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Notes on lower semicontinuous submeasures

References: [F], [K, Section 3.3].

Topology on P(N) as {0, 1}N

We will often identify P(N) with {0, 1}N using the bijection A 7→ χA. The product space
{0, 1}N is also known as Cantor cube. (Here {0, 1} is endowed with the discrete topology, so
{0, 1}N is product of countably many two-point discrete spaces.)

In this way we get a metrizable topology on P(N). (In fact, it is compact and completely
metrizable.) Which means that we can use some topological notions for subsets of P(N) (in
particular, for ideals). For example, it makes sense to ask whether an ideal is Fσ, Borel, etc.1

A local basis at a set A consists of sets

{B ⊆ N;B ∩ F = A ∩ F}

for F ⊆ N finite.
Product topology is precisely the topology of pointwise convergence. This means that a

net Aλ converges to A if and only if

χAλ(x)→ χA(x)

for each x ∈ N.

Basic definitions

Submeasure:
• ϕ(∅) = 0;
• ϕ(A) ≤ ϕ(A ∪B) ≤ ϕ(A) + ϕ(B);
A submeasure is lower semicontinuous if

ϕ(A) = lim
n→∞

ϕ(A ∩ [1, n]).

Lower-semicontinuous on {0, 1}N

Proposition 1. Let ϕ be a submeasure on N. Then ϕ is lower semicontinuous (as a sub-
measure) if and only if the corresponding function {0, 1}N → 〈0,∞〉 is lower semicontinuous
w.r.t. the product topology.

Recall that a function f : X → R is lower semicontinuous iff

f−1((a,∞)) = {x ∈ X; f(x) > a}

is open for every a ∈ R.

1An this seems to be standard approach – if you encounter some text dealing with ideals that are Fσ ,
Borel, analytic; if the topology is not specified, the authors probably mean this topology.
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This is equivalent to validity of

f(p) ≤ lim inf
x→p

f(x)

for every p ∈ X. If X is a metric space, it suffices to require

f(p) ≤ lim inf
n→∞

f(xn)

for every sequence xn → p.

Proof. In the proof we are identifying P(N) with {0, 1}N anyway; we will also use ϕ both for
the submeasure (=function P(N) → 〈0,∞〉) and the corresponding function ϕ : {0, 1}N →
〈0,∞〉.
⇒ Let a be a real number and ϕ(A) > a.

From the semicontinuity of the submeasure ϕ we get that there exists n0 such that

ϕ(A ∩ [1, n]) > a

for each n ≥ n0. Therefore the set of all sets B ⊆ N such that

B ∩ [1, n0] = A ∩ [1, n0]

is a neighborhood U of A (in the product topology) such that ϕ(B) > a for each B ∈ U .
⇐ The sequence A ∩ [1, n] converges to A in the product topology. So we have

ϕ(A) ≤ lim inf
n→∞

ϕ(A ∩ [1, n])

from lower semicontinuity. But since A ∩ [1, n] ⊆ A, we also get

lim sup
n→∞

ϕ(A ∩ [1, n]) ≤ ϕ(A)

from monotonicity.

It is useful to notice that a lsc submeasure is in fact σ-subadditive:

Proposition 2. Let ϕ be a lsc submeasure. For any sets Ai ⊆ N, i = 1, 2, . . . , we have

ϕ

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

ϕ(Ai).

Proof. Let

Bn =

n⋃
i=1

Ai

A =

∞⋃
i=1

Ai

Notice that in the product topology we have lim
n→∞

Bn = A. (It is an increasing sequence of

sets.)
From lower semicontinuity we get

ϕ(A) ≤ lim inf
n→∞

ϕ(B).
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At the same time we have

ϕ(B) ≤
n∑
i=1

ϕ(Ai)

which together gives

ϕ(A) ≤ lim inf
n→∞

ϕ(Ai) =

∞∑
i=1

ϕ(Ai).

Proof. Let

A =

∞⋃
i=1

Ai.

Fix some n ∈ N. Then we clearly have

A ∩ [1, n] =

∞⋃
i=1

(Ai ∩ [1, n]).

However, since A ∩ [1, n] is finite, there is a finite set F such that

A ∩ [1, n] =
⋃
i∈F

(Ai ∩ [1, n]).

Using finite subadditivity we get

ϕ(A ∩ [1, n]) ≤
∑
i∈F

ϕ(Ai) ≤
∞∑
i=1

ϕ(Ai).

Since ϕ is lower semicontinuous, we also get

ϕ(A) = lim
n→∞

ϕ(A ∩ [1, n]) ≤
∞∑
i=1

ϕ(Ai).

If we have Proposition 1, we can use known properties of lower semi-continuous functions
on metric spaces.

