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This text contains notes for my talk given at our topology seminar. It

compares 3 different definitions of subnets. The basic material for this talk was
the book [S]. I tried to use notation and terminology in accordance with this
book.

1 Directed sets and nets

We first recall some basic definitions.

Definition 1.1. We say that (D,≤) is a directed set, if ≤ is a relation on D
such that

(i) x ≤ y ∧ y ≤ z ⇒ x ≤ z for each x, y, z ∈ D;

(ii) x ≤ x for each x ∈ D;

(iii) for each x, y ∈ D there exist z ∈ D with x ≤ z and y ≤ z.

In the other words a directed set is a set with a relation which is reflexive,
transitive (=preorder or quasi-order) and upwards-directed.

The following two notions will be often useful for us

Definition 1.2. A subset A of set D directed by ≤ is cofinal (or frequent) in
D if for every d ∈ D there exists an a ∈ A such that d ≤ a.

A subset A of a directed set D is called residual (or eventual) if there is some
d0 ∈ D such that d ≥ d0 implies d ∈ A.

Clearly, every residual set is cofinal.

Definition 1.3. A set of the form

Dd = {d′ ∈ D; d′ ≥ d},

where d is an element of a directed set D, will be called section or tail of D.
The set B = {Dd; d ∈ D} is clearly a filter base. The filter F generated by

B is called the section filter of the directed set D.

We see directly from the definition that:
A is residual ⇔ A contains a section;
A is cofinal ⇔ A has non-empty intersection with every section;
A is residual ⇔ D \A is not cofinal.

We will also need the notion of cofinal map.

Definition 1.4. [[R, Definition 3.3.13]] A function f : P → D from a preordered
set to a directed set is cofinal if for each d0 ∈ D there exists p0 ∈ P such that
f(p) ≥ d0 whenever p ≥ p0.
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Definition 1.5. A net in a topological space X (or in a set X) is a map from
any non-empty directed set D to X. It is denoted by (xd)d∈D.

We can define the notions analogous to the notions from Definition 1.2 for
nets as well.

Definition 1.6. Let (xd)d∈D be a net in X and let S ⊆ X.
If S = {xd; d ≥ d0} for some d0 ∈ D, then S is called tail set of (xd).
S is an eventual (or residual) set of the net if S contains some tail set i.e.,

if there is some d0 ∈ D such that {xd; d ≥ d0} ⊆ S.
S is a frequent (or cofinal) set of the net if S meets every tail set i.e., if for

each d0 ∈ D there is some d ≥ d0 such that xd ∈ S.
S is infrequent if it is not frequent.

The corresponding notions for directed sets are now special case of this
definition if we consider the net idD : D → D.

Note that:
S is eventual ⇔ S contains a tail set
S is frequent ⇔ S intersects each tail set
S is eventual ⇔ X \ S is infrequent

All eventual sets of (xd) form a filter, it is called eventuality filter (or section
filter) of (xd).

Definition 1.7. A net (xd)d∈D in a topological space X is said to be convergent
to x ∈ X if for each neighborhood U of x there exists d0 ∈ D such that xd ∈ U
for each d ≥ d0.

(∀U∈T U 3 x)(∃d0 ∈ D)(∀d ≥ d0)xd ∈ U

If a net (xd)d∈D converges to x, the point x is called a limit of this net.
The set of all limits of a net is denoted limxd.

A net converges to x if and only if its eventuality filter converges to x.
This correspondence goes the other way round as well. To a filter F we

assign a directed set {(a,A); a ∈ A ∈ F} ordered by

(a,A) ≤ (b, B) ⇔ A ⊇ B

and a net
xa,A = a.

This net converges to a point if and only if the filter F does and, moreover, the
eventuality filter of this net is F again.

1.1 Prime space associated with a directed set

A viewpoint introduced in this section can be sometimes useful when dealing
with nets.

2



Definition 1.8. To each directed set D we assign a topological space P (D) on
a set D ∪ {∞} (where ∞ is any point with ∞ /∈ D) such that the points of D
are isolated and the base at ∞ consists of all upper sections of D.

This space is closely related to the convergence of a net.

Lemma 1.9. A net (xd)d∈D converges to X if and only if the map f : P (D) → X
given by f(∞) = x and f(d) = xd is continuous.

Lemma 1.10. Let f : D′ → D be a map between two directed sets. The following
conditions are equivalent.

