1 Topoldgia

Ak F je suvisld podmnozina metrického priestoru, ¢, u € F, tak existuje koneéné postupnost
bodov tg,...,tx € E, tog =1, ty = u, d(t;, t;11) < €.

1.1 Bairove kategorie

Podmnozina A topologického priestoru X sa nazyva mnoZina prvej Bairovej kategorie (v

o0
X), ak existuju také podmnoziny A, C X (n = 1,2,...) riedke v X, z2e A = |J A4,,. Ak
n=1
mnozina A C X nie je prvej Bairovej kategdrie v X, tak sa nazyva mnoZinou druhej Bairovej

kategorie.
Mnozina A C X je rezidudlna v topologickom priestore X, ak A je druhej Bairovej
kategérie v X a X \ A je mnozina prvej Bairovej kategérie v X.

Veta 1 (Bairova veta). Nech (X,d) je dplnyg metricky priestor, X # 0. Potom X je
mnozina druhej Bairovej kategorie v X.

Veta 2 (Bairova veta o hustote). Nech (X,d) je dplng metricky priestor, X # 0. Nech

X CX (k=1,2,...) si riedke mnoZiny. Potom mnozina X \ |J Xi je hustd v X.
k=1
A mé Bairovu vlastnost, ak existuje otvorend mnozina G tak, ze A\ G aj G\ A st prvej
kategdrie, t.j. A = (G \ B)UC, kde B a C su prvej kategdrie.
Spoéitatelné zjednotenie mnozina, ktoré maji Bairovu vlastnost méa Bairovu vlastnost. Ak
A m4 Bairovu vlastnost, tak aj komplement X \ A mé Bairovu vlastnost. Vietky Borelovské
mnoziny maju Bairovu vlastnost.

Veta 3 (Banach Subgroup Theorem). Ak G je vlastnd podgrupa linedrneho topologického
priestoru E, potom bud G je prvej kategorie alebo G nespliia Bairovu podmienku.

1.2 Metrické priestory

Podmnozina M metrického priestoru (X, o) je pdrovitd v x € X, ak existuje o > 0 tak, Ze
pre Iubovolné ¢ > 0 existuje bod y v B(z,¢) tak, ze B(y,ap(z,y)) " M = 0. Ak o mozno
zvolit lubovolne blizko k 1, tak M je silno pdrovitd v x.

Mnozina M je (silno) pérovitd, ak je (silno) pérovita v kazdom bode = € M.

o-pérovitd mnozina=zjednotenie spocitatelného systému pdrovitych mnozin.

Lema 1 (Olevskii). Nech M je konveznd riedka mnoZina v Banachovom priestore X . Potom
M je silne porovitd.

2 Hausdorffova miera

Uvedieme definiciu z [SSN].

(X, d) bude stéle predstavovat separabilny metricky priestor. Znakom S,, budeme ozna-
dovat systém vSetkych gul s priemerom nepresahujtcim % a (). Nech p > 0. Definujme na S,
funkciu Tff' ) takto:

_J0, ak £ =10
| (d(E))P, ak E #0.

(p)

Veta 4. Nech pre n = 1,2,... st pn?’ vonkajsie miery na systéme vietkych podmnoZin

mnoziny X indukované pomocou funkcii Tflp) a systémov S,,. Potom funkcia p*?) definovand

tak, ze pre E C X plati n*® = lim w*P)N(E), je metrickou vonkajsou mierou. Nazjvame ju
n—oo

Hausdorffova p-rozmerna vonkajsia miera.



Mieru p®) definovant na systém S« vsetkych p*P)_meratelnych mnozin nazjvame
Hausdorffova p-rozmernd miera.

Veta 5. Ak pre nejaki mnozinu E C X je *®)(E) < +o0, tak pre p’ > p plati p*®)(E) = 0.
Definicia 1. Nech E C X, Hausdorffovou dimeziou mnoziny E C X nazjvame ¢islo
dim E = sup{p : p*P(E) = +o0}.
Ak X je separabilny priestor, tak dimenzia kazdej spocitatelnej mnoziny je 0.

Veta 6. Nech A C X je lubovolnd mnoZina. Potom ezistuje mnoZina E typu Gg tak, Ze
ED> A ap®(E) = p*@W(E) = P (A).

