http://thales.doa.fmph.uniba.sk/sleziak/texty/rozne/trf/ideals/

Notes on lower semicontinuous submeasures

References: [F] [K, Section 3.3].

Topology on $\mathcal{P}(\mathbb{N})$ as $\{0,1\}^{\mathbb{N}}$

We will often identify $\mathcal{P}(\mathbb{N})$ with $\{0,1\}^{\mathbb{N}}$ using the bijection $A \mapsto \chi_{A}$. The product space $\{0,1\}^{\mathbb{N}}$ is also known as Cantor cube. (Here $\{0,1\}$ is endowed with the discrete topology, so $\{0,1\}^{\mathbb{N}}$ is product of countably many two-point discrete spaces.)

In this way we get a metrizable topology on $\mathcal{P}(\mathbb{N})$. (In fact, it is compact and completely metrizable.) Which means that we can use some topological notions for subsets of $\mathcal{P}(\mathbb{N})$ (in particular, for ideals). For example, it makes sense to ask whether an ideal is F_{σ}, Borel, etc. ${ }^{1}$

A local basis at a set A consists of sets

$$
\{B \subseteq \mathbb{N} ; B \cap F=A \cap F\}
$$

for $F \subseteq \mathbb{N}$ finite.
Product topology is precisely the topology of pointwise convergence. This means that a net A_{λ} converges to A if and only if

$$
\chi_{A_{\lambda}}(x) \rightarrow \chi_{A}(x)
$$

for each $x \in \mathbb{N}$.

Basic definitions

Submeasure:

- $\varphi(\emptyset)=0$;
- $\varphi(A) \leq \varphi(A \cup B) \leq \varphi(A)+\varphi(B)$;

A submeasure is lower semicontinuous if

$$
\varphi(A)=\lim _{n \rightarrow \infty} \varphi(A \cap[1, n]) .
$$

Lower-semicontinuous on $\{0,1\}^{\mathbb{N}}$

Proposition 1. Let φ be a submeasure on \mathbb{N}. Then φ is lower semicontinuous (as a submeasure) if and only if the corresponding function $\{0,1\}^{\mathbb{N}} \rightarrow\langle 0, \infty\rangle$ is lower semicontinuous w.r.t. the product topology.

Recall that a function $f: X \rightarrow \mathbb{R}$ is lower semicontinuous iff

$$
f^{-1}((a, \infty))=\{x \in X ; f(x)>a\}
$$

is open for every $a \in \mathbb{R}$.

[^0]This is equivalent to validity of

$$
f(p) \leq \liminf _{x \rightarrow p} f(x)
$$

for every $p \in X$. If X is a metric space, it suffices to require

$$
f(p) \leq \liminf _{n \rightarrow \infty} f\left(x_{n}\right)
$$

for every sequence $x_{n} \rightarrow p$.
Proof. In the proof we are identifying $\mathcal{P}(\mathbb{N})$ with $\{0,1\}^{\mathbb{N}}$ anyway; we will also use φ both for the submeasure (=function $\mathcal{P}(\mathbb{N}) \rightarrow\langle 0, \infty\rangle)$ and the corresponding function $\varphi:\{0,1\}^{\mathbb{N}} \rightarrow$ $\langle 0, \infty\rangle$.
\Rightarrow Let a be a real number and $\varphi(A)>a$.
From the semicontinuity of the submeasure φ we get that there exists n_{0} such that

$$
\varphi(A \cap[1, n])>a
$$

for each $n \geq n_{0}$. Therefore the set of all sets $B \subseteq \mathbb{N}$ such that

$$
B \cap\left[1, n_{0}\right]=A \cap\left[1, n_{0}\right]
$$

is a neighborhood \mathcal{U} of A (in the product topology) such that $\varphi(B)>a$ for each $B \in \mathcal{U}$.
\Leftarrow The sequence $A \cap[1, n]$ converges to A in the product topology. So we have

$$
\varphi(A) \leq \liminf _{n \rightarrow \infty} \varphi(A \cap[1, n])
$$

from lower semicontinuity. But since $A \cap[1, n] \subseteq A$, we also get

$$
\limsup _{n \rightarrow \infty} \varphi(A \cap[1, n]) \leq \varphi(A)
$$

from monotonicity.
It is useful to notice that a lsc submeasure is in fact σ-subadditive:
Proposition 2. Let φ be a lsc submeasure. For any sets $A_{i} \subseteq \mathbb{N}, i=1,2, \ldots$, we have

$$
\varphi\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} \varphi\left(A_{i}\right)
$$

