
1 Topológia

Ak E je súvislá podmnožina metrického priestoru, t, u ∈ E, tak existuje konečná postupnosť
bodov t0, . . . , tk ∈ E, t0 = t, tk = u, d(ti, ti+1) < ε.

1.1 Bairove kategórie

Podmnožina A topologického priestoru X sa nazýva množina prvej Bairovej kategórie (v

X), ak existujú také podmnožiny An ⊂ X (n = 1, 2, . . .) riedke v X, že A =
∞
⋃

n=1
An. Ak

množina A ⊂ X nie je prvej Bairovej kategórie v X, tak sa nazýva množinou druhej Bairovej
kategórie.
Množina A ⊂ X je reziduálna v topologickom priestore X, ak A je druhej Bairovej

kategórie v X a X \ A je množina prvej Bairovej kategórie v X.

Veta 1 (Bairova veta). Nech (X, d) je úplný metrický priestor, X 6= ∅. Potom X je
množina druhej Bairovej kategórie v X.

Veta 2 (Bairova veta o hustote). Nech (X, d) je úplný metrický priestor, X 6= ∅. Nech

Xk ⊂ X (k = 1, 2, . . .) sú riedke množiny. Potom množina X \
∞
⋃

k=1

Xk je hustá v X.

A má Bairovu vlastnosť, ak existuje otvorená množina G tak, že A \ G aj G \ A sú prvej
kategórie, t.j. A = (G \ B) ∪ C, kde B a C sú prvej kategórie.
Spočítateľné zjednotenie množína, ktoré majú Bairovu vlastnosť má Bairovu vlastnosť. Ak

A má Bairovu vlastnosť, tak aj komplement X \A má Bairovu vlastnosť. Všetky Borelovské
množiny majú Bairovu vlastnosť.

Veta 3 (Banach Subgroup Theorem). Ak G je vlastná podgrupa lineárneho topologického
priestoru E, potom buď G je prvej kategórie alebo G nespĺňa Bairovu podmienku.

1.2 Metrické priestory

Podmnožina M metrického priestoru (X, ̺) je pórovitá v x ∈ X, ak existuje α > 0 tak, že
pre ľubovoľné ε > 0 existuje bod y v B(x, ε) tak, že B(y, αρ(x, y)) ∩ M = ∅. Ak α možno
zvoliť ľubovoľne blízko k 1, tak M je silno pórovitá v x.
Množina M je (silno) pórovitá, ak je (silno) pórovitá v každom bode x ∈ M .
σ-pórovitá množina=zjednotenie spočítateľného systému pórovitých množín.

Lema 1 (Olevskii). NechM je konvexná riedka množina v Banachovom priestore X. Potom
M je silne pórovitá.

2 Hausdorffova miera

Uvedieme definíciu z [ŠŠN].
(X, d) bude stále predstavovať separabilný metrický priestor. Znakom Sn budeme ozna-

čovať systém všetkých gúľ s priemerom nepresahujúcim 1
n
a ∅. Nech p ≥ 0. Definujme na Sn

funkciu τ
(p)
n takto:

τ (p)n =

{

0, ak E = ∅

(d(E))p, ak E 6= ∅.

Veta 4. Nech pre n = 1, 2, . . . sú µ
∗(p)
n vonkajšie miery na systéme všetkých podmnožín

množiny X indukované pomocou funkcií τ (p)n a systémov Sn. Potom funkcia µ∗(p) definovaná
tak, že pre E ⊂ X platí µ∗(p) = lim

n→∞
µ∗(p)(E), je metrickou vonkajšou mierou. Nazývame ju

Hausdorffova p-rozmerná vonkajšia miera.
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Mieru µ(p) definovanú na systém Sµ∗(p) všetkých µ∗(p)-merateľných množín nazývame
Hausdorffova p-rozmerná miera.

Veta 5. Ak pre nejakú množinu E ⊂ X je µ∗(p)(E) < +∞, tak pre p′ > p platí µ∗(p′)(E) = 0.

Definícia 1. Nech E ⊂ X, Hausdorffovou dimeziou množiny E ⊂ X nazývame číslo

dimE = sup{p : µ∗(p)(E) = +∞}.

Ak X je separabilný priestor, tak dimenzia každej spočítateľnej množiny je 0.

Veta 6. Nech A ⊂ X je ľubovoľná množina. Potom existuje množina E typu Gδ tak, že
E ⊃ A a µ(p)(E) = µ∗(p)(E) = µ∗(p)(A).

Veta 7. 1-dimenzionálna vonkajšia Hausdorffova miera pre metrický priestor (−∞,∞) sa
zhoduje s vonkajšou Lebesguovou mierou.