Corollary 1. Supremum of a set of submeasures is again a submeasure.
Supremum of a set of lsc submeasures is again a lsc submeasure.

Proof. Let ϕi be a submeasure for each i ∈ I and let

ϕ(A) = sup
i∈I

ϕi(Ai).

Since ϕi(∅) = 0 for each i ∈ I, we get

ϕ(∅) = sup
i∈I

ϕi(∅) = 0.

Similarly, if ϕi(A) ≤ ϕi(A ∪B) ≤ ϕi(A) + ϕi(B) for each i ∈ I, then

sup
i∈I

ϕi(A) ≤ sup
i∈I

ϕi(A ∪B) ≤ sup
i∈I

(ϕi(A) + ϕi(B)) ≤ sup
i∈I

ϕi(A) + sup
i∈I

ϕi(B)

which gives monotonicity and subadditivity of ϕ.
If each ϕi is a lsc submeasure, then so is ϕ = sup

i∈I
ϕi.
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Operations with submeasures

We have seen in Corollary 1 that submeasures (and lsc submeasures) are closed under ar-
bitrary suprema. It is natural to ask what other operations can produce submeasures (lsc
submeasures).

It is easy to check that if ϕ1,2 are submeasures, then so is ϕ1 +ϕ2. Also if c ≥ 0, then cϕ1

is submeasure. The same is true for lsc submeasures. (Since lower semicontinuous functions
are close under finite sums, finite minima and non-negative scalar multiples.)

Lemma 1. Let (ϕn) be a sequence of submeasures such that for every set A ⊆ N the limit
lim
n→∞

ϕn(A) exists. Then

ϕ(A) = lim
n→∞

ϕn(A)

is also a submeasure.

Proof. Trivial.

The function ‖·‖ϕ is a submeasure

If ϕ is a submeasure, then we can define

‖A‖ϕ = lim sup
n→∞

ϕ(A \ [1, n]) = lim
n→∞

ϕ(A \ [1, n]).

Notice that the sequences (ϕ(A \ [1, n])) is non-increasing, which implies that the above
limit exists. (Hence it is equal to limit superior.)

Proposition 3. If ϕ is a submeasure, then also the function ‖·‖ϕ defined above is a submea-
sure.

Proof. It is relatively easy to see that A 7→ ϕ(A \ [1, n]) is a submeasure for each n.
The limit of these submeasures ‖·‖ϕ is also a submeasure by Lemma 1.

Examples

Examples of lsc submeasures

Example 1. For any x ∈ N we denote

δx(A) =

{
1, x ∈ A,
0, x /∈ A.

In the other words, δx(A) = χA(x).
It is easy to check that

δx(A) ≤ δx(A ∪B) ≤ δx(A) + δx(B)

for any A,B ⊆ N.
Moreover, the functions A 7→ δx(A) is continuous w.r.t. the product topology. (It is the

projection onto x-th coordinate.)
It is also clear that

δx(A) = lim
n→∞

δx(A ∩ [1, n]).

Both arguments mentioned above show that δx is a lsc submeasure.
We may notice that in this case we get ‖A‖δx = 0 for each A.
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Example 2. Another simple example is counting measure

ϕ(A) = |A|.

Clearly, we have ϕ(A) = lim
n→∞

ϕ(A∩ [1, n]), so this is a lsc submeasure. (In fact, it is additive,

not only subadditive.)
We get that

‖A‖ϕ =

{
0 if A is finite,

+∞ if A is infinite.

So we can notice that in this case ‖·‖ϕ is not lower semicontinuous.

Counterexamples

• The function ‖·‖ϕ need not be lower semicontinuous: Example 2.
• A submeasure which is not lsc: ‖·‖ϕ from Example 2.
• A submeasure which is not countably subadditive: ‖·‖ϕ from Example 2.

Ideals

Basic properties of Exh(ϕ) and Fin(ϕ)

For any submeasure ϕ we can define

Fin(ϕ) = {A ⊆ N;ϕ(A) <∞}
Nul(ϕ) = {A ⊆ N;ϕ(A) = 0}
Exh(ϕ) = {A ⊆ N; ‖A‖ϕ = 0}

It is easy to check that they are ideals.

Proposition 4. Let ϕ be a lsc submeasure. Then
• Exh(ϕ) is Fσδ;
• Fin(ϕ) is Fσ.

If, additionally, ϕ({n}) < +∞ for each n, then

Exh(ϕ) ⊆ Fin(ϕ).

Proof. For any fixed n the set Kn = {A ⊆ N;ϕ(A) ≤ n} is closed and thus

Fin(ϕ) =

∞⋃
k=1

Kn

is a Fσ set.
For any m,n ∈ N the set Lm,n = {A ⊆ N;ϕ(A \ [1, n]) ≤ 1/m} is closed. We have

Exh(ϕ) =

∞⋂
m=1

∞⋃
n=1

Lm,n.

