

X je reflexívny práve vtedy, keď z každej postupnosti ohraničenej v norme sa dá vybrať
slabo konvergentná podpostupnosť. (Eberlejn-Šmuljan)

Dôsledok 1. Nech X 6= {0} je lineárny priestor a v ∈ X. Potom existuje l ∈ X∗; l(v) = ‖v‖,
‖l‖ = 1.
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Tvrdenie 5 (Baire). Nech (M,d) je úplný metrický priestor a Gi, i ∈ N je systém otvore-

ných a hustých podmnožín v M . Potom
∞
⋂

i=1

Gi je hustý v M .

Veta 4 (Banach-Steinhaus - princíp rovnomernej ohraničenosti). Nech X, Y sú
lineárne normované priestory a An je postupnosť An ∈ L(X,Y ), n ∈ N. Potom buď {x ∈
X : sup‖Anx‖ = ∞} je prienik spočítateľného systému otvorených a hustých podmnožín X
alebo existuje C > 0 také, že ‖An‖ ≤ C pre všetky n ∈ N.

Tvrdenie 6. Nech X je Banachov priestor a ln ∈ X∗, n ∈ N. Ak {ln(x);n ∈ N} je ohrani-
čená pre všetky x ∈ X, potom existuje C > 0 také, že ‖ln‖ ≤ C ∀n ∈ N.

Tvrdenie 7. Nech A je lineárne zobrazenie z lineárneho priestoru X do Y , potom nasledovné
podmienky sú ekvivalentné

(i) A je spojité,

(ii) existuje B(x0, r0), na ktorej je A ohraničené,

(iii) ∃C > 0 : ‖Ax‖ ≤ C, x ∈ B1(0),

(iv) ∃C > 0 : ‖Ax − Ay‖Y ≤ C‖x − y‖X ,

(v) xn → 0 ⇒ Axn → 0,

(vi) xn → x ⇒ Axn → Ax.

Tvrdenie 8. Nech X, Y sú lineárne normované priestory a Y je Banachov priestor. Potom
L(X,Y ) je Banachov priestor.

Tvrdenie 9 (von Neumann). Nech X je Banachov priestor. Potom ak A ∈ L(X,X) a
‖A‖L(X,X) < 1, tak existuje inverzný operátor B ∈ L(X,X) k operátoru I−A a ‖B‖ ≤ 1

1−‖A‖ .

Príklady Banachových priestorov:
BC(X, R) - ohraničené funkcie z X do R so suprémovou normou (ak X je kompakt, sú to
všetky spojité funkcie)

Lp - ‖x‖p =
(

∫ 1

0
|x(t)|pdt

)
1
p

(1 ≤ p < ∞)
L∞ - ‖x‖∞ = esssup{|x(t) : t ∈ J |} = inf{B : |x(t)| ≤ B skoro všade na intervale I} (L∞ je
množina tých funkcií, pre ktoré je množina vystupujúca v definícii ‖·‖∞ neprázdna, a teda
existuje esenciálne suprémum.)
lp - ‖x‖p = (

∑∞
n=1|xi|p)

1
p (1 ≤ p < ∞)

l∞ - ohraničené postupnosti, ‖x‖∞ = sup{|xi| : i ∈ N}
Hölderove priestory, Sobolevove priestory
Porovnanie konečnorozmerných a nekonečnorozmerných Banachových priestorov:

V konečnorozmerných priestoroch sú všetky normy ekvivalentné. Jednotková guľa v X je
kompaktná práve vtedy, keď X je konečnorozmerný. Slabá a silná konvergencia sú v koneč-
norozmere ekvivalentné.
Konečnorozmerný lineárny podpriestor lineárneho normovaného priestoru je vždy uzavretý.

Hilbertov priestor

Definícia 5. Nech X je lineárny priestor. Potom zobrazeniu (·, ·) : X × X → R hovoríme
skalárny súčin na X, ak platí
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(i) (x, x) = 0 ⇔ x = 0, (x, x) ≥ 0,

(ii) (αx+ βy, z) = α(x, z) + β(y, z),

(iii) (x, y) = (y, x)

a priestoru X so skalárnym súčinom (·, ·) hovoríme predhilbertov priestor (priestor so skalár-
nym súčinom).

Definícia 6. Ak je lineárny normovaný priestor s metrikou odvodenou od normy úplný met-
rický priestor, tak ho nazývame Banachovým priestorom. Ak priestor so skalárnym súčinom
s metrikou odvodenou od skalárneho súčinu je úplný metrický priestor, tak hovoríme, že je
to Hilbertov priestor.

Tvrdenie 10. Nech X je predhilbertov priestor. Potom
√

(x, x) je norma na X.

Tvrdenie 11. Nech X je predhilbertov priestor. Potom |(x, y)| ≤ ‖x‖.‖y‖ pre x, y ∈ X.

Tvrdenie 12. Nech X je predhilbertov priestor. Potom ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Predchádzajúce tvrdenie hovorí, že norma odvodená od skalárneho súčinu spĺňa trojuhol-
níkovú nerovnosť, teda že je skutočne normou.

Definícia 7. NechX je predhilbertov priestor. Potom píšeme x⊥y, ak (x, y) = 0. PreM ⊂ X
píšeme x⊥M , ak platí x⊥y pre všetky y ∈ M .

Tvrdenie 13 (Rovnobežníkové pravidlo). Nech X je predhilbertov priestor. Potom platí
‖x+ y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2).

Tvrdenie 14. Nech X je Hilbertov priestor, x ∈ X a K je konvexná a uzavretá podmnožina
X. Potom existuje jediný x0 ∈ K taký, že ‖x − x0‖ = dist(x,K).

Tvrdenie 15. Nech X je Hilbertov priestor, Y je afinný uzavretý podpriestor a x ∈ X.
Potom existuje y ∈ Y taký, že ‖y − x‖ = dist(x, Y ) a platí (x − y)⊥(y − Y )

Tvrdenie 16. Nech X je Hilbertov priestor, Y uzavretý lineárny podpriestor. Potom existujú
lineárne zobrazenia P,Q ∈ L(X,X) také, že:

(i) P (X) = Y , Q(X) = Y ⊥,

(ii) |x|2 = |Px|2 + |Qx|2,

(iii) P 2 = P , Q2 = Q.

Veta 5 (Rieszova veta o reprezentácii). Nech X je Hilbertov priestor. Potom pre každý
l ∈ X∗ existuje jediné y ∈ X také, že l(x) = (y, x) pre všetky x ∈ X.

Dôsledok 2. Hilbertov priestor je reflexívny.

Definícia 8. Nech X je predhilbertov priestor. Potom systém vektorov {uλ, λ ∈ Λ} (Λ 6= ∅)
nazývame ortogonálny, ak (uλ1 , uλ2) = 0 pre všetky λ1 6= λ2 ∈ Λ. Ortogonálny systém
{uλ, λ ∈ Λ} nazývame ortonormálny, ak navyše ‖uλ‖ = 1 pre všetky λ ∈ Λ.

Tvrdenie 17. Nech X je Hilbertov priestor (predhilbertov priestor) a {u1, . . . , un} je orto-
normálny systém v X. Potom platí ‖x‖2 ≥

n
∑

i=1

(x, ui)2.
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Definícia 9. Nech cλ, λ ∈ Λ sú nezáporné. ∑

λ∈Λ
cλ = sup

J⊂Λ
#J<∞

∑

λ∈J

cλ.

Tvrdenie 18 (Besselova nerovnosť). Nech X je predhilbertov priestor a {uλ, λ ∈ Λ} je
ortonormálny systém v X. Potom ‖x‖2 ≥ ∑

λ∈Λ
(x, uλ)2

Veta 6 (Riesz-Fischer). Nech X je Hilbertov priestor, {ui; i ∈ I} je ortonormálny systém
v X a {ci ∈ R; i ∈ I} je množina reálnych čísel. Ak ∑

i∈I c2i < ∞, potom existuje x ∈ X
taký, že (x, ui) = ci pre všetky i ∈ I.

Definícia 10. Nech X je predhilbertov priestor a {ui; i ∈ I} ortonormálny (ortogonálny)
systém. Hovoríme, že tento systém je úplný (úplný ortonormálny (ortogonálny) systém), ak
je maximálny (tzn. neexistuje u 6= 0 taký, že u⊥ui pre všetky i ∈ I).