TODO? Je podmnožina množiny s Hausdorffovou dimenziou 0 tiež dimenzie 0?

3 Hustoty

3.1 Asymptotická hustota

Nech A ⊂ N, označme dn(A) = 1
n

∑n
k=1 χA(k), d(A) = lim inf dn(A), d(A) = lim sup dn(A).

Ak d(A) = d(A), tak ich spoločnú hodnotu označujeme d(A) a nazývame asymptotická
hustota množiny A. (Teda d(A) = lim dn(A), ak táto limita existuje.)

d(N \ A) = 1− d(A)

Ak existuje d(A), tak existuje aj d(N \ A) a d(N \ A) = 1− d(A).

M = {m1 < m2 < . . .} ⇒ d(M) = lim inf
k

mk

,

d(M) = lim sup
k

mk

, d(M) = lim
k

mk

Ak A = {a1 < a2 < . . .} a
∑

a−1
k < +∞, tak d(A) = 0.

Ak d(A) > 0, tak množina A obsahuje ľubovoľne dlhú konečnú aritmetickú postupnosť.
(Szemerédi) Problém, či množina P všetkých prvočísel obsahuje ľubovoľne dlhú aritmetickú
postupnosť, je otvorený problém, ktorý je považovaný za veľmi obtiažny až beznádejný. ([BŠ])
It has been conjectured that ’positive density’ could here be relaxed to ’positive logarith-

mic density’, i.e. a sequence whose series of reciprocals, implying that the sequence of primes
numbers contains arithmetic progressions of any length.
A proof of this result on primes was announced by Tao and Green in April 2004.

Veta 8 (Van der Waerden, 1927). Ak množina prirodzených čísel A1 ∪ A2 obsahuje
ľubovoľne dlhé aritmetické postupnosti, tak aspoň jedna z množín A1, A2 má tú istú vlastnosť.

Van der Waerdedenov ideál = množiny, ktoré neobsahujú ľubovoľne dlhú aritmetickú
postupnosť.

3.2 Logaritmická hustota

δn(A) =
1
Sn

n
∑

k=1

χA(k)
k

, kde Sn =
n

∑

k=1

1
k
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δ(A) = lim inf δn(A), δ(A) = lim sup δn(A), δA = lim δn(A), ak táto limita existuje.

d(A) ≤ δ(A) ≤ δ(A) ≤ d(A)

Na základe formuly Sn =
∑∞

k=1
1
k
= lnn+γ+o( 1

n
) môžeme písať lnn namiesto Sn v definícii

logaritmickej hustoty.

3.3 Rovnomerná hustota

A(t+ 1, t+ s) := card{n ∈ A : t+ 1 ≤ n ≤ n+ s}
βs = lim inf A(t+ 1, t+ s), βs = lim supA(t+ 1, t+ s)
u(A) = lims→∞

βs

s
, u(A) = lims→∞

βs

s

Ak u(A) = u(A), tak je to rovnomerná hustota - u(A).

u(A) ≤ d(A) ≤ d(A) ≤ u(A)

Postupnosť a1 < a2 < . . . prirodzených čísel sa nazýva lakunárna, ak lim
n→∞

an+1−an =∞.

Lakunárna množina = konečná, alebo je množinou členov lakunárnej postupnosti. Ak A je
lakunárna, tak u(A) = 0.
Kompaktná submiera, je zobrazenie m : P(N)→ 〈0,∞) také, že:

(i) A ⊆ B ⇒ m(A) ≤ m(B)

(ii) m(A ∪ B) ≤ m(A) +m(B)

(iii) m({a}) = 0

(iv) Pre každé ε > 0 existujú množiny A1, . . . , Ak tak, že A1 ∪ . . . Ak = N a m(Ai) < ε pre
i = 1, . . . , k

4 Konvergencia

4.1 Štatistická konvergencia

st-limxn = L ⇔ ∀ε d({k ∈ N : |xk − L| ≥ ε}) = 0

st-limxn = L ⇔ existuje konvergentná podpostupnosť y tak, že lim y = L a d{k ∈ N : xk =
yk} = 0 (xk = yk pre skoro všetky k).
Lx=množina obyčajných hromadný bodov postupnosti x
Statistical limit point= existuje netenká postupnosť konvergujúca k L.
Λx=statistical limit points of x
Statistical cluster point= pre každé ε > 0 množina {k ∈ N : |xk − L| < ε} nemá hustotu 0.
Γx=statistical cluster points

Λx ⊂ Γx ⊂ Lx

Ak x, y sú postupnosti a xk = yk pre skoro všetky k, tak Λx = Λy Γx = Γy.
Ak x je ľubovoľná postupnosť, tak existuje postupnosť y tak, že Ly = Γx a yk = xk pre skoro
všetky k, navyše Rng(y) ⊂ Rng(x).
Ak x je postupnosť komplexných čísel a Lx je množina hromadných bodov x, tak existuje
natiahnutie w postupnosti x také, že každý hromadný bod postupnosti x je statistical limit
point postupnosti w.

