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I’ve put together various notes concerning the notions I will mention in my talk today.
Since they are from various areas, no title seemed to be most appropriate for me.

Descriptive set theory

We will use some facts from descriptive set theory, namely the notions of Borel and analytic
sets and some facts on trees (König’s lemma). References for DST: [Ke], [Mo], [Sr]. Also [A,
Chapter 3] seems to be a good introduction into the problematic of Polish spaces, Borel and
analytic sets.

Trees

We will only need the trees of countable height therefore we will follow the definition (and
notation) of [Ke]. For a more general definition of a tree see e.g. [JW].

For any given set A we will work with finite sequences of elements of A. We denote by
A<ω =

⋃

n∈ω

An the set of all finite sequences of elements of A. Similarly, Aω is the set of all

(infinite) sequences of elements of A.
For any x ∈ Aω we denote by x|n the finite sequence (x0, . . . , xn−1).

1 We say that s ∈ An

is an initial segment of x ∈ Aω if s = x|n. We will write s ⊂ n is s is an initial segment of x.

Definition 1 ([Ke, Definition 2.1]). Tree = subset T ⊆ A<ω closed under inital segments.
(I.e., if t ∈ T and s ⊂ t, then s ∈ T .)

An infinite branch of T is a sequence x ∈ AN such that x|n ∈ T , for all n.

Height of a tree T is supt∈T ht(t) where ht(t) is the length of the sequence t.
A tree T is called finite splitting if for every s ∈ T there are at most finitely many a ∈ A

with ŝ t ∈ T .

Theorem 1 (König’s lemma). If T is a finitely splitting tree on a non-empty set A with
height ω then it has an infinite branch.

The assumption that T is finitely splitting cannot be omitted - just consider a tree con-
sisting of countably many branches – for each n ∈ ω we take one branch of length n.

Borel sets and analytic sets

Descriptive set theory often deals with subsets of Polish spaces (=topological space which is
homeomorphic to a complete metric space). Most frequently the Cantor space 2ω and the
Baire space ωω (considered as the product of discrete spaces) are employed. We will only
work with the Cantor space 2ω.

Borel sets are the sets from the smallest σ-algebra containing open sets.

Definition 2 ([Ke, Definition 14.1]). Let X be a Polish space. A set A ⊆ X is called
analytic if there exists a Polish space Y and a continuous function f : Y → X with f [Y ] = A.

It can be shown that instead of arbitrary Polish space one can use the Cantor space (or
the Baire space, or any fixed uncountable Polish space).

1This is the same as the restriction of x (as a function ω → A) to the subset n ⊆ ω.
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Cantor space

We will often work with the Cantor space 2ω – the product of countably many copies of the
2-point discrete space. This space is useful since subsets of ω can be identified in an obvious
way – as the characteristic sequences – with the points of this spaces and therefore we can
study systems of subsets of ω (such as ideals, filters or topologies) as subsets of a topological
space (study whether they are open, closed, Borel etc.).

On the examples of ideals we can see that many “natural” or “well-behaved” ideals are
indeed Borel or analytic.

Therefore it could be useful to have a more detailed look at the topology of this space.
If we identify the points of this space with subsets of ω, the topology of Cantor space has

a base consisting of sets

UF,G = {A ⊆ ω;F ⊆ A,G ∩ A = ∅}

for F , G finite. The same topology is given by the subbase Subbase Sa = {A ⊆ N; a ∈ A}
S′

a = {A ⊆ N; a /∈ A} (any a ∈ ω).
The basic sets mentioned above are clopen. Spaces having a base consisting of clopen

sets are called zero-dimensional.
The topology of the Cantor cube is given by the metric

d(A,B) = 2−∆(A,B),

where ∆(A,B) is the smallest integer contained the symmetric difference of A and B.
Cantor space can be embedded into the space 〈0, 1〉 using the embedding

(an) 7→
∞
∑

n=1

2an

3n

where (an) ∈ {0, 1}ω is a sequence of 0’s and 1’s.
We can view the point of this space as sequences of natural numbers. In this context the

following base could be useful:
Us = {x ∈ 2ω; s ⊂ x}

where s ∈ 2<ω and s ⊂ x means that the (finite) sequence s is an initial segment of x.
A neighborhood base of a sequence b ∈ 2ω is given by the sets

Bn = {x ∈ 2ω; b|n ⊂ x}.

