
MacLane: Categories for Working Mathematician

1 Categories, Functors, and Natural Transformations

1.1 Axioms for Categories

1.2 Categories

Discrete categories. A category is discrete when every arrow is an identity.

1.3 Functors

full=hom-function is surjective (for every pair of objects), faithfull=injective

1.4 Natural Transformations

Given two functors S, T : C → B a natural transformation τ : S ·→ T is a function which
assigns to each object c of C an arrow τc = τc : Sc→ Tc of B in such a way that every arrow
f : c→ c′ in C yields a diagram

c

f

��

Sc
τc //

Sf

��

Tc

Tf

��
c′ Sc′

τc′ // Tc′

which is commutative.
A natural transformation τ with every component τc invertible in B is called natural

equivalence or better a natural isomorphism.
An equivalence between categories C and D is defined to be a pair of functors S : C → D,

T : D → C together with natural isomorphisms Ic ∼= T ◦ S, ID ∼= S ◦ T .

1.5 Monics, Epis and Zeros

monic=monomorphism, epic=epimorphism
right inverse=section, left inverse=retraction
An object t is terminal in C if to each object a in C there is exactly one arrow a → t.

Dual: initial object.
A null object z in C is an object which is both initial and terminal. For any two objects

a and b of C there is a unique arrow a→ z → b, celled the zero arrow from a to b.
A groupoid is a category in which every arrow is invertible. A typical groupoid is the

fundamental groupoid π(X) of a topological space X. (objects=points, arrow x → x′ =ho-
motopy classes of paths from x to x′) connected groupoid: there is an arrow joining any two
of its objects. (It is determined up to isomorphism by a group.)

1.6 Foundations

1.7 Large Categories

Ab-categories ? (hom-sets are abelian groups)
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2 Construction on categories

2.1 Duality

2.2 Contravariance and Opposites

2.3 Products of categories

Functors S : B × C → D from a product category are called bifunctors.

Proposition 2.3.1. Let B, C and D be categories. For all objects c ∈ C and b ∈ B, let

Lc : B → D, Mb : C → D

be functors such that Mb(c) = Lc(b) for all b and c. Then there exists a bifunctor S : B×C →
D with S(−, c) = Lc for all c and S(b,−) = Mb for all b if and only if for every pair of arrows
f : b→ b′ and g : c→ c′ one has

Mb′g ◦ Lcf = Lc′f ◦Mbg.

These equal arrow in D are then the value S(f, g) of the arrow function of S.

Proposition 2.3.2. For bifunctors S, S′, the function α which assigns to each pair of objects
b ∈ B, c ∈ C an arrow α(b, c) : S(b, c) → S′(b, c) is a natural transformation α : S ·→ S′

(i.e., of bifunctors) if and only if α(b, c) is natural in b for each c ∈ C and natural in c for
each b ∈ B.

Such natural transformations appear in the fundamental definition of adjoint functor
(Chapter IV.) A functor F : X → C is the left adjoint of a functor G : C → X (opposite
direction) when there is a bijection

homC(Fx, c) ∼= homx(x,Gc)

natural in x ∈ X and c ∈ C.

2.4 Functor categories

BC −Funct(C,B) with objects the functors T : C → B and morphism the natural trans-
formations. Nat(S, T ) := BC(S, T ) = {τ |τ : S ·→ T natural}.

2.5 The Category of All Categories

We have defined a “vertical” composite τ · σ,

↓σ
//

C // B↓τ //

Given functors and natural transformations,

C
S

↓τ
//

T
// B

S′

↓τ ′
//

T ′
// A (2.1)
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one may construct natural transformation τ ′ ◦ τ as

(τ ′ ◦ τ)c = T ′τc ◦ τ ′Sc = τ ′TC ◦ S′τc. (2.2)

This composition is readily shown to be associative. It moreover has identities. It is
convenient to let the symbols S for a functor also denote the identity transformation 1S :
S
·→ S. The definition (2.2) can then be rewritten using also the vertical composition, as

τ ′ ◦ τ = (T ′ ◦ τ) · (τ ′ ◦ S) = (τ ′ ◦ T ) · (S′ ◦ τ) (2.3)

There is a more general rule. Given three categories and four transformations

C
↓σ
//
//

↓τ //
B

↓σ′
//
//

↓τ ′ //
A (2.4)

the “vertical” composites under · and the “horizontal” composites under ◦ are related by the
identity (interchange law)

(τ ′ · σ′) ◦ (τ · σ) = (τ ′ ◦ τ) · (σ′ ◦ σ) (2.5)

Exercise 4: Let G be a topological group with identity element e, while σ, σ′, τ , τ ′ are
continuous paths in G starting and ending at e. ◦ - skladanie ciest, · pointwise product.
Then interchange law holds.

