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Hölder inequality and averages

Let us denote

Ap =

(∑n
k=1 a

p
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n

) 1
p

.

I.e. Ap is a generalization of arithmetic average.

Proposition 1. 1 ≤ p ≤ q ⇒ Ap(a) ≤ Aq(a)

Proof. The inequality
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is equivalent to ∑n
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Let bk := apk and u = q
p . Then u ≥ 1 and we can rewrite this inequality as
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The last inequality follows from Hölder inequality (for vectors (1, 1, . . . , 1) and
(b1, . . . , bn)).
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