We can also formulate convergence and ideal convergence in this space in the language of
subsets or sequences.

If Xk are subsets of ω then Xk converges to X if for each n ∈ ω there exists k0 ∈ ω such
that k > k0 ⇒ Xk ∩ n = X ∩ n.

If xk are sequences of natural numbers then xk converges to x if for each n ∈ ω there
exists k0 ∈ ω such that k > k0 ⇒ xk|n = x|n.

Continuous images and closed subspaces

The paper [FMRS] uses several basic facts concerning uncountable compact metric spaces,
the Cantor space and the unit interval. We will mention some of them.

Note that every compact metric space is complete (since every Cauchy sequence is bounded
and in a compact metric space every bounded sequence has a convergent subsequence).

We first show that the Cantor space can be embedded into every uncountable compact
metric space. Recall that a perfect space is a space having no isolated points. A perfect set
in a topological space is a set which contains all its accumulation points.
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Theorem 2. If X is an infinite perfect complete metric space then in contains a copy of the
Cantor space 2ω.

Sketch of the proof. We construct inductively for each sequence s ∈ 2ω a decreasing sequence
of open subsets such that their diameter tends to 0. Moreover at each level these sets are
disjoint. By the completeness there is unique point in the intersection of every such decreasing
sequence of sets.

Theorem 3 (Cantor-Bendixson theorem). Every complete metric space can be written
as X = P ∪ C where P is a perfect set and C is a countable set.

A point X in a topological space is called condensation point if every open neighborhood
of x in uncountable.

In the proof the set P is the set of all condensation points of X.
Consequently, in each uncountable compact metric space there exists an uncountable

perfect subspace, which, in turn contains a copy of the Cantor space.
Next we observe that every compact metric space is a continuous image of a closed

subspace of the Cantor space.

Theorem 4. I = 〈0, 1〉 is a continuous image of the Cantor space.

Proof. The continuous map is

(an) 7→
∞
∑

n=1

an

2n
.

Every compact metric space is a X subspace of Iω. (Since every compact space is first-
countable and every compact space can be embedded into Iw(X) by Tychonoff’s theorem.)
We have a continuous map f : (2ω)ω → Iω (the power of the continuous map from the above
theorem). Clearly, (2ω)ω is homeomorphic to the Cantor space 2ω. Thus the restriction of f
from f−1(X) to X is a continuous map from a closed subspace of the Cantor space to X.

Let us note that a stronger theorem can be shown: Every non-empty compact metrizable
spaces is a continuous images of the Cantor space 2ω. [Ke, Theorem 4.18]

The notion of a limit along a filter

We have discussed several times about the question where the notion of the convergence
along a filter was defined for the first time and should be credited for the invention of this
notion.

The notion of limit along a filter on ω should not be confused with the notion of the limit
of a filter in a topological space.

Let X be a topological space and F be a filter on X. A point x is called a limit of a filter
F if every neighborhood of x is a member of F .

The convergence of filters corresponds in a certain sense with the convergence of nets (or
Moore-Smith sequences), which include convergence of sequences as a special case. But the
filter which corresponds to the sequence is a filter on X rather than on ω. For more details
on the convergence of filters in topological spaces see e.g. [E]. Here this notion is attributed
to Bourbaki, Topológie generale, 1940.