Veta 9. Ak (X, d) je kompaktný metrický priestor, ξ = (xn) je postupnosť taká, že lim d(xn, xn+1) =
0, tak Lξ je súvislá.

Veta 10. Ak X je metrický priestor, ξ = (xn) je postupnosť a Lx 6= ∅ je súvislá množina,
tak existuje podpostupnosť η = (yn) tak, že lim d(yn, yn+1) = 0, Lξ = Lη.

Veta 11. Nech x = (xn) je ohraničená. Potom x štatisticky konverguje k číslu L práve vtedy,
keď x je silno C-sumovateľná k L.
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4.2 I-konvergencia

Netriviálny ideál I nazývame prípustný, (admissible) ak {x} ∈ I pre každé x ∈ X.

Definícia 2. Nech I je netriviálny ideál na N. Postupnosť x = (xn) prvkov metrického
priestoru I-konverguje k L ∈ X, (L = I-limxn) ak pre každé ε > 0 množina A(ε) = {n ∈
N : ̺(xn, t) ≥ ε} patrí do I.

Id = {A ⊂ N; d(A) = 0} je prípustný ideál, Id-konvergencia je štatistická konvergencia.
Iδ - logaritmická štatistická konvergencia
Iu - rovnomerná štatistická konvergencia
Ic = {A ⊂ N :

∑

a∈A a−1 < +∞}
Z Ic-konvergencie vyplýva štatistická konvergencia.
Ak I je prípustný, tak z obvyklej konvergencie vyplýva I-konvergencia.
Ak I je prípustný ideál, ktorý neobsahuje nekonečnú množinu, tak I-konvergencia koinciduje
s obvyklou konvergenciou.
Ak I je maximálny, tak každá postupnosť má limitu (konečnú alebo∞). Špeciálne, každá

ohraničená postupnosť má konečnú limitu.

4.3 I∗-konvergencia

Definícia 3. Postupnosť (xn) I∗-konverguje ku L, ak existuje množina M ∈ F(I), M =
{m1 < m2 < . . .} tak, že vybraná podpostupnosť xmk

konverguje ku L.

Ak I je prípustný ideál, tak I*-limxn = L ⇒ I-limxn = L.
Id-konvergencia je ekvivalentná s I∗

d -konvergenciou. Iδ-konvergencia je ekvivalentná s
I∗

δ -konvergenciou.

Definícia 4. Prípustný ideál I spĺňa podmienku (AP), ak pre každý spočítateľný systém
{A1, A2, . . .} po dvoch disjunktných množín z I existuje spočítateľný systém množín Bj ⊂ N

taký, že Aj ÷ Bj sú konečné a B =
⋃n

j=1Bj patrí do I. [Zrejme aj všetky Bj ∈ I.]

Ekvivalentné podmienky (pozri [BDK]):
(AP’) Ako (AP) ale nepredpokladáme, že sú po 2 disjunktné.
Každý spočítateľný systém množín z I má pseudoprienik v I (t.j. existuje A ∈ I také, že
všetky An \ A sú konečné).
Pre ideál spĺňajúci túto podmienku sa tiež používa názov P-ideál.
TODO Ďalšia zaujímavá ekvivalentná podmienka je [GMZ, Theorem 6b] (ekvivalencia je

dokázaná v [GMZ, Theorem ?])

Veta 12. Z I-konvergencie vyplýva I∗-konvergencia práve vtedy, keď ideál I spĺňa podmienku
(AP).

4.4 I-variácia

Variácia postupnosti x = Varx =
∑

|xn − xn+1|.
Variácia na množine K = {k1 < k2 < . . .} = Varx|K =

∑

|xkn
− xkn+1

|
Postupnosť x má konečnú I-variáciu, ak existuje K ∈ F(I) taká, že Varx|K < +∞.

4.5 Banachova limita

Ak limitu chápeme ako lineárny operátor z podpriestoru priestoru l∞, tak má tieto vlastnosti:

(i) LIM(c.f + d.g) = c.LIM f + d.LIM g

(ii) f ≥ 0 ⇒ LIM f ≥ 0

(iii) LIM f = LIM fs, kde fs označuje posunutie postupnosti f o jeden člen.
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(iv) Ak existuje limita lim f v obvyklom zmysle, tak LIM f má tú istú hodnotu.