Proof. Let

$$
\begin{aligned}
B_{n} & =\bigcup_{i=1}^{n} A_{i} \\
A & =\bigcup_{i=1}^{\infty} A_{i}
\end{aligned}
$$

Notice that in the product topology we have $\lim _{n \rightarrow \infty} B_{n}=A$. (It is an increasing sequence of sets.)

From lower semicontinuity we get

$$
\varphi(A) \leq \liminf _{n \rightarrow \infty} \varphi(B)
$$

At the same time we have

$$
\varphi(B) \leq \sum_{i=1}^{n} \varphi\left(A_{i}\right)
$$

which together gives

$$
\varphi(A) \leq \liminf _{n \rightarrow \infty} \varphi\left(A_{i}\right)=\sum_{i=1}^{\infty} \varphi\left(A_{i}\right)
$$

Proof. Let

$$
A=\bigcup_{i=1}^{\infty} A_{i}
$$

Fix some $n \in \mathbb{N}$. Then we clearly have

$$
A \cap[1, n]=\bigcup_{i=1}^{\infty}\left(A_{i} \cap[1, n]\right)
$$

However, since $A \cap[1, n]$ is finite, there is a finite set F such that

$$
A \cap[1, n]=\bigcup_{i \in F}\left(A_{i} \cap[1, n]\right)
$$

Using finite subadditivity we get

$$
\varphi(A \cap[1, n]) \leq \sum_{i \in F} \varphi\left(A_{i}\right) \leq \sum_{i=1}^{\infty} \varphi\left(A_{i}\right)
$$

Since φ is lower semicontinuous, we also get

$$
\varphi(A)=\lim _{n \rightarrow \infty} \varphi(A \cap[1, n]) \leq \sum_{i=1}^{\infty} \varphi\left(A_{i}\right)
$$

If we have Proposition 1, we can use known properties of lower semi-continuous functions on metric spaces.

Corollary 1. Supremum of a set of submeasures is again a submeasure.
Supremum of a set of lsc submeasures is again a lsc submeasure.
Proof. Let φ_{i} be a submeasure for each $i \in I$ and let

$$
\varphi(A)=\sup _{i \in I} \varphi_{i}\left(A_{i}\right)
$$

Since $\varphi_{i}(\emptyset)=0$ for each $i \in I$, we get

$$
\varphi(\emptyset)=\sup _{i \in I} \varphi_{i}(\emptyset)=0
$$

Similarly, if $\varphi_{i}(A) \leq \varphi_{i}(A \cup B) \leq \varphi_{i}(A)+\varphi_{i}(B)$ for each $i \in I$, then

$$
\sup _{i \in I} \varphi_{i}(A) \leq \sup _{i \in I} \varphi_{i}(A \cup B) \leq \sup _{i \in I}\left(\varphi_{i}(A)+\varphi_{i}(B)\right) \leq \sup _{i \in I} \varphi_{i}(A)+\sup _{i \in I} \varphi_{i}(B)
$$

which gives monotonicity and subadditivity of φ.
If each φ_{i} is a lsc submeasure, then so is $\varphi=\sup _{i \in I} \varphi_{i}$.

Operations with submeasures

We have seen in Corollary 1 that submeasures (and lsc submeasures) are closed under arbitrary suprema. It is natural to ask what other operations can produce submeasures (lsc submeasures).