Veta 7. 1-dimenziondlna vonkajsia Hausdorffova miera pre metricky priestor (—oo,00) sa
zhoduge s vonkajsou Lebesquovou mierou.

TODO? Je podmnozina mnoziny s Hausdorffovou dimenziou 0 tiez dimenzie 07

3 Hustoty

3.1 Asymptoticka hustota

Nech A C N, ozna¢me d,,(A) = L 31 va(k), d(A) = liminf d,(A), d(A) = limsupd,,(4).
Ak d(A) = d(A), tak ich spolo¢nt hodnotu oznacujeme d(A) a nazyvame asymptotickd
hustota mnoziny A. (Teda d(A) = limd,,(A), ak tato limita existuje.)

d(N\ A) =1-d(A)
Ak existuje d(A), tak existuje aj d(N\ A) a d(N\ A) =1—d(A).

M = {m1 <mo < } = C_l(M) zliminfmi,
k

— k k
d(M) = limsup —,d(M) = lim —
my

mp

Ak A={a1 <ax<...}ad a;' <+oo, tak d(4) = 0.

Ak d(A) > 0, tak mnozina A obsahuje lubovolne dlhi koneénti aritmeticki postupnost.
(Szemerédi) Problém, ¢ mnozina P vSetkych prvocisel obsahuje Tubovolne dlhii aritmeticka
postupnost, je otvoreny problém, ktory je povazovany za velmi obtiazny az beznadejny. (|[BS])

It has been conjectured that positive density’ could here be relaxed to ’positive logarith-
mic density’, i.e. a sequence whose series of reciprocals, implying that the sequence of primes
numbers contains arithmetic progressions of any length.

A proof of this result on primes was announced by Tao and Green in April 2004.

Veta 8 (Van der Waerden, 1927). Ak mnoZina prirodzengch éisel Ay U Ay obsahugje
lubovolne dihé aritmetické postupnosti, tak aspori jedna z mnoZin Ay, As md ti isti vlastnost.

Van der Waerdedenov idedl = mnoziny, ktoré neobsahuji Tubovolne dlhii aritmetick
postupnost.

3.2 Logaritmicka hustota

1 xa(k) -
on(A) == 5 kde Sy =)
k=1

El e



3(A) = liminf 6,,(A), 6(A) = limsup 6, (A), 6A = lim 6,,(A), ak tato limita existuje.
d(A) < 8(4) < 5(A) < d(A)

Na zéklade formuly S, = Y7, + = Inn+~+o0(+) mozeme pisat Inn namiesto S,, v definicii
logaritmickej hustoty.

3.3 Rovnomerna hustota

At +1,t+s):=card{ne A:t+1<n<n+s}

Bs =liminf A(t 4+ 1,t + s), 8° = limsup A(t + 1,t + s)
u(A) = limg_, 00 %, u(A) = limg_, 00 %

Ak u(A) =u(A), tak je to rovnomernd hustota - u(A).

u(4) < d(4) < A(A) < u(A)
Postupnost a; < ag < ... prirodzenych ¢isel sa nazyva lakundrna, ak lim a,41—a, = oo.
n—oo
Lakunarna mnoZina = kone¢néa, alebo je mnozinou ¢lenov lakunarnej postupnosti. Ak A je
lakunarna, tak w(A) = 0.
Kompaktnd submiera, je zobrazenie m: P(N) — (0, 00) také, zZe:

() AC B = m(4) <m(B)

(ii) m(AU B) <m(A4) +m(B)

(i) m({a}) =0

(iv) Pre kazdé € > 0 existuji mnoZiny Aq,..., Ay tak, Ze A3 U... Ay = Nam(A;) < e pre
i=1,... .,k

4 Konvergencia

4.1 Statistickd konvergencia
st-lima, =L & Ved{ke N: |z, —L| >e})=0

st-limz,, = L < existuje konvergentnd podpostupnost y tak, ze limy = L a d{k € N: x}, =
yr} = 0 (xx = yg pre skoro vsetky k).
L,=mnozina obyc¢ajnych hromadny bodov postupnosti x
Statistical limit point= existuje netenkd postupnost konvergujtca k L.
A, =statistical limit points of x
Statistical cluster point= pre kazdé ¢ > 0 mnozina {k € N : |z, — L| < £} nem4 hustotu 0.
I',=statistical cluster points

A, CcT,CL,
Ak z, y st postupnosti a x = y, pre skoro vsetky k, tak A, = A, ', =T,
Ak « je lubovolna postupnost, tak existuje postupnost y tak, ze L, = I'; a yi = ) pre skoro
vSetky k, navySe Rng(y) C Rng(z).
Ak z je postupnost komplexnych ¢isel a L, je mnozina hromadnych bodov z, tak existuje
natiahnutie w postupnosti = také, ze kazdy hromadny bod postupnosti = je statistical limit
point postupnosti w.

