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Boos: Classical and modern methods in summa-
bility

Notes from [B].

Part I: Classical methods in summability and ap-
plications

1 Convergence and divergence

1.1 The early history of summability–the devil’s invention

1.2 Summability methods: definition and examples

Definition (matrix method). (1.2.12) ωA := {x ∈ ω|Ax exists} (=all series1∑
k ankxk converge) = application domain of A
cA = A−1(c) =domain of A

c0A = A−1(c0) = null domain
m ∩ cA = bounded domain

Example. (1.2.13) (d) B∗1 :=
(
e−n nk

k!

)
Borel matrix, discrete Borel method

almost convergence introduced in 1948 by G. G. Lorentz [L]

1
n + 1

p+n∑
k=p

xk
n→∞−→ a (uniformly for p)

f =almost convergent sequences

Theorem (almost convergence). (1.2.18)
(a) c ( f ( m and F − lim |c = lim
(b) If A is a matrix method, then f 6= cA (that is, almost convergence is not
representable by a matrix method) and, moreover, f 6= m ∩ cA

Proof: See [L, Theorem 11]

1.3 Questions and basic notions

Inclusion theorems conservative for null sequences if c0 ⊂ NV ,
conservative if c ⊂ NV ,
strongly conservative if f ⊂ NV

1x is a column vector
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K = C or K = R
N0 = N ∪ {0}
ω := KN0

denotes the set of all sequences
m = `∞ = bounded sequences
c = convergent sequence
c0 = {x = (xk) ∈ c| lim

k→∞
xk = 0} = the set of all null sequences

bs=sequences with bounded partial sums; ‖x‖bs = supn |
∑n

k=0 xk| is called
bs-norm

cs =summable sequences (
∑

k xk converges)
` = `1 = absolutely summable sequences
bv = sequences with bounded variation
ϕ = finitely non-zero sequences

ϕ ( ` ( cs ( c0 ( c = c0 ⊕ 〈e〉 ( m ( ω

` ( bv0 ( bv = bv0 ⊕ 〈e〉 (

where e := (1, 1, 1, . . . )
χ = {0, 1}N0

m0 = 〈χ〉 = {x = (xk) ∈ ω|{xk|k ∈ N0} is a finite set}
A sequence x = (xk) ∈ χ is called thin if there exists an index sequences

(kν) with kν+1 − kν →∞
τ = thin sequences2

ϕ ∩ χ ( τ ( χ ( 〈χ〉 = m0

Exercise 1.3.11: Borel method is regular. Borel matrix B∗1 is also regular.

2 Matrix methods: basic classical theory

2.1 Dealing with infinite series

Theorem (Abel’s partial summation formula). (2.1.1) Let (aν), (bν) ∈ ω,
xn :=

∑n
ν=0 aν (n ∈ N0) and x−1 := 0. Then the equility

n+k∑
ν=n

aνbν =
n+k∑
ν=n

xν(bν − bν+1)− xn−1bn + xn+kbn+k+1 (1)

holds for all n, k ∈ N0. If (xνbν+1) ∈ c, the series
∑

ν aνbν converges if and
only if the series

∑
ν xν(bν − bν+1) does, that is

(aνbν) ∈ cs ⇔ (xν(bν − bν+1)) ∈ cs

2Book says ϕ ⊆ τ – a mistake.
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Corollary. (2.1.8) A series converges absolutely if and only if each rearrange-
ment of it is convergent. 3

Bibliography: [K]

2.2 Dealing with infinite matrices

Definition (products). (2.2.2)

yx =
∑

k

ykxk

scalar product of sequences

Ax =

(∑
k

ankxk

)
n∈N0

yB =

(∑
n

ynbnk

)
k∈N0

product of a matrix and a sequence

AB := (cnk) where cnk =
∑

ν

anνbνk

Theorem (associativity of t(Bx)). (2.2.4) Let B be an infinite matrix and
x = (xk), t = (tk) ∈ ω. If

(i) x ∈ ωB and t ∈ ϕ or

(ii) t ∈ ` and ‖B‖ := supµ

∑
ν |bµν | < ∞

is valid, then (tB)x exists and t(Bx) = (tB)x holds.

Theorem (associativity of A(Bx)). (2.2.5) Let A and B be infinite matrices
and x = (xk) ∈ ω. If

(i) x ∈ ωB and A = (ank) is row-finite (that is, (ank)k ∈ ϕ for each n ∈ N0)
or

(ii) x ∈ m, ‖B‖ < ∞ and (ank ∈ `) for each n ∈ N0

holds, then A(Bx) and (AB)x exist and A(Bx) = (AB)x.