Tvrdenie 19. Nech X je Hilbertov priestor a {ui; i ∈ I} je ortonormálny systém. Potom
nasledujúce podmienky sú ekvivalentné:

(i) {ui; i ∈ I} je úplný,

(ii) lineárny obal {ui; i ∈ I} je hustý v X,

(iii) ∀x ∈ X ‖x‖2 = ∑

i∈I

(x, ui)2,

(iv) ∀x, y ∈ X (x, y) =
∑

i∈I

(x, ui)(y, ui).

Definícia 11. Ortonormálny systém v Hilbertovom priestore sa nazýva ortonormálna báza
priestoru, ak je úplný.

Tvrdenie 20. Nech X 6= 0 je Hilbertov priestor. Potom existuje ortonormálna báza (teda
úplný ortonormálny systém) tohto priestoru.

Príklady Hilbertových priestorov: Sobolevov priestor W 1
2 , L2(〈a, b〉), l2.

Pár poznámok

Rovnobežníkové pravidlo možno obrátiť v tom zmysle, že ak ho nejaká norma spĺňa, tak
je odvodená od skalárneho súčinu. Ak chceme ukázať, že nejaká norma nie je odvodená od
skalárneho súčinu, môže pomôcť toto kritérium ([ŠŠN, úloha 8.1.1]):

Tvrdenie 21. V priestore so skalárnym súčinom platí ‖x+ y‖ = ‖x‖+ ‖y‖ ⇒ x = αy.

Ak un, n ∈ N je spočítateľná ortonormálna báza, tak pre každé x ∈ X platí x =
∞
∑

n=0
(x, un)un. (Lineárny obal je hustý v X, preto v ňom existuje postupnosť konvergujúca k

prvku x. Potom sa dá využiť veta 25 z otázky 4.)
Každý nekonečnorozmerný separabilný reálny Hilbertov priestor je izomorfný s l2. (V X

existuje spočítateľná ortonormálna báza. x 7→ ((x, ui))i∈N. Na surjektívnosť stačí overiť, že
pre α ∈ l2

∑

αiui konverguje, čo vyplýva z úplnosti.) Dokonca platí, že Hilbertov priestor je
jednoznačne určený kardinalitou svojej ortonormálnej bázy (pozri [TAY]).

Situácia je velice, velice jednoduchá.
Tereščák
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11 Topologické priestory

Topologické priestory. Otvorené a uzavreté množiny, okolia, husté množiny a pod. Spojité
zobrazenia, homeomorfné zobrazenia, otvorené a uzavreté zobrazenia. Spojitý obraz kompakt-
ných a súvislých množín.

Definícia 1. Systém podmnožín množiny X T ⊆ P(X) sa nazýva topológia na X, ak

(i) ∅,X ∈ T ,

(ii) Ai ∈ T pre i ∈ I ⇒ ⋃

i∈I

Ai ∈ T ,

(iii) A,B ∈ T ⇒ A ∩ B ∈ T .

Dvojicu (X, T ) nazývame topologický priestor ak T je topológia na X.

Príklady topologických priestorov:
(X, {∅,X}) - indiskrétny topologický priestor
(X,P(X)) - diskrétny topologický priestor
(X, T ), kde T = {U ⊆ X : X \ U je konečná} - kofinitná topológia
Každý metrický priestor určuje topológiu.

Definícia 2. Množiny patriace do T nazývame otvorené a ich doplnky uzavreté množiny.

Tvrdenie 1.

(i) ∅ a X sú uzavreté,

(ii) prienik ľubovoľného systému uzavretých množín je uzavretá množina,

(iii) zjednotenie konečného počtu uzavretých množín je uzavretá množina.

Definícia 3. Nech X je topologický priestor, A ⊆ X. A = ∩{F : A ⊆ F, F je uzavretá v X}
sa nazýva uzáver množiny A v X.

Tvrdenie 2.

(i) A je uzavretá ⇔ A = A,

(ii) ∅ = ∅,

(iii) A ⊆ A,

(iv) A = A,

(v) A ∪ B = A ∪ B.

Definícia 4. Ak (X, T ) je topologický priestor a Y ⊆ X, tak T ∗ = {G ∩ Y : G ∈ T } je
topológia na Y a nazýva sa relatívnou topológiou indukovanou na Y topológiou T . (Y, T ∗)
sa nazýva topologický podpriestor priestoru X.

Definícia 5. Nech X je topologický priestor a x ∈ V ⊆ X. V sa nazýva okolie bodu x, ak
existuje otvorená množina U taká, že x ∈ U ⊆ V .

Veta 1. x ∈ A ⇔ každé okolie bodu x má neprázdny prienik s A (pretína množinu A).
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11.1 Typy bodov a množín v topologických priestoroch

Definícia 6. Bod p topologického priestoru X sa nazýva izolovaný bod priestoru X, ak
množina {p} je otvorená v X. Bod p ∈ A ⊆ X je izolovaný bod množiny A, ak je izolovaný
v topologickom podpriestore A priestoru X.

Definícia 7. Bod p ∈ X je hromadný bod množiny A ⊆ X, ak ľubovoľné okolie bodu p
obsahuje bod množiny A rôzny od p. Množina všetkých hromadných bodov množiny A sa
označuje D(A) a nazýva sa derivácia množiny A.

Tvrdenie 3. Nech X je topologický priestor a A ⊆ X. Potom platí:

(i) A = A ∪ D(A),

(ii) množina A je uzavretá práve vtedy, keď D(A) ⊆ A (A obsahuje všetky svoje hromadné
body.)

Definícia 8. Nech (X, T ) je topologický priestor, A ⊆ X. Potom množina IntA = ∪{G : G ⊆
A,G ∈ T } sa nazýva vnútro množiny A a množina H(A) = A∩ (X \ A) hranica množiny A.
Prvky množiny IntA nazývame vnútorné body a prvky množiny H(A) nazývame hraničné
body množiny A.

Tvrdenie 4. (i) A je otvorená ⇔ A = IntA,

(ii) A ⊆ IntA ∪ H(A),

(iii) ak A je uzavreté, tak A = IntA ∪ H(A).

(iv) IntA = X \ X \ A

(v) A = IntA ∪ H(A)

Definícia 9. Množina A ⊆ X sa nazýva hustá (v X), ak A = X.

Tvrdenie 5. Množina A ⊆ X je hustá v X práve vtedy, keď každá neprázdna množina G
otvorená v X má neprázdny prienik s množinou A.

Definícia 10. Množina A ⊆ X sa nazýva perfektná, ak A = D(A).

Veta 2. Množina A ⊆ X je perfektná práve vtedy, keď A je uzavretá a nemá izolované body.

Definícia 11. Množina A ⊆ X sa nazýva riedka (v priestore X), ak IntA = ∅.

Veta 3. Množina A ⊆ X je riedka v X práve vtedy, keď každá neprázdna množina G ⊆ X
obsahuje takú neprázdnu otvorenú podmnožinu H ⊆ G, že H ∩ A = ∅.

11.2 Báza topológie, báza okolí

Definícia 12. Nech (X, T ) je topologický priestor. Systém množín B ⊆ T sa nazýva báza
topológie T , ak každá množina z T je zjednotením množín z B.

Tvrdenie 6. Nutná a postačujúca podmienka na to, aby B ⊆ P(X) bola báza nejakej topo-
lógie na X sú:

(i)
⋃

A∈B
A = X,
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(ii) ak A,B ∈ B a p ∈ A ∩ B, tak existuje taká množina V ∈ B, že p ∈ V ⊆ A ∩ B.

Definícia 13. Topologický priestor (X, T ) sa nazýva priestor so spočítateľnou bázou, ak
existuje spočítateľná báza B pre topológiu T . Hovoríme potom, že X spĺňa druhú axiómu
spočítateľnosti.

Definícia 14. Topologický priestor X sa nazýva separabilný, ak v X existuje hustá spočí-
tateľná podmnožina.

Tvrdenie 7. Ak X je priestor so spočítateľnou bázou, tak X je separabilný.

Pre metrické priestory platí aj obrátená implikácia.

Definícia 15. Hovoríme, že systém S ⊆ T je subbáza topológie T , ak systém pozostávajúci
zo všetkých konečných prienikov množín z S tvorí bázu topológie T .

Definícia 16. Nech X je topologický priestor a p ∈ X. Množina B okolí bodu p sa nazýva
báza okolí bodu p, ak p ∈ B pre všetky B ∈ B a pre každé okolie V bodu p existuje množina
B ∈ B taká, že B ⊆ V .