It is easy to check that if $\varphi_{1,2}$ are submeasures, then so is $\varphi_{1}+\varphi_{2}$. Also if $c \geq 0$, then $c \varphi_{1}$ is submeasure. The same is true for lsc submeasures. (Since lower semicontinuous functions are close under finite sums, finite minima and non-negative scalar multiples.)

Lemma 1. Let $\left(\varphi_{n}\right)$ be a sequence of submeasures such that for every set $A \subseteq \mathbb{N}$ the limit $\lim _{n \rightarrow \infty} \varphi_{n}(A)$ exists. Then

$$
\varphi(A)=\lim _{n \rightarrow \infty} \varphi_{n}(A)
$$

is also a submeasure.
Proof. Trivial.

The function $\|\cdot\|_{\varphi}$ is a submeasure

If φ is a submeasure, then we can define

$$
\|A\|_{\varphi}=\limsup _{n \rightarrow \infty} \varphi(A \backslash[1, n])=\lim _{n \rightarrow \infty} \varphi(A \backslash[1, n])
$$

Notice that the sequences $(\varphi(A \backslash[1, n]))$ is non-increasing, which implies that the above limit exists. (Hence it is equal to limit superior.)
Proposition 3. If φ is a submeasure, then also the function $\|\cdot\|_{\varphi}$ defined above is a submeasure.

Proof. It is relatively easy to see that $A \mapsto \varphi(A \backslash[1, n])$ is a submeasure for each n.
The limit of these submeasures $\|\cdot\|_{\varphi}$ is also a submeasure by Lemma 1 .

Examples

Examples of lsc submeasures

Example 1. For any $x \in \mathbb{N}$ we denote

$$
\delta_{x}(A)= \begin{cases}1, & x \in A, \\ 0, & x \notin A .\end{cases}
$$

In the other words, $\delta_{x}(A)=\chi_{A}(x)$.
It is easy to check that

$$
\delta_{x}(A) \leq \delta_{x}(A \cup B) \leq \delta_{x}(A)+\delta_{x}(B)
$$

for any $A, B \subseteq \mathbb{N}$.
Moreover, the functions $A \mapsto \delta_{x}(A)$ is continuous w.r.t. the product topology. (It is the projection onto x-th coordinate.)

It is also clear that

$$
\delta_{x}(A)=\lim _{n \rightarrow \infty} \delta_{x}(A \cap[1, n])
$$

Both arguments mentioned above show that δ_{x} is a lsc submeasure.
We may notice that in this case we get $\|A\|_{\delta_{x}}=0$ for each A.

Example 2. Another simple example is counting measure

$$
\varphi(A)=|A|
$$

Clearly, we have $\varphi(A)=\lim _{n \rightarrow \infty} \varphi(A \cap[1, n])$, so this is a lsc submeasure. (In fact, it is additive, not only subadditive.)

We get that

$$
\|A\|_{\varphi}= \begin{cases}0 & \text { if } A \text { is finite } \\ +\infty & \text { if } A \text { is infinite }\end{cases}
$$

So we can notice that in this case $\|\cdot\|_{\varphi}$ is not lower semicontinuous.

Counterexamples

- The function $\|\cdot\|_{\varphi}$ need not be lower semicontinuous: Example 2 .
- A submeasure which is not lsc: $\|\cdot\|_{\varphi}$ from Example 2 .
- A submeasure which is not countably subadditive: $\left\|_{\cdot}\right\|_{\varphi}$ from Example 2 ,

Ideals

Basic properties of $\operatorname{Exh}(\varphi)$ and $\operatorname{Fin}(\varphi)$

For any submeasure φ we can define

$$
\begin{aligned}
\operatorname{Fin}(\varphi) & =\{A \subseteq \mathbb{N} ; \varphi(A)<\infty\} \\
\operatorname{Nul}(\varphi) & =\{A \subseteq \mathbb{N} ; \varphi(A)=0\} \\
\operatorname{Exh}(\varphi) & =\left\{A \subseteq \mathbb{N} ;\|A\|_{\varphi}=0\right\}
\end{aligned}
$$

It is easy to check that they are ideals.
Proposition 4. Let φ be a lsc submeasure. Then

- $\operatorname{Exh}(\varphi)$ is $F_{\sigma \delta}$;
- $\operatorname{Fin}(\varphi)$ is F_{σ}.

