MacLane: Categories for Working Mathematician
1 Categories, Functors, and Natural Transformations
1.1 Axioms for Categories
1.2 Categories
Discrete categories. A category is discrete when every arrow is an identity.
1.3 Functors
full=hom-function is surjective (for every pair of objects), faithfull=injective
1.4 Natural Transformations
Given two functors S,T: C — B a natural transformation 7 : S — T is a function which

assigns to each object ¢ of C' an arrow 7. = 7¢: Sc — T'c of B in such a way that every arrow
f:c— in C yields a diagram

c Se —“=Te¢
J{f Sfi in
J SC/L>TC/

which is commutative.

A natural transformation 7 with every component 7c¢ invertible in B is called natural
equivalence or better a natural isomorphism.

An equivalence between categories C' and D is defined to be a pair of functors S: C — D,
T: D — C together with natural isomorphisms I, 2T oS, Ip 2 SoT.

1.5 Monics, Epis and Zeros

monic=monomorphism, epic=epimorphism

right inverse=section, left inverse=retraction

An object t is terminal in C if to each object a in C there is exactly one arrow a — t.
Dual: initial object.

A null object z in C' is an object which is both initial and terminal. For any two objects
a and b of C there is a unique arrow a — z — b, celled the zero arrow from a to b.

A groupoid is a category in which every arrow is invertible. A typical groupoid is the
fundamental groupoid m(X) of a topological space X. (objects=points, arrow  — z’ =ho-
motopy classes of paths from z to x’) connected groupoid: there is an arrow joining any two
of its objects. (It is determined up to isomorphism by a group.)

1.6 Foundations
1.7 Large Categories

Ab-categories ? (hom-sets are abelian groups)



2 Construction on categories
2.1 Duality
2.2 Contravariance and Opposites
2.3 Products of categories
Functors S: B x C' — D from a product category are called bifunctors.
Proposition 2.3.1. Let B, C and D be categories. For all objects c € C' and b € B, let
L.:B—D, M,:C—D

be functors such that My(c) = Lo(b) for allb and c. Then there exists a bifunctor S: BxC —
D with S(—,c¢) = L for all ¢ and S(b, —) = My, for allb if and only if for every pair of arrows
f:b—V and g: c — ¢ one has

MygoL.f = Lot f o Myg.
These equal arrow in D are then the value S(f, g) of the arrow function of S.

Proposition 2.3.2. For bifunctors S, S’, the function a which assigns to each pair of objects
be B, ceC an arrow a(b,c): S(b,c) — S'(b,¢) is a natural transformation o : S — S’
(i.e., of bifunctors) if and only if a(b,c) is natural in b for each ¢ € C' and natural in c for
each b € B.

Such natural transformations appear in the fundamental definition of adjoint functor
(Chapter IV.) A functor F: X — C is the left adjoint of a functor G: C — X (opposite
direction) when there is a bijection

home(Fz,c) & hom,(x,Gc)
natural in z € X and c € C.
2.4 Functor categories

B — Funct(C, B) with objects the functors T': C — B and morphism the natural trans-
formations. Nat(S,T) := BY(S,T) = {r|r : S = T natural}.

2.5 The Category of All Categories

We have defined a “vertical” composite 7 - o,

c—42-B

Given functors and natural transformations,

C T B 1’ A (21)
— s
T T



one may construct natural transformation 7’ o 7 as
(r"or)c=T'rcor’'Sc=7"TC o S'rc. (2.2)

This composition is readily shown to be associative. It moreover has identities. It is
convenient to let the symbols S for a functor also denote the identity transformation 1g :
S — 8. The definition (2.2) can then be rewritten using also the vertical composition, as

Tor=(T'or)-(T"08)=(1"0T) (5" 07) (2:3)

There is a more general rule. Given three categories and four transformations

—_—

C—%>B—1Z> 4 (2.4)
—_— — >

the “vertical” composites under - and the “horizontal” composites under o are related by the
identity (interchange law)

(t"-0")o(r-a)=(1"oT) (0 00) (2.5)

Exercise 4: Let G be a topological group with identity element e, while o, o/, 7, 7’ are
continuous paths in G starting and ending at e. o - skladanie ciest, - pointwise product.
Then interchange law holds.