Lineárny operátor na priestore všetkých ohraničených postupností, ktorý má tieto vlast-
nosti, sa nazýva Banachova limita.
TODO z Connors-Grosse: jednoznačnosť Bl a almost convergence, citacia, strong matrix

methods
TODO µ-statistical convergence

5 Priestory postupností

K-priestor - lineárny topologický priestor, všetky projekcie sú spojité.
FK-priestor - K-priestor, kde topológia je daná metrikou.

Veta 13 (Landau). Nech 1
p
+ 1

q
= 1. Ak pre ľubovoľný rad (xk) ∈ ℓq rad

∑

akxk konverguje,
tak (ak) ∈ ℓp.

Hölderova nerovnosť: (xk) ∈ ℓp, (yk) ∈ ℓq ⇒ |
∑

xkyk| ≤ (
∑

xp
k)

1
p (

∑

yq
k)

1
q

Metriky na priestore všetkých postupností:

Fréchetova metrika: dF (a, b) =
∞
∑

i=1

1
2n

|an−bn|
1+|an−bn|

Bairova metrika dB(a, b) = 1
min{n∈N;an 6=bn} pre a 6= b.

Dindošova metrika (pre ohraničené postupnosti):
dD(a, b) = sup{|a1−b1

1 |, |a1+a2−b1−b2
2 |, |a1+a2+a3−b1−b2−b3

1 |, . . .}
Pre ϕ : {0, 1}N → 〈0, 1〉, ϕ((an)∞n=1) je dE(a, b) = |ϕ(a) − ϕ(b)| pseudometrika, vynechaním
postupností, ktoré konečia samými jednotkami, dostaneme metrický priestor.

6 Metódy sumovateľnosti

S označuje priestor všetkých postupností, S1 ⊂ S. T : S1 → S nech je lineárna transformácia.
Znakom F(T ) označíme množinu všetkých x ∈ S1, pre ktoré Tx ∈ C (Tx je konvergentná
postupnosť). Limitu postupnosti Tx označujeme T − limx. Postupnosti x ∈ F(T ) nazývame
T -limitovateľné. Množinu F(T ) voláme konvergenčným poľom lineárnej transformácie T .
Lineárna transformácia T : S1 → S sa nazýva metódou limitovania, ak S1 obsahuje všetky

ohraničené postupnosti a pre každú ohraničenú postupnosť x ∈ S1 je Tx zasa ohraničená.
Metóda limitovania T ′ sa nazýva silnejšia než metóda T , ak F(T ) ( F(T ′).

Definícia 5. Lineárna transformácia T : S1 → S sa nazýva regulárnou, ak C ⊂ F(T ) a pre
x ∈ C

T − lim ξk = lim ξk.

Metóda sumovateľnosti (sumability) nekonečných radov = metóda limitovateľnosti pre
postupnosť čiastočných súčtov.
Maticové metódy limitovania a sumovateľnosti:

T = (am,n) je nekonečná matica, ktorej členy sú reálne čísla. Ak x = (xk) ∈ S, zostrojíme
rady

tm =
∞
∑

n=1

am,nxn.

Za predpokladu, že všetky tieto číselné rady konvergujú dostaneme číselnú postupnosť (tm),
ktorú označíme znakom Tx.

Veta 14. Nech T = am,n je nekonečná matica s reálnymi členmi.
Nutná a postačujúca podmienka k tomu, aby Tx existovalo pre každú ohraničenú postup-

nosť x je, aby Tx existovalo pre každú postupnosť x = (xk), xk → 0.
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Nutná a postačujúca podmienka k tomu, aby Tx existovalo pre každú postupnosť x = (xk),
xk → 0 je, aby

∞
∑

n=1

|am,n| < +∞.

Veta 15. Lineárna transformácia T definovaná maticou (am,n) zobrazuje každú ohraničenú
postupnosť na ohraničenú postupnosť vtedy a len vtedy, keď existuje takéM0 > 0, že pre každé
m = 1, 2, . . .

∞
∑

n=1

|am,n| ≤ M0.

Veta 16. Lineárna transformácia T definovaná maticou (am,n) je regulárnou metódou limi-
tovania práve vtedy, keď súčasne platí:
a) Existuje také M > 0, že pre každé m = 1, 2, . . .