Definícia 17. Ak (Xi, T i), i ∈ I sú topologické priestory, tak (
∏

Xi, T ), kde T je určená
subbázou S = {p−1i (Ui) : Ui ∈ T i, i ∈ I} (pi označujeme projekcie z karteziánskeho súčinu
∏

Xi na množinu Xi) sa nazýva topologický súčin topologických priestorov (Xi, T i), i ∈ I.
(Teda báza topológie topologického súčinu obsahuje množiny tvaru

∏

i∈I Vi, pričom Vi ∈ T i

pre všetky i ∈ I a V = Xi pre všetky i ∈ I až na konečný počet.)

11.3 Zobrazenia topologických priestorov

Definícia 18. Nech (X, T ) a (Y,S) sú topologické priestory a f : X → Y je zobrazenie.
Hovoríme, že f je

(i) spojité, ak pre každú otvorenú množinu U ⊆ Y je jej vzor f−1(U) otvorená v X,

(ii) homeomorfizmus, ak f je bijekcia a f aj f−1 sú spojité,

(iii) uzavreté, ak obraz každej uzavretej množiny je uzavretá,

(iv) otvorené , ak obraz každej otvorenej množiny je otvorená.

Tvrdenie 8. Nech X a Y sú topologické priestory, f : X → Y je zobrazenie. Nasledujúce
podmienky sú ekvivalentné:

(i) f je spojité,

(ii) vzor každej uzavretej množiny v zobrazení f je uzavretá množina,

(iii) pre každú podmnožinu A ⊆ X platí f(A) ⊆ f(A).

Tvrdenie 9. Ak X a Y sú topologické priestory a f : X → Y je bijekcia, tak sú ekvivalentné
podmienky:

(i) f je homeomorfizmus,

(ii) f je spojité a otvorené,

(iii) f je spojité a uzavreté.
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11.4 Súvislý topologický priestor

Definícia 19. Topologický priestor X sa nazýva súvislý, ak nie je zjednotením svojich dvoch
neprázdnych uzavretých disjunktných podmnožín.

Veta 4. Ak f : (X, T ) → (Y,S) je spojité, surjektívne a (X, T ) je súvislý, tak aj (Y,S) je
súvislý. (Spojitý obraz súvislého topologického priestoru je súvislý.)

11.5 Kompaktný topologický priestor

Definícia 20. Topologický priestor X sa nazýva kompaktný, ak každé jeho otvorené pokrytie
obsahuje konečné podpokrytie.

Definícia 21. Hovoríme, že systém množín je centrovaný, ak každý jeho konečný podsystém
má neprázdny prienik.

Tvrdenie 10. Topologický priestor X je kompaktný práve vtedy, keď každý centrovaný sys-
tém uzavretých množín má neprázdny prienik.

Tvrdenie 11. Uzavretá podmnožina kompaktného topologického priestoru je kompaktná.

Tvrdenie 12. Kompaktný podpriestor hausdorffovského priestoru je uzavretý.

Veta 5. Spojitý obraz kompaktného topologického priestoru je kompaktný.

Veta 6 (Tichonovova). Ak Xγ , γ ∈ Γ sú kompaktné topologické priestory, tak ich topolo-
gický súčin

∏

γ∈Γ
Xγ je kompaktný.

Keď človek nemá,
hľadá, čo je na zemi.

Medveď - hľadajúci kriedu

12 Lineárne diferenciálne rovnice a ich systémy

Lineárna diferenciálna rovnica n-tého rádu a lineárne diferenciálne systémy. Štruktúra mno-
žín riešení, rovnice a systémy s konštantnými koeficientami.

12.1 Lineárne diferenciálne rovnice prvého rádu

Definícia 1. Nech D ⊂ R × R
n je oblasť a f : D → R

n. Obyčajná diferenciálna rovnica
1.rádu v D je rovnica tvaru dx

dt
= f(t, x). Ak x = (x1, . . . , xn) a f = (f1, . . . , fn), tak je

ekvivalentná systému rovníc dxi

dt
= fi(t, x).

Nech zobrazenie f : D → R
n je spojité. Riešenie diferenciálnej rovnice dx

dt
= p(t)x na

intervale I ⊂ R je také spojité diferencovateľné zobrazenie ϕ : I → R
n, že

(i) (t, ϕ(t)) ∈ D ∀t ∈ I,

(ii) dϕ(t)
dt
= f(t, ϕ(t))

Lineárna homogénna diferenciálna rovnica 1.rádu je rovnica tvaru

dx

dt
= p(t)x, (12.1)

p : (a, b)→ R je spojitá funkcia, a, b ∈ R
+.
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Veta 1. Pre každé t0 ∈ (a, b) a každé x0 ∈ R má začiatočná úloha

dx

dt
= p(t)x

x(t0) = x0

(12.2)

práve jedno riešenie x : (a, b)→ R

x(t) = e
∫

t

t0
p(s)ds

.x0. (12.3)

Každé riešenie x(t) rovnice (12.1) má tvar

x(t) = e
∫

t

t0
p(s)ds

.C, (12.4)

kde C ∈ R je konštanta.

Lineárna nehomogénna diferenciálna rovnica 1.rádu v R je rovnica tvaru

dx

dt
= p(t)x+ f(t), (12.5)

kde p, f : (a, b)→ R sú spojité funkcia a f(t) 6≡ 0.

Veta 2. Pre každé t0 ∈ (a, b) a každé x0 ∈ R má začiatočná úloha

dx

dt
= p(t)x+ f(t)

x(t0) = x0

(12.6)

práve jedno riešenie

x(t) = x0e
∫

t

t0
p(s)ds + e

∫

t

t0
p(s)ds

∫ t

t0

e
−

∫

τ

t0
p(s)ds

f(τ)dτ. (12.7)

Každé riešenie x(t) diferenciálnej rovnice (12.5) má tvar x(t) = xh(t) + xp(t), kde xp(t) =

e
∫

t

t0
p(s)ds ∫ t

t0
e
−

∫

τ

t0
p(s)ds

f(τ)dτ je tzv. partikulárne riešenie diferenciálnej rovnice (12.6) a

xh(t) = Ce
∫

t

t0
p(s)ds je všeobecné riešenie homogénnej diferenciálnej rovnice.

Bernoulliho rovnica je rovnica tvaru x′ = p(t)x + f(t)xn, ktorú riešime prevedením do
tvaru x−nx′ − p(t)x1−n = f(t) a substitúciou y = x1−n.

12.2 Lineárne diferenciálne systémy

čiže lineárne diferenciálne rovnice v R
n. Najprv niečo o homogénnych

ẋ = A(t)x (12.8)

Veta 3. Množina riešení (12.8) tvorí n-rozmerný vektorový priestor nad R.

Definícia 2. Každá množina ϕ1, . . . , ϕn lineárne nezávislých riešení (12.8) sa nazýva funda-
mentálny systém riešení. Φ(t) = (ϕ1(t) . . . ϕn(t)) sa nazýva fundamentálna matica systému
(12.8) (riešenia ϕ1, . . . , ϕn tvoria jej stĺpce). Ak Φ(0) = In, potom Φ(t) sa nazýva normálna
fundamentálna matica.
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Lema 1. Φ̇(t) = A(t)Φ(t) ∀t ∈ I, čiže fundamentálna matica je maticové riešenie (12.8).

Veta 4. Maticové riešenie Φ(t) rovnice (12.8) je fundamentálna matica tejto rovnice ⇔
detΦ(t) 6= 0 ∀t ∈ I.

Definícia 3. R(t, s) = Φ(t)Φ(s)−1 je rezolventa (12.8).

Veta 5. Začiatočná úloha

ẋ(t) = A(t)x(t)

x(t0) = x0
(12.9)

má riešenie tvaru x(t) = R(t, t0)x0.

Nehomogénny lineárny systém: ẋ = A(t)x+ f(t).

Veta 6. Ak Φ(t) je fundamentálna matica homogénnej diferenciálnej rovnice ẋ = A(t)x,
potom x(t) = R(t, t0)x0 +

∫ t

t0
R(t, s)f(s)ds je riešenie začiatočnej úlohy ẋ = A(t)x + f(t),

x(t0) = x0.

Dôkaz. Metódou variácie konštánt, t.j. riešenie hľadáme v tvare x(t) = Φ(t)c(t).