Theorem (associativity of A(BC)). (2.2.6) Let A, B and C be infinite ma-
trices. If

(i) BC is defined and A is row-finite or

(ii) ‖B‖ < ∞, (cνk)ν ∈ m (k ∈ N0) and (anν)ν ∈ ` (n ∈ N0)

holds, then A(BC) and (AB)C exist and A(BC) = (AB)C
3My question: For real series the absolute convergence is equivalent to convergence ofP
εnxn for any choice of εn ∈ {±1}. Is there a similar theorem for complex series?
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Definition (inverse). (2.2.7) Let A and B be infinite matrices. If AB exists
and AB = I, then A is called a left inverse of B and B is called a right inverse
of A. If in addition BA exists and AB = BA = I holds, then the matrix B is
called bi-inverse or simply inverse of A. The inverse of A, if it exists, is denoted
by A−1.

triangle = (lower) triangular matrix

Theorem (triangle). (2.2.9) If A is a triangle, then the following statement
hold:

(a) For each y ∈ ω there exists a unique solution of the system of equations
Ax = y.

(b) There exists a unique right inverse B of A. Moreover, B is also a triangle
and a left inverse. So A−1 exists.

(c) The matrix A may have more than one left inverse, but there is exactly
one that is also a triangle, namely A−1.

Σ :=


1 0
1 1
1 1 1
...

...
...

. . .

 Σ−1 =


1 0
−1 1
0 −1 1
...

. . . . . . . . .


summation matrix
Bibliography: [C, ZB]

2.3 Conservative matrix methods

Definition (convergence factor sequence, β-dual). (2.3.1) For X ⊂ ω with
X 6= 0 we define

Xβ := {t = (tk) ∈ ω|∀x = (xk) ∈ X : tx := (tkxk) ∈ cs}.

Then Xβ is called the β-dual of X or the set of all convergence factor sequences
of X (in cs). For y ∈ ω we write yβ instead of {y}β .

Xβ is a sequence space with ϕ < Xβ < ω
X ⊂ Y ⊂ ω ⇒ Y β < Xβ

X ⊂ Xββ := (Xβ)β

ϕβ = ω and ωβ = ϕ
X ⊂ ωA ⇔ ∀n ∈ N0 ∀x = (xk) ∈ X :

∑
k ankxk converges ⇔ ∀n ∈ N0 :

(ank)k ∈ Xβ

Theorem. (2.3.3)

(a) cβ
0 = cβ = mβ = `
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(b) `β = m

(c) τβ = χβ = mβ
0 = `

Corollary. (2.3.4) Let A = (ank) be any infinite matrix. Then∑
k

|ank| < ∞, that is (ank)k ∈ ` for each n ∈ N0

if and only if one (thus each) of the inclusions m ⊂ ωA, c ⊂ ωA, c0 ⊂ ωA,
m0 ⊂ ωA, and τ ⊂ ωA holds.

mA := {x ∈ ωA|Ax ∈ m}

Theorem (c ⊂ mA). (2.3.5) For any matrix A = (ank) the following state-
ments are equvivalent

(a) m ⊂ mA, that is m ⊂ ωA and A(m) ⊂ m,

(b) c ⊂ mA, that is c ⊂ ωA and A(c) ⊂ m,

(c) c0 ⊂ mA, that is c ⊂ ωA and A(c0) ⊂ m,

(d) ‖A‖ := supn

∑
k|ank| < +∞.

Although this result can be shown easily using uniform boundedness princi-
ple, the proof used in this book illustrates “gliding hump” argument. This type
of arguments is often used in functional analysis and also in connection with
matrix methods [S]. (In Theorem 7.4.7 the proof of the same fact is given, using
UBP.)

Theorem (conservative, regular for null sequences). (2.3.6) Let A =
(ank) be an infinite matrix.

I. The following statements are equivalent:

(a) A is conservative for null sequences (that is, c0 ⊂ cA).

(b) c0 ⊂ ωA and A(c0) ⊂ c.

(c) A satisfies
(Zn) ‖A‖ < ∞ (row norm condition) and
(Sp) ∀k ∈ N0 : ak = limn ank exists (column condition).

LIMIT FORMULA: If A is conservative for null sequences then

(ak) ∈ ` and lim
A

x =
∑

k

akxk (x = (xk) ∈ c0).

II. The following statements are equivalent:

(a) A is regular for null sequences (that is, c0 ⊂ cA and limA |c0 = 0).
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(b) c0 ⊂ ωA and A(c0) ⊂ c0.