∞
∑

n=1

|am,n| ≤ M ;

b) Pre každé n = 1, 2, . . . platí limm→∞am,n = 0;

c) lim
m→∞

∞
∑

n=1
am,n = 1.

Cesárova metóda: Tx = lim
n→∞

x1+...+xn

n
, t.j. am,n = 1

m
pre n ≤ m, inak 0.

Norlundova metóda: (pm) je postupnosť nezáporných reálnych čísel, Pm = p1 + . . .+ pm,
am,n = pm−n+1/Pm pre n ≤ m, 0 inak.

tm =
pmx1 + pm−1x2 + . . .+ p1xm

Pm

Norlundova metóda je regulárna práve vtedy, keď lim pn

Pn
= 0.

Rieszova metóda
tm =

p1x1 + p2x2 + . . .+ pmxm

Pm

Hovoríme, že (xn) je (R, pn)-sumovateľná ku ξ, tak lim
m→∞

tm = ξ.

Rieszova metóda je regulárna práve vtedy, keď limPm =∞.
Ak pn = 1 pre každé n, dostaneme Césarovu metódu.

Postupnosť (xn) je silno α − (R, pn)-sumovateľná ku ξ, ak lim
n→∞

1
Pn

∞
∑

k=1

pk|xk − ξ|α = 0.

Abelova metóda: Označme sn = a0 + a1 + . . . + an. Ak existuje lim
x→1−

anxn = s, potom

hovoríme, že postupnosť (sn) je A-limitovateľná (rad
∑

an je A-sumovateľný) k číslu s.
Abelova metóda je regulárna. Ak je rad Césarovsky sumovateľný, tak je sumovateľný

Abelovou metódou k tomu istému súčtu.
Vety Tauberovho typu = ak rad je sumovateľný nejakou metódou a platí nejaké dodatočná

podmienka, tak z toho vyplýva konvergencia tohto radu.

Veta 17. Nech rad
∑

an (s reálnymi členmi) je sumovateľný Abelovou metódou k súčtu s a
nech nan → 0. Potom ten rad konverguje a má súčet s.

Veta 18 (Steinhaus). Nech T je regulárna metóda definovaná maticou (an,k). Potom exis-
tuje postupnosť núl a jednotiek nelimitovateľná metódou T .

Hovoríme, že postupnosť x = (xn) je silno C-sumovateľná k L, ak lim
n→∞

|x1−L|+...+|xn−L|
n

=

0.
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7 Exponent konvergencie

Nech A = {a1 < a2 < . . .}. Položíme σ(A) = 0, ak A je konečná a σ(A) = inf{t > 0;
∞
∑

k=1

a−t
k <

+∞}

σ(A) = lim sup
log n

log an

8 Zovšeobecnenia spojitosti

Definícia 6. Nech X a Y sú topologické priestory. Nech f : X → Y . Hovoríme, že f je
kvázispojitá v bode x0 ∈ X, ak pre každé okolie U(x0) bodu x0 v X a pre každé okolie
V (f(x0)) bodu f(x0) v Y existuje taká neprázdna otvorená množina G ⊂ U(x0), že f [G] ⊂
V (f(x0)). [Na rozdiel od spojitosti nepožadujeme x ∈ G.]

Veta 19 (Kempisty). Ak je funkcia viacerých premenných kvázispojitá v každej premennej,
tak je spojitá.

Definícia 7. Funkcia f : X → Y je trochaspojitá v X ak pre každú otvorenú podmnžinu
G ⊂ Y takú, že f−1(G) 6= ∅ platí Int f−1(G) 6= ∅

kvázispojitá ⇒ trochaspojitá

Veta 20. g : X → Y je kvázispojitá ⇔ pre každú otvorenú neprázdnu podmnožinu G ⊂ X je
f |G trochaspojitá.

Veta 21. Funkcia f : X → Y je trochaspojitá ⇔ pre každú podmnožinu M hustú v X platí,
že f [M ] je hustá v f [X].

Definícia 8. Funkcia f : X → Y je slabospojitá v x0 ∈ X, ak pre každé okolie V = V (f(x0))
existuje okolie U = U(x0) tak, že f [U ] ⊂ V .

Ak Y je regulárny priestor, tak spojitosť je ekvivalentná so slabou spojitosťou.

9 Zovšeobecnenia konvergencie

Postupnosť fn : X → R kvázinormálne konverguje k f : X → R na X, ak pre každú postup-
nosť (εn), takú že εn > 0, εn → 0 existuje nx tak, že pre každé n ≥ nx |fn(x)− f(x)| < εn.1
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1?Čo znamená index x v nx? Ako že to závisí od bodu x?
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