ẋ(t) = Φ̇(t)c(t) + Φ(t)ċ(t) = A(t)Φ(t)c(t) + Φ(t)ċ(t)

A(t)x(t) + f(t) = A(t)Φ(t)c(t) + f(t)

Φ(t)ċ(t) = f(t)

c(t) = K +
∫ t

t0

Φ−1(s)f(s)ds

x(t) = Φ(t)c(t) = Φ(t)K +Φ(t)
∫ t

t0

Φ−1(s)f(s)ds

K určíme z rovnosti x0 = x(t0) = Φ(t0)K ⇒ K = Φ−1(t0)x0.

x(t) = Φ(t)Φ−1(t0)x0 +
∫ t

t0

Φ(t)Φ−1(s)f(s)ds

x(t) = R(t, t0)x0 +
∫ t

t0

R(t, s)f(s)ds

Lema 2 (Liouvilleova formula). Ak Φ(t) je maticové riešenie diferenciálnej rovnice ẋ =

A(t)x, potom pre každé t0 ∈ R platí detΦ(t) = detΦ(t0).e
∫

t

t0
TrA(s)ds.

Dôsledok 1. Ak detΦ(t0) 6= 0 pre nejaké t0 ∈ R, tak detΦ(t) 6= 0 pre všetky t ∈ R.
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12.3 Lineárne diferenciálne rovnice n-tého rádu

Označme

Ln u = a0(t)
dnu

dtn
+ a1(t)

dn−1u

dtn−1
+ . . .+ an−1(t)

du

dt
+ an(t)u, (12.10)

kde a0, . . . , an, f : R → R sú spojité.
Lineárnou diferenciálnou rovnicou n-tého rádu nazývame rovnicu

Ln u = f. (12.11)

Ak f(t) ≡ 0, tak je to homogénna diferenciálna rovnica n-tého rádu.
Ak f(t) 6≡ 0, je to nehomogénna diferenciálna rovnica n-tého rádu.
Ak a0(τ) = 0 pre nejaké τ ∈ R, je to singulárna diferenciálna rovnica n-tého rádu.
Ak a0(t) 6= 0, tak je to regulárna diferenciálna rovnica n-tého rádu.
My sa budeme zaoberať len regulárnymi. V tom prípade je možné predpokladať, že a0(t) ≡

1 (rovnicu môžeme predeliť).
Pomocou substitúcií u = x1, u

′ = x2, . . . , u
(n−1) = xn ju môžeme previesť na systém

diferenciálnych rovníc prvého rádu.
Ak ϕ1, . . . , ϕn sú riešenia homogénnej rovnice, tak

W (ϕ1, . . . , ϕn) = det







ϕ1(t) . . . ϕn(t)
...

. . .
...

ϕ
(n−1)
1 (t) . . . ϕ

(n−1)
n (t)







je wronskián (Wronského determinant) riešení ϕ1, . . . , ϕn.

Veta 7. Riešenia ϕ1, . . . , ϕn homogénnej diferenciálnej rovnice Ln u = 0 sú lineárne nezá-
vislé práve vtedy, keď W (ϕ1, . . . , ϕk) 6= 0 pre všetky t ∈ R.

Definícia 4. Množina lineárne nezávislých riešení ϕ1, . . . , ϕn diferenciálnej rovnice Ln u = 0
sa nazýva fundamentálny systém riešení tejto diferenciálnej rovnice.

Veta 8. Ak ϕ1, . . . , ϕn je fundamentálny systém riešení diferenciálnej rovnice Ln u = 0,
potom každé jej riešenie ϕ(t) má tvar ϕ(t) = c1ϕ1(t) + . . .+ cnϕn(t), kde c1, . . . , cn ∈ R.

Veta 9. Nech ϕ1, . . . , ϕn je fundamentálny systém riešení homogénnej diferenciálnej rovnice
Ln u = u(n) + a1(t)u(n−1) + . . . + an(t) = 0. Potom riešenie ψ(t) Cauchyho úlohy Ln u =
f(t), u1(t0) = u0, . . . , u

(n−1)(t0) = un−1 má tvar

ψ(t) = ψh(t) +
n

∑

k=1

ϕk(t)
∫ t

t0

Wk(ϕ1, . . . , ϕn)(s)
W (ϕ1, . . . , ϕn)(s)

f(s)ds,

kde ψh(t) je riešením homogénnej začiatočnej Cauchyho úlohy a

Wk(ϕ1, . . . , ϕn) = det











ϕ1(s) · · · ϕk−1(s) 0 ϕk+1(s) · · · ϕn(s)
ϕ′
1(s) · · · ϕ′

k−1(s) 0 ϕ′
k+1(s) · · · ϕ′

n(s)
...

...
...

ϕ
(n−1)
1 (s) · · · ϕ

(n−1)
k−1 (s) 1 ϕ

(n−1)
k+1 (s) · · · ϕ

(n−1)
n (s)











.
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12.4 Metóda variácie konštánt

L2y = ÿ + a1(t)ẏ + a2(t)y = f(t)

y(t0) = y0, ẏ(t0) = y1
(12.12)

Nech x1(t), x2(t) je fundamentálny systém riešení homogénnej diferenciálnej rovnice
L2y = 0. Hľadáme riešenie (12.12) v tvare

y(t) = c1(t)x1(t) + c2(t)x2(t)

Dostaneme ẏ(t) = ċ1x1+ ċ2x2+c1ẋ1+c2ẋ2. Zvolíme ċ1x1+ ċ2x2 = 0 a máme ẏ = c1ẋ1+c2ẋ2,
ÿ = c1ẍ1 + c2ẍ2 + ċ1ẋ1 + ċ2ẋ2. Využitím toho, že x1, x2 sú riešenia homogénnej rovnice
dostaneme L2y = ċ1x1 + ċ2x2 = f . Sústavu

ċ1(t)x1(t) + ċ2(t)x2(t) = 0

ċ1(t)ẋ1(t) + ċ2(t)ẋ2(t) = f(t)

môžeme riešiť Cramerovým pravidlom, a dostaneme

ċ1(t) =
1

W (x1, x2)(t)
det

(

0 x2(t)
f(t) ẋ2(t)

)

ċ2(t) =
1

W (x1, x2)(t)
det

(

x1(t) 0
ẋ2(t) f(t)

)

c1(t) = α1 +
∫ t

t0

W1(x1, x2)(s)
W (x1, x2)(s)

f(s)ds

c2(t) = α2 +
∫ t

t0

W2(x1, x2)(s)
W (x1, x2)(s)

f(s)ds

y(t) = c1(t)x1(t) + c2(t)x2(t) =

α1x1(t) + α2x2(t) + x1(t)
∫ t

t0

W1(x1, x2)(s)
W (x1, x2)(s)

f(s)ds+ x2(t)
∫ t

t0

W2(x1, x2)(s)
W (x1, x2)(s)

f(s)ds

Ak n ≥ 2, postup je analogický:

ċ1(t)x1(t) + . . .+ ċn(t)xn(t) = 0

...

ċ1(t)x
n−2
1 (t) + . . .+ ċn(t)xn−2

n (t) = 0

ċ1(t)x
n−1
1 (t) + . . .+ ċn(t)xn−1

n (t) = f(t)

12.5 Lineárne diferenciálne rovnice n-tého rádu s konštantnými koeficientami

Homogénna diferenciálna rovnica rádu n s konštantnými koeficientami je rovnica tvaru

Ln u = u(n) + a1u
(n−1) + . . .+ an−1u

′ + anu = 0 (12.13)
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Definícia 5. Polynóm P (λ) = λn + λn−1 + . . . + an−1λ + an sa nazýva charakteristický
polynóm diferenciálnej rovnice (12.13).

Lema 3. Ln(eλtv(t)) = eλt
[

P (λ)v(t) + P (1)(λ)
1! v(1)(t) + . . .+ P (n)(λ)

n! v(n)(t)
]

Veta 10. Ak λ1, λ2, . . . , λs sú navzájom rôzne korene charakteristického polynómu P (λ) =
λn + λn−1 + . . . + an−1λ + an diferenciálnej rovnice (12.13) a násobnosť koreňa λi je mi,
potom fundamentálny systém riešení (vo všeobecnosti komplexných) diferenciálnej rovnice
(12.13) je eλ1t, teλ1t, . . . , tm1−1eλ1t, eλ2t, teλ2t, . . . , tm2−1eλ2t až eλst, teλs1t, . . . , tms−1eλst.

12.6 Systémy lineárnych diferenciálnych rovníc s konštantnými koeficientami

Veta 11. Nech λ1, . . . , λn sú vlastné čísla matice A (vo všeobecnosti komplexné) a γ1, . . . , γn

sú im zodpovedajúce vlastné vektory, pričom predpokladáme, že sú lineárne nezávislé. Potom
eλ1tγ1, . . . , e

λmtγm sú lineárne nezávislé riešenia diferenciálnej rovnice ẋ = Ax (čiže tvoria
fundamentálny systém).

