

1 Categories, Functors, and Natural Transformations

1.1 Axioms for Categories

1.2 Categories

Discrete categories. A category is *discrete* when every arrow is an identity.

1.3 Functors

full=hom-function is surjective (for every pair of objects), faithfull=injective

1.4 Natural Transformations

Given two functors $S, T: C \rightarrow B$ a *natural transformation* $\tau: S \rightarrow T$ is a function which assigns to each object c of C an arrow $\tau_c = \tau c: Sc \rightarrow Tc$ of B in such a way that every arrow $f: c \rightarrow c'$ in C yields a diagram

$$\begin{array}{ccc} c & & Sc \xrightarrow{\tau_c} Tc \\ \downarrow f & & \downarrow Sf \\ c' & & Sc' \xrightarrow{\tau_{c'}} Tc' \end{array}$$

which is commutative.

A natural transformation τ with every component τ_c invertible in B is called *natural equivalence* or better a *natural isomorphism*.

An *equivalence* between categories C and D is defined to be a pair of functors $S: C \rightarrow D$, $T: D \rightarrow C$ together with natural isomorphisms $I_c \cong T \circ S$, $I_D \cong S \circ T$.

1.5 Monics, Epis and Zeros

monic=monomorphism, epic=epimorphism

right inverse=section, left inverse=retraction

An object t is *terminal* in C if to each object a in C there is exactly one arrow $a \rightarrow t$. Dual: *initial* object.

A *null object* z in C is an object which is both initial and terminal. For any two objects a and b of C there is a unique arrow $a \rightarrow z \rightarrow b$, called the *zero arrow* from a to b .

A *groupoid* is a category in which every arrow is invertible. A typical groupoid is the *fundamental groupoid* $\pi(X)$ of a topological space X . (objects=points, arrow $x \rightarrow x'$ =homotopy classes of paths from x to x') *connected groupoid*: there is an arrow joining any two of its objects. (It is determined up to isomorphism by a group.)

1.6 Foundations

1.7 Large Categories

Ab-categories ? (hom-sets are abelian groups)

2 Construction on categories

2.1 Duality

2.2 Contravariance and Opposites

2.3 Products of categories

Functors $S: B \times C \rightarrow D$ from a product category are called *bifunctors*.

Proposition 2.3.1. *Let B , C and D be categories. For all objects $c \in C$ and $b \in B$, let*

$$L_c: B \rightarrow D, \quad M_b: C \rightarrow D$$

be functors such that $M_b(c) = L_c(b)$ for all b and c . Then there exists a bifunctor $S: B \times C \rightarrow D$ with $S(-, c) = L_c$ for all c and $S(b, -) = M_b$ for all b if and only if for every pair of arrows $f: b \rightarrow b'$ and $g: c \rightarrow c'$ one has

$$M_{b'}g \circ L_c f = L_{c'}f \circ M_b g.$$

These equal arrow in D are then the value $S(f, g)$ of the arrow function of S .

Proposition 2.3.2. *For bifunctors S , S' , the function α which assigns to each pair of objects $b \in B$, $c \in C$ an arrow $\alpha(b, c): S(b, c) \rightarrow S'(b, c)$ is a natural transformation $\alpha: S \rightarrow S'$ (i.e., of bifunctors) if and only if $\alpha(b, c)$ is natural in b for each $c \in C$ and natural in c for each $b \in B$.*

Such natural transformations appear in the fundamental definition of adjoint functor (Chapter IV.) A functor $F: X \rightarrow C$ is the *left adjoint* of a functor $G: C \rightarrow X$ (opposite direction) when there is a bijection

$$\hom_C(Fx, c) \cong \hom_x(x, Gc)$$

natural in $x \in X$ and $c \in C$.

2.4 Functor categories

$B^C - \text{Funct}(C, B)$ with objects the functors $T: C \rightarrow B$ and morphism the natural transformations. $\text{Nat}(S, T) := B^C(S, T) = \{\tau | \tau: S \rightarrow T \text{ natural}\}$.