Veta 9. Ak (X,d) je kompaktnyg metricky priestor, £ = (x,,) je postupnost takd, Ze im d(x,, Tp1) =
0, tak L¢ je suvisld.

Veta 10. Ak X je metricky priestor, £ = (x,) je postupnost a L, # () je stvisld mnoZina,

tak ezistuje podpostupnost n = (y,) tak, Ze imd(yyn, yn+1) =0, Le = Ly,.

Veta 11. Nech x = (x,,) je ohranicend. Potom x Statisticky konverguje k ¢islu L prdve vtedy,

ked x je silno C-sumovatelnd k L.



4.2 7Z-konvergencia
Netrividlny idedl Z nazyvame pripustny, (admissible) ak {x} € 7 pre kazdé = € X.

Definicia 2. Nech 7 je netrividlny idedl na N. Postupnost = (z,) prvkov metrického
priestoru Z-konverguje k L € X, (L = Z-limz,,) ak pre kazdé ¢ > 0 mnozina A(e) = {n €
N: o(zn,t) > e} patri do 7.

Z,={A CN;d(A) = 0} je pripustny ideél, Z -konvergencia je Statistickd konvergencia.
Ts - logaritmicka Statisticka konvergencia
T, - rovnomerna Statistickd konvergencia
I.={ACN:Y . a ' <+oo}
7 T.-konvergencie vyplyva Statistickd konvergencia.
Ak 7 je pripustny, tak z obvyklej konvergencie vyplyva Z-konvergencia.
Ak T je pripustny ideal, ktory neobsahuje nekone¢nt mnozinu, tak Z-konvergencia koinciduje
s obvyklou konvergenciou.
Ak 7 je maximélny, tak kazda postupnost ma limitu (koneénii alebo co). Specialne, kazda
ohrani¢end postupnost mé koneénu limitu.

4.3 I*-konvergencia

Definicia 3. Postupnost (x,) Z*-konverguje ku L, ak existuje mnozina M € F(Z), M =
{m1 < mg < ...} tak, ze vybrand podpostupnost z,,, konverguje ku L.

Ak 7 je pripustny idedl, tak Z*-limx, = L = Z-limz, = L.
Zi-konvergencia je ekvivalentnd s Zj-konvergenciou. Zs-konvergencia je ekvivalentna s
73 -konvergenciou.

Definicia 4. Pripustny ideal Z spliia podmienku (AP), ak pre kazdy spoéitatelny systém
{A1, Az, ...} po dvoch disjunktnych mnozin z 7 existuje spocitatelny systém mnozin B; C N
taky, ze A; + Bj st konecné a B = U?:l B, patri do Z. [Zrejme aj vSetky B; € 7]

Ekvivalentné podmienky (pozri [BDK]):
(AP’) Ako (AP) ale nepredpokladame, ze st po 2 disjunktné.
Kazdy spocitatelny systém mnoZin z 7 mé pseudoprienik v Z (t.j. existuje A € 7 také, ze
vietky A, \ A st konecné).

Pre ideal splhajici tito podmienku sa tiez pouziva nazov P-ideal.

TODO Dalsia zaujimava ekvivalentna podmienka je [GMZ, Theorem 6b] (ekvivalencia je
dokazand v [GMZ, Theorem 7))

Veta 12. ZI-konvergencie vyplyjva T*-konvergencia prave vtedy, ked idedl I splria podmienku
(AP).
4.4 Z-variacia

Varidcia postupnosti x = Varx = Y |2y, — Tny1].
Varidcia na mnozine K = {ky < ko < ...} = Varz|K = |zk, — @k, |
Postupnost x mé koneéni Z-varidciu, ak existuje K € F(Z) taka, ze Var z|K < +o0.