If, additionally, $\varphi(\{n\})<+\infty$ for each n, then

$$
\operatorname{Exh}(\varphi) \subseteq \operatorname{Fin}(\varphi)
$$

Proof. For any fixed n the set $K_{n}=\{A \subseteq \mathbb{N} ; \varphi(A) \leq n\}$ is closed and thus

$$
\operatorname{Fin}(\varphi)=\bigcup_{k=1}^{\infty} K_{n}
$$

is a F_{σ} set.
For any $m, n \in \mathbb{N}$ the set $L_{m, n}=\{A \subseteq \mathbb{N} ; \varphi(A \backslash[1, n]) \leq 1 / m\}$ is closed. We have

$$
\operatorname{Exh}(\varphi)=\bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} L_{m, n}
$$

Just notice that

$$
\|A\|_{\varphi}=0 \quad \Leftrightarrow \quad(\forall m)(\exists n) \varphi(A \backslash[1, n])<\frac{1}{m}
$$

(Here we are also using the fact that $\varphi(A \backslash[1, n])$ is non-increasing.)
So we get that $\operatorname{Exh}(\varphi)$ is $F_{\sigma \delta}$.
It remains to show that $\operatorname{Exh}(\varphi) \subseteq \operatorname{Fin}(\varphi)$ (assuming $\varphi(\{n\})<+\infty$, which immediately gives that $\varphi(F)<+\infty$ for F finite.)

If we have $\|A\|_{\varphi}=0$, this means that $\varphi(A \backslash[1, n])<+\infty$. If we also have that $\varphi([1, n])$ is finite, then

$$
\varphi(A) \leq \varphi(A \backslash[1, n])+\varphi([1, n])<+\infty
$$

and $A \in \operatorname{Fin}(\varphi)$.

The ideal $\operatorname{Exh}(\varphi)$ is a P-ideal

See also: [F Lemma 1.2.2].
Proposition 5. If φ is a lsc submeasure then $\operatorname{Exh}(\varphi)$ is a P-ideal.
Proof. Suppose that we have a sequence of sets $A_{1}, A_{2} \cdots \in \operatorname{Exh}(\varphi)$. We want to show that there is $A \in \operatorname{Exh}(\varphi)$ such that $A_{k} \subseteq^{*} A$ for every k.

Since $\left\|A_{k}\right\|_{\varphi}=0$, we can choose an n_{k} such that

$$
\varphi\left(A_{k} \backslash\left[1, n_{k}\right]\right) \leq \frac{1}{2^{k+1}}
$$

Then we put

$$
A=\bigcup_{k=1}^{\infty}\left(A_{k} \backslash\left[1, n_{k}\right]\right)
$$

It is clear that $A_{k} \subseteq^{*} A$. We want to show that also $\|A\|_{\varphi}=0$.
Let us fix $n \in \mathbb{N}$. We know that

$$
\bigcup_{k=1}^{n} A_{k} \in \operatorname{Exh}(\varphi)
$$

since $\operatorname{Exh}(\varphi)$ is an ideal. This means that for large enough m we have

$$
\varphi\left(\bigcup_{k=1}^{n} A_{k} \backslash[1, m]\right) \leq \frac{1}{2^{n+1}}
$$

From countable subadditivity (Proposition 2) we also get

$$
\varphi\left(\bigcup_{k=n+1}^{\infty}\left(A_{k} \backslash\left[1, n_{k}\right]\right)\right) \leq \sum_{k=1}^{\infty} \frac{1}{2^{k+1}}=\frac{1}{2^{n+1}}
$$