2.5 The Category of All Categories

We have defined a “vertical” composite $\tau \cdot \sigma$,

$$\begin{array}{ccc} C & \xrightarrow{\quad \quad \quad} & B \\ \downarrow \tau \quad \downarrow \sigma & & \\ \hline C & \xrightarrow{\quad \quad \quad} & B \end{array}$$

Given functors and natural transformations,

$$\begin{array}{ccccc} C & \xrightarrow{S} & B & \xrightarrow{S'} & A \\ \downarrow \tau & & \downarrow \tau' & & \\ T & & T' & & \end{array} \tag{2.1}$$

one may construct natural transformation $\tau' \circ \tau$ as

$$(\tau' \circ \tau)c = T'\tau c \circ \tau' S c = \tau' T C \circ S' \tau c. \quad (2.2)$$

This composition is readily shown to be associative. It moreover has identities. It is convenient to let the symbols S for a functor also denote the identity transformation $1_S : S \rightarrow S$. The definition (2.2) can then be rewritten using also the vertical composition, as

$$\tau' \circ \tau = (T' \circ \tau) \cdot (\tau' \circ S) = (\tau' \circ T) \cdot (S' \circ \tau) \quad (2.3)$$

There is a more general rule. Given three categories and four transformations

$$\begin{array}{ccccc} & & \xrightarrow{\quad \downarrow \sigma \quad} & & \\ C & \xrightarrow{\quad \downarrow \tau \quad} & B & \xrightarrow{\quad \downarrow \sigma' \quad} & A \\ & & \xrightarrow{\quad \downarrow \tau' \quad} & & \end{array} \quad (2.4)$$

the “vertical” composites under \cdot and the “horizontal” composites under \circ are related by the identity (*interchange law*)

$$(\tau' \cdot \sigma') \circ (\tau \cdot \sigma) = (\tau' \circ \tau) \cdot (\sigma' \circ \sigma) \quad (2.5)$$

Exercise 4: Let G be a topological group with identity element e , while $\sigma, \sigma', \tau, \tau'$ are continuous paths in G starting and ending at e . \circ - skladanie ciest, \cdot pointwise product. Then interchange law holds.

Exercise 5: (Hilton=Eckmann). Let S be a set with two (everywhere defined) binary operations $\cdot : S \times S \rightarrow S$, $\circ : S \times S \rightarrow S$ which both have the same (two-sided) unit element e and which satisfy the interchange identity (2.5). Prove that \cdot and \circ are equal, and that each is commutative.

Exercise 6: Combine Exercises 5 and 6 to prove that the fundamental group of a topological group is abelian.

2.6 Comma categories

Category of *objects under b* is the category $(b \downarrow C)$ with objects all pairs $\langle f, c \rangle$, where c is an object of C and $f: b \rightarrow c$ is an arrow of c . Arrows are arrows of C (resp. commutative triangles).

If a is an object of C , the category $(C \downarrow a)$ of *objects over a* has objects $f: c \rightarrow a$.

If b is an object of C and $S: D \rightarrow C$ a functor, the category $(b \downarrow S)$ of *objects S-under b* has objects all pairs $\langle f, d \rangle$ with $f: b \rightarrow Sd$.

$(T \downarrow a)$ of objects T -over a .

Here is the general construction. Given categories and functors

$$E \xrightarrow{T} C \xleftarrow{S} D$$

the *comma category* $(T \downarrow S)$, also written (T, S) has objects all triples $\langle e, d, f \rangle$, with $d \in \text{Obj}D$, $e \in \text{Obj}E$, and $f: Te \rightarrow Sd$ and as arrows $\langle e, d, f \rangle \rightarrow \langle e', d', f' \rangle$ all pairs $\langle k, h \rangle$ of arrows $k: e \rightarrow e'$, $h: d \rightarrow d'$ such that $f' \circ Tk = Sh \circ f$. In pictures

$$\begin{array}{ccc} \text{Objects } \langle e, d, f \rangle & Te & ; \quad \text{arrows } \langle k, h \rangle \quad Te \xrightarrow{Tk} Te' \\ \downarrow f & & \downarrow f \\ Sd & & Sd \xrightarrow{Sh} Sd' \end{array} \quad (2.6)$$

with the square commutative. The composite $\langle k', h' \rangle \circ \langle k, h \rangle = \langle k' \circ k, h' \circ h \rangle$, when defined.