4.5 Banachova limita

Ak limitu chapeme ako linedrny operator z podpriestoru priestoru ., tak mé tieto vlastnosti:
(i) LIM(c.f + d.g) = c.LIM f +d.LIM g
(ii) f>0=LIMf >0

(iii) LIM f = LIM fs, kde fs oznacuje posunutie postupnosti f o jeden ¢len.



(iv) Ak existuje limita lim f v obvyklom zmysle, tak LIM f m4 tt istt hodnotu.

Linedrny operator na priestore vSetkych ohrani¢enych postupnosti, ktory ma tieto vlast-
nosti, sa nazyva Banachova limita.

TODO z Connors-Grosse: jednoznacnost Bl a almost convergence, citacia, strong matrix
methods

TODO p-statistical convergence

5 Priestory postupnosti

K-priestor - linearny topologicky priestor, vSetky projekcie si spojité.
FK-priestor - K-priestor, kde topoldgia je dana metrikou.

Veta 13 (Landau). Nech %qté = 1. Ak pre lubovolny rad (x1) € £q rad Y arx) konverguge,
tak (ar) € €.

1 1
Holderova nerovnost: (zx) € £y, (yr) € €y = |2 xrye] < O 2R)? O yi)e
Metriky na priestore vsSetkych postupnosti

. : —b,
Fréchetova metrika: dp(a,b) = Z 57 1J‘ra"; 7;‘ |

Bairova metrika dp(a,b) = m pre a # b.

DindoSova metrika (pre ohrani¢ené postupnosti):
dD(CL b) _ Sup{‘al b1| |a1+a22b1 b2| |al+a2+a —by—by— b3| }

Pre ¢: {0, 1} — (0 1), v((an)S2y) je dr(a,b) = |¢(a) — ¢(b)| pseudometrika, vynechanim
postupnosti, ktoré konecia samymi jednotkami, dostaneme metricky priestor.

6 Metdody sumovatelnosti

S oznacuje priestor vSetkych postupnosti, S; C S. T': S — S nech je linedrna transformaécia.

Znakom F(T) ozna¢ime mnozinu vetkych x € S, pre ktoré Tz € C (Tz je konvergentna

postupnost). Limitu postupnosti Tz ozna¢ujeme T — lim . Postupnosti € F(T') nazyvame

T-limitovatelné. Mnozinu F(T') volame konvergenéngm polom linedrnej transformécie T'.
Linearna transforméacia T': §; — S sa nazyva metddou limitovania, ak &1 obsahuje vsetky

ohrani¢ené postupnosti a pre kazd ohranicentt postupnost = € S; je Tx zasa ohranicena.
Metéda limitovania 7”7 sa nazyva silnejsia nez metéda T', ak F(T') € F(T").

Definicia 5. Linearna transformécia T: §; — S sa nazyva reguldrnou, ak C C F(T') a pre
zel
T— hmfk = hmfk

Metdda sumovatelnosti (sumability) nekoneénych radov = metdda limitovatelnosti pre
postupnost ¢iastoénych sictov.

Maticové metddy limitovania a sumovatelnosti:
T = (am,n) je nekoneénd matica, ktorej ¢leny st redlne éisla. Ak © = (zy) € S, zostrojime

rady
oo
tm = g m,n T -
n=1

Za predpokladu, ze vSetky tieto ¢iselné rady konverguji dostaneme ¢éiselnd postupnost (¢,,),
ktort oznacime znakom T'z.

Veta 14. Nech T = ap,n, je nekonecnd matica s redlnymi clenmi.
Nutnd a postacujica podmienka k tomu, aby Tx existovalo pre kaZdi ohranicent postup-
nost x je, aby Tx existovalo pre kaZdi postupnost x = (xy), xp — 0.



Nutnd a postacujica podmienka k tomu, aby Tz existovalo pre kaZdi postupnost x = (xy,),
zr — 0 je, aby

oo
Z|am,n| < +o0.
n=1

Veta 15. Linedrna transformdcia T definovand maticou (am, ) zobrazuje kaZdi ohranicend
postupnost na ohranicent postupnost vtedy a len vtedy, ked existuje také My > 0, Ze pre kazdé
m=1,2,...

oo
Z|am,n| S M0~
n=1

Veta 16. Linedrna transformdcia T definovand maticou (am. ) je reguldrnou metddou limi-
tovania prdve vtedy, ked sucasne plati:
a) Existuje také M > 0, Ze pre kaZdé m =1,2,...

oo
Z|am,n| < M,
n=1
b) Pre kazdé n = 1,2, ... plati limuy,—ooGmn = 0;
(o]
¢) lim > amn,=1.
m—00 TL:].
Cesdrova metdda: Tx = lim %, tj. Amon = # pre n < m, inak 0.

n—oo

Norlundova metdda: (py,) je postupnost nezdpornych redlnych &isel, P, = p1 + ... + D,
Qm,n = pm7n+1/Pm pren < m, 0 inak.