Just notice that

‖A‖ϕ = 0 ⇔ (∀m)(∃n)ϕ(A \ [1, n]) <
1

m
.

5



(Here we are also using the fact that ϕ(A \ [1, n]) is non-increasing.)
So we get that Exh(ϕ) is Fσδ.
It remains to show that Exh(ϕ) ⊆ Fin(ϕ) (assuming ϕ({n}) < +∞, which immediately

gives that ϕ(F ) < +∞ for F finite.)
If we have ‖A‖ϕ = 0, this means that ϕ(A \ [1, n]) < +∞. If we also have that ϕ([1, n])

is finite, then
ϕ(A) ≤ ϕ(A \ [1, n]) + ϕ([1, n]) < +∞

and A ∈ Fin(ϕ).

The ideal Exh(ϕ) is a P-ideal

See also: [F, Lemma 1.2.2].

Proposition 5. If ϕ is a lsc submeasure then Exh(ϕ) is a P-ideal.

Proof. Suppose that we have a sequence of sets A1, A2 · · · ∈ Exh(ϕ). We want to show that
there is A ∈ Exh(ϕ) such that Ak ⊆∗ A for every k.

Since ‖Ak‖ϕ = 0, we can choose an nk such that

ϕ(Ak \ [1, nk]) ≤ 1

2k+1
.

Then we put

A =

∞⋃
k=1

(Ak \ [1, nk]).

It is clear that Ak ⊆∗ A. We want to show that also ‖A‖ϕ = 0.
Let us fix n ∈ N. We know that

n⋃
k=1

Ak ∈ Exh(ϕ)

since Exh(ϕ) is an ideal. This means that for large enough m we have

ϕ

(
n⋃
k=1

Ak \ [1,m]

)
≤ 1

2n+1
.

From countable subadditivity (Proposition 2) we also get

ϕ

( ∞⋃
k=n+1

(Ak \ [1, nk])

)
≤
∞∑
k=1

1

2k+1
=

1

2n+1
.

Together we get that

ϕ(A \ [1,m]) ≤ ϕ

(
n⋃
k=1

Ak \ [1,m]

)
+ ϕ

( ∞⋃
k=n+1

(Ak \ [1, nk])

)
≤ 1

2n
.

Since this is true for arbitrary n, we get

‖A‖ϕ = lim
m→∞

ϕ(A \ [1,m]) = 0.
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Example 3. We may notice that Fin(ϕ) is not necessarily a P-ideal.
Let {Ai; i ∈ N} be a decomposition of N into countably many infinite sets. If is well

known that
I = {A ⊆ N;A intersects only finitely many Ai’s}

is not a P-ideal.
We have I = Fin(ϕ) for

ϕ(A) =
1

min{i;A ∩Ai 6= ∅}
.

(Using the convention min ∅ =∞ and 1/∞ = 0.)
This is indeed a submeasure. To show that ϕ(A) ≤ ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B) it suffices

to observe that
1

a
≤ 1

min(a, b)
≤ 1

a
+

1

b

(where a = min{i;A ∩Ai 6= ∅} and b = min{i;B ∩Ai 6= ∅}).
And it is also lower semicontinuous, since the sequence given by

n 7→ min{i;A ∩ [1, n] ∩Ai 6= ∅}

is eventually constant

Summable ideals

Let f : N→ R+ be any function such that
∑
i∈N

f(i) =∞. Let us define

µf (A) =
∑
i∈A

f(i)

Since we can rewrite µf as

µf = sup{
∑
x∈F

f(i)δx;F ⊆ N is finite};

µf = sup{
n∑
k=1

f(i)δk;n ∈ N};

we see that µf is a lsc submeasure by Corollary 1.
Then we have an ideal

If = Fin(µf ) = {A ⊆ N;
∑
i∈A

f(i) < +∞}.

It is an Fσ ideal. The following observation shows that it is a P -ideal.

Lemma 2. For any f : N→ R we have

Fin(µf ) = Exh(µf ).

Proof. From Proposition 4 we already know that Exh(µf ) ⊆ Fin(µf ).
On the other hand, if

µf (A) =

∞∑
i=1

f(i)χA(i) < +∞

then for any ε > 0 there is large enough n such that

µf (A \ [1, n]) =
∑
i>n

f(i)χA(i) < ε,

meaning that ‖A‖ϕ = 0.
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Erdös-Ulam ideals

A function f : N→ R+ is an Erdös–Ulam function if

µf (N) = +∞ and lim
n→∞

f(n)

µf ([1, n])
= 0.