(i) f is a cofinal map,

(ii) the map f : D′ → P (D) is a convergent net,

(iii) the extension f : P (D′) → P (D) is continuous,

(iv) f−1(M) is residual in D′ whenever M is residual in D

(v) if M is cofinal in D′ then f [M ] is cofinal in D

1.2 Historical note

The notion of nets was defined by E. H. Moore and H. L. Smith and developed
by many other mathematicians. It was widely popularized by Kelley’s book.

According to [M, p.143]: The terminology was not Kelley’s invention, though.
Kelley had wanted to call such an object a way. However, nets have subnets,
which Kelley would have dubbed subways. Norman Steenrod talked him out
of it. After some prodding by Kelley, Steenrod suggested the term net as a
substitute for way.

2 Three definitions of subnet

When trying to find a notion of subnet, which would reflect out intuition for
sequences and subsequences, there are some problems. The notion directly
mimicking the definition of subsequence would be the following:

Definition 2.1. If (xa)a∈A is a net in X and B ⊆ A is a cofinal subset of A,
then (xa)a∈B is again a net in X. Every such net is called a cofinal subnet (or
frequent subnet) of the net (xa)a∈A.

Unfortunately, many results which hold for subsequences in metric spaces
fail for cofinal subnets in general topological spaces (e.g., the characterization
of compact spaces1). Therefore different definition of a subnet is needed.

We will describe three notions of a subnet, which are commonly used. We
start with the most general one. It is named after Aarnes and Andenæs, who
investigated it in [AA].

1βN is a compact space which is not sequentially compact – there are no not-trivial con-
vergent sequences in βN; [E, Corollary 3.6.15]; a different examples are given in [R, Example
3.3.22], [S, 17.28-29]
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Definition 2.2. Let (xα : α ∈ A) and (yβ : β ∈ B) be nets in a set X, with
eventuality filters F and G, respectively. The net (yβ : β ∈ B) is an AA subnet
of (xα : α ∈ A) if any of the following equivalent conditions is fulfilled:

(i) Every (yβ)-frequent subset of X is also (xα)-frequent.

(ii) Every (xα)-eventual subset of X is also (yβ)-eventual.

(iii) G ⊇ F

(iv) Each (xα)-tail set contains some (yβ)-tail set.

(v) For each eventual set S ⊆ A, the set y−1(x(S)) is eventual in B.

Note that now a cofinal map f : D′ → D can be equivalently characterized
as an AA-subnet of the identity map idD.

The remaining two definitions of subnet can be described using the notion
of cofinal map.

Definition 2.3. Let (xα : α ∈ A) and (yβ : β ∈ B) be nets in a set X.
If there exists a cofinal map ϕ : B → A such that yβ = xϕ(β), then (yβ) is a

Kelley subnet of (xα). (This can be reformulated as: y = x ◦ ϕ for some cofinal
ϕ.)

If there exists a map ϕ which is, in addition to the above conditions, mono-
tone, then (yβ) is a Willard subnet of (xα).

The following implication hold and none of them can be conversed:
frequent subnet ⇒ Willard subnet ⇒ Kelley subnet ⇒ AA-subnet

We next show that the notions of Willard, Kelley and AA-subnet are in a
sense “compatible” and they can be used interchangeably in most situations.

Definition 2.4. Two nets are called AA-equivalent if each of them is AA-subnet
of another one.

Clearly, this is equivalent to saying that the two nets have the same eventu-
ality filter.

We will need the following lemma ([S, Lemma 7.18]):

Lemma 2.5. Let (ua : a ∈ A) and (vb : b ∈ B) be nets taking values in a set
X and let F , G be their eventuality filters. Then the following conditions are
equivalent:

(A) F ∩G is nonempty, for every F ∈ F , G ∈ G

(B) M = {S ⊆ X;S ⊇ F ∩G for some F ∈ F , G ∈ G} is a proper filter.

(C) The filters F and G have a common proper superfilter.

(D) The given nets have a common AA subnet

4



(E) The given nets have a common Willard subnet, i.e., there exists a net
(pλ : λ ∈ L) which is a Willard subnet of both given nets. Furthermore,
that net can be chosen so that it is a maximal common AA subnet of the
these nets i.e., so that if (qµ) is any common AA subnet of them, then
(qµ) is also an AA subnet of (pλ).

This lemma is true for any finite number of nets as well.

Corollary 2.6. If (yβ) is an AA-subnet of (xα), then (yβ) is AA-equivalent to
a Willard subnet of (xα).
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