(c) A satisfies (Zn) with ak = 0 for all k ∈ N0, that is (Sp0) ∀k ∈ N0 : (ank)k ∈
c0.

Theorem (of Toeplitz, Silverman, Kojima and Schur). (2.3.7) Let A =
(ank) be an infinite matrix.

I. The following statements are equivalent:

(a) A is conservative (that is, c ⊂ cA).

(b) c ⊂ ωA and A(c) ⊂ c.

(c) A satisfies (Zn), (Sp) and
(Zs)

∑
k ank (n ∈ N0) and a := limn

∑
k ank exist (row sum condition).

LIMIT FORMULA: If A is conservative, then

lim
A

x = χ(A) lim x +
∑

k

akxk (x = (xk) ∈ c),

where

χ(A) := lim
A

e−
∑

k

lim
A

ek = lim
n

∑
k

ank −
∑

k

lim
n

ank = a−
∑

k

ak

is called the characteristic of A.
II. The following statements are equivalent:

(a) A is regular (that is, c ⊂ cA and limA |c = lim).

(b) A is regular for null sequences and e ∈ cA with limA e = 1.

(c) A satisfies (Zn), (Sp0) and the condition (Zs1), that is (Zs) with a = 1.

Moreover, if A is regular, then χ(A) = 1.

Theorem. (2.3.8) If A is a matrix which sums all thin sequences, then A
is conservative for null sequences, that is T ⊂ cA implies c0 ⊂ cA and, in
particular, ‖A‖ < ∞. Moreover, A is conservative, if T ∪ {e} ⊂ cA.

Definition. (2.3.9) A conservative matrix A, and the corresponding matrix
method, is called coregular if χ(A) 6= 0 and conull if χ(A) = 0.

Bibliography: [H, K, P, W]

2.4 Coercive and strongly conservative matrix methods

Theorem (Schur). (2.4.1) For a matrix A = (ank) the following statements
are equivalent:

(a) A is coercive, that is m ⊂ cA.
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(b) A satisfies (Sp), and
∑

k|ank| converge uniformly for n ∈ N0.

(c) c0 ⊂ cA and4 h(A) := lim supn

∑
k|ank − ak| = 0.

Corollary. (2.4.2) Every coercive matrix is conull. In particular, a matrix
cannot be both regular and coercive.

Theorem (Hahn). (2.4.5) If a matrix A sums all sequences of zeros and ones,
then it sums all bounded sequences. That is, χ ⊂ cA implies m ⊂ cA.

Definition (strong regularity). (2.4.6) A summability method V = (V,NV , V−
lim) is called strongly regular if V is strongly conservative (that is, f ⊂ NV ) and
V − lim |f = F − lim. A matrix is called strongly regular if the corresponding
matrix method is strongly regular.

Theorem (Lorentz). (2.4.9) Let A = (ank) be a conservative matrix and ak be
the limit of the kth column of A. Then the following statements are equivalent:

(a) A is strongly conservative.

(b) lim supn

∑
k|ank − an,k+1 − ak + ak+1| = 0.

LIMIT FORMULA: If A is strongly conservative, then

lim
A

x = χ(A) · F − limx +
∑

k

akxk (x = (xk) ∈ f).

f0 := {x ∈ f ;F − lim x = 0}

Lemma. bs ⊂ f0

Theorem. (2.4.12) If A is any matrix then the following statements are equiv-
alent:

(a) A is strongly regular.

(b) A is regular and strongly conservative.

(c) A is regular and satisfies lim supn

∑
k|an,k − an,k+1| = 0.

Example. (2.4.13) The discrete Borel method B∗1 is strongly regular.5

Bibliography: [L, P, R, W, ZB]

4Note that h(A) is defined for each matrix A being conservative for null sequences.
5The proof of [B] claims e−n

P∞
k=n

nk

k!
converges to 0. This is not correct. TODO Try to

find a correct proof
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2.5 Abundance within domains; factor sequences

Definition (factor sequence). (2.5.1) Let A be a matrix, let x = (xk) ∈ cA

and y = (yk) ∈ ω. Then y is called a factor sequences for x and A, if yx =
(ykxk) ∈ cA.

Theorem. (2.5.3) Let A = (ank) be a matrix which satisfies (Sp). Let ak

denote the limit of the kth column of A and let x = (xk) ∈ cA be given such that∑
k akxk converges. If

lim
A

x =
∑

k

akxk (2)

and

sup
ν,n

∣∣∣∣∣
ν∑

k=0

ankxk

∣∣∣∣∣ < ∞ (3)

the there exists an index sequence (rj) such that each sequence y = (yk) which
satisfies

rj+1∑
k=rj+1

|yk − yk−1| −→ 0 (j →∞) (O)

is a factor sequence for x and A. Moreover,∑
k

akykxk converges and lim
A

yx =
∑

k

akykxk.