Together we get that

$$
\varphi(A \backslash[1, m]) \leq \varphi\left(\bigcup_{k=1}^{n} A_{k} \backslash[1, m]\right)+\varphi\left(\bigcup_{k=n+1}^{\infty}\left(A_{k} \backslash\left[1, n_{k}\right]\right)\right) \leq \frac{1}{2^{n}}
$$

Since this is true for arbitrary n, we get

$$
\|A\|_{\varphi}=\lim _{m \rightarrow \infty} \varphi(A \backslash[1, m])=0
$$

Example 3. We may notice that $\operatorname{Fin}(\varphi)$ is not necessarily a P-ideal.
Let $\left\{A_{i} ; i \in \mathbb{N}\right\}$ be a decomposition of \mathbb{N} into countably many infinite sets. If is well known that

$$
\mathcal{I}=\left\{A \subseteq \mathbb{N} ; A \text { intersects only finitely many } A_{i}{ }^{\prime} \mathrm{s}\right\}
$$

is not a P-ideal.
We have $\mathcal{I}=\operatorname{Fin}(\varphi)$ for

$$
\varphi(A)=\frac{1}{\min \left\{i ; A \cap A_{i} \neq \emptyset\right\}}
$$

(Using the convention $\min \emptyset=\infty$ and $1 / \infty=0$.)
This is indeed a submeasure. To show that $\varphi(A) \leq \varphi(A \cup B) \leq \varphi(A)+\varphi(B)$ it suffices to observe that

$$
\frac{1}{a} \leq \frac{1}{\min (a, b)} \leq \frac{1}{a}+\frac{1}{b}
$$

(where $a=\min \left\{i ; A \cap A_{i} \neq \emptyset\right\}$ and $b=\min \left\{i ; B \cap A_{i} \neq \emptyset\right\}$).
And it is also lower semicontinuous, since the sequence given by

$$
n \mapsto \min \left\{i ; A \cap[1, n] \cap A_{i} \neq \emptyset\right\}
$$

is eventually constant

Summable ideals

Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be any function such that $\sum_{i \in \mathbb{N}} f(i)=\infty$. Let us define

$$
\mu_{f}(A)=\sum_{i \in A} f(i)
$$

Since we can rewrite μ_{f} as

$$
\begin{array}{r}
\mu_{f}=\sup \left\{\sum_{x \in F} f(i) \delta_{x} ; F \subseteq \mathbb{N} \text { is finite }\right\} ; \\
\mu_{f}=\sup \left\{\sum_{k=1}^{n} f(i) \delta_{k} ; n \in \mathbb{N}\right\} ;
\end{array}
$$

we see that μ_{f} is a lsc submeasure by Corollary 1 .
Then we have an ideal

$$
\mathcal{I}_{f}=\operatorname{Fin}\left(\mu_{f}\right)=\left\{A \subseteq \mathbb{N} ; \sum_{i \in A} f(i)<+\infty\right\}
$$

It is an F_{σ} ideal. The following observation shows that it is a P-ideal.
Lemma 2. For any $f: \mathbb{N} \rightarrow \mathbb{R}$ we have

$$
\operatorname{Fin}\left(\mu_{f}\right)=\operatorname{Exh}\left(\mu_{f}\right)
$$

Proof. From Proposition 4 we already know that $\operatorname{Exh}\left(\mu_{f}\right) \subseteq \operatorname{Fin}\left(\mu_{f}\right)$.
On the other hand, if

$$
\mu_{f}(A)=\sum_{i=1}^{\infty} f(i) \chi_{A}(i)<+\infty
$$

then for any $\varepsilon>0$ there is large enough n such that

$$
\mu_{f}(A \backslash[1, n])=\sum_{i>n} f(i) \chi_{A}(i)<\varepsilon
$$

meaning that $\|A\|_{\varphi}=0$.

