1 Stirlingova formulal

Odvodime znamu Stirlingovu formulu
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Pod f(n) ~ g(n) rozumieme, ze podiel pravej a lavej strany konverguje pre n — oo k 1.

Tu uvedené odvodenie je van der Waerdenovo odvodenie z [1] a mozno ho najst v [2].
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Ak polozime x := 2n+1, tak méme
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Teraz odvodime odhad pre log “*1. Urobme najprv odhad pre log 7= 1+$ . Dolny odhad ziskame

tak, ze vynechame vsetky ¢leny pocnuc druhym (z = je kladne) a horny odhad ziskame
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nahradenim dalsich ¢lenov geometrickym radom.
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Pomocou tjchto nerovnosti mézeme odhadnit log =~
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Z predchadzajiceho vztahu indukciou lahko odvodime, Ze plati
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Z (1) vyplyva, ze postupnost (a,) je klesajlca, ¢ize existuje a = klim Qnyk. Dalej a # 0,
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lebo inak by platilo klim log “’(‘I—'H“ — —00, ¢o je v spore s (1). Ak v tomto vztahu prejdeme
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k limite pre k idtce do nekonecna, dostaneme:
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Ked teraz pouZijeme vyjadrenie a,,, mame
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U% sme odvodili Stirlingovu formulu az na zatial nezndmu konstantu a.

Wallisov sti¢in. Na odhad konstanty o pouzijeme Wallisov stéin. Ozna¢me
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Metédou pre partes dostaneme:
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Pomocou tejto rekurencie a hodnot
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vieme uréit
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Pocitajme teraz
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Z nerovnosti Iog—1 > o > Iok41 potom vyplyva, ze aj
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Tento vztah sa nazjyva Wallisov sicin.
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Dosadme teraz do Wallisovho stéinu za faktorial n! = an™*ze="(1+0(n~1)). Dostaneme
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Odvodenie pomocou Eulerovej sumacnej formuly. Presnejsi odhad pre n!
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mozno najst v [3]. Je tam odvodeny pomocou Eulerovej suma¢nej formuly. Tu aspoil nazna-
¢ime, ako pomocou nej mozno odvodit nas tvar Stirlingovej formuly.

Veta 1.1. Nech nezdpornd redlna funkcia f md v intervale (0, +00) spojiti derivdciu. Potom
pre kazdé n = 1,2, ... plati

f /f )dt + )+f()+/0(t—[t]—;)f’(t)dt.
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Dokaz tejto vety pozri v [4].



Namiesto n! = 1.2....n budeme odhadovat log(n!) = Y ;_, logk. Pomocou Eulerovej
sumacnej formuly dostaneme
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O postupnosti R, = Onfl(t —[t] = 1) £/ (t)dt by sa malo dat ukézaf, Ze je klesajiica a ohra-
ni¢end, ma teda nejakt limitu c¢. Potom v limite pre n — oo dostaneme
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¢o je v podstate opiit tvar Stirlingovej formuly s nezndmou konstantou .
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