2.7 Graphs and Free Categories

skipped

2.8 Quotient Categories

skipped

3 Universals and limits

Definition 3.0.1. If $S: D \rightarrow C$ is a functor and c an object of C , a *universal arrow from c to S* is a pair $\langle r, u \rangle$ consisting of an object r of D and an arrow $u: c \rightarrow Sr$ of C , such that to every pair $\langle d, f \rangle$ with d an object of D and $f: c \rightarrow Sd$ an arrow of C , there is a unique arrow $f': r \rightarrow d$ of D with $Sf' \circ u = f$. In other words, every arrow f to S factors uniquely through the universal arrow u , as in the commutative diagram

$$\begin{array}{ccc} c & \xrightarrow{u} & Sr \\ & \searrow f & \downarrow Sf' \\ & & Sd \end{array} \quad (3.1)$$

Examples: Bases of vector spaces, free categories form graphs, fields of quotients, completion of metric space (universal for forgetful functor from complete metric spaces).

If D is a category and $H: D \rightarrow \mathbf{Set}$ functor, a *universal element* of the functor H is a pair $\langle r, e \rangle$ consisting of an object $r \in D$ and an element $e \in Hr$ such that for every pair $\langle d, x \rangle$ with $x \in Hd$ there is a unique arrow $f: r \rightarrow d$ of D with $(Hf)e = x$.

Diagonal functor: $\Delta: C \rightarrow C \times C$, $\Delta c = \langle c, c \rangle$.

3.1 The Yoneda Lemma

Proposition 3.1.1. For a functor $S: D \rightarrow C$ a pair $\langle ru: c \rightarrow Sr \rangle$ is universal from form c to S if and only if the function sending each $f': r \rightarrow d$ into $Sf' \circ u: c \rightarrow Sd$ is a bijection of hom-sets

$$D(r, d) \cong C(c, Sd) \quad (3.2)$$

This bijection is natural in d . Conversely, given r and c , any natural isomorphism (3.2) is determined in this way by a unique arrow $u: c \rightarrow Sr$ such that $\langle r, u \rangle$ is universal from C to S .

Definition 3.1.2. Let D have small hom-sets. A *representation* of a functor $K: D \rightarrow \mathbf{Set}$ is a pair $\langle r, \psi \rangle$ with r an object of D and

$$\psi: D(r, -) \cong K \quad (3.3)$$

a natural isomorphism. The object r is called the *representing object*. The functor K is said to be *representable* when such a representation exists.

Proposition 3.1.3. Let $*$ denote any one-point set and let D have small hom-sets. If $\langle r, u: * \rightarrow Kr \rangle$ is a universal arrow from $*$ to $k: D \rightarrow \mathbf{Set}$, then the function ψ which for each object d of D send the arrow $f': r \rightarrow d$ to $K(f')(u^*) \in Kd$ is a representation of K . Every representation of K is obtained in this way from exactly one such universal arrow.

The argument for Proposition 3.1.1 rested on the observation that each natural transformation $\varphi : D(r, -) \rightarrow K$ is completely determined by the image under φ_r of the identity $1 : r \rightarrow r$. This fact may be stated as follows:

Lemma 3.1.4 (Yoneda). *If $k : D \rightarrow \mathbf{Set}$ is a functor from D and r an object in D (for D a category with small hom-sets), there is a bijection*

$$y : \text{Nat}(D(r, -), K) \cong Kr \quad (3.4)$$

which sends each natural transformation $\alpha : D(r, -) \rightarrow K$ to $\alpha_r 1_r$, the image of the identity $r \rightarrow r$.

