Tu bude kadeco, ¢o sice nepatri do textu, ktory by mal obsahovat len zaklad uciva, ale
predsa len to bolo hodné (alebo aj nehodné) zapisania. Napriklad by tu mohli byt aj opravy
nespravnych viet a dékazov uvedenych v skriptach.

2 Diferencovatelnost

Cauchyho vetu v podielovom tvare mozeme ziskat z tvaru (f(b) — f(a))g'(c) = (g(b) —
g(a))f'(c) jednoducho v pripade, Ze derivécie si koneéné. Ak nadobida nekoneéni hodnotu
vzdy len jedna z nich, stile nie je problém, lebo v takomto bode by platilo co =koneéna
hodnota, ¢ize takyto bod nie je bodom ¢ vystupujicim vo vete. Ak nadobudaji obe stcasne
nekone¢ni hodnotu, stdle moéZzeme analyzou znamienok vylacit ten pripad, kedy by sme
dostali v takomto bode rovnost +0o = —oco. Zostava teda jediny pripad, kedy nemozeme z
tejto formulacie Cauchyho vety odvodit t1, v ktorej vystupuje podiel. Problém je vlastne v
tom, Ze nevieme, ¢omu sa rovna podiel co/oco.

Nasleduje kontrapriklad, ktory ukazuje, Ze v takomto pripade veta neplati. (Napriklad vo
Venckovych skriptach je vSak uvedené znenie, ktoré priptsta nekonecné derivacie a nehovori
ni¢ o tom, ze by nemali byt nekoneéné sicasne, ak som to len ndhodou neprehliadol.) Oznaéme
f(z) = h1(x), kde h(x) = 23 (&ze f je inverzna funkcia k z3). Oznaéme g(z) = f(z) +
X(0, &) Uvazujme funkcie f a g na intervale (a,b), kde a = —35 a b = 3. Plati f(a) =

gla) = —%, (b) = % a g(b) = 1. (Ked sa na to po ¢ase pozerém tak neviem, prec¢o som zvolil

f() (o) _
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prave takéto hranice, ale ert ich ber.) Plati % =
pre ¢ > 0. V bode nula ide o podiel co/o0. (Vidime, ze platnost vety mozno lahko zachrénit,
ak dodefinujeme co/oc0 = 3/2;-)

Velky vyznam to vSak asi nemaé, uréite sme pouzivali tito vetu len pre funkcie s koneénymi
deriviciami.

5 Riemannov integral

Iny doékaz druhej vety o strednej hodnote integralneho poctu:

/ab F(x)g(x)dz = f(a) /ac g(z)dz + f(b) /Cbg(x)dx

Oznacme A := [ g(z)dx, B := fb g(x)dz. Mame:

Dokaz.

/ f(x)g(x)dx = Af(a) + BS(D)
/ g(x)dz = A+ B

b xT)— T ’ v I s .
Odtial vyjadrime A = %. (Pripad f(a) = f(b) treba vysetrlt zv1ast, ale ten je

jednoduchy.) My potrebujeme ukézat, Ze existuje také ¢t € (a,b), ze G(t f g(z)dx =

Ak f je nerasttca, tak 0 < f(z) — f(b) < f(a) — f(b), a teda G( ) < A § G(b )
spojitosti funkcie G (jedna z viet, ktoré sme brali pri Riemannovom integrale) mame potom
existenciu ¢ takého, ze G(t) = A.

Pre neklesajtcu funkciu staci zobrat — f. O

Podla dékazu sa zd4, Ze by staéilo f(b) < f(z) < f(a), ¢o je slabsia podmienka ako
monoténnost.



10 Banachov a Hilbertov priestor
Hamelova baza

Dokaz vety, ktord hovori, ze lubovolné dve Hamelove bazy maji rovnakt kardinalitu sme
robili na prednaske na dvakrat a dost chaoticky, tak som sem dal jednoduchy dokaz z [NS,
cvidenie 4.7.7]. Je tu uvedeny len nekoneénorozmerny pripad.

Dékaz. Nech Bj, By st dve Hamelove bazy priestoru X. Pre kazdé « € B; nech By(z) je
jednoznacne urcéend koneénd mnozina bodov bazy Bs, ktorych linedrnou kombinaciou je x.
Najprv ukdzeme, Ze pre kazdé y € B existuje také x € By, Zze y € Ba(x).

Nech by to tak nebolo, teda y € Ba(x) pre ziadne x. Potom B; C [Bz2\ {y}] ([V] oznacuje
linedrny obal mnoziny V C X). KedZe B; je baza, tak potom [Bs \ {y}] = X, a teda y je
linedrna kombinécia prvkov z Bs \ {y}. Ukdzali sme, Ze By nie je linedrne nezavisld, ¢o je
spor s predpokladom, Ze je to Hamelova baza.

Mame teda ukdzané (Vy € By)(3x € By)y € Ba(z). Plati potom By = |J Bz(x). Pre

zeB;
kardinality dostdvame card B, = card ( |J Ba(z)) < card B;.Ng = card By (v poslednej
r€B,
rovnosti sme vyuzili, Ze card B; je nekoneénd.) Rovnakym spésobom ako card By < card B
mozeme ukéazat nerovnost card By < card By. Z tychto dvoch nerovnosti (podla Cantor-

Bernsteinovej vety) dostaneme card By = card Bj. ]
Von Neumannova veta

Pekny dokaz von Neumannovej vety, vraj to vymyslel nejaky Student a volajako sa to
dostalo aj ku mne:

Dékaz. Z predpokladov vety vyplyva, ze f(z) = Az + y je kontraktivne zobrazenie. Z Bana-
chovej vety o pevnom bode potom vyplyva, Ze existuje (pre fubovolné y) jediné x také, ze
x=Ax+y, tj. (I —Azx=y.