_ PmZ1+ Pm—1T2 + ...+ D1Tm
tm =
P

Norlundova metéda je reguldrna prave vtedy, ked lim £* = 0.

Rieszova metdda
_ P11 +p2$2 +... +pmxm

P,

Hovorime, ze (z,) je (R, py)-sumovatelnd ku &, tak lim ¢, = &.
m— 00

29

Rieszova metdda je regularna prave vtedy, ked lim P, = oc.
Ak p, =1 pre kazdé n, dostaneme Césarovu metédu.

o0
Postupnost (x,,) je silno o — (R, py,)-sumovatelnd ku £, ak lim PL > prlre —€]* =0.

Abelova metdda: Oznacme s, = ag + a1 + ... + a,. Ak existuje lim a,x™ = s, potom

r—1—
hovorime, Ze postupnost (s,) je A-limitovatelna (rad > a,, je A-sumovatelny) k ¢islu s.
Abelova metdda je regularna. Ak je rad Césarovsky sumovatelny, tak je sumovatelny
Abelovou metédou k tomu istému stctu.
Vety Tauberovho typu = ak rad je sumovatelny nejakou metédou a plati nejaké dodatoéna
podmienka, tak z toho vyplyva konvergencia tohto radu.

Veta 17. Nech rad Y a, (s redlnymi clenmi) je sumovatelnyg Abelovou metodou k sictu s a
nech na,, — 0. Potom ten rad konverguje a md siucet s.

Veta 18 (Steinhaus). Nech T je reguldrna metdda definovand maticou (ay, ). Potom exis-
tuje postupnost nil a jednotiek nelimitovatelnd metodou T .

Hovorime, Ze postupnost x = (z,,) je silno C-sumovatelnd k L, ak lim w& =

n—oo



7 Exponent konvergencie

o0

Nech A = {a; < ag < ...}. Polozime o0(A) = 0, ak A je kone¢nd a o(A) = inf{t > 0; > a, ' <
k=1

+o0}

logn
log a,

o(A) = limsup

8 ZovsSeobecnenia spojitosti

Definicia 6. Nech X a Y su topologické priestory. Nech f: X — Y. Hovorime, Ze f je
kvdzispojita v bode xg € X, ak pre kazdé okolie U(zg) bodu 2o v X a pre kazdé okolie
V(f(zo)) bodu f(xo) v Y existuje takd neprazdna otvorend mnozina G C U(zy), ze f[G] C
V(f(x0)). [Na rozdiel od spojitosti nepozadujeme = € G.]

Veta 19 (Kempisty). Ak je funkcia viacergch premennych kvdzispojitd v kaZdej premennej,
tak je spojitd.

Definicia 7. Funkcia f: X — Y je trochaspojita v X ak pre kazdu otvoreni podmnZzinu
G C Y takd, ze f~1(G) # 0 plati Int f~1(G) # 0

kvazispojitd = trochaspojita

Veta 20. g: X — Y je kvdzispojitd < pre kaZdi otvorent neprdizdnu podmnozZinu G C X je
fla trochaspojitd.

Veta 21. Funkcia f: X — Y je trochaspojitd < pre kazZdi podmnozZinu M husti v X plati,
Ze f[M] je hustd v f[X].

Definicia 8. Funkcia f: X — Y je slabospojitd v xo € X, ak pre kazdé okolie V = V (f(zo))
existuje okolie U = U(zo) tak, ze f[U] C V.

Ak Y je regularny priestor, tak spojitost je ekvivalentna so slabou spojitostou.

9 Zovseobecnenia konvergencie

Postupnost f,,: X — R kvéazinormalne konverguje k f: X — R na X, ak pre kazdu postup-
nost (,,), takt ze €, > 0, £, — 0 existuje n, tak, ze pre kazdé n > n, |fn(x) — f(z)| < &,.!
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