Exercise 5: (Hilton=Eckmann). Let S be a set with two (everywhere defined) binary
operations -: S xS — S, 0: § xS — S which both have the same (two-sided) unit element e
and which satisfy the interchange identity (2.5). Prove that - and o are equal, and that each
is commutative.

Exercise 6: Combine Exercises 5 and 6 to prove that the fundamental group of a topo-
logical group is abelian.

2.6 Comma categories

Category of objects under b is the category (b | C) with objects all pairs (f, ¢}, where ¢ is
an object of C and f: b — ¢ is and arrow of ¢. Arrows are arrows of C' (resp. commutative
triangles).

If a is an object of C, the category (C | a) of objects over a has objects f: ¢ — a.

If b is an object of C' and S: D — C a functor, the category (b | S) of objects S-under b
has an objects all pairs (f,d) with f: b — Sd.

(T | a) of objects T-over a.

Here is the general construction. Given categories and functors

E—>Cc<>-D
the comma category (T | S), also written (T, S) has objects all triples (e, d, f), with d €
ObjD, e € ObjE, and f: Te — Sd and as arrows (e, d, f) — (e/,d’, f') all pairs (k, h) of
arrows k: e — €/, h: d — d’' such that f' o Tk = Sho f. In pictures

Objects (e, d, f) Te ; arrows (k,h) Te —TE et (2.6)
X |k
Sd Sd —5,> Sd’

with the square commutative. The composite (k',h') o (k,h) = (k' o k, h’ o h), when defined.



2.7 Graphs and Free Categories
skipped
2.8 Quotient Categories
skipped
3 Universals and limits

Definition 3.0.1. If S: D — C' is a functor and ¢ an object of C, a universal arrow from c
to S is a pair (r,u) consisting of an object r od D and an arrow u: ¢ — Sr of C, such that
to every pair (d, f) with d an object of D and f: ¢ — Sd an arrow of C, there is a unique
arrow f:r — d of D with Sf’ ou = f. In other words, every arrow f to S factors uniquely
through the universal arrow u, as in the commutative diagram

c—">Sr (3.1)

\
I Sf
Xf

Sd

Examples: Bases of vector spaces, free categories form graphs, fields of quotients, com-
pletion of metric space (universal for forgetful functor from complete metric spaces).

If D is a category and H: D — Set functor, a universal element of the functor H is a
pair (r, e) consisting of an object r € D and an element e € Hr such that for every pair (d, x)
with « € Hd there is a unique arrow f: r — d of D with (H f)e = z.

Diagonal functor: A: C — C x C, Ac = {c,c).

3.1 The Yoneda Lemma

Proposition 3.1.1. For a functor S: D — C a pair (ru: ¢ — Sr) is universal from form c
to S if and only if the function sending each f':r — d into Sf' ou: ¢ — Sd is a bijection of
hom-sets

D(r,d) = C(c, Sd) (3.2)

This bijection is natural in d. Conversely, given r and ¢, any natural isomorphism (3.2) is
determined in this way by a unique arrow w: ¢ — St such that (r,u) is universal from C to
S.

Definition 3.1.2. Let D have small hom-sets. A representation of a functor K: D — Set
is a pair (r, 1) with r an object of D and

:D(r,—) 2K (3.3)

a natural isomorphism. The object r is called the representing object. The functor K is said
to be representable when such a representation exists.

Proposition 3.1.3. Let x denote any one-point set and let D have small hom-sets. If
(ryu: x — Kr) is a universal arrow from % to k: D — Set, then the function v which for
each object d of D send the arrow f': r — d to K(f')(u*) € Kd is a representation of K.
Every representation of K is obtained in this way from exactly one such universal arrow.



The argument for Proposition 3.1.1 rested on the observation that each natural transfor-
mation ¢ : D(r,—) — K is completely determined by the image under ¢, of the identity
1: 7 — r. This fact may be stated as follows:

Lemma 3.1.4 (Yoneda). If k: D — Set is a functor from D and r an object in D (for D
a category with small hom-sets), there is a bijection

y: Nat(D(r,—),K) 2 Kr (3.4)
which sends each natural transformation o : D(r,—) — K to «,1,, the image of the identity
r—r.

Corollary 3.1.5. For objects r,s € D each natural transformation D(r,—) — D(s,—) has

the form D(h,—) for a unique arrow h: s — r.