Maéme teda existenciu inverzného zobrazenia k I — A, zostava overif jeho spojitost a odhad
pre normuw: x = Az +y = [lz]| < [[Az[| + [yl < [Allllz] + [lyll = (<X = [A]) < [yl =

llyll
el < = =

Rovnobeznikové pravidlo

Obratenie rovnobeznikového pravidla

Dokaz. Ukéazeme, ze (x,y) je skalarny stéin. Vlastnosti (z,2) =0z =0a
(z,y) = (y, z) st zrejmé. Treba teda uz len ukdzat (z+y, 2) = (x, 2)+(y, 2) a (azx,y) = a(z, y).

_ lztyl®~llz—y|?
1

(g, 2) = lz+y+2l?—llz+y—2® _ llzt+y+2®+Ilz1* = (= +y - 2l* + %) :I
’ 4 4

lz+y+22° + e +yll> — (lz+y — 220>+l + ) _ llo+y+22)* — o +y— 22|
8 8




i+ 20 + lly + 212 = (= 20 + lly = 21%)
(2,2) + (1,2) = - -

lz+y+22° +lle—yll> = (lz+y - 220> +llz —yl*) _ lz+y+22)* — o +y— 22|
8 8

Tym mame (z +y,z2) = (x, 2) + (y, 2). Tiez plati (z, —y) = (—z,y) = —(z,y). Na zdklade
toho lahko indukciou ukdzeme (nz,y) = n(z,y) pre n € Z. Jednoducho sa to rozsiri aj na
raciondlne ¢isla: q( ) = (px,y) = p(z,y) = (gx,y) = %(x,y). Z racionélnych ¢isel na
realne to mozeme rozsult limitnym prechodom. (Norma je spojité zobrazenie.) O

15 Cauchyho tuloha
Jednoznaénost riesenia Cauchyho tilohy pre vlnovii rovnicu

Je to podobny dokaz ako na prednéaske, ale snazil som sa ho pisat jednoduchsie. Preto to
aj dokazujem len v jednorozmere, a potom sa pokusim naznadit, ako by to $lo vo viacrozmere.
(Samozrejme, mohol by som to pisaf celé v n-rozmere, ale to by sme sa iba zbyto¢ne ubili.)

K takémuto druhu ddkazov sa zvykne kreslit aj obrézok. Tak si ho nakreslite.

Dokaz. Zékladna myslienka dokazu je presne rovnakd ako na predniske — budeme sa snazit
dokézat, ze vo vrchole kazdého charakteristického kuzela je u nulové.

Z, je v jednorozmernom pripade trojuholnik. Parametrizacie jeho dvoch stran, na ktorych
u modze byt nenulové, st
(t,z) =(r,r—7), 7 € (0,r) (hsecka u),
(t,x) = (r,7 —7), 7 € (0,r) (Gsecka ug).
Vyjadrime derivaciu zZenia u na tieto tsecky podla parametra 7. Pre f(7) = u(r,r — 7) a
g(17) = u(r,7—r) mame f'(7) = w (1, r—7) —uy (7,7 —7) a ¢'(7) = ue(r, 7 — 1) + Uy (1,7 —1).
Nas zaujima hodnota u vo vrchole Z,, ¢ize u(r, 0).

(rO fo defo ug(T, 7 — 7) — ug (7,7 — T)dT
u(r,0 fo dT—foutTT—T)+uz(TT—T)dT
Jednotkovy Vektor vonkajsej normaly je v = 7(1 1) na tsecke u; a vg = %(1,—1) na

tisecke ug. Ak polozime w(t, ) = (ut, —u,), tak vidime, Ze u(r,0) = /2 f . =2 [ w.ih.

KedZe na podstave je w = 0, tak 2u(r,0) = V2 | w.fids. Mozeme pouzrc vetu o divergencii
a7,
a dostaneme v2u(0,7) = [ divwdS = [ (us — Uyy)dS = 0. O
Z, Zy

Myslim, Ze analogicky by to iSlo aj vo viacrozmere. (Je predsa neprirodzené, aby to tam
neplatilo, ked to v jednorozmere plati.) Postupoval by som asi takto:

Teraz uvazujeme (¢, z) € RT x R™. Kazd4 povrchova tsecka kuzela Z, je urcena nejakym
bodom z okraja podstavy (ktory je (n — 1)-rozmernd gula) xg. Nech up = Hi—gl\ Tentokrat
zvolime taktto parametriziciu:

(x,t) = (r—(r—7)" uo(r —7)™)
f(r) =ulr = (r —7)",ug(r —7)")
f(r) =n(r — )" Y(uy — up. grad u)
T
u(r,0) = [n(r — )" (u — up. grad u)dr
0
Ked uvedenti rovnost zintegrujeme cez vSetky g, ktoré prebiehaji (n — 1)-rozmernd gulu,

dostaneme



Ku(r,0) = [ (u; — upgradu)dsS,
a2z,

lebo (r — 7)"~1dS,,_1dr ndm d4 (az na konstantu) dS. (To by sa malo dat overit pomocou
parametrizicie kuzela. A toto je prave dovod, pre¢o sme museli zvolit takito parametrizéciu
povrchovej tsecky, ak sme chceli nakoniec dostat plosny integral po kuzeli.) Teraz je w =
(ut, — grad u). (Pri podrobnom dokaze by bolo este treba zistit jednotkovy vektor vonkajsej
normély, ndm vSak staci, ked z obrézku vidime, Ze to bude (1, ug) po predeleni jeho normou.)
Pomocou vety o divergencii dostaneme objemovy integral z divw = uy — Au (resp. jeho
nasobok).
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