

Bounded topological groups

[Tka2, Tka1]

\aleph_0 -bounded topological groups

ω -narrow

homomorphic image [AT, Proposition 3.4.2], product [AT, Proposition 3.4.3], subgroup [AT, Proposition 3.4.4]

Every Lindelöf topological group is ω -narrow. [AT, Proposition 3.4.6]

Every separable topological group is ω -narrow. (In fact, countable cellularity suffices.) [AT, Proposition 3.4.7, Corollary 3.4.8]

If a topological group G contains dense subgroup H such that H is ω -narrow, then G is also ω -narrow. [AT, Theorem 3.4.9]

[AT, Corollary 3.4.19]: Let G be an ω -narrow group. Then for every neighbourhood U of the identity in G , there exists a continuous homomorphism π of G onto a second-countable topological group H such that $\pi^{-1}(V) \subseteq U$, for some open neighbourhood V of the identity in H .

A topological group G is topologically isomorphic to a subgroup of the topological product of some family of second-countable groups if and only if G is ω -narrow. [AT, Theorem 3.4.23]

Closure properties

- H=hereditary (subgroups)
- CH=closed subgroups
- D=“closure” (If a dense subgroup has this property, so does the whole group.)
- FP=finite products
- P=arbitrary products
- HI=homomorphic image

	H	CH	D	FP	P	HI
ω -narrow	+	+	+	+	+	+
σ -bounded	+	+	-	-	-	+
strictly σ -bounded	+	+	-		-	+

ω -narrow H: [AT, Proposition 3.4.4] (\Rightarrow CH)

D: [AT, 3.4.9]

P: [AT, Proposition 3.4.3] (\Rightarrow FP)

HI: [AT, Proposition 3.4.2]

σ -bounded H: [H, Theorem 2.1] (\Rightarrow CH)

\neg P: \mathbb{R}^ω (with product topology) [H, Example 2.6]

\neg FP: [HRT, Example 2.12]

\neg D: σ -product in \mathbb{R}^ω (with product topology) [H, Example 2.6]

HI: [H, Theorem 2.3]

strictly o-bounded H: [H, Theorem 2.1] (\Rightarrow CH)
 $\neg P$: \mathbb{R}^ω (with product topology) [H, Example 2.6]
 $\neg FP$: [HRT, Example 2.12]
 $\neg D$: σ -product in \mathbb{R}^ω (with product topology) [H, Example 2.6]
HI: [H, Theorem 2.3]

References

[AT] A. V. Arkhangelskii and M. Tkachenko. *Topological Groups and Related Structures*. Atlantis Press/World Scientific, Amsterdam, 2008.

[H] Constancio Hernández. Topological groups close to being σ -compact. *Topol. Appl.*, 102:101–111, 2000.

[HRT] C. Hernández, D. Robbie, and M. Tkachenko. Some properties of o-bounded and strictly o-bounded groups. *Appl. Gen. Topol.*, 1(1):29–43, 2000.

[Tka1] Mikhail Tkachenko. Introduction to topological groups. *Topol. Appl.*, 86(3):179–231, 1998.

[Tka2] Mikhail Tkachenko. Topological groups: Between compactness and \aleph_0 -boundedness. In M. Hušek and J. van Mill, editors, *Recent Progress in General Topology II*, pages 515–543, Amsterdam, 2002. Elsevier.