Exercise 5: (Hilton=Eckmann). Let S be a set with two (everywhere defined) binary
operations · : S×S → S, ◦ : S×S → S which both have the same (two-sided) unit element e
and which satisfy the interchange identity (2.5). Prove that · and ◦ are equal, and that each
is commutative.

Exercise 6: Combine Exercises 5 and 6 to prove that the fundamental group of a topo-
logical group is abelian.

2.6 Comma categories

Category of objects under b is the category (b ↓ C) with objects all pairs 〈f, c〉, where c is
an object of C and f : b→ c is and arrow of c. Arrows are arrows of C (resp. commutative
triangles).

If a is an object of C, the category (C ↓ a) of objects over a has objects f : c→ a.
If b is an object of C and S : D → C a functor, the category (b ↓ S) of objects S-under b

has an objects all pairs 〈f, d〉 with f : b→ Sd.
(T ↓ a) of objects T -over a.
Here is the general construction. Given categories and functors

E
T // C D

Soo

the comma category (T ↓ S), also written (T, S) has objects all triples 〈e, d, f〉, with d ∈
ObjD, e ∈ ObjE, and f : Te → Sd and as arrows 〈e, d, f〉 → 〈e′, d′, f ′〉 all pairs 〈k, h〉 of
arrows k : e→ e′, h : d→ d′ such that f ′ ◦ Tk = Sh ◦ f . In pictures

Objects 〈e, d, f〉 Te
f

��
Sd

; arrows 〈k, h〉 Te Tk //

f

��

Te′

f ′

��
Sd

Sh
// Sd′

(2.6)

with the square commutative. The composite 〈k′, h′〉 ◦ 〈k, h〉 = 〈k′ ◦ k, h′ ◦ h〉, when defined.

3



2.7 Graphs and Free Categories

skipped

2.8 Quotient Categories

skipped

3 Universals and limits

Definition 3.0.1. If S : D → C is a functor and c an object of C, a universal arrow from c
to S is a pair 〈r, u〉 consisting of an object r od D and an arrow u : c → Sr of C, such that
to every pair 〈d, f〉 with d an object of D and f : c → Sd an arrow of C, there is a unique
arrow f ′ : r → d of D with Sf ′ ◦ u = f . In other words, every arrow f to S factors uniquely
through the universal arrow u, as in the commutative diagram

c
u //

f   @@@@@@@@ Sr

Sf ′�
�
�

Sd

(3.1)

Examples: Bases of vector spaces, free categories form graphs, fields of quotients, com-
pletion of metric space (universal for forgetful functor from complete metric spaces).

If D is a category and H : D → Set functor, a universal element of the functor H is a
pair 〈r, e〉 consisting of an object r ∈ D and an element e ∈ Hr such that for every pair 〈d, x〉
with x ∈ Hd there is a unique arrow f : r → d of D with (Hf)e = x.

Diagonal functor: ∆: C → C × C, ∆c = 〈c, c〉.

3.1 The Yoneda Lemma

Proposition 3.1.1. For a functor S : D → C a pair 〈ru : c→ Sr〉 is universal from form c
to S if and only if the function sending each f ′ : r → d into Sf ′ ◦ u : c→ Sd is a bijection of
hom-sets

D(r, d) ∼= C(c, Sd) (3.2)

This bijection is natural in d. Conversely, given r and c, any natural isomorphism (3.2) is
determined in this way by a unique arrow u : c → Sr such that 〈r, u〉 is universal from C to
s.

Definition 3.1.2. Let D have small hom-sets. A representation of a functor K : D → Set
is a pair 〈r, ψ〉 with r an object of D and

ψ : D(r,−) ∼= K (3.3)

a natural isomorphism. The object r is called the representing object. The functor K is said
to be representable when such a representation exists.

Proposition 3.1.3. Let ∗ denote any one-point set and let D have small hom-sets. If
〈r, u : ∗ → Kr〉 is a universal arrow from ∗ to k : D → Set, then the function ψ which for
each object d of D send the arrow f ′ : r → d to K(f ′)(u∗) ∈ Kd is a representation of K.
Every representation of K is obtained in this way from exactly one such universal arrow.
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The argument for Proposition 3.1.1 rested on the observation that each natural transfor-
mation ϕ : D(r,−) ·→ K is completely determined by the image under ϕr of the identity
1: r → r. This fact may be stated as follows:

Lemma 3.1.4 (Yoneda). If k : D → Set is a functor from D and r an object in D (for D
a category with small hom-sets), there is a bijection

y : Nat(D(r,−),K) ∼= Kr (3.4)

which sends each natural transformation α : D(r,−) ·→ K to αr1r, the image of the identity
r → r.

