Notes on lower semicontinuous submeasures

References: [F], [K, Section 3.3].

Definitions and basic properties

Definition 1. A submeasure on \mathbb{N} is a function $\varphi \colon \mathcal{P}(\mathbb{N}) \to \langle 0, +\infty \rangle$ such that

$$\varphi(\emptyset) = 0$$

$$\varphi(A) \le \varphi(A \cup B) \le \varphi(A) + \varphi(B)$$

Clearly, we can work with any countable set instead of \mathbb{N} .

Notice that the second property also means that $A \subseteq B$ implies $\varphi(A) \leq \varphi(B)$. In the other words, a submeasure is a function $\varphi \colon \mathcal{P}(\mathbb{N}) \to \langle 0, +\infty \rangle$ which is monotone and subadditive.

Definition 2. A submeasure φ is called *lower semicontinuous* if

$$\varphi(A) = \lim_{n \to \infty} \varphi(A \cap [1, n])$$

for every $A \subseteq \mathbb{N}$.

Authors using ordinal notation often write use n = [0, n-1], which might lead to a more compact notation, especially when working with ω instead of \mathbb{N} .¹ I will mostly stick to the interval notation here.

If φ is a lsc submeasure, then we can define

$$\|A\|_{\varphi} = \limsup_{n \to \infty} \varphi(A \setminus [1, n]) = \lim_{n \to \infty} \varphi(A \setminus [1, n]).$$

The function $\|\cdot\|_{\varphi}$ is a submeasure (not necessarily lsc).

Ideals from submeasures

It can be easily seen that for any submeasure φ the sets

$$\operatorname{Fin}(\varphi) = \{A \subseteq \mathbb{N}; \varphi(A) < \infty\}$$
$$\operatorname{Nul}(\varphi) = \{A \subseteq \mathbb{N}; \varphi(A) = 0\}$$

are ideals.

Since $\|\cdot\|_{\varphi}$ is also a submeasure, we get that also

$$\operatorname{Exh}(\varphi) = \{ A \subseteq \mathbb{N}; \|A\|_{\varphi} = 0 \}$$

is an ideal.

We will need $\varphi(\{n\}) < +\infty$ for $n \in \mathbb{N}$ if we want $\operatorname{Fin}(\varphi)$ to be admissible. Similarly, $\operatorname{Nul}(\varphi)$ will be admissible iff $\varphi(\{n\}) = 0$ for each n. We may notice that $\operatorname{Exh}(\varphi)$ is always admissible, since $\|\{n\}\|_{\varphi} = 0$.

¹For example, we could write $\varphi(A) = \lim_{n \to \infty} \varphi(A \cap n)$ in the definition of lower semicontinuity. Or we could use $||A||_{\varphi} = \lim_{n \to \infty} \varphi(A \setminus n)$.

Summability ideals

Erdös-Ulam ideals

Analytic P-ideals

TODO [F, Theorem 1.2.5]

References

- [F] Ilijas Farah. Analytic quotients. Mem. Amer. Math. Soc., 148(702), 2000.
- [K] Vladimir Kanovei. Borel Equialence Relations. Structure and Classification. AMS, Providence, 2008.