Corollary 3.1.5. *For objects $r, s \in D$ each natural transformation $D(r, -) \rightarrow D(s, -)$ has the form $D(h, -)$ for a unique arrow $h : s \rightarrow r$.*

Lemma 3.1.6. *The bijection of 3.4 is a natural isomorphism $y : N \rightarrow E$ between the functors $E, N : \mathbf{Set}^D \times D \rightarrow \mathbf{Set}$.*

3.2 Coproducts and Colimits

Cokernels. Suppose that C has zero object z , so that for any two objects $b, c \in C$ there is a zero arrow $0 : b \rightarrow z \rightarrow c$. The cokernel of $f : a \rightarrow b$ is then an arrow $u : b \rightarrow e$ such that (i) $uf = 0 : ae$; (ii) if $h : b \rightarrow c$ has $hf = 0$, then $h = h'u$ for a unique arrow $h' : e \rightarrow c$. The picture is

$$\begin{array}{ccccc} a & \xrightarrow{f} & b & \xrightarrow{u} & e \\ & & \searrow h & \downarrow h' & \\ & & c & & \end{array} \quad \begin{array}{l} uf = 0, \\ hf = 0. \end{array}$$

3.3 Products and limits

3.4 Categories with finite products

Proposition 3.4.1. *If a category C has a terminal object t and a product diagram $a \leftarrow a \times b \rightarrow b$ for any two of its objects, then C has all finite products. The product object provide, by $\langle a, b \rangle \rightarrow a \times b$, a bifunctor $C \times C \rightarrow C$. For any three objects there is an isomorphism*

$$\alpha = \alpha_{a,b,c} : a \times (b \times c) \cong (a \times b) \times c \quad (3.5)$$

natural in a, b and c . For any object a there are isomorphisms

$$\lambda = \lambda_a : t \times a \cong a \quad \varrho = \varrho_a : a \times t \cong a \quad (3.6)$$

which are natural in a , where t is the terminal object of C .

3.5 Groups in categories

Let C be a category with finite products products and a terminal object t . Then a *monoid* in C is a triple $\langle c, \mu : c \times c \rightarrow c, \eta : t \rightarrow c \rangle$, such that the following diagrams commute

$$\begin{array}{ccccc} c \times (c \times c) & \xrightarrow{\alpha} & (c \times c) \times c & \xrightarrow{\eta \times 1} & c \times c \\ \downarrow 1 \times \mu & & \downarrow \mu & & \downarrow \mu \\ c \times c & \xrightarrow{\mu} & c & & \end{array} \quad (3.7)$$

$$\begin{array}{ccccc}
t \times c & \xrightarrow{\eta \times 1} & c \times c & \xleftarrow{1 \times \eta} & c \times t \\
& \searrow \lambda & \downarrow \mu & \swarrow \varrho & \\
& & c & &
\end{array} \tag{3.8}$$

μ =multiplication, α =asocitivity isomorphism of (3.5).

We now define a *group* in C to be a monoid $\langle c, \mu, \eta \rangle$ together with an arrow $\xi: c \rightarrow c$ which makes the diagram (with δ_c the diagonal)

$$\begin{array}{ccccc}
c & \xrightarrow{\delta_c} & c \times c & \xrightarrow{1 \times \eta} & c \times c \\
\downarrow & & \downarrow \mu & & \downarrow \\
t & \xrightarrow{\eta} & c & &
\end{array} \tag{3.9}$$

commute (ξ =right inverse).

Proposition 3.5.1. *If C is a category with finite products, then an object c is a group (or, a monoid) in C if and only if the hom functor $C(-, c)$ is a group (respectively, a monoid) in the functor category $\mathbf{Set}^{C^{op}}$.*

4 Adjoints

4.1 Adjunctions

Definition 4.1.1. Let A and X be categories. An *adjunction* from X to A is a triple $\langle F, G, \varphi \rangle: XA$, where F and G are functors

$$\begin{array}{c}
F \xleftarrow{G} G \\
\downarrow \varphi \\
F \xrightarrow{F}
\end{array}$$

while φ is a function which assigns to each pair of objects $x \in X$, $a \in A$ a bijection

$$\varphi = \varphi_{x,a}: A(Fx, a) \cong X(x, Ga) \tag{4.1}$$

which is natural in x and a .