A sequence which satisfies the condition (OD) for some index sequence r = (rj)
is called slowly oscillating (with respect to r).

Definition. (2.5.4) More generally than in 2.3.7I we define

χ(G) := lim
n

∑
k

gnk −
∑

k

lim
n

gnk = g −
∑

gk

for any matrix G = (gnk) that satisfies the conditions (ZS) and (Sp) and for
which

∑
k gk converges.
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2.6 Comparison and consistency theorems

2.7 Triangles of type M

3 Special summability methods

4 Tauberian theorems

5 Application of boundary methods

Part II: Functional analytic methods in summa-
bility

6

6 Functional analytic basis

6.1 Topological spaces

6.2 Semi-metric spaces

6.3 Semi-normed spaces, Banach spaces

6.4 Locally convex spaces

Example. (6.4.15) TODO (definition of τω)

6.5 Continuous linear maps and the dual space of a locally
convex spaces

6.6 Dual pairs and compatible topologies

6.7 Fréchet spaces

A complete metrizable locally convex spaces is called a Fréchet space, or an
F-space.

6My note: Also the book [M] deals with summability, e.g. in Section 2.4 Application of
Basic Principles.
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7 Topological sequences spaces: K- and FK-spaces

7.1 Sequence spaces and their ξ-duals

7.2 K-spaces

K-spaces = locally convex topologies that are stronger than τω. In such stronger
topologies, convergence implies coordinatewise convergence.

Definition (K-space). (7.2.2) A locally convex space (X, τ) is called a K-space
if X < ω and τω ⊂ τ . In such a case τ is called a K-topology on X.

7.3 FK-spaces

Definition (FK- and BK-space). A locally convex space (X, τ) is called an
FK-space and τ is called an FK-topology if (X, τ) is both, a K-space and an
F-space. By definition, a BK-space is a normable FK-space and its topology is
called BK-topology.

Example (7.3.2). (a) (ω, τω) is an FK-space but no BK-space
(b) m, c, c0, f0 and f endowed with ‖·‖∞ are BK-spaces.

Definition (matrix map). (7.3.6) Let X and Y be a sequence spaces over K,
and let T : X → Y be a linear map. Then T is called a matrix map if there
exists a matrix A = (ank) such that X ⊂ ωA and T (x) = Ax for all x ∈ X.
(Where no confusion can arise, we denote both the matrix map and the matrix
by the same letter.)

Corollary. (7.3.7) Matrix maps between FK-spaces are continuous.7

Theorem (subspace). (7.3.8) Every closed subspace of an FK-space (endowed
with the subspace topology) is an FK-space.

7.4 Functional analytic proofs of some Toeplitz-Silverman-
type theorems

Theorem (c ⊂ mA). (7.4.2=2.3.5) For any matrix A = (ank) the following
statements are equvivalent

(a) m ⊂ mA, that is m ⊂ ωA and A(m) ⊂ m,

(b) c ⊂ mA, that is c ⊂ ωA and A(c) ⊂ m,

(c) c0 ⊂ mA, that is c ⊂ ωA and A(c0) ⊂ m,

7My note: Summation matrix Σ defines a matrix map ` → m or cΣ = cs → m. If I take
sup-norm on the domain, it is not continuous. However, the subspaces ` and cs are not closed

in the sup-norm; just note that if x(k) is defined by x
(k)
n =

(
1
n

; n ≤ k
1

n2 ; n > k then x(k) −→ ( 1
n

)

in m.
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(d) ‖A‖ := supn

∑
k|ank| < +∞.

The authors provide two proofs. The first one is based on the uniform
boundedness principle and the second one on Theorem 7.3.7. They also show
‖A‖ = ‖A‖X,m for X ∈ {c0, c, m}.
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8 Matrix methods: structure of the domains

Part III: Combining classical and functional ana-
lytic methods

9 Consistency of matrix methods

10 Saks spaces and bounded domains

11 Some aspect of topological sequence spaces

11.1 An inclusion theorem

11.2 Gliding hump and oscillating properties

11.3 Theorems of Toeplitz-Silverman type via sectional
convergence and

11.4 Barelled K-spaces

11.5 The sequences of zeros and ones in a sequences spaces
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8TODO Check in the book where they define ‖A‖X,Y . I think it is the norm of Theorem
6.3.19, althought they do not use this notation in that theorem.
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