Nevertheless, the notion of convergence along a filter (in the dual sense to our I-convergence)
seems to be relatively old as well. In [FMRS] this notion is attributed to Katětov [Kat] and
for the case of ultrafilters to A. R. Bernstein [Be].
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Limit along an ultrafilter is used frequently in order to show the existence of a Banach
limit. (This approach is preferred in set-theoretical expositions, whereas analysts usually
employ Hahn-Banach theorem in this proof.) We can find this proof in several standard
set-theoretical textbooks as [BŠ, p.122, Definition 8.23] or [HJ, p.206, Definition 2.7]. (The
former is the book where I have seen this notion for the first time. It is used in this textbook as
an illustration of usefulness of ultrafilters - the authors provide here a construction of Banach
limit and of finitely additive measure on integers extending the asymptotic density. The main
tool is the limit along an ultrafilter.) The construction of Banach limit via ultrafilter on ω is
credited in some textbooks to A. Robinson [R].

The limit along an ultrafilter is used in [GS], too (the authors refer to [Be]).
Hence the oldest use of limit along an ultrafilter I was able to track down was the paper

[R], in [Kat] the author is not restricted to the ultrafilters only.
At last (with Juraj Činčura) we were able to find out that the notion of a limit along a filter

(or at least its more general version) was indeed defined by Bourbakists. We can find there
[Bo2, p.68, Definition 1] or [Bo1, p.99, Opredelenie 3] (both of them are reprints/translations
of the 1940 book):

Definition 3. Let f : X → Y be a map, where X is a set and Y is a topological space. Let
F be a filter on X. A point y ∈ Y is said to be a limit point (or simply a limit) of F if F is
finer than the neighborhood filter B(x) is finer than X.

Equivalent condition: Filter base f [F ] converges to y (in the topological space X).
The notion of a convergence in this way encapsulates both, filter converges in topological

spaces and the convergence of a sequence along a filter, as special cases.

Products of filters

The authors of [FMRS] make use of Fubini product of two ideals defined as

I × J = {A ⊆ ω × ω; {n ∈ ω;An /∈ J } ∈ I} (1) {FUBPROD}

where An = {m ∈ ω; (n,m) ∈ A}.
There exist some other types of products of ideals. We can quote the following two

definitions from [CN, p.156] (for the case of filters).

F · G = {A ⊆ ω × ω; {n ∈ ω;An ∈ G} ∈ F} (2) {FILTCDOT}

F × G = {C ⊆ ω × ω;C ⊇ A × B for some A ∈ F , B ∈ G} (3) {FILTTIMES}

The filter F × G is called the product of F and G. (The above definition says, in the other
words, that it is given by a base {A × B;A ∈ F , B ∈ G}.)

The dual ideal to F · G looks like this

I · J = {A ⊆ ω × ω; {n ∈ ω;An ∈ F(J )} ∈ I} (4) {IDCDOT}

Let us denote by F ×F G the result of dual construction of the Fubini product of ideals.
(This filter contains the sets such that {n ∈ ω;ω \ An ∈ G} ∈ F .)

Lemma 1. For any two filters the inclusion F × G ⊂ F · G holds.

Proof. If C ⊇ A × B with A ∈ F and B ∈ G, then we have B ⊆ Cn and Cn ∈ G for each
n ∈ A, thus A ⊆ {n ∈ ω;An ∈ G} and {n ∈ ω;An ∈ G} ∈ F .
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Let us denote by F ×F G the result of dual construction of the Fubini product of ideals.
(This filter contains the sets such that {n ∈ ω;ω \ An ∈ G} ∈ F .)

Lemma 2. For any two filters the inclusion F · G ⊂ F ×F G holds.

Proof. Follows from the fact that An ∈ F(I) ⇒ An /∈ I.

Thus we have
F × G ⊂ F · G ⊂ F ×F G.

If F is the filter of cofinite sets then F × F = F · F consists of all sets such that for all
but finitely many n’s the vertical cuts A − n are cofinite.

The Fubini product F ×F G consists of all sets such that for all but finitely many n’s the
vertical cuts An are infinite.

