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Compactness arguments

The goal of these notes is to familiarize the reader with one kind of compactness arguments
that are used quite frequently in several areas of mathematics. We will also describe them
from several equivalent viewpoints. For people used to work with F-limits this might be the
most natural approach, but it is certainly useful to see different approaches too (at least in
order to be able to understand such arguments, when I see them, and to be able to translate
them to “my favourite” language.)

Basic facts and definitions

Nets and cluster point

A point x ∈ X is a cluster point of a net (xd)d∈D if and only if {d ∈ D;xd ∈ U} is cofinal
in D for each neighborhood U of x. A point is a cluster point of some net if and only if it is
limit of some subnet of this net.

It is also useful to notice that if (xd)d∈D is a convergent net in a Hausdorff space, then
the unique cluster point of this net is the limit.

We will mostly use cluster points of sequences. Notice that if x is a cluster point of some
sequence, this does not imply that there exists a subsequence convergent to x. (We only
know that there is a subnet, but not every subnet of a sequence is a subsequence.)

Remark 1. We will be working with the following definition of a subnet: Let (xd)d∈D be
a net. A net (ye)e∈E is called a subnet of (xd)d∈D if there exists a cofinal monotone map
h : E → D such that ye = xh(e). (Some authors use weaker condition instead of monotonicity
of h.) Note that cofinality and monotonicity of h implies that

(∀d ∈ D)(∃e0 ∈ E)(e ≥ e0 ⇒ h(e) ≥ d),

which can be, in some sense, interpreted as h(e)→∞.

F-limits

If (xn) is a sequence in a compact space and F is an ultrafilter then F-limxn exists. (In fact,
this claim can be stated and proven for arbitrary domains, not just N.)

Applications

Existence of invariant means/measures

In this paragraph, by a measure on Z we will understand a positive finitely additive prob-
ability measure µ : P(Z) → [0, 1]. Invariant measure is a measure which is shift-invariant,
i.e.,

µ(A+ 1) = µ(A)

for each A ⊆ Z.

Proposition 1. There exists an invariant measure on Z.
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See e.g. [P, p.5]. The above proposition means that the discrete topological group (Z,+)
is amenable.

Proof. First, for each n ∈ N let us define

µn(A) =
|A ∩ [−n, n]|

2n+ 1
.

Each µn is a positive finitely additive probability measure on N. If we work in the space of
all finitely additive measure with the topology of pointwise convergence1 then the set of all
positive probability measures is a compact subset.

Note that

µn(A+ 1)− µn(A) =
|(A+ 1) ∩ [−n, n]|

2n+ 1
− |A ∩ [−n, n]|

2n+ 1
=

=
|(A) ∩ [−n− 1, n− 1]|

2n+ 1
− |A ∩ [−n, n]|

2n+ 1
=
χA(n)− χA(−n− 1)

2n+ 1

which implies

|µn(A+ 1)− µn(A)| ≤ 2

2n+ 1
.

Using subnets. By compactness, the sequence µn has a cluster point. Hence there exists
a convergent subnet (µnd

)d∈D. By Remark 1 we have nd → ∞. Let µ = limµnd
. Thus we

get

|µ(A+ 1)− µ(A)| ≤ lim
d∈D

2

2nd + 1
= 0

and µ(A+ 1) = µ(A), i.e., µ is shift-invariant.
It is easy to verify that µ is finitely additive and µ(Z) = 1.
Using filters. Let F be any free ultrafilter. Then for each A ⊆ Z put

µ(A) = F-limµn(A).

Since F is ultrafilter and µn(A) ∈ [0, 1] is a bounded sequence, this limit exists for each A.
The proof of the fact that µ(A) is a finitely additive probability measure on Z is straight-

forward. Let us check the shift-invariance. We have

|µ(A+ 1)− µ(A)| = |F-limµn(A+ 1)− µn(A)| ≤ |F-lim
2

2n+ 1
| = 0.

Existence of Banach limits

Since there is a one-to-one correspondence between positive invariant means and positive
finitely additive measures, this paragraph in fact proves the same results and the preceding
one, only formulated using functionals instead of measures.

Let us denote Cn : `∞ → R,

Cn(x) =
x1 + · · ·+ xn

n
.

Clearly, each Cn belongs to `∗∞ and ‖Cn‖ = 1. Each Cn is also positive.

1i.e. a net (µd)d∈D converges to µ in this space if and only if µd(A) → µ(A) for each A

2



Proof using ultrafilters. Let us define f(x) = F-limCn(x). It is easy to show that f(x) is a
linear positive functional and ‖f‖ = 1. It is also shift-invariant, since

f(Sx− x) = F-lim
xn+1 − x1

n
= 0.

Proof using subnets. All Cn belong to unit ball of `∗∞, which is compact by Banach-Alaoglu
theorem. There exists a convergent subnet (Cnd

)d∈D with nd →∞. If we put

f = lim
d∈D

Cnd

then the functional f ∈ `∗∞ has norm 1 and it is shift-invariant since

f(Sx− x) = lim
d∈D

xnd+1 − x1
nd

= 0.

Krylov-Bogolyubov Theorem

In this part we would like to show the existence of invariant measure for a continuous trans-
formation of a compact metric space. See [AB, Theorem 16.48], [BS, Theorem 4.6.1], [S, p.8,
Theorem 1.1], [W, p.152, Corollary 6.9.1].2

By Riesz representation theorem, regular Borel measures on X can be identified with
functionals from C∗(X). If we work with weak∗-topology, then the set of all probability
measures can be considered as a closed subset of unit ball of C∗(X), which is weak∗-compact
by Banach-Alaoglu theorem.