Lemma 3.1.6. The bijection of 8.4 is a natural isomorphismy : N — E between the functors
E,N: Set? x D — Set.

3.2 Coproducts and Colimits

Cokernels. Suppose that C' has zero object z, so that for any two objects b,c € C there
is a zero arrow 0: b — z — c¢. The cokernel of f: a — b is then an arrow u: b — e such that
(i) uf = 0: ae; (ii) if h: b — ¢ has hf = 0, then h = h'u for a unique arrow h': e — ¢. The
picture is

a—>b—“>e uf =0,
I
v
c hf=0.

3.3 Products and limits
3.4 Categories with finite products

Proposition 3.4.1. If a category C has a terminal object t and a product diagram a «—
a X b — b for any two of its objects, then C has all finite products. The product object
provide, by {(a,b) — a X b, a bifunctor C x C — C. For any three objects there is an
isomorphism

a=agpc:ax(bxe)=(axb) xe (3.5)
natural in a, b and c. For any object a there are isomorphisms
A=dgitXa™a p=p,:axXt>=a (3.6)

which are natural in a, where t is the terminal object of C.
3.5 Groups in categories

Let C be a category with finite products products and a terminal object t. Then a monoid
in C'is a triple {c,u: ¢ X ¢ — ¢,n: t — ¢), such that the following diagrams commute

1
cx(cxc)—a>(cxc)xcnx—>cxc (3.7
1XHJ( Iz

n
cxe c




txc cXec cXt (3.8)
m
)
c

p=multiplication, c=asocitivity isomorphism of (3.5).
We now define a group in C' to be a monoid (c, u,n) together with an arrow £: ¢ — ¢
which makes the diagram (with . the diagonal)

c cXe cXe (3.9)
| |
t u c

commute (§=right inverse).

Proposition 3.5.1. If C is a category with finite products, then an object ¢ is a group (or,
a monoid) in C if and only if the hom functor C(—,c) is a group (respectively, a monoid) in
the functor category Set®”’.

4 Adjoints
4.1 Adjunctions

Definition 4.1.1. Let A and X be categories. An adjunction from X to A is a triple
(F,G,p): XA, where F and G are functors

while ¢ is a function which assigns to each pair of objects x € X, a € A a bijection
Y=z A(Fz,a) 2 X(z,Ga) (4.1)
which is natural in z and a.

An adjunction may also be described without hom-sets directly in terms of arrows. It is
a bijection which assigns to each arrow f: Fz — a an arrow ¢f = radf: x — Ga, the right
adjunct of f, in such a way that the naturality conditions

o(foFh)=w¢foh, @lkof)=Gkogpf, (4.2)

hold for all f and all arrows h: 2’ — = and k: a — a’. It is equivalent to require that ¢! be
natural; i.e., that for every h,k and ¢g: © — Ga one has

o Ygh)=¢ tgoFh, ¢ YGkog)=Fkop 'g. (4.3)

Given such an adjunctions, the functor F' is said to be a left-adjoint for G, while G is
called a right adjoint for F. (TODO Find TgXequivalent!!!)

Every adjunction yields a universal arrow. Specifically, set a = Fx in (4.1). The left hand
hom-set of (4.1) then contains the identity 1: Fo — Fu; call its p-image 7,. By Yoneda’s



Proposition 3.1.1 this n, is a universal arrow 7, for every objects . Moreover, the function
T +— 1), is a natural transformation Ix — FG.
The bijection ¢ can be expressed in terms of the arrow 7, as

o(f) =G(f)n, for f: Fx — a. (4.4)
Theorem 4.1.2. An adjunction (F,G,p): X — A determines

(1) A natural transformation n : I, — GF such that for each object x the arrow m, is
universal to G from x, while the right adjunct of each f: Fx — a is

of=Gfon,: x — Ga; (4.5)

(i) A natural transformation €: FG — 14 such that arrow e, is universal to a from F,
while each g: x — Ga has left adjunct

¢ lg=¢c,0Fg: Fx — a. (4.6)
Moreover, both the following composites are the identities (of G, resp. F).

¢ "% ara % aq, F—Lper g (4.7)

We call  unit and e the counit of the adjunction.