An adjunction may also be described without hom-sets directly in terms of arrows. It is a bijection which assigns to each arrow $f: Fx \rightarrow a$ an arrow $\varphi f = \text{rad}f: x \rightarrow Ga$, the *right adjunct* of f , in such a way that the naturality conditions

$$\varphi(f \circ Fh) = \varphi f \circ h, \quad \varphi(k \circ f) = Gk \circ \varphi f, \tag{4.2}$$

hold for all f and all arrows $h: x' \rightarrow x$ and $k: a \rightarrow a'$. It is equivalent to require that φ^{-1} be natural; i.e., that for every h, k and $g: x \rightarrow Ga$ one has

$$\varphi^{-1}(gh) = \varphi^{-1}g \circ Fh, \quad \varphi^{-1}(Gk \circ g) = k \circ \varphi^{-1}g. \tag{4.3}$$

Given such an adjunctions, the functor F is said to be a *left-adjoint* for G , while G is called a *right adjoint* for F . (TODO Find TExequivalent!!!)

Every adjunction yields a universal arrow. Specifically, set $a = Fx$ in (4.1). The left hand hom-set of (4.1) then contains the identity $1: Fx \rightarrow Fx$; call its φ -image η_x . By Yoneda's

Proposition 3.1.1 this η_x is a universal arrow η_x for every objects x . Moreover, the function $x \mapsto \eta_x$ is a natural transformation $I_X \rightarrow GF$.

The bijection φ can be expressed in terms of the arrow η_x as

$$\varphi(f) = G(f)\eta_x \quad \text{for } f: Fx \rightarrow a. \quad (4.4)$$

Theorem 4.1.2. *An adjunction $\langle F, G, \varphi \rangle: X \rightarrow A$ determines*

(i) *A natural transformation $\eta: I_x \rightarrow GF$ such that for each object x the arrow η_x is universal to G from x , while the right adjunct of each $f: Fx \rightarrow a$ is*

$$\varphi f = Gf \circ \eta_x: x \rightarrow Ga; \quad (4.5)$$

(ii) *A natural transformation $\varepsilon: FG \rightarrow I_A$ such that arrow ε_a is universal to a from F , while each $g: x \rightarrow Ga$ has left adjunct*

$$\varphi^{-1}g = \varepsilon_a \circ Fg: Fx \rightarrow a. \quad (4.6)$$

Moreover, both the following composites are the identities (of G , resp. F).

$$G \xrightarrow{\eta G} GFG \xrightarrow{G\varepsilon} G, \quad F \xrightarrow{F\eta} FGF \xrightarrow{\varepsilon F} F. \quad (4.7)$$

We call η *unit* and ε the *counit* of the adjunction.

Theorem 4.1.3. *Each adjunction $\langle F, G, \varphi \rangle: X \rightarrow A$ is completely determined by the items in any one of the following lists:*

- (i) *Functors f, G and a natural transformation $\eta: 1_x \rightarrow GF$ such that each $\eta_x: x \rightarrow GFx$ is universal from G to x . The φ is defined by (4.5).*
- (ii) *The functor $G: A \rightarrow X$ and for each $x \in X$ an object $F_0x \in A$ and a universal arrow $\eta_x: x \rightarrow GF_0x$ from x to G . Then the functor F has object function F_0 and is defined on arrow $h: x \rightarrow x'$ by $GFh \circ \eta_x = \eta_{x'} \circ h$.*
- (iii) *Functors F, G and a natural transformation $\varepsilon: FG \rightarrow I_A$ such that each $\varepsilon_a: FGA \rightarrow a$ is universal from F to a . Here φ^{-1} is defined by (4.6).*
- (iv) *The functor $F: X \rightarrow A$ and for each $a \in A$ an object $G_0a \in X$ and an arrow $\varepsilon_a: FG_0a \rightarrow a$ universal from F to a .*
- (v) *Functors F, G and natural transformations $\eta: I_X \rightarrow GF$ and $\varepsilon: GF \rightarrow I_A$ such that both composites (4.7) are the identity transformations. Here φ is defined by (4.5) and φ^{-1} by (4.6).*

Corollary 4.1.4. *Any two left-adjoints F and F' of a functor $G: A \rightarrow X$ are naturally isomorphic.*