Corollary 3.1.5. For objects r, s ∈ D each natural transformation D(r,−) ·→ D(s,−) has
the form D(h,−) for a unique arrow h : s→ r.

Lemma 3.1.6. The bijection of 3.4 is a natural isomorphism y : N ·→ E between the functors
E,N : SetD ×D → Set.

3.2 Coproducts and Colimits

Cokernels. Suppose that C has zero object z, so that for any two objects b, c ∈ C there
is a zero arrow 0: b→ z → c. The cokernel of f : a→ b is then an arrow u : b→ e such that
(i) uf = 0: ae; (ii) if h : b → c has hf = 0, then h = h′u for a unique arrow h′ : e → c. The
picture is

a
f // b

u //

h
��;;;;;;;; e

h′

���
�
� uf = 0,

c hf = 0.

3.3 Products and limits

3.4 Categories with finite products

Proposition 3.4.1. If a category C has a terminal object t and a product diagram a ←
a × b → b for any two of its objects, then C has all finite products. The product object
provide, by 〈a, b〉 → a × b, a bifunctor C × C → C. For any three objects there is an
isomorphism

α = αa,b,c : a× (b× c) ∼= (a× b)× c (3.5)
natural in a, b and c. For any object a there are isomorphisms

λ = λa : t× a ∼= a % = %a : a× t ∼= a (3.6)

which are natural in a, where t is the terminal object of C.

3.5 Groups in categories

Let C be a category with finite products products and a terminal object t. Then a monoid
in C is a triple 〈c, µ : c× c→ c, η : t→ c〉, such that the following diagrams commute

c× (c× c) α //

1×µ
��

(c× c)× c η×1 // c× c
µ

��
c× c µ // c

(3.7)
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t× c η×1 //

λ

$$HHHHHHHHH c× c
µ

��

c× t1×ηoo

%
zzvvvvvvvvv

c

(3.8)

µ=multiplication, α=asocitivity isomorphism of (3.5).
We now define a group in C to be a monoid 〈c, µ, η〉 together with an arrow ξ : c → c

which makes the diagram (with δc the diagonal)

c
δc //

��

c× c 1×η // c× c
µ

��
t

η // c

(3.9)

commute (ξ=right inverse).

Proposition 3.5.1. If C is a category with finite products, then an object c is a group (or,
a monoid) in C if and only if the hom functor C(−, c) is a qroup (respectively, a monoid) in
the functor category SetC

op

.

4 Adjoints

4.1 Adjunctions

Definition 4.1.1. Let A and X be categories. An adjunction from X to A is a triple
〈F,G, ϕ〉 : XA, where F and G are functors

F
F
// G

Goo

while ϕ is a function which assigns to each pair of objects x ∈ X, a ∈ A a bijection

ϕ = ϕx,a : A(Fx, a) ∼= X(x,Ga) (4.1)

which is natural in x and a.

An adjunction may also be described without hom-sets directly in terms of arrows. It is
a bijection which assigns to each arrow f : Fx → a an arrow ϕf = radf : x → Ga, the right
adjunct of f , in such a way that the naturality conditions

ϕ(f ◦ Fh) = ϕf ◦ h, ϕ(k ◦ f) = Gk ◦ ϕf, (4.2)

hold for all f and all arrows h : x′ → x and k : a→ a′. It is equivalent to require that ϕ−1 be
natural; i.e., that for every h, k and g : x→ Ga one has

ϕ−1(gh) = ϕ−1g ◦ Fh, ϕ−1(Gk ◦ g) = k ◦ ϕ−1g. (4.3)

Given such an adjunctions, the functor F is said to be a left-adjoint for G, while G is
called a right adjoint for F . (TODO Find TEXequivalent!!!)

Every adjunction yields a universal arrow. Specifically, set a = Fx in (4.1). The left hand
hom-set of (4.1) then contains the identity 1: Fx → Fx; call its ϕ-image ηx. By Yoneda’s
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Proposition 3.1.1 this ηx is a universal arrow ηx for every objects x. Moreover, the function
x 7→ ηx is a natural transformation IX → FG.

The bijection ϕ can be expressed in terms of the arrow ηx as

ϕ(f) = G(f)ηx for f : Fx→ a. (4.4)

Theorem 4.1.2. An adjunction 〈F,G, ϕ〉 : X → A determines

(i) A natural transformation η : Ix
·→ GF such that for each object x the arrow ηx is

universal to G from x, while the right adjunct of each f : Fx→ a is

ϕf = Gf ◦ ηx : x→ Ga; (4.5)

(ii) A natural transformation ε : FG → IA such that arrow εa is universal to a from F ,
while each g : x→ Ga has left adjunct

ϕ−1g = εa ◦ Fg : Fx→ a. (4.6)

Moreover, both the following composites are the identities (of G, resp. F ).