Veta 12. Nech λ = σ + iω, ω 6= 0 je komplexný k-násobný koreň charakteristickej rovnice
P (λ) = det(λI − A) = 0, pričom k nemu existuje k lineárne nezávislých vlastných vektorov
ξ1 = g1+ih1, . . . , ξk = gk+ihk. Potom množina všetkých riešení tvaru (a cosωt+b sinωt)eσt,
a, b ∈ Rn tvorí 2k-rozmerný vektorový priestor V2k (podpriestor množiny všetkých riešení).
Jeho bázu tvoria riešenia:

u1(t) = [g1 cosωt − h1 sinωt]eσt

...

uk(t) = [gk cosωt − hk sinωt]eσt

v1(t) = [h1 cosωt+ g1 sinωt]eσt

...

vk(t) = [hk cosωt+ gk sinωt]eσt

Reťazec zovšeobecnených vlastných vektorov prislúchajúcich k vlastnému číslu λmatice A
rozumieme v1, v2, . . . , vk, ak spĺňajú (A−λI)v1 = 0, (A−λI)v2 = v1, . . . , (A−λI)vk = vk−1.

Veta 13. Nech v1, v2, . . . , vm je reťazec zovšeobecnených vlastných vektorov matice A prislú-
chajúci vlastnej hodnote λ. Potom

y1(t) = v1e
λt

y2(t) = (v2 + v1t)eλt

...

ym(t) =
(

vm +
1
1!

vm−1t+ . . .+
1

(m − 1)!v1t
m−1

)

eλt

sú lineárne nezávislé riešenia diferenciálnej rovnice ẋ = Ax (nad C).

Matematika je hra. Ak sa hráte, robíte dobre. Ak sa trápite, nemá to zmysel.
Medveď
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13 Picardova existenčná veta

Picardova existenčná veta.

ẋ = f(t, x)

x(t0) = x0
(13.1)

Veta 1 (o existencii a jednoznačnosti). Nech D ⊂ R×R
n je oblasť, f : D → R

n, (t, x) 7→
f(t, x) je spojité zobrazenie spĺňajúce Lipschitzovu podmienku vzhľadom na premennú x (t.j.
existuje L > 0 také, že ‖f(t, x1)− f(t, x2)‖ ≤ L‖x1 − x2‖, ‖·‖ je euklidovská norma). Potom
pre každé (t0, x0) ∈ D existuje otvorený interval I ⊂ R taký, že t0 ∈ I a na I existuje práve
jedno riešenie úlohy (13.1).

Tvrdenie 1. Funkcia x je riešením (13.1) práve vtedy, keď x spĺňa rovnicu

x(t) = x0 +
∫ t

t0

f(t, x(t))dt (13.2)

Na prednáške sa robilo viac dôkazov vety 1, jeden na základe Banachovej vety o pevnom
bode, druhý pomocou Picardových aproximácií:

x1(t) = x0

xn+1(t) = x0 +
∫ t

t0

f(s, xn(s))ds
(13.3)

Postupnosť Picardových aproximácií je vlastne postupnosť, ktorá vystupuje v dôkaze Bana-
chovej vety o pevnom bode, ktorá konverguje k pevnému bodu. V našom prípade to znamená,
že táto postupnosť rovnomerne konverguje k riešeniu diferenciálnej rovnice (13.1). Tretí dôkaz
bol pomocou Eulerových polygónov, ktoré sa potom využili aj v dôkaze Peanovej vety.

Definícia 1. Nech f : D → Rn je spojité zobrazenie a ε > 0. Spojité zobrazenie x : I → Rn

(I ⊂ R je interval) sa nazýva ε-približné riešenie diferenciálnej rovnice ẋ = f(t, x) na intervale
I ak

(i) (t, x(t)) ∈ D pre všetky t ∈ I,

(ii) existuje konečná množina S ⊂ I taká, že x je spojito diferencovateľná na I \ S a pre
každé s ∈ S existujú lim

t→s+

dx(t)
dt
, lim

t→s−

dx(t)
dt
, (teda dx(t)

dt
je po častiach spojitá na I,)

(iii) ‖dx(t)
dt

− f(t, x(t))‖ < ε pre všetky t ∈ I \ S.

Lema 1 (Gronwallova). Nech β : 〈t0,∞) → R, ϕ : 〈t0,∞) → R sú spojité nezáporné
funkcie a α ≥ 0 je konštanta. Nech

ϕ(t) ≤ α+
∫ t

t0

β(s)ϕ(s)ds

pre všetky t ≥ t0. Potom

ϕ(t) ≤ αe
∫

t

t0
β(s)ϕ(s)ds

Lema 2. Nech G = 〈t0 − a, t0 + a〉 × {x ∈ R
n|‖x − x0‖ ≤ b} a f : G → R

n je spojité
zobrazenie. Potom pre každé ε > 0 existuje ε-približné riešenie x(t) diferenciálnej rovnice
(13.1) na intervale Iα = 〈t0, t0 + α〉, kde α = min(a, b

M
), M = max

(t,x)∈G
‖f(t, x)‖.
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ε-približné riešenia z predchádzajúcej lemy sa konštruujú ako Eulerove polygóny, teda po
častiach lineárne funkcie, ktorých smernica v „bodoch zlomuÿ sa zvolí práve f(t, x). Ukáže
sa pomocou rovnomernej konvergencie f , že ak zvolíme deliace body dostatočne husto, do-
staneme ε-približné riešenie.

Lema 3. Nech ϕ1 je ε1-približné riešenie a ϕ2 je ε2-približné riešenie rovnice (13.1) na
intervale Iα = 〈t0, t0 + α〉 také, že ‖ϕ1(t0) − ϕ2(t0)‖ ≤ δ, δ > 0 a nech f je lipschitzovská s
konštantou L. Potom ‖ϕ1(t)− ϕ2(t)‖ ≤ (δ + εα)eαL pre t ∈ Iα. (ε = ε1 + ε2)

Veta 2 (Peanova veta o existencii). Nech D ⊂ R × R
n je oblasť a f : D → R

n, (t, x) 7→
f(t, x) je spojité zobrazenie. Potom pre každý bod (t0, x0) ∈ D existuje otvorený interval
I ⊆ R, kde t0 ∈ I, na ktorom je definované riešenie ϕ : I → R

n začiatočnej úlohy (13.1).

Táto veta sa dokazovala tak, že pre Eulerove polygóny (resp. pre postupnosť ε-približných
riešení) sa overila rovnomocná spojitosť a rovnomerná ohraničenosť a z Arzeli-Ascoliho lemy
potom vyplynulo, že sa dá vybrať (v C(I, Rn)) konvergentná podpostupnosť.

Veta 3 (o predĺžiteľnosti na interval I = (−∞,∞)). Nech f : R × R
n → R

n je spojité
zobrazenie spĺňajúce podmienku

‖f(t, x)‖ ≤ ω(‖x‖) ∀(t, x) ∈ R × R
n,

kde ω : 〈0,∞)→ je spojitá, ω(u) > 0 pre u > 0, pričom

lim
r→∞

∫ r

r0

ds

ω(s)
= +∞, r0 > 0.

Potom pre každé (t0, x0) ∈ R × R
n existuje riešenie ϕ : (−∞,∞) → R

n začiatočnej úlohy
(13.1).

Človek nemá skúšať všetko, čo prednáša
a nemal by prednášať všetko, čo vie.

Medveď

14 Klasifikácia lineárnych parciálnych diferenciálnych rovníc

Klasifikácia lineárnych parciálnych diferenciálnych rovníc 2. rádu.

Definícia 1. Pod parciálnou diferenciálnou rovnicou rozumieme funkcionálnu rovnicu, v kto-
rej vystupuje neznáma funkcia u : Ω ⊂ R

n → R a ktorá má vo všeobecnosti tvar

F (x1, . . . , xn, u,D(1,0,...,0)u,D(0,0,...,1)u, . . . ,Dαu) = 0.

Riešenie je funkcia, ktorá má spojité derivácie, ktoré v rovnici vystupujú, a spĺňa túto rovnicu.
Rád parciálnej diferenciálnej rovnice je maximálna dĺžka multiindexu.