Erdös-Ulam ideals

A function $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$is an Erdös-Ulam function if

$$
\mu_{f}(\mathbb{N})=+\infty \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{f(n)}{\mu_{f}([1, n])}=0
$$

The condition in the definition of EU function also appeared in MMŠT when studying Darboux property of weighted densities. It is useful to notice that it can be stated in a different way: MMŠT Proposition 1.1]

Lemma 3. Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function such that $\mu_{f}(\mathbb{N})=+\infty$. Then

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{\mu_{f}([1, n])}=0 \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty} \frac{\max _{k \leq n} f(k)}{\mu_{f}([1, n])}=0
$$

Proof. Since $f(n) \leq \max _{k \leq n} f(k)$, the implication \Leftarrow is trivial.
\Rightarrow If the sequence $(\bar{f}(n))$ is bounded, then both limits are equal to zero. (We have $\lim _{n \rightarrow \infty} \mu_{f}([1, n])=\mu(\mathbb{N})=+\infty$.) So it suffices to check the case when this sequence is unbounded.

Let us choose for each n some k_{n} such that

$$
f\left(k_{n}\right)=\max _{k \leq n} f(k)
$$

If $(f(n))$ is unbounded we have $k_{n} \rightarrow \infty$ for $n \rightarrow \infty$.
Now

$$
\frac{\max _{k \leq n} f(k)}{\mu_{f}([1, n])}=\frac{f\left(k_{n}\right)}{\mu_{f}([1, n])} \leq \frac{f\left(k_{n}\right)}{\mu_{f}\left(\left[1, k_{n}\right]\right)}
$$

and since the sequence on the RHS tends to zero for $n \rightarrow \infty$, the same is true for the sequence on the LHS.

We are interested in the Erdös-Ulam ideal

$$
\mathcal{E} \mathcal{U}_{f}=\left\{A \subseteq \mathbb{N} ; \lim _{n \rightarrow \infty} \frac{\mu_{f}(A \cap[1, n])}{\mu_{f}([1, n])}=0\right\}
$$

This is precisely the ideal corresponding to the weighted density given by the function f.
We can define

$$
\varphi_{f}(A)=\sup _{n} \frac{\mu_{f}(A \cap[1, n])}{\mu_{f}([1, n])}
$$

We can see that φ_{f} is a lsc submeasure Δ^{2}
Proposition 6. Let $f: \mathbb{N} \rightarrow \mathbb{R}^{+}$be a function such that $\mu_{f}(\mathbb{N})=+\infty$ and $A \subseteq \mathbb{N}$. Then

$$
\mathcal{E} \mathcal{U}_{f}=\operatorname{Exh}\left(\varphi_{f}\right)
$$

Hence $\mathcal{E} \mathcal{U}_{f}$ is an $F_{\sigma \delta} P$-ideal.

[^1]Proof. We want to show that

$$
\lim _{k \rightarrow \infty} \frac{\mu_{f}(A \cap[1, k])}{\mu_{f}([1, k])}=0 \quad \Leftrightarrow \quad \lim _{n \rightarrow \infty} \sup _{k \in \mathbb{N}} \frac{\mu_{f}((A \backslash[1, n]) \cap[1, k])}{\mu_{f}([1, k])}=0
$$

\Rightarrow Fix $\varepsilon>0$. Then there is an n_{0} such that for $k>n_{0}$ we have

$$
\frac{\mu_{f}(A \cap[1, k])}{\mu_{f}([1, k])}<\varepsilon .
$$

Now this implies that for arbitrary k we get

$$
\frac{\mu_{f}\left(\left(A \backslash\left[1, n_{0}\right]\right) \cap[1, k]\right)}{\mu_{f}([1, k])}<\varepsilon .
$$

Just notice that the above expression is zero for $k<n_{0}$. And for $k \geq n_{0}$ it can be estimated from above by ε, since $\mu_{f}\left(\left(A \backslash\left[1, n_{0}\right]\right) \cap[1, k]\right) / \mu_{f}([1, k]) \leq \mu_{f}(A \cap[1, k]) / \mu_{f}([1, k])<\varepsilon$.