Ideals, filters and prime spaces

It is clear that we have a one-to-one correspondence between ideals an filters. Here we show
that we can assign to each filter a topological space having only one accumulation point which
can help to describe the ideal convergence. Sometimes this topological viewpoint could be
useful.

Definition 4. A topological space is called a prime space, if it has precisely one accumulation
point.

The notion of prime space was defined [FR] where the sequential convergence (i.e., ideal
convergence for the ideal of finite sets) was studied. Some authors do not use the name
prime spaces, they speak simply about topological spaces having unique accumulation point
instead, e.g [BM].

For any filter on a set A we can define a prime space P (F) on the set A ∪ {∞} where
∞ /∈ A in the following way: All points other from ∞ are isolated. The neighborhoods of ∞
are the sets of the form {∞} ∪ F where F ∈ F .

This correspondence between filters and prime spaces can be found e.g. in [Č, Section 2]
or [D, Proposition 2,3].

We only work with filters on ω, so we will use the point ω instead of ∞. If we will assign
a prime spaces to an ideal, we will use the same notation P (I). (It should be clear from the
context whether we work with an ideal or with a filter.)

The reason why prime spaces are interesting for us is the following:

Lemma 3. Let X be a topological space, x ∈ X, xn ∈ X for each n ∈ ω. Let I be an ideal
on ω Let us define a map f : P (I) → X by f(n) = xn and f(ω) = x. Then I- lim xn = x if
and only if f is continuous.

For the detailed proof see e.g. [Sl1, Proposition 3.1].
It could be useful to express some topological notions for the space P (F) in terms of

subsets of ω and some notions concerning the I-convergence in the language of topology (a
kind of “dictionary”).

Let I be the dual ideal to a filter F . Let us denote P := P (F). We can see immediately
that for any A ⊆ ω:
A ∈ I ⇔ A is closed in P .
A /∈ I ⇔ ω ∈ A.
A ∈ F(I) ⇔ A ∪ {ω} is open.
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(xn) ↾ A is I ↾ A-convergent ⇔ the restriction f |A∪{ω} is continuous. (Here f is the map
from the above lemma.)

An ideal I has BW ⇔ every map f : P → I has a continuous restriction to A ∪ {ω} for
some dense subset A of P .

The product F × G defined in (3) corresponds to a subspace of the topological product
P (F) × P (G).

The product F ·G corresponds to a subspace of A-sum defined in [Sl2]. This construction
was inspired by the sequential sum from [AF] and [FR]. It is also similar to the brush of
[Kan].

If we keep in mind that the sets from I are closed, then the definition of the Rudin-Keisler
order reminds the definition of the quotient map. Indeed, I ≤RK J if and only if there exits
a quotient map P (J ) → P (I) which maps only ω to ω (in the other words, f−1({ω}) = {ω}).

Analytic ideals

Submeasures

Recall that by identifying sets of natural numbers with their characteristic functions, we equip
P(ω) with the Cantor-space topology and therefore we can assign the topological complexity
to the ideals of sets of integers. In particular, an ideal I is Fσ if it is an Fσ subset of the
Cantor space; I is analytic if it is a continuous image of a Gδ subset of the Cantor space.

References for submeasures and analytic ideals: [F3], [F2], [So1], [So2]. . .

Definition 5. Submeasure on ω (=monotonic+subadditive): φ : P(ω) → 〈0,+∞〉

φ(∅) = 0

A ⊆ B ⇒ φ(A) ≤ φ(B)

φ(A ∪ B) ≤ φ(A) + φ(B)

φ({n}) < +∞ for n ∈ ω

(Some authors do not include the last condition into the definition of the submeasure. If we
want to work only with submeasures such that the ideal Fin(φ) defined below is admissible,
we need this condition.)

Lower semicontinuous
φ(A) = lim

n→∞
φ(A ∩ n).