Corollary 4.1.5. *A functor $G: A \rightarrow X$ has a left adjoint if and only if, for each $x \in X$, the functor $X(x, Ga)$ is representable as a functor of $a \in A$. If $\varphi: A(F_0x, a) \cong X(x, Ga)$ is representation of this functor, then F_0 is the object function of a left-adjoint of G for which the bijection φ is natural in a and gives the adjunction.*

Theorem 4.1.6. *If the additive functor $G: A \rightarrow M$ between Ab-categories A and M has a left adjoint $F: M \rightarrow A$, then F is additive and the adjunction bijections*

$$\varphi: A(Fm, a) \cong M(m, Ga)$$

are isomorphisms of abelian groups (for all $m \in M, a \in A$).

4.2 Examples of Adjoints

4.3 Reflective Subcategories

Theorem 4.3.1. *For an adjunction $\langle F, G, \eta, \varepsilon \rangle: X \rightarrow A$:*

- (i) *G is faithful if and only if every component ε_a of the counit ε is epi,*
- (ii) *G is full if and only if every ε_a is a split monic.*

Hence G is full and faithful if and only if each ε_a is an isomorphism $FGa \cong a$.

Lemma 4.3.2. *Let $f^*: A(a, -) \rightarrow A(b, -)$ be the natural transformation induced by an arrow $f: b \rightarrow a$ of A . Then f^* is monic if and only if f is epi, while f^* is epi if and only if f is a split monic (i.e., if and only if f has a left inverse).*

A subcategory A of B is called *reflective* in B when the inclusion functor $K: A \rightarrow B$ has a left adjoint $F: B \rightarrow A$. This functor F may be called a *reflector* and the adjunction $\langle F, K, \varphi \rangle = \langle F, \varphi \rangle: B \rightarrow A$ a *reflection* of B in its subcategory A .

4.4 Equivalence of Categories

skipped

4.5 Adjoints for Preorders

skipped

4.6 Cartesian Closed Categories

To assert that a category C has all finite products and coproducts is to assert that the functors $C \rightarrow \mathbf{1}$ and $\Delta: C \rightarrow C \times C$ have both left and right adjoints. Indeed, the left adjoints give initial object and coproduct respectively, while the right adjoints give terminal object and product, respectively.

A category C with all finite products specifically given is called *cartesian closed* when each of the following functors

$$\begin{aligned} C \rightarrow \mathbf{1}, \quad C \rightarrow C \times C, \quad C \overset{- \times b}{\rightarrow} C, \\ c \mapsto 0, \quad c \mapsto \langle c, c \rangle, \quad a \mapsto a \times b \end{aligned}$$

has a *specified* right adjoint (with a specified adjunction). This adjoints are written as follows

$$t \leftarrow 0, \quad a \times b \leftarrow \langle a, b \rangle, \quad c^b \leftarrow c$$

TODO oprav to na otocena mapsto

The third required adjoint specifies for each functor $- \times b: C \rightarrow C$ a right adjoint, with the corresponding bijection

$$\hom(a \times b, c) \cong \hom(a, c^b)$$

natural in a and c . By the parameter theorem (to be proved in the next section), $\langle b, c \rangle \mapsto c^b$ is then (the object function of) a bifunctor $C^{op} \times C \rightarrow C$. Specifying the adjunction amounts to specifying for each c and b an arrow e

$$e: c^b \times b \rightarrow c$$

which is natural in c and universal form $- \times b$ to c . We call $e = e_b$ the *evaluation* map.

Exercise 1: a) If U is any set, show that the preorder $\mathcal{P}(U)$ of all subsets of U is a cartesian closed category.

b) Show that any Boolean algebra, regarded as a preorder, is cartesian closed.

Exercise 3: In any cartesian closed category, prove $c^t \cong c$ and $c^{b \times b'} \cong (c^b)^{b'}$.

Exercise 4: In any cartesian closed category obtain a natural transformation $c^b \times b^a \rightarrow c^a$ which agrees in **Set** with composition of functions. Prove it (like composition) associative.

Exercise 5: Show that A cartesian closed need not imply A^J cartesian closed.