The T -invariant measures correspond to T -invariant functionals. This can be shown using
change of variables [AB, Theorem 13.46].

Theorem 1 (Change of Variables Theorem I). Let ΣX and ΣY be σ-algebras of subsets of X
and Y respectively, and let T : (X,ΣX) → (Y,ΣY ) be a measurable transformation. Assume
that µ is a measure on ΣX and let ν = µT−1 be the measure induced from µ by T on ΣY .
For e function f : Y → R we have

1. If f is ν-integrable, then f ◦ T is µ-integrable and∫
Y

f dν =

∫
Y

f dµT−1 =

∫
X

f ◦ T dµ.

2. If ν is σ-finite, f is ν-measurable, and f ◦ T ∈ L1(µ), then f ∈ L1(ν) and∫
Y

f dν =

∫
X

f ◦ T dµ.

Lemma 1. A measure µ is T -invariant if and only if the corresponding functional

ϕ(f) =

∫
X

f dµ

is T -invariant, i.e. it fulfills the condition ϕ(f ◦ T ) = ϕ(f) for each continuous f : X → R.

2http://mathoverflow.net/questions/66669/proof-of-krylov-bogoliubov-theorem

3

http://mathoverflow.net/questions/66669/proof-of-krylov-bogoliubov-theorem


Proof. ⇐ µ(T−1A) =
∫
X
χT−1A dµ =

∫
X
χA ◦ T dµ = ϕ(χA ◦ T ) = ϕ(χA) =

∫
X
χA d =

µ(A)
⇒ T -invariance of the measure µ means µ = µT−1. Thus

ϕ(f ◦ T ) =

∫
X

f ◦ T dµ =

∫
X

f dµT−1 =

∫
X

f dµ = ϕ(f).

Let us note also that µ is positive if and only if the corresponding functional is positive
and µ is a probability measure if and only if the corresponding functional is normalized.

Another fact needed in the following proof is that every finite Borel measure on a com-
pletely metrizable space is regular [AB, Theorem 12.7]. 3

Theorem 2 (Krylov-Bogolyubov). Let X be a compact metrizable topological space and
T : X → X be a continuous function. Then there exists a T -invariant Borel measure on X,
i.e. a σ-additive positive measure µ defined on the σ-algebra B of all Borel sets such that

µ(T−1A) = µ(A)

holds for each A ∈ B.

Proof. From the above remarks if follows that it is sufficient to show the existence of ϕ ∈
C∗(X) such that

ϕ(f ◦ T ) = ϕ(f)

for each f ∈ C(X). As usually, we will work with the weak∗ topology on C∗(X).
We start with an arbitrary g ∈ C∗(X) such that ‖g‖ = 1 and g is positive. (We can

choose, for example, g : f 7→ f(x0) for some x0 ∈ X.) Now define ϕn = g+g◦T+···+g◦Tn−1

n .

Ultrafilters. Let ϕ(f) = F-limϕn(f) = F-lim g
(

f+Tf+···+Tn−1f
n

)
. It is easy to see that

ϕ is a linear positive functional on C∗(X). Moreover

|ϕ(f ◦ T )(x)− ϕ(f)(x)| = |F-lim g

(
Tnf − f

n

)
| ≤ lim sup

n→∞

‖g‖.2‖f‖
n

= 0,

hence ϕ(f ◦ T ) = ϕ(f) and ϕ is T -invariant.
Convergent subnet. If ϕ = limd∈D ϕnd

, then

|ϕ(f ◦ T )− ϕ(f)| = lim
d∈D
|g
(
Tndf − f

nd

)
| ≤ lim

d∈D

‖g‖.2‖f‖
nd

= 0.

Maybe it is worth mentioning that the proof given in [AB, Theorem 16.48] utilizes exis-
tence of Banach limits. For any Banach limit L and any x ∈ X the formula ϕ(f) = L(Tnf(x))
defines a T -invariant positive functional ϕ ∈ C∗(X). The same proof is given in [K, p.2].

3To be honest, I still do not see, where exactly in the proof the metrizability of X is used.
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Banach density and maximal value of shift-invariant mean

Recall that u(A) = lim
n→∞

supk
A(k,k+n−1)

n .

Proposition 2. For every A0 ⊆ N there exists a shift-invariant positive finitely additive
measure µ on N such that µ(A) = u(A).

Proof. From the definition of u(A) we get that there exists a sequence In of intervals in N
such that lim

n→∞
|In| = +∞ and

lim
n→∞

|A ∩ In|
|In|

= u(A).

Define µn by µn(B) = |B∩In|
|In| . Clearly, each µn is a finitely additive probability measure.

Ultrafilters. If we put
µ(B) = F-limµn(B)

for B ⊆ N, then it is easy to show that µ is a finitely additive probability measure. Moreover,

|µ(B + 1)− µ(B)| = |F-lim
|(B + 1) ∩ In| − |B ∩ In|

|In|
| ≤ lim

n→∞

2

|In|
= 0

holds for any B ⊆ N.
For the set A we have

µ(A) = F-limµn(A) = lim
n→∞

|A ∩ In|
|In|

= u(A).

Convergent subnet. We put µ(B) = limn∈D µnd
(B).

|µ(B + 1)− µ(B)| ≤ lim
d∈D

2

|Ind
|

= 0

µ(A) = lim
d∈D

|A ∩ Ind
|

|Ind
|

= lim
n→∞

|A ∩ In|
|In|

= u(A),

since
(
|A∩Ind

|
|Ind
|

)
d∈D

is a subnet of a convergent sequence.
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