For any lower semicontinuous submeasure we define

‖A‖φ = lim sup
n→∞

φ(A \ n) = lim
n→∞

φ(A \ n),

where the second inequality follows by the monotonicity of φ. (It is denoted by φ∞(A) in
[F3].)2

‖A‖φ is a submeasure as well (subadditive, monotone).
Subaddivity: ‖A∪B‖φ ≤ lim sup(φ(A\n)+φ(B \n)) ≤ lim sup φ(A\n)+ lim sup φ(B \n) =
‖A‖φ + ‖B‖φ

For any f : ω → [0,+∞)

νf (A) =
∑

i∈A

f(i)

is a lsc submeasure.

2TODO Is this equality true? Try to find some examples of lower semicontinuous submeasures.

6



For any submeasure we can define the following two ideals (although we will study them
mostly for lsc submeasures):

Exh(φ) = {A ⊆ N; ‖A‖φ = 0}

Fin(φ) = {A ⊆ N;φ(A) < ∞}

Lsc submeasure is called finite if φ(ω) < ∞ (⇔ Fin(φ) = P(ω).)
Lsc submeasure is exhaustive if Exh(φ) = Fin(φ).
Ideals of the form Fin(φ) are implicit in Mazur’s paper [Maz].

Relation between Exh(φ) and Fin(φ).
We show that Exh(φ) ⊆ Fin(φ) for any lsc submeasure. By the last condition in the

definition of submeasure we have φ(A) < +∞ for any finite set. Now let A ∈ Exh(φ), i.e.,
lim

n→∞
φ(A \ n) = 0. Then there exists an n0 such that φ(A \ n0) < ∞. Thus

φ(A) ≤ φ(A ∩ n0) + φ(A \ n0) < ∞.

(The first summand is finite because the set A ∩ n0 is finite.)
The following example shows that the opposite inclusion is not in general true:

Let us define φ by φ(A) = 1 for A 6= ∅. Then φ is a lsc submeasure and
Exh(φ) = Fin
Fin(φ) = P(ω)
thus Exh(φ) ( Fin(φ).

The following example shows that we need the assumption φ({n}) < +∞ in the proof of
Exh(φ) ⊆ Fin(φ)
Now let φ(A) = ∞ if 1 ∈ A and 0 otherwise. This is a lsc submeasure.
Exh(φ) = P(ω)
Fin(φ) = {A ⊆ ω; 1 /∈ A}.
In this case we have Fin(φ) ( Exh(φ).

Theorem 5 ([So2]). TFAE

(i) I is an analytic P-ideal

(ii) I = Exh(φ) for some lower semicontinuous submeasure φ on ω

Therefore every analytic P-ideal is automatically Fσδ.

Theorem 6 ([Maz]). TFAE

(i) I is an Fσ ideal

(ii) I = Fin(φ) for some lower semicontinuous submeasure φ on ω

Theorem 7 ([F2, Theorem 1.2.5],[So2]). TFAE

(i) I is an Fσ P-ideal

(ii) I = Fin(φ) = Exh(φ) for some lower semicontinuous submeasure φ on ω

The authors of [FMRS] use the negation of the following property to characterize analytic
P-ideals with the property BW:
If ε > 0 then there exists a partition ω = A1 ∪ . . . ∪ As with φ(Ai) < ε.

Such measures are called compact in [P] or [ŠV]. It is called a diffuse submeasure by some
other authors ([F1], [FS], [FZ]). In [Mar] the term strongly subatomic is used for a finitely
additive measure with similar properties.
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Various classes of analytic ideals

Summable ideals
If φ = νf for some f , then Fin(φ) = {A ⊆ ω; νf (A) < +∞} is called a summable ideal.

