

Notes about uniform spaces from Preuss,

Definition. Uniformity ω is a filter on $X \times X$ such that:

- U1) $W \in \omega \Rightarrow \Delta = \{(x, x) : x \in X\} \subset W$
- U2) $W \in \omega \Rightarrow W^{-1} \in \omega$
- U3) $W \in \omega \Rightarrow (\exists W^* \in \omega)(W^*)^2 \subset W$

(X, ω) - uniform space

Elements of ω - entourages

For each $V \in \omega$ $A \subset X$ is called V -small if $A \times A \subset V$.

If (X, d) is a metric (pseudometric) space and $V_\varepsilon = \{(x, y) : d(x, y) < \varepsilon\}$ for each $\varepsilon > 0$, then $B = \{V_\varepsilon; \varepsilon > 0\}$ is a base for uniformity ω_d on X .

Proclaim. Let (X, ω) be a uniform space. For each $x \in X$ and each $V \in \omega$ let $V(x) = \{y : (x, y) \in V\}$. Then $\mathcal{X}_\omega = \{O \subset X : \text{there is some } V \in \omega \text{ with } V(x) \subset O\}$ is a topology on X .

Definition. Let (X, ω) , (X', ω') be uniform spaces. A map $f: X \rightarrow X'$ is called uniformly continuous provided that one of the following two equivalent conditions is satisfied:

- (i) For each $W' \in \omega'$ there is some $W \in \omega$ such that $(x, y) \in W \Rightarrow (f(x), f(y)) \in W'$.
- (ii) $(f \times f)^{-1}[W'] \in \omega$ for each $W' \in \omega'$, where $f \times f: (x, y) \mapsto (f(x), f(y))$.

initial uniformity, product space, supremum of family of uniformities on X

Theorem. For each uniformity ω on a set X there is a family $(d_V)_{v \in \omega}$ of pseudometrics on X such that for the corresponding uniformities D_v the following is true: $\omega = \sup\{D_v : V \in \omega\}$.

Theorem. A topological space (X, \mathcal{X}) is uniformizable (i.e. there is a uniformity ω on X such that $X_\omega = \mathcal{X}$) if and only if it is completely regular.

Definition. A uniform space (X, ω) is called separated iff $\bigcup_{W \in \omega} W = \Delta$.

A uniform space (X, ω) is called pseudometrizable (metrizable) provided that there is a pseudometric (metric) d on X such that $\omega_d = \omega$.

Theorem. An uniform space is pseudometrizable if and only if it has countable base.

An uniform space is metrizable if and only if it is separable and has countable base.

Definition. A filter \mathcal{F} on a uniform space (X, ω) is called a Cauchy filter provided that for each $W \in \omega$ there is some $F \in \mathcal{F}$ such that $F \times F \subset W$.

A uniform space (X, ω) is called complete provided that each Cauchy filter on (X, ω) is convergent (in (X, \mathcal{X}_ω)).

Theorem. Let (X, ω) be a separated uniform space. Then there is a dense embedding into a complete separated uniform space. Moreover, it has properties of reflection and is determined uniquely. It is called complete hull.

Definition. A uniform space (X, ω) is called totally bounded provided that one of the following equivalent conditions is satisfied:

- (i) For each $V \in \omega$ there is a finite cover of X by V -small sets.
- (ii) For each $W \in \omega$ there is a finite subset E of X such that $W[E] = X$, where $W[E] = \bigcup_{x \in E} W(x)$.
- (iii) Each ultrafilter on X is Cauchy filter.

Theorem. A uniform space (X, ω) is compact (i.e. (X, \mathcal{X}_ω) is compact) if and only if it is complete and totally bounded.