So we get

$$
\sup _{k \in \mathbb{N}} \frac{\mu_{f}((A \backslash[1, n]) \cap[1, k])}{\mu_{f}([1, k])} \leq \sup _{k \in \mathbb{N}} \frac{\mu_{f}\left(\left(A \backslash\left[1, n_{0}\right]\right) \cap[1, k]\right)}{\mu_{f}([1, k])} \leq \varepsilon
$$

for any $n \geq n_{0}$.
\Leftrightarrow Fix $\varepsilon>0$. There is an n_{0} such that for every $k \in \mathbb{N}$

$$
\frac{\mu_{f}\left(\left(A \backslash\left[1, n_{0}\right]\right) \cap[1, k]\right)}{\mu_{f}([1, k])}<\frac{\varepsilon}{2} .
$$

For a fixed n_{0} we get

$$
\lim _{k \rightarrow \infty} \frac{\mu_{f}\left(\left[1, n_{0}\right]\right)}{\mu_{f}([1, k])} \leq n_{0} \cdot \lim _{k \rightarrow \infty} \frac{\max _{i \leq n_{0}} f(i)}{\mu_{f}([1, k])}=0,
$$

since $\mu_{f}(\mathbb{N})=\lim _{k \rightarrow \infty} \mu_{f}([1, k])=+\infty$. So there is k_{0} such that for $k \geq k_{0}$ the inequality

$$
\frac{\mu_{f}\left(\left[1, n_{0}\right]\right)}{\mu_{f}([1, k])}<\frac{\varepsilon}{2}
$$

holds.
Using the fact that (from subadditivity and monotonicity of μ_{f})

$$
\mu_{f}(A) \leq \mu_{f}\left(A \backslash\left[1, n_{0}\right]\right)+\mu_{f}\left(\left[1, n_{0}\right]\right)
$$

we can combine the above two inequalities to get

$$
\frac{\mu_{f}(A \cap[1, k])}{\mu_{f}([1, k])}<\varepsilon
$$

for $k \geq k_{0}$.

Analytic P-ideals

The following result can be found in [F] Theorem 1.2.5]. It shows that the ideals obtained in this way from lsc submeasures cover a very large class of naturally defined ideals.

Theorem 1 (Mazur, Solecki). Let \mathcal{I} be an ideal on \mathbb{N}. Then
a) \mathcal{I} is an F_{σ} ideal iff $\mathcal{I}=\operatorname{Fin}(\varphi)$ for som $e l s c$ submeasure φ.
b) \mathcal{I} is an analytic P-ideal iff $\mathcal{I}=\operatorname{Exh}(\varphi)$ for som e lsc submeasure φ.
c) \mathcal{I} is an $F_{\sigma} P$-ideal iff $\mathcal{I}=\operatorname{Fin}(\varphi)=\operatorname{Exh}(\varphi)$ for som lsc submeasure φ.

References

[F] Ilijas Farah. Analytic quotients. Mem. Amer. Math. Soc., 148(702), 2000.
[K] Vladimir Kanovei. Borel Equialence Relations. Structure and Classification. AMS, Providence, 2008.
[MMŠT] M. Mačaj, L. Mišík, T. Šalát, and J. Tomanová. On a class of densities of sets of positive integers. Acta Math. Univ. Comenian., 72:213-221, 2003.

[^0]: ${ }^{1}$ An this seems to be standard approach - if you encounter some text dealing with ideals that are F_{σ}, Borel, analytic; if the topology is not specified, the authors probably mean this topology.

[^1]: ${ }^{2}$ It is easy to check that if φ is a lsc submeasure, then so is $\varphi(A \cap[1, n])$ for any fixed n. Positive multiple of lsc submeasure is again lsc submeasure. The same is true for finite sums and arbitrary suprema.
 ${ }^{3}$ Originally I thought than in this proof I need f to be EU function, which was one of the reasons for including Lemma 3 However, the in the proof it suffices to assume that $\mu_{f}(\mathbb{N})=+\infty$.