Druhy podmienok:
začiatočné (Cauchyho)
okrajové - môže byť zadaný predpis pre funkciu (Dirichletove) alebo jej deriváciu v smere
normály (Neumannove) na okraji danej oblasti, prípadne ich kombinácia.
Z rovníc prvého rádu sme sa zaoberali lineárnymi (

∑

ai(x)ui(x) + b(x)u(x) = f(x)) a
kvázilineárnymi (

∑

ai(x, u(x))ui(x) = b(x, u(x))).
Homogénne lineárne parciálne diferenciálne rovnice 1.rádu

∑

fk(x) ∂u
∂xk
= 0 (fk sú spojité

a nie sú v žiadnom x ∈ Ω súčasne nulové) sme riešili pomocou charakteristického systému
dxk

dt
= fk(x1, . . . , xn). Riešenia charakteristického systému sa nazývajú charakteristiky.
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Veta 1. Ψ ∈ C1(Ω, R) je riešenie
∑

fk(x) ∂u
∂xk
= 0 ⇔ Ψ je konštantné na každej charakte-

ristike.

Všetky riešenia môžeme získať pomocou fundamentálneho systému riešení Ψ1, . . . ,Ψn−1,
ktoré sú nezávislé. Ak máme jedno riešenie, toto riešenie je vhodné ako substitúcia na zníženie
počtu premenných.
Aj kvázilineárne rovnice sa riešia pomocou charakteristík.

n
∑

k=1

fk(x1, . . . , xn, u).
∂u

∂xk

= g(x1, . . . , xn, u) (14.1)

K uvedenej kvázilinárnej rovnici priradíme lineárnu rovnicu

n
∑

k=1

fk(x, u).
∂z

∂xk

+ g(x, u)
∂z

∂u
= 0 (14.2)

Charakteristický systém kvázilineárnej rovnice (14.1) je charakteristický systém (14.2)
ako lineárnej homogénnej parciálnej diferenciálnej rovnice.

Veta 2. Nech fk, g ∈ C(Ω × R, R), χ ∈ C1(Ω, R). Nech Ψ(x, u) ∈ C1(Ω × R, R) je riešenie
lineárnej rovnice (14.2). Nech

(i) ∀Ω′ ⊂ Ω ∃ξ ∈ Ω′ : ∂Ψ
∂u
(ξ, χ(ξ)) 6= 0 (v každej podoblasti),

(ii) Ψ(x, χ(x)) = const.

Potom χ je riešenie (14.1).

Lineárne parciálne diferenciálne rovnice 2.rádu: Uvažujme lineárnu parciálnu diferenciálnu
rovnicu v tvare a11uxx + 2a12uxy + a22uyy + F (x, z, u, ux, uz) = 0. Jej diskriminant ∆ =
a212 − a11a22 nemení znamienko pri ľubovoľnej transformácii nezávisle premenných. Rovnicu
nazveme hyperbolickou ak ∆ > 0, parabolickou ak ∆ = 0 a eliptickou ak ∆ < 0.
Kanonický tvar pre hyperbolickú rovnicu je uξη + F1(uξ, uη, u, ξ, η) = 0. Kanonický tvar

pre parabolickú rovnicu je uξξ + F1(uξ, uη, u, ξ, η) = 0. Kanonický tvar pre eliptickú rovnicu
je uξξ + uηη + F1(uξ, uη, u, ξ, η) = 0.
Transformácie ξ = ϕ(x, y), η = ψ(x, y), ktoré prevedú uvedenú diferenciálnu rovnicu na

kanonický tvar hľadáme pomocou rovníc a11ϕ
2
x+2a12ϕxϕy+a22ϕ

2
y = 0, a11ψ

2
x+2a12ψxψy+

a22ψ
2
y = 0, ktoré riešime metódou charakteristík. V závislosti od typu rovnice dostaneme

dve riešenia (hyperbolická), jedno riešenie, ktoré doplníme ľubovoľnou nezávislou funkciou
(parabolická) alebo dve komplexné riešenia, ktorých reálnu a imaginárnu časť zvolíme za
použité transformácie (eliptická).
Pre parciálne rovnice 2.rádu viac premenných určíme typ rovnice na základe vlastných

čísel matice určenej koeficientmi, ak majú rovnaké znamienko, ide o eliptickú rovnicu (kvad-
ratická forma daná touto maticou určuje elipsu/elipsoid), ak sú nenulové a nemajú rovnaké
znamienka, ide o hyperbolickú rovnicu (hyperbola) a ak je jedno nulové a ostatné majú
rovnaké znamienka, ide o parabolickú rovnicu.
Parciálne diferenciálne rovnice sú modelmi rôznych fyzikálnych javov. Parabolické rovnice

sú napríklad rovnica pre vedenie tepla div(k∇u)+f(t, x) = ρut (k(x) > 0, ρ(x) > 0) a rovnica
spojitosti ∂ρ

∂t
+ div(ρ~v) = 0. Rovnica pre priečne kmitanie struny utt = a2uxx je príkladom

hyperbolickej rovnice.

Volovi je všetko jasné.
Vencko
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15 Cauchyho úloha

Cauchyho úloha pre vlnovú rovnicu (D’Alembertov vzorec), jednoznačnosť riešenia.
Najprv sme preberali dôkazy jednoznačnosti pre začiatočno-okrajové úlohy (pre všetky

tri typy rovníc), potom princíp maxima pre parabolické a eliptické rovnice, z ktorých tiež
vyplýva jednoznačnosť riešenia týchto úloh. Otázka sa týka (asi) iba jednoznačnosti Cauchyho
úlohy, v jej dôkaze sa využíva princíp maxima pre parabolické rovnice, tak som sem dal aj
ten.

15.1 Princíp maxima a minima pre parabolické rovnice

Ω ⊂ Rn - ohraničená oblasť, T > 0,
QT = {x ∈ Ω; 0 ≤ t ≤ T}
Uvažujme rovnicu:

div(k∇u) = ρut, x ∈ Ω, t ∈ (0, T )
k(x) > 0, ρ(x) > 0

(15.1)

Veta 1 (o maxime a minime). Každé riešenie rovnice (15.1) u ∈ C(QT , R) nadobúda
najväčšiu a najmenšiu hodnotu na dolnej hranici QT (t = 0) alebo na plášti valca P = {x ∈
∂Ω, 0 ≤ t ≤ T}.

Fyzikálny význam princípu maxima a minima je v tom, že teplo sa šíri z miesta s vyššou
teplotou na miesta s nižšou teplotou a teploty sa pritom vyrovnávajú. (Pri tepelnej výmene
s okolím sa môže maximum dosahovať na okraji v čase t > 0.)

Dôsledok 1 (princíp porovnávania riešení). Nech u1, u2 ∈ C(Q, R) sú riešenia rovnice
div(k∇u)+f(t, x) = ρut, u1(t, x) ≤ u2(t, x) pre (t, x) ∈ Γ = {x ∈ ∂Ω, t ≥ 0}∪{x ∈ Ω, t = 0}.
Potom u1(t, x) ≤ u2(t, x) pre (t, x) ∈ Q.

Dôsledok 2 (spojitá závislosť na začiatočných a okrajových podmienkach - veta
o stabilite). Nech sú dané dve Dirichletove zmiešané úlohy: div(k∇u) + f(t, x) = ρut,
u|Γ = ψ1,2(t, x), u(0, x) = ϕ1,2(x) a |ϕ1(x) − ϕ2(x)| ≤ ε, |ψ1(t, x) − ψ2(t, x)| ≤ ε t ≥ 0,
x ∈ ∂Ω. Potom |u1(t, x)− u2(t, x)| ≤ ε pre (t, x) ∈ Q.

Dôsledok 3. div(k∇u) + f(t, x) = ρut, u|Γ = ψ(t, x), u(0, x) = ϕ(x) má najviac jedno
riešenie.

15.2 Princíp maxima a minima pre eliptické rovnice

Veta 2. Nech Ω ⊂ Rn je ohraničená oblasť, nech u ∈ C(Ω, R) je harmonická funkcia. Potom
u dosahuje maximum aj minimum na ∂Ω.

Dôsledkom sú jednoznačnosť riešenia Dirichletovej úlohy, spojitá závislosť riešenia, po-
rovnávací princíp a to, že ak postupnosť harmonických funkcií rovnomerne konverguje na
hranici ohraničenej oblasti, potom rovnomerne konverguje v celej oblasti a limita je harmo-
nická funkcia.