The condition in the definition of EU function also appeared in [MMŠT] when studying
Darboux property of weighted densities. It is useful to notice that it can be stated in a
different way: [MMŠT, Proposition 1.1]

Lemma 3. Let f : N→ R+ be a function such that µf (N) = +∞. Then

lim
n→∞

f(n)

µf ([1, n])
= 0 ⇔ lim

n→∞

maxk≤n f(k)

µf ([1, n])
= 0

Proof. Since f(n) ≤ maxk≤n f(k), the implication ⇐ is trivial.
⇒ If the sequence (f(n)) is bounded, then both limits are equal to zero. (We have

lim
n→∞

µf ([1, n]) = µ(N) = +∞.) So it suffices to check the case when this sequence is un-

bounded.
Let us choose for each n some kn such that

f(kn) = max
k≤n

f(k).

If (f(n)) is unbounded we have kn →∞ for n→∞.
Now

maxk≤n f(k)

µf ([1, n])
=

f(kn)

µf ([1, n])
≤ f(kn)

µf ([1, kn])

and since the sequence on the RHS tends to zero for n→∞, the same is true for the sequence
on the LHS.

We are interested in the Erdös–Ulam ideal

EUf = {A ⊆ N; lim
n→∞

µf (A ∩ [1, n])

µf ([1, n])
= 0}.

This is precisely the ideal corresponding to the weighted density given by the function f .
We can define

ϕf (A) = sup
n

µf (A ∩ [1, n])

µf ([1, n])
.

We can see that ϕf is a lsc submeasure.2

Proposition 6. Let f : N→ R+ be a function such that µf (N) = +∞ and A ⊆ N. Then

EUf = Exh(ϕf ).

Hence EUf is an Fσδ P-ideal.

3

2It is easy to check that if ϕ is a lsc submeasure, then so is ϕ(A∩ [1, n]) for any fixed n. Positive multiple
of lsc submeasure is again lsc submeasure. The same is true for finite sums and arbitrary suprema.

3Originally I thought than in this proof I need f to be EU function, which was one of the reasons for
including Lemma 3. However, the in the proof it suffices to assume that µf (N) = +∞.
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Proof. We want to show that

lim
k→∞

µf (A ∩ [1, k])

µf ([1, k])
= 0 ⇔ lim

n→∞
sup
k∈N

µf ((A \ [1, n]) ∩ [1, k])

µf ([1, k])
= 0

⇒ Fix ε > 0. Then there is an n0 such that for k > n0 we have

µf (A ∩ [1, k])

µf ([1, k])
< ε.

Now this implies that for arbitrary k we get

µf ((A \ [1, n0]) ∩ [1, k])

µf ([1, k])
< ε.

Just notice that the above expression is zero for k < n0. And for k ≥ n0 it can be estimated
from above by ε, since µf ((A \ [1, n0]) ∩ [1, k])/µf ([1, k]) ≤ µf (A ∩ [1, k])/µf ([1, k]) < ε.

So we get

sup
k∈N

µf ((A \ [1, n]) ∩ [1, k])

µf ([1, k])
≤ sup

k∈N

µf ((A \ [1, n0]) ∩ [1, k])

µf ([1, k])
≤ ε

for any n ≥ n0.
⇐ Fix ε > 0. There is an n0 such that for every k ∈ N

µf ((A \ [1, n0]) ∩ [1, k])

µf ([1, k])
<
ε

2
.

For a fixed n0 we get

lim
k→∞

µf ([1, n0])

µf ([1, k])
≤ n0 · lim

k→∞

maxi≤n0
f(i)

µf ([1, k])
= 0,

since µf (N) = lim
k→∞

µf ([1, k]) = +∞. So there is k0 such that for k ≥ k0 the inequality

µf ([1, n0])

µf ([1, k])
<
ε

2

holds.
Using the fact that (from subadditivity and monotonicity of µf )

µf (A) ≤ µf (A \ [1, n0]) + µf ([1, n0])

we can combine the above two inequalities to get

µf (A ∩ [1, k])

µf ([1, k])
< ε

for k ≥ k0.

Analytic P-ideals

The following result can be found in [F, Theorem 1.2.5]. It shows that the ideals obtained in
this way from lsc submeasures cover a very large class of naturally defined ideals.

Theorem 1 (Mazur, Solecki). Let I be an ideal on N. Then
a) I is an Fσ ideal iff I = Fin(ϕ) for som e lsc submeasure ϕ.
b) I is an analytic P-ideal iff I = Exh(ϕ) for som e lsc submeasure ϕ.
c) I is an Fσ P-ideal iff I = Fin(ϕ) = Exh(ϕ) for som lsc submeasure ϕ.

9



References

[F] Ilijas Farah. Analytic quotients. Mem. Amer. Math. Soc., 148(702), 2000.

[K] Vladimir Kanovei. Borel Equialence Relations. Structure and Classification. AMS,
Providence, 2008.
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