Every summable ideal is a P-ideal.
Erdös-Ulam ideals

f : ω → [0,+∞) such that
∑∞

i=0 f(i) = +∞ and

lim sup
f(n)

∑

i∈n f(i)
= lim sup

νf (A ∩ n)

νf (n)
= 0

If =

{

A : lim
n→∞

∑

i∈A∩n f(i)
∑

i∈n f(i)
= 0

}

Ideals Id and Iδ are EU-ideals.
Every EU-ideal is P-ideal.
Density ideals

If In are pairwise disjoint intervals in ω and µn is a measure on In. Then

Zµ = {A ⊆ ω; lim sup µn(A ∩ In) = 0}

is called a density ideal.
For φ = supn µn we have Zµ = Exh(φ), hence every density ideal is a P-ideal.

Id = {A ⊆ ω; lim sup
n

2−n|A ∩ In| = 0},

where In = [2n, 2n+1) ⇒ Id is a density ideal. (A detailed proof of a similar identity for Id

can be found in [C].) More generally: every EU-ideal is a density ideal.
Generalized density ideals
Let {In;n ∈ ω} be a partition of ω into finite intervals and φn be a submeasure on In for

every n. Assume moreover that lim sup at+(φn) = 0, where at+(φ) = sup{φ({i})}. Then

Zφ = {A; lim sup φn(A ∩ In) = 0}

is called a generalized density ideal.
Generalized density ideals are known to be P-ideals.
LV ideals are another large class of ideals. The definition is not included in [FMRS] and

it is only sketched in [F3]. They form a subclass of the class of generalized density ideals.
Summary

EU-ideal ⇒ density ideal ⇒ generalized density ideal ⇒ analytic P-ideal
summable ideal ⇒ Fσ P-ideal

I-small sets

A set A ⊆ ω is I-small if there are sets As (with s ∈ 2ω) such that for all s we have:

(i) A∅ = A,

(ii) As = Asˆ0 ∪ Asˆ1,

(iii) Asˆ0 ∩ Asˆ1 = ∅ and

(iv) (∀b ∈ 2ω) (∀X ⊆ ω) (∀n ∈ ω) X \ Ab↾n ∈ I ⇒ X ∈ I.
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It is known that the system SI of all I-small sets forms an ideal an I ⊆ SI . They were
introduced in [F3]. We include here also some results from this paper:
If I is a density ideal then there is an I-positive set A ∈ SI . (Moreover such set is contained
in every I positive set.)
If I is a LV-ideal then SI = I.
If I is a density ideal such that supµn(In) = +∞, then SI is a proper Fσ ideal properly
including I.

Orderings

Apart from the inclusion one can define several other partial orders on the set of ideals on ω.
Rudin-Keisler order. I ≤RB J if there exists a function f : ω → ω such that A ∈ I if

and only if f−1(A) ∈ J .
We can list here a few simple examples.
Fubini product: I ≤RK I × J , J ≤RK I × J ( the map f is the function which a pair

(m,n) to m or n respectively).
Rudin-Blass order is defined in the same way as ≤RK , but the function f is required to

be finite-to-one.

Small uncountable cardinals

Recently several cardinal numbers, defined some combinatorial properties, with the prop-
erty ℵ1 ≤ κ ≤ c have been used in various branches in mathematics. Some of them were
generalized to cardinal numbers of Boolean algebras.

Here we mention only a few well-known small uncountable cardinals. Much more can be
found in the extensive literature on this topic. As the basic references we can mention [vD],
[V].

P(X) denotes the power set of X, [X]ω the set of all countably infinite subsets of X and
[X]<ω the set of all finite subsets of X, ωω the set of all functions from ω into ω.

For a family F ⊂ [ω]ω, we say that F has the strong finite intersection property pro-
vided every finite subfamily has an infinite intersection, and an infinite set A is called a
pseudointersection of F provided A ⊂∗ F for all F ∈ F .

We define the mod finite order ≤∗ on ωω as follows: f ≤∗ g provided that there exists
N ∈ ω such f(n) ≤ g(n) holds that for all n ≥ N .

