

Notes on some papers related to topological groups

1 Hernández: Topological groups close to being σ -compact

Notes from [H].

1.1 Introduction

o-bounded, strictly o-bounded

The game in definition of strictly o-bounded topological group is called OF-game in [HRT, Tka2, Tka1].

\aleph_0 -bounded They are called ω -narrow in [AT].

subgroup of a σ -compact group \Rightarrow strictly o-bounded \Rightarrow o-bounded \Rightarrow \aleph_0 -bounded

None of the implication can be reversed

TODO \mathbb{R} -factorizable

1.2 Elementary properties

- Every subgroup of a (strictly) o-bounded group is (strictly) o-bounded.
- Every continuous image of (strictly) o-bounded group is (strictly) o-bounded.
- Every Lindelöf P-group is o-bounded.
- Every ω -narrow (\aleph_0 -bounded) P-group is o-bounded. (This is strengthening of the previous result which does not appear in [H]. However, the same proof works without any change, as pointed out in [HRT].)

The author asks in Problem 2.5 whether every Lindelöf P-group is strictly o-bounded. A counterexample was given in [KM]. They constructed a Lindelöf P-group which is not strictly o-bounded.

Example 2.6: \mathbb{R}^ω is \aleph_0 -bounded but not o-bounded.

1.3 o-bounded and σ -compact groups

Example 3.1 gives Example of a group G^* which is o-bounded but not a subgroup of a σ -compact group. The group G^* is moreover Lindelöf P-group.

This example is somewhat similar to [AT, 4.4.11]. The same example also appears in [HRT], where spaces obtained by this construction are called Comfort-like groups.

Let us describe this example in more detail.

1.3.1 Group Π (ω -box product of countable discrete groups)

We work with a family $\{G_\alpha; \alpha \in A\}$ of countable discrete groups. (In fact, to get a desired example we can take $G_\alpha = \{0, 1\}$. As far as I can tell, nothing substantial changes in the proof.)

Let $\Pi = \prod_{\alpha \in A} G_\alpha$ with the \aleph_0 -box topology, i.e., the basic open sets are $p_B^{-1}(x)$, where B is a countable subset of A and $p_B: \Pi \rightarrow \Pi_B$ is the projection.

The local basis at e is formed by the sets $p_B^{-1}(e)$ for $B \in [A]^{\leq \omega}$. (In the other words, we fix $\pi_\alpha(x) = e$ for α 's from some countable set B and the remaining coordinates are arbitrary.)

Π is a Hausdorff topological group.

Π is a P -group. Obvious. (It suffices to show that a countable intersection of basic neighborhoods of e is open. We have $\bigcap_{i=0}^{\infty} p_{B_i}^{-1}(e) = p_B^{-1}(e)$ for $B = \bigcup_{i=0}^{\infty} B_i$.)

Π is \aleph_0 -bounded.

Π is o -bounded.

1.3.2 Subgroup G^* (finite support)

For $g \in \Pi$ we define

$$\text{supp } g = \{\alpha \in A; \pi_\alpha(g) \neq e_\alpha\}.$$

We put

$$G^* = \{g \in \Pi; |\text{supp } g| < \aleph_0\}.$$

G^* is a subgroup of G . Obvious. Just notice that $\text{supp}(g_1g_2) \subseteq \text{supp}(g_1) \cup \text{supp}(g_2)$.

G^* is o -bounded since this is true for Π and both these properties are hereditary.

G^* is Lindelöf. TODO [C]

Basic neighborhoods. The family $\mathcal{U} = \{U_B; B \in [A]^{\leq \omega}\}$ where

$$U_B = p_B^{-1}(e) \cap G^*$$

is a local base at e .

- The sets U_B are clopen. (The complement of U_B is $\{x \in G^*; (\exists \beta \in B) \pi_\beta(x) \neq e\}$, so it is union of open sets $\pi_\beta^{-1}(G_\beta \setminus \{e\})$)
- Every U_B is a subgroup of G^* .
- $|G^*/U_B| \leq \aleph_0$ for each $B \in [A]^{\leq \omega}$. (This basically just says that G^* is \aleph_0 -bounded.)

1.3.3 G^* is strictly o -bounded

G^* is strictly o -bounded.

1.3.4 G^* is not σ -compact for $|A| \geq \aleph_1$

We will show that if $|A| \geq \aleph_1$, then G^* . (I do not see this condition mentioned in [H], but I think it is needed.)

Lemma 1. *If $K \subseteq G^*$ is compact, then*

$$\text{supp } K = \bigcup_{g \in K} \text{supp } g$$

is finite.

Proof. Let us assume that $\text{supp } K$ is infinite. Since each $g \in K$ has finite support, this implies that we can construct a sequence $g_n \in K$, $\alpha_n \in A$ such that

$$g_n(\alpha_n) \neq e,$$

where all α_n 's are distinct.

If we prescribe values at each of countably many coordinates $\alpha_1, \alpha_2, \dots, \alpha_n, \dots$, we get an open set:

$$U_n = \{g \in G^*; \pi_{\alpha_n} \neq e, \pi_{\alpha_j} = e \text{ for } j \neq n\}.$$

Moreover, $g_n \in U_n$, and $g_j \notin U_n$ for $j \neq n$.

This implies that U_n 's together with the set $G^* \setminus \{g_n; n \in \omega\}$ form an open cover of G^* which has no finite subcover. (Any finite subsystem contains only finitely many g_n 's.) \square

Proposition 1. *If $A \geq \aleph_1$ then G^* is not σ -compact.*

Proof. \square

1.4 A characterization of o-bounded groups

An \aleph_0 -bounded topological group G is o-bounded if and only if all second countable continuous homomorphic images of G are o-bounded.

Problem 4.2 asks about similar characterization for strictly o-bounded groups. In [HRT, Theorem 3.1] the authors show that such characterization is not true under \Diamond .

1.5 The space $C_p(X)$ and productivity properties

The author asks in Problem 5.2 whether product of two o-bounded groups is o-bounded. The answer is no, [HRT, Example 2.12] is an example of a second countable o-bounded topological group G such that $G \times G$ is not o-bounded.

References

- [AT] A. V. Arkhangelskii and M. Tkachenko. *Topological Groups and Related Structures*. Atlantis Press/World Scientific, Amsterdam, 2008.
- [C] W. W. Comfort. Compactness-like properties for generalized weak topological sums. *Pacif. J. Math.*, 60(1):31–37, 1975.
- [H] Constancio Hernández. Topological groups close to being σ -compact. *Topol. Appl.*, 102:101–111, 2000.
- [HRT] C. Hernández, D. Robbie, and M. Tkachenko. Some properties of o-bounded and strictly o-bounded groups. *Appl. Gen. Topol.*, 1(1):29–43, 2000.
- [KM] Adam Krawczyk and Henryk Michalewski. An example of a topological group. *Topol. Appl.*, 127(3):325–330, 2003.
- [Tka1] Mikhail Tkachenko. Introduction to topological groups. *Topol. Appl.*, 86(3):179–231, 1998.
- [Tka2] Mikhail Tkachenko. Topological groups: Between compactness and \aleph_0 -boundedness. In M. Hušek and J. van Mill, editors, *Recent Progress in General Topology II*, pages 515–543, Amsterdam, 2002. Elsevier.