15.3 Jednoznačnosť riešenia Cauchyho úlohy

Pri Cauchyho úlohe ide o neohraničenú oblasť, v našom prípade Rn.
Pre parabolickú úlohu:
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a2△u+ f(t, x) = ut

u(0, x) = ϕ(x)
(15.2)

Veta 3. Riešenie Cauchyho úlohy (15.2) u ∈ C(〈0,∞)×R
n, R), ktoré je navyše ohraničené,

je určené jednoznačne.

Vraj sa to dá dokázať aj bez tej ohraničenosti.
Pre hyperbolickú úlohu:

△u = utt, t > 0, x ∈ R
n

u(0, x) = f(x), x ∈ R
n

ut(0, x) = g(x), x ∈ R
n

(15.3)

Definícia 1. Charakteristický kužeľ k rovnici (15.3) je Zr(x0) = {(t, x) ∈ R × R
n : 0 < t <

r, ‖x − x0‖ < r − t}.

Lema 1. Ak u ∈ C2(Zr(0), R) je riešenie (15.3) s nulovými počiatočnými podmienkami, tak
je nulové na celom charakteristickom kuželi.

Veta 4. Cauchyho úloha pre rovnicu (15.3) má na zjednotení všetkých charakteristických
kužeľov s podstavou v Ω najviac jedno riešenie.

15.4 Existencia riešenia Cauchyho úlohy pre hyperbolickú rovnicu ak n = 1

Rovnica

∂2u

∂t2
= a2

∂2u

∂x2

t > 0, x ∈ (−∞,∞)

u(0, x) = f(x),
∂u

∂x
(0, x) = g(x)

má riešenie

u(t, x) =
f(x+ at) + f(x − at)

2
+
1
2a

∫ x+at

x−at

g(τ)dτ

Uvedený vzorec (d’Alembertova formula) udáva klasické riešenie v prípade, že g je raz a
f dvakrát spojite diferencovateľné, vždy však udáva riešenie v zmysle distribúcií.
Na prednáške sme mali aj vzorce pre n = 2, 3, bez odvodenia.
TODO Treba sem dať aj Greenovu funkciu?

15.5 Jednoznačnosť riešenia začiatočno-okrajových úloh

V ďalšom budeme často používať vzťah
∫

Ω

L(v)wdx = −
∫

Ω

k(x)∇u.∇vdx −
∫

Ω

qvwdx+
∫

δΩ

kw
∂v

∂n
ds, (*)

ktorý sa dá odvodiť napríklad v takto: Ak v (Arseninovi) známom vzorci div(p ~E) = pdiv ~E+
~E.∇p položíme p = w a ~E = k∇v, tak máme

∫

Ω
L(v)w =

∫

Ω
div(k∇u)w −

∫

Ω
quvdx =
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∫

Ω
div(k∇vw)−

∫

Ω
k∇v∇w −

∫

Ω
qvwdx a teraz už stačí použiť vetu o divergencii. (Na pred-

náške sme to bolo pomocou per partes, je to v podstate ten istý postup. Takto je to v [ARS].)
Keď sme dokazovali jednoznačnosť riešenia pre rôzne typy rovníc, vždy sme postupovali

tak, že sme predpokladali existenciu dvoch riešení u1 6= u2 nehomogénnej rovnice s ľubovoľ-
nými začiatočnými a okrajovými podmienkami a ich odčítaním sme získali nenulové riešenie
v = u1 − u2 homogénnej rovnice s nulovými počiatočnými a okrajovými podmienkami. O
tomto riečení potom ukážeme, že musí byť nulové. Zaoberali sme sa klasickými riešeniami,
teda sme predpokladali, že riešenia sú funkcie spojite diferencovateľné na Ω toľkokrát, aký je
rád rovnice.

Hyperbolické

L(u) = div(k(x)∇u)− q(x)u+ f(t, x) = ρ(x)
∂2u

∂t2
(15.4)

γ1(x)
∂u

∂n
+ γ2(x)u|∂Ω = g(t, x), t ≥ 0 (15.5)

u(0, x) = ϕ(x) ut(0, x) = ψ(x) x ∈ Ω (15.6)

Veta 5. Začiatočno-okrajová úloha (15.4)-(15.6) má jediné riešenie u ∈ C1(B,R) (B =
{(x, t);x ∈ Ω, t ≥ 0}).
Máme v, pre ktoré platí L(v) = ρ(x)vtt. Z toho dostaneme

∫

Ω

ρ(x)vttvtdx =
∫

Ω

L(v)vtdx
(∗)
=

∫

∂Ω

kvt

∂v

∂n
ds −

∫

Ω

k∇v∇vtdx −
∫

Ω

qvvtdx

∫

Ω

ρ(x)vttvtdx+
∫

Ω

k∇v(∇v)tdx+
∫

Ω

qvvtdx =
∫

∂Ω

kvt

∂v

∂n
ds

1
2

∫

Ω

ρ
∂

∂t
(v2t ) +

∂

∂t
(∇v)2 + q

∂

∂t
(v2)dx =

∫

∂Ω

kvt

∂v

∂n
ds

V prípade Dirichletovej úlohy (γ1 = 0, γ2 = 1) a Neumannovej úlohy (γ1 = 1, γ2 = 0)
je člen na pravej strane 0. Celú rovnosť zintegrujeme podľa t od 0 po T , zameníme poradie
integrovania a využijeme tiež to, že vt(0, x) = v(0, x) = ∇v(0, x) = 0. Dostaneme

∫

Ω

ρv2t (T, x)dx+
∫

Ω

k(∇v)2(T, x)dx+
∫

Ω

qv2(T, x)dx = 0

Pretože o funkcii k predpokladáme k(x) > 0, dostaneme∇v = 0. Súčasne vieme, že na hranici
∂Ω je v = 0, preto musí platiť v = 0 všade.
V prípade Newtonovej podmienky platí ∂v

∂n
|∂Ω = −γ2

γ1
v|∂Ω, pričom sme predpokladali,

že γ1, γ2 ≥ 0, preto na pravej strane dostaneme −
∫

∂Ω
kvt

γ2
γ1

vvtds a po zintegrovaní cez T

dostaneme na pravej strane záporné číslo −
∫

∂Ω
kvt

γ2
γ1

v2(T, x)ds, teda opäť môžeme použiť
ten istý argument.

Parabolické rovnice

Teraz sa venujeme rovnici tvaru L(u)+f(t, x) = ρ(x)ut pričom máme len jednu začiatočnú
podmienku u(0, x) = ϕ(x). Opäť prevedieme dôkaz jednoznačnosti na dôkaz, že riešenie
homogénnej rovnice s homogénnymi podmienkami je nulové.
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Pre v platí L(v) = ρ(x)vt. Tentokrát položíme w(x) = v(x) a dostaneme
∫

Ω

ρvtvdx =
∫

Ω

L(v)vdx = −
∫

Ω

k(∇v)2dx −
∫

Ω

qv2dx+
∫

∂Ω

kv
∂v

∂n
ds

V prípade Dirichletovej alebo Neumannovej podmienky je posledný člen nulový. Dostaneme,
že ∂

∂t
(v2) je skoro všade rovné 0, zo spojitosti potom aj celkom všade a tým máme, že v = 0.
V prípade Newtonovej úlohy budeme použijeme podobný trik ako minule.

Eliptické

Zaoberáme sa rovnicou L(u) = f(x) na okraji platí γ1(x) ∂u
∂n
+γ2(x)u|∂Ω = g(x), začiatočné

podmienky pochopiteľne nie sú.
Máme L(v) = 0 a zintegrovaním tejto rovnosti cez Ω dostaneme

∫

Ω

k(∇v)2dx+
∫

Ω

qv2dx −
∫

∂Ω

kv
∂v

∂n
dx.

V prípade Dirichletovej podmienky je posledný člen 0, preto v = 0. V prípade Newtonovej
podmienky rovnakým postupom ako pri predchádzajúcich dvoch typoch rovníc dostaneme
člen, v ktorom bude vystupovať nezáporný násobok v2.
Pri Neumannovej podmienke takisto v prípade q 6= 0 dostaneme jednoznačnosť. V prípade

q = 0 (čo je prípad Laplaceovej rovnice) dostaneme ∇v = 0 na Ω, pre je v konštantné. To
znamená, že v tomto prípade je riešenie určené jednoznačne až na konštantu.
(Neviem, to len tak mimochodom, nemali by sme to rozdeliť na dva prípady q = 0 a q 6= 0

aj pre Newtonovu podmienku?)