A set X ⊂ ωω is dominating (in the mod finite order) if for every f ∈ ωω there exists
g ∈ X such that f ≤∗ g, and X is bounded (in the mod finite order) if there exists g ∈ ωω
such that f ≤∗ g for all f ∈ X.

Definitions of small cardinals. a = min{|A|;A ⊂ [ω]ω is an infinite, maximal almost
disjoint family in ω}.
b = min{|B|;B ⊂ ωω is unbounded in the mod finite order }.
d = min{|D|;D ⊂ ωω is dominating in the mod finite order }.
s = min{|S|;S ⊂ [ω]ω is a splitting family on ω}.
p = min{|P |;P ⊂ [ω]ω has the strong finite intersection property but no X ∈ [ω]ω is a
pseudointersection for P }.
t = min{|T |;T ⊂ [ω]ω is a tower on ω}.
i = min{|I|; I ⊂ [ω]ω is a maximal independent family on ω}.
u = min{|U |U ⊂ [ω]ω is a base for an ultrafilter on ω}.
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A family T ⊂ [ω]ω is a (decreasing) tower provided there exist an ordinal α and a
bijection f : α → T such that β < γ < α implies that f(γ) ⊂∗ f(β), and no infinite set A is
a pseudointersection of T .

Basic inequalities ℵ1 ≤ p ≤ t ≤ b ≤ d ≤ i ≤ c

t ≤ s ≤ d

b ≤ a ≤ c

For the proofs see [vD, Theorem 3.1].
cf(t) = t ≤ cf(b) = b ≤ cf(d) ≤ d

Of course, under CH all these cardinals are equal.

Cardinal p. A centered family with no infinite pseudo-intersection is called power by some
authors. [T]

MA ⇒ p = c

E.g., in [Mi] in fact only p = c was need to construct an ideal with the T-property, so not
the full strength of CH was necessary.

Splitting number. A family A ⊆ [ω]ω is a splitting family if for any B ∈ [ω]ω there exists
A ∈ A such that cardA ∩ B = card(ω \ A) ∩ B = ℵ0.

We denote by s the smallest size of a splitting family on ω.
ℵ1 ≤ s ≤ c

[JW, p.80] MA+¬CH ⇒ s > ℵ1

Independence number. A family I ⊂ [ω]ω is an independent family provided for every
A,B ∈ [I]<ω if A 6= ∅ and A ∩ B = ∅ then

⋂

A \
⋃

B 6= ∅.
i = min{|I|; I ⊂ [ω]ω is a maximal independent family}
ℵ1 ≤ s ≤ d ≤ i ≤ c

Questions

1. Examples of: a non-analytic ideal; an analytic P-ideal which is not Fσ . . . Is every Fσ

ideal analytic? Is Fin × Fin analytic?
The ideal Id is an analytic P-ideal (since it is EU-ideal). If it was an Fσ ideal, then by

[FMRS, Proposition 3.4] it would have hFinBW property. But we know that Fσ /∈ BW .
2. Is it possible to modify the definition of SI in a such way that A ∈ S ′

I ⇔ I ↾ A /∈ FinBW?
3. Does the following hold: I ↾ A ≤RK J for any A /∈ I?
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[FZ] Ilijas Farah and Jindřich Zapletal. Between Maharam’s and von Neumann’s prob-
lems. Mathematics Research Letters, 11(5-6).

[GS] John Ginsburg and Victor Saks. Some applications of ultrafilters in topology. Pacif.
J. Math., 57(2):403–418, 1975.

[HJ] K. Hrbacek and T. Jech. Introduction to set theory. Marcel Dekker, New York,
1999.

[JW] Winfried Just and Martin Weese. Discovering modern set theory. II: Set-theoretic
tools for every mathematician. Graduate Studies in Mathematics. 8. Providence,
RI: American Mathematical Society (AMS), 1997.

[Kan] V. Kannan. Ordinal invariants in topology. Mem. Amer. Math. Soc., 245, 1981.
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