Theorem 4.1.3. FEach adjunction (F,G,¢): X — A is completely determined by the items
in any one of the following lists:

(i) Functors f, G and a natural transformation n : 1, — GF such that each n,: v — GFz
is unsversal from G to x. The ¢ id defined by (4.5).

(i) The functor G: A — X and for each x € X an object Foxr € A and a universal arrow
Ne: ¢ — GFyx from x to G. Then the functor F has object function Fy and is defined
on arrow h: x — 2’ by GFhon, =n, o h.

(i11) Functors F, G and a natural transformation € : FG — 14 such that each e,: FGa — a
is universal from F to a. Here p~! is defined by (4.6).

(iv) The functor F: X — A and for each a € A an object Goa € X and an arrow
€q: FGoa — a universal from F to a.

(v) Functors F, G and natural transformations n : Ix — GF and € : GF — 14 such that
both composites (4.7) are the identity transformations. Here ¢ is defined by (4.5) and

¢t by (4.6).
Corollary 4.1.4. Any two left-adjoints F and F' of a functor G: A — X are naturally
isomorphic.

Corollary 4.1.5. A functor G: A — X has a left adjoint if and only if, for each v € X,
the functor X (x,Ga) is representable as a functor of a € A. If ¢: A(Foz,a) = X(x,Ga) is
representation of this functor, then Fy is the object function of a left-adjoint of G for which
the bijection ¢ is natural in a and gives the adjunction.

Theorem 4.1.6. If the additive functor G: A — M between Ab-categories A and M has a
left adjoint F': M — A, then F is additive and the adjunction bijections

w: A(Fm,a) = M(m,Ga)

are isomorphisms of abelian groups (for allm € M, a € A).



4.2 Examples of Adjoints
4.3 Reflective Subcategories

Theorem 4.3.1. For an adjunction (F,G,n,e): X — A:
(i) G is faithful if and only if every component e, of the counit € is epi,
(it) G is full if and only if every €, is a split monic.
Hence G is full and faithful if and only if each €, is an isomorphism FGa = a.

Lemma 4.3.2. Let f* : A(a,—) — A(b,—) be the natural transformation induced by an
arrow f:b— a of A. Then f* is monic if and only if f is epi, while f* is epi if and only if
f s a split monic (i.e., if and only if f has a left inverse).

A subcategory A of B is called reflective in B when the inclusion functor K: A — B

has a left adjoint F': B — A. This functor F' may be called a reflector and the adjunction
(F,K, @) =(F,p): B— A a reflection of B in its subcategory A.

4.4 Equivalence of Categories
skipped

4.5 Adjoints for Preorders
skipped

4.6 Cartesian Closed Categories

To assert that a category C' has all finite products and coproducts is to assert that the
functors C — 1 and A: C — C x C have both left and right adjoints. Indeed, the left
adjoints give initial object and coproduct respectively, while the right adjoints give terminal
object and product, respectively.

A category C with all finite products specifically given is called cartesian closed when
each of the following functors

—xb
C-1 C—CxC CC,

c— 0, c— {c,c) ,ar—~axb

has a specified right adjoint (with a specified adjunction). This adjoints are written as follows

t 0, a x b {(a,b), & —c
TODO oprav to na otocena mapsto
The third required adjoint specifies for each functor — x b: C — C' a right adjoint, with
the corresponding bijection
hom(a x b, c) = hom(a, c®)

natural in a and ¢. By the parameter theorem (to be proved in the next section), (b, c) + c®
is then (the object function of) a bifunctor C°? x C' — C. Specifying the adjunction amounts
to specifying for each ¢ and b an arrow e

e: " xb—c



which is natural in ¢ and universal form — X b to c. We call e = ¢, the evaluation map.
Exercise 1: a) If U is any set, show that the preorder P(U) of all subsets of U is a cartesian

closed category.

b) Show that any Boolean algebra, regarded as a preorder, is cartesian closed.

bxb' o (Cb)b/.

t ~

Exercise 3: In any cartesian closed category, prove ¢* = ¢ and ¢
Exercise 4: In any cartesian closed category obtain a natural transformation ¢® x b% — ¢®

which agrees in Set with composition of functions. Prove it (like composition) associative.
Exercise 5: Show that A cartesian closed need not imply A” cartesian closed.