Do kelu! Vy mi nič nepoviete.
Ďurikovič

16 Fourierova metóda

Fourierova metóda pre hyperbolické, parabolické a eliptické zmiešané a okrajové úlohy (vlnová
rovnica, rovnica pre vedenie tepla, Laplaceova rovnica.

16.1 Fourierova metóda - rovnice hyperbolického a parabolického typu

L(u) = div(k(x)∇u)− q(x)u = ρ(x)
∂2u

∂t2
(16.1)

γ1(x)
∂u

∂n
+ γ2(x)u|∂Ω = 0 (16.2)

u(0, x) = ϕ(x) ut(0, x) = ϕ1(x) x ∈ Ω (16.3)

Pričom: k(x) > 0, q(x) ≥ 0, ρ(x) > 0, všetky tieto funkcie sú spojité. γ1 a γ2 sú spojité na
∂Ω, γ1, γ2 ≥ 0 a γ21 + γ22 > 0.
A = {f : (Ω ⊂ R

n) → R; f je spojité na Ω, má po častiach spojitú 1. a 2. deriváciu na Ω a
spĺňa (16.2)}.
Hľadáme riešenie uvedenej rovnice v tvare u(t, x) = T (t)Φ(x).

L(Φ)
ρΦ
(x) =

T ′′

T
(t) = −λ
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L(Φ) + λρΦ = 0 (16.4)

T ′′ + λT = 0 (16.5)

γ1(x)
∂Φ(x)

∂n
+ γ2(x)Φ(x)|x∈∂Ω = 0 (16.6)

(16.4), (16.6) - Sturm-Liouvillova úloha
Táto úloha má spočítateľnú množinu vlastných čísel λn a im zodpovedajúce vlastné fun-

kcie Φn tvoria úplnú ortonormálnu bázu priestoru L2(Ω) s váhou ρ(x), teda každú funkciu

z L2(Ω) možno rozvinúť do Fourierovho radu f(x) =
∞
∑

n=1
cnΦn(x) a cn =

∫

Ω
ρ(x)f(x)Φn(x)dx

∫

Ω
ρ(x)Φ2n(x)dx

.

(Možno nie je celkom správny, ale je tu aspoň pokus o nejaké zdôvodnenie. L : A → L2(Ω) je
samoadjungovaný operátor a L−1 je kompaktný. Ďalej využijeme to, že funkcia a funkcia k
nej inverzná majú rovnaké vlastné funkcie.)
(16.5) má riešenie Tn(t) = Cn cos(

√
λnt)+Dn sin(

√
λnt). Riešenie (16.1)–(16.3) bude po-

tom
∞
∑

n=1
Φ(x)Tn(t) a konštanty, ktoré tu vystupujú možno vyrátať ako Cn =

∫

ρ(x)ϕ(x)Φn(x)dx
∫

ρ(x)Φ2n(x)dx
,

Dn =
∫

ρ(x)ϕ1(x)Φn(x)dx√
λn

∫

ρ(x)Φ2n(x)dx
.

V parabolickom prípade dostaneme riešenie
∞
∑

n=1
Cne−λntΦn(x) a Cn =

∫

ρ(x)ϕ(x)Φn(x)dx
∫

ρ(x)Φ2n(x)dx
.

16.2 Nehomogénne úlohy

L(u) + f(t, x) = div(k(x)∇u)− q(x)u+ f(t, x) = ρ(x)utt (ρ(x)ut) (16.7)

γ1(x)
∂u

∂n
+ γ2(x)u|∂Ω = 0 (16.8)

u(0, x) = 0 = ut(0, x) (16.9)

Riešenie opäť hľadáme v tvare u(t, x) =
∞
∑

n=1
Cn(t)Φn(x). Ak

f(t,x)
ρ(x) =

∞
∑

n=1
fn(t)Φn(x)

(rozvoj do Fourierovho radu), tak máme:

∞
∑

n=1

cn(t)LΦn(x) + ρ(x)fn(t)Φn(x) = ρ(x)
∞
∑

n=1

c′′n(t)Φn(x)

∞
∑

n=1

[−λncn(t) + fn(t)− c′′n(t)]Φn(x) = 0

Potom všetky koeficienty musia byť 0:

c′′n(t) + λncn(t) = fn(t) (c′n(t) + λncn(t) = fn(t))

cn(0) = c′n(0) = 0

Takto dostaneme riešenie (16.7), (16.8), (16.9).

L(u) + f(t, x) = div(k(x)∇u)− q(x)u+ f(t, x) = ρ(x)utt (ρ(x)ut) (16.10)

γ1(x)
∂u

∂n
+ γ2(x)u|∂Ω = 0 (16.11)

u(0, x) = ϕ(x) ut(0, x) = ϕ1(x) x ∈ Ω (16.12)
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Riešenie tejto úlohy hľadáme ako súčet riešenia homogénnej úlohy, ktoré spĺňa dané po-
čiatočné podmienky a nehomogénnej úlohy s nulovými počiatočnými podmienkami.
Ak sú nehomogénne aj okrajové podmienky, tak hľadáme riešenie v tvare súčtu riešenia

pre nehomogénnu rovnicu s homogénnymi podmienkami a riešenia homogénnej rovnice s
nehomogénnymi podmienkami, ktoré treba uhádnuť. (Ak sú podmienky v tvare f1(x).f2(t),
možno ho hľadať tiež separáciou.) Niekedy možno nájsť riešenie tejto rovnice, ktoré nezávisí
od času - ide o ustálený stav daného systému.

16.3 Laplaceova úloha

Pri úlohách eliptického typu treba použiť transformáciu (polárne, sférické, cylindrické
súradnice), a potom sa dá použiť Fourierova metóda.
Polárne súradnice: ∇u = 1

r
∂
∂r
(rur) + 1

r2
uϕϕ.

Sférické súradnice: x = r sinϕ sin θ, y = sinϕ cos θ, z = r cosϕ ⇒ ∇u = ∂2u
∂r2
+ 2

r
∂u
∂r
+

cotgϕ
r2

∂u
∂ϕ
+ 1

r2 sin2 ϕ
∂2u
∂θ2
(?)

Cylindrické súradnice: x = r cosϕ, y = r sinϕ, z = z ⇒ ∇u = 1
r

∂
∂r
(rur) + 1

r2
uϕϕ

∂2u
∂z2

Riešenie Laplaceovej úlohy na kruhu

Túto úlohu môžeme riešiť Fourierovou metódou. Ak do rovnice ∇u = 0 vyjadrenej v
polárnych súradniciach dosadíme u(r, ϕ) = F (r)Ψ(ϕ), dostaneme po úprave

rF ′(r) + r2F ′′(r)
F (r)

= −Ψ
′′(ϕ)
Ψ(ϕ)

= λ

Najprv riešime rovnicu Ψ′′(ϕ) + λΨ(ϕ) = 0 s podmienkou Ψ(ϕ) = Ψ(ϕ+ 2π). Táto rovnica
má riešenie tvaru Ψ(ϕ) = a cos

√
λϕ + b sin

√
λϕ a musí platiť

√
λ = n, λ = n2. Máme teda

riešenia Ψn(ϕ) = An cosnϕ+Bn sinnϕ.
Ďalej dostaneme rovnicu r2F ′′(r) + rF ′(r) = n2F (r). Riešenie hľadáme v tvare rα. Do-

staneme dve riešenia rn a 1
rn . Pretože riešenie, ktoré hľadáme, je v 0 ohraničené (to vieme z

vlastností harmonických funkcií), tak použijeme iba rn.
Výsledok je v tvare u(r, ϕ) =

∑∞
k=1(Ak sin kϕ + Bk cos kϕ)rk. Koeficienty možno určiť

pomocou okrajovej podmienky u(R,ϕ) = f(ϕ) ako 1
2π

∫ 2π

0
f(ϕ)

d
ϕ Bk = 1

π

∫ 2π

0
f(ϕ) cos kϕ

Rk dϕ a

Ak = 1
π

∫ π

0
f(ϕ) sin kϕ

Rk dϕ.
Ďalšími úpravami sa tento tvar riešenia dal upraviť na Poissonov vzorec:

u(r, θ) 12π
2π
∫

0

(R2−r2)f(t)dt

R2+r2−2Rr cos(t−θ) . Ak si chcete pre zaujímavosť pozrieť jeho odvodenie pomocou

komplexnej analýzy, môžete ho nájsť v [CA].
Jednoznačnosť riešenia Laplaceovej úlohy je v predchádzajúcej otázke.

Už ste mali vetu o spektrálnom poromele?
Fečkan
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