G
ηG // GFG

Gε // G, F
Fη // FGF

εF // F. (4.7)

We call η unit and ε the counit of the adjunction.

Theorem 4.1.3. Each adjunction 〈F,G, ϕ〉 : X → A is completely determined by the items
in any one of the following lists:

(i) Functors f , G and a natural transformation η : 1x
·→ GF such that each ηx : x→ GFx

is universal from G to x. The ϕ id defined by (4.5).

(ii) The functor G : A → X and for each x ∈ X an object F0x ∈ A and a universal arrow
ηx : x→ GF0x from x to G. Then the functor F has object function F0 and is defined
on arrow h : x→ x′ by GFh ◦ ηx = ηx′ ◦ h.

(iii) Functors F , G and a natural transformation ε : FG ·→ IA such that each εa : FGa→ a
is universal from F to a. Here ϕ−1 is defined by (4.6).

(iv) The functor F : X → A and for each a ∈ A an object G0a ∈ X and an arrow
εa : FG0a→ a universal from F to a.

(v) Functors F , G and natural transformations η : IX
·→ GF and ε : GF ·→ IA such that

both composites (4.7) are the identity transformations. Here ϕ is defined by (4.5) and
ϕ−1 by (4.6).

Corollary 4.1.4. Any two left-adjoints F and F ′ of a functor G : A → X are naturally
isomorphic.

Corollary 4.1.5. A functor G : A → X has a left adjoint if and only if, for each x ∈ X,
the functor X(x,Ga) is representable as a functor of a ∈ A. If ϕ : A(F0x, a) ∼= X(x,Ga) is
representation of this functor, then F0 is the object function of a left-adjoint of G for which
the bijection ϕ is natural in a and gives the adjunction.

Theorem 4.1.6. If the additive functor G : A → M between Ab-categories A and M has a
left adjoint F : M → A, then F is additive and the adjunction bijections

ϕ : A(Fm, a) ∼= M(m,Ga)

are isomorphisms of abelian groups (for all m ∈M , a ∈ A).
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4.2 Examples of Adjoints

4.3 Reflective Subcategories

Theorem 4.3.1. For an adjunction 〈F,G, η, ε〉 : X → A:

(i) G is faithful if and only if every component εa of the counit ε is epi,

(ii) G is full if and only if every εa is a split monic.

Hence G is full and faithful if and only if each εa is an isomorphism FGa ∼= a.

Lemma 4.3.2. Let f∗ : A(a,−) ·→ A(b,−) be the natural transformation induced by an
arrow f : b→ a of A. Then f∗ is monic if and only if f is epi, while f∗ is epi if and only if
f is a split monic (i.e., if and only if f has a left inverse).

A subcategory A of B is called reflective in B when the inclusion functor K : A → B
has a left adjoint F : B → A. This functor F may be called a reflector and the adjunction
〈F,K,ϕ〉 = 〈F,ϕ〉 : B → A a reflection of B in its subcategory A.

4.4 Equivalence of Categories

skipped

4.5 Adjoints for Preorders

skipped

4.6 Cartesian Closed Categories

To assert that a category C has all finite products and coproducts is to assert that the
functors C → 1 and ∆: C → C × C have both left and right adjoints. Indeed, the left
adjoints give initial object and coproduct respectively, while the right adjoints give terminal
object and product, respectively.

A category C with all finite products specifically given is called cartesian closed when
each of the following functors

C → 1, C → C × C, C
−×b
C ,

c 7→ 0, c 7→ 〈c, c〉 , a 7→ a× b
has a specified right adjoint (with a specified adjunction). This adjoints are written as follows

t� 0, a× b� 〈a, b〉, cb� c

TODO oprav to na otocena mapsto
The third required adjoint specifies for each functor −× b : C → C a right adjoint, with

the corresponding bijection
hom(a× b, c) ∼= hom(a, cb)

natural in a and c. By the parameter theorem (to be proved in the next section), 〈b, c〉 7→ cb

is then (the object function of) a bifunctor Cop×C → C. Specifying the adjunction amounts
to specifying for each c and b an arrow e

e : cb × b→ c
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which is natural in c and universal form −× b to c. We call e = eb the evaluation map.
Exercise 1: a) If U is any set, show that the preorder P(U) of all subsets of U is a cartesian

closed category.
b) Show that any Boolean algebra, regarded as a preorder, is cartesian closed.

Exercise 3: In any cartesian closed category, prove ct ∼= c and cb×b
′ ∼= (cb)b

′
.

Exercise 4: In any cartesian closed category obtain a natural transformation cb× ba → ca

which agrees in Set with composition of functions. Prove it (like composition) associative.
Exercise 5: Show that A cartesian closed need